tcp_timewait.c revision 101137
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_timewait.c 101137 2002-08-01 03:54:43Z rwatson $
35 */
36
37#include "opt_compat.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_mac.h"
41#include "opt_tcpdebug.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/callout.h>
46#include <sys/kernel.h>
47#include <sys/sysctl.h>
48#include <sys/mac.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#ifdef INET6
52#include <sys/domain.h>
53#endif
54#include <sys/proc.h>
55#include <sys/socket.h>
56#include <sys/socketvar.h>
57#include <sys/protosw.h>
58#include <sys/random.h>
59
60#include <vm/uma.h>
61
62#include <net/route.h>
63#include <net/if.h>
64
65#define _IP_VHL
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#ifdef INET6
70#include <netinet/ip6.h>
71#endif
72#include <netinet/in_pcb.h>
73#ifdef INET6
74#include <netinet6/in6_pcb.h>
75#endif
76#include <netinet/in_var.h>
77#include <netinet/ip_var.h>
78#ifdef INET6
79#include <netinet6/ip6_var.h>
80#endif
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#endif /*IPSEC*/
101
102#include <machine/in_cksum.h>
103#include <sys/md5.h>
104
105int 	tcp_mssdflt = TCP_MSS;
106SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
107    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
108
109#ifdef INET6
110int	tcp_v6mssdflt = TCP6_MSS;
111SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
112	CTLFLAG_RW, &tcp_v6mssdflt , 0,
113	"Default TCP Maximum Segment Size for IPv6");
114#endif
115
116#if 0
117static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
118SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
119    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
120#endif
121
122int	tcp_do_rfc1323 = 1;
123SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
124    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
125
126int	tcp_do_rfc1644 = 0;
127SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
128    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
129
130static int	tcp_tcbhashsize = 0;
131SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
132     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
133
134static int	do_tcpdrain = 1;
135SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
136     "Enable tcp_drain routine for extra help when low on mbufs");
137
138SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
139    &tcbinfo.ipi_count, 0, "Number of active PCBs");
140
141static int	icmp_may_rst = 1;
142SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
143    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
144
145static int	tcp_isn_reseed_interval = 0;
146SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
147    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
148
149static void	tcp_cleartaocache(void);
150static struct inpcb *tcp_notify(struct inpcb *, int);
151
152/*
153 * Target size of TCP PCB hash tables. Must be a power of two.
154 *
155 * Note that this can be overridden by the kernel environment
156 * variable net.inet.tcp.tcbhashsize
157 */
158#ifndef TCBHASHSIZE
159#define TCBHASHSIZE	512
160#endif
161
162/*
163 * This is the actual shape of what we allocate using the zone
164 * allocator.  Doing it this way allows us to protect both structures
165 * using the same generation count, and also eliminates the overhead
166 * of allocating tcpcbs separately.  By hiding the structure here,
167 * we avoid changing most of the rest of the code (although it needs
168 * to be changed, eventually, for greater efficiency).
169 */
170#define	ALIGNMENT	32
171#define	ALIGNM1		(ALIGNMENT - 1)
172struct	inp_tp {
173	union {
174		struct	inpcb inp;
175		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
176	} inp_tp_u;
177	struct	tcpcb tcb;
178	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
179	struct	callout inp_tp_delack;
180};
181#undef ALIGNMENT
182#undef ALIGNM1
183
184/*
185 * Tcp initialization
186 */
187void
188tcp_init()
189{
190	int hashsize = TCBHASHSIZE;
191
192	tcp_ccgen = 1;
193	tcp_cleartaocache();
194
195	tcp_delacktime = TCPTV_DELACK;
196	tcp_keepinit = TCPTV_KEEP_INIT;
197	tcp_keepidle = TCPTV_KEEP_IDLE;
198	tcp_keepintvl = TCPTV_KEEPINTVL;
199	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
200	tcp_msl = TCPTV_MSL;
201	tcp_rexmit_min = TCPTV_MIN;
202	tcp_rexmit_slop = TCPTV_CPU_VAR;
203
204	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
205	LIST_INIT(&tcb);
206	tcbinfo.listhead = &tcb;
207	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
208	if (!powerof2(hashsize)) {
209		printf("WARNING: TCB hash size not a power of 2\n");
210		hashsize = 512; /* safe default */
211	}
212	tcp_tcbhashsize = hashsize;
213	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
214	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
215					&tcbinfo.porthashmask);
216	tcbinfo.ipi_zone = uma_zcreate("tcpcb", sizeof(struct inp_tp),
217	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
218	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
219#ifdef INET6
220#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
221#else /* INET6 */
222#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
223#endif /* INET6 */
224	if (max_protohdr < TCP_MINPROTOHDR)
225		max_protohdr = TCP_MINPROTOHDR;
226	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
227		panic("tcp_init");
228#undef TCP_MINPROTOHDR
229
230	syncache_init();
231}
232
233/*
234 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
235 * tcp_template used to store this data in mbufs, but we now recopy it out
236 * of the tcpcb each time to conserve mbufs.
237 */
238void
239tcp_fillheaders(tp, ip_ptr, tcp_ptr)
240	struct tcpcb *tp;
241	void *ip_ptr;
242	void *tcp_ptr;
243{
244	struct inpcb *inp = tp->t_inpcb;
245	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
246
247#ifdef INET6
248	if ((inp->inp_vflag & INP_IPV6) != 0) {
249		struct ip6_hdr *ip6;
250
251		ip6 = (struct ip6_hdr *)ip_ptr;
252		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
253			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
254		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
255			(IPV6_VERSION & IPV6_VERSION_MASK);
256		ip6->ip6_nxt = IPPROTO_TCP;
257		ip6->ip6_plen = sizeof(struct tcphdr);
258		ip6->ip6_src = inp->in6p_laddr;
259		ip6->ip6_dst = inp->in6p_faddr;
260		tcp_hdr->th_sum = 0;
261	} else
262#endif
263	{
264	struct ip *ip = (struct ip *) ip_ptr;
265
266	ip->ip_vhl = IP_VHL_BORING;
267	ip->ip_tos = 0;
268	ip->ip_len = 0;
269	ip->ip_id = 0;
270	ip->ip_off = 0;
271	ip->ip_ttl = 0;
272	ip->ip_sum = 0;
273	ip->ip_p = IPPROTO_TCP;
274	ip->ip_src = inp->inp_laddr;
275	ip->ip_dst = inp->inp_faddr;
276	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
277		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
278	}
279
280	tcp_hdr->th_sport = inp->inp_lport;
281	tcp_hdr->th_dport = inp->inp_fport;
282	tcp_hdr->th_seq = 0;
283	tcp_hdr->th_ack = 0;
284	tcp_hdr->th_x2 = 0;
285	tcp_hdr->th_off = 5;
286	tcp_hdr->th_flags = 0;
287	tcp_hdr->th_win = 0;
288	tcp_hdr->th_urp = 0;
289}
290
291/*
292 * Create template to be used to send tcp packets on a connection.
293 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
294 * use for this function is in keepalives, which use tcp_respond.
295 */
296struct tcptemp *
297tcp_maketemplate(tp)
298	struct tcpcb *tp;
299{
300	struct mbuf *m;
301	struct tcptemp *n;
302
303	m = m_get(M_DONTWAIT, MT_HEADER);
304	if (m == NULL)
305		return (0);
306	m->m_len = sizeof(struct tcptemp);
307	n = mtod(m, struct tcptemp *);
308
309	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
310	return (n);
311}
312
313/*
314 * Send a single message to the TCP at address specified by
315 * the given TCP/IP header.  If m == 0, then we make a copy
316 * of the tcpiphdr at ti and send directly to the addressed host.
317 * This is used to force keep alive messages out using the TCP
318 * template for a connection.  If flags are given then we send
319 * a message back to the TCP which originated the * segment ti,
320 * and discard the mbuf containing it and any other attached mbufs.
321 *
322 * In any case the ack and sequence number of the transmitted
323 * segment are as specified by the parameters.
324 *
325 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
326 */
327void
328tcp_respond(tp, ipgen, th, m, ack, seq, flags)
329	struct tcpcb *tp;
330	void *ipgen;
331	register struct tcphdr *th;
332	register struct mbuf *m;
333	tcp_seq ack, seq;
334	int flags;
335{
336	register int tlen;
337	int win = 0;
338	struct route *ro = 0;
339	struct route sro;
340	struct ip *ip;
341	struct tcphdr *nth;
342#ifdef INET6
343	struct route_in6 *ro6 = 0;
344	struct route_in6 sro6;
345	struct ip6_hdr *ip6;
346	int isipv6;
347#endif /* INET6 */
348	int ipflags = 0;
349
350	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
351
352#ifdef INET6
353	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
354	ip6 = ipgen;
355#endif /* INET6 */
356	ip = ipgen;
357
358	if (tp) {
359		if (!(flags & TH_RST)) {
360			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
361			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
362				win = (long)TCP_MAXWIN << tp->rcv_scale;
363		}
364#ifdef INET6
365		if (isipv6)
366			ro6 = &tp->t_inpcb->in6p_route;
367		else
368#endif /* INET6 */
369		ro = &tp->t_inpcb->inp_route;
370	} else {
371#ifdef INET6
372		if (isipv6) {
373			ro6 = &sro6;
374			bzero(ro6, sizeof *ro6);
375		} else
376#endif /* INET6 */
377	      {
378		ro = &sro;
379		bzero(ro, sizeof *ro);
380	      }
381	}
382	if (m == 0) {
383		m = m_gethdr(M_DONTWAIT, MT_HEADER);
384		if (m == NULL)
385			return;
386		tlen = 0;
387		m->m_data += max_linkhdr;
388#ifdef INET6
389		if (isipv6) {
390			bcopy((caddr_t)ip6, mtod(m, caddr_t),
391			      sizeof(struct ip6_hdr));
392			ip6 = mtod(m, struct ip6_hdr *);
393			nth = (struct tcphdr *)(ip6 + 1);
394		} else
395#endif /* INET6 */
396	      {
397		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
398		ip = mtod(m, struct ip *);
399		nth = (struct tcphdr *)(ip + 1);
400	      }
401		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
402		flags = TH_ACK;
403	} else {
404		m_freem(m->m_next);
405		m->m_next = 0;
406		m->m_data = (caddr_t)ipgen;
407		/* m_len is set later */
408		tlen = 0;
409#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
410#ifdef INET6
411		if (isipv6) {
412			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
413			nth = (struct tcphdr *)(ip6 + 1);
414		} else
415#endif /* INET6 */
416	      {
417		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
418		nth = (struct tcphdr *)(ip + 1);
419	      }
420		if (th != nth) {
421			/*
422			 * this is usually a case when an extension header
423			 * exists between the IPv6 header and the
424			 * TCP header.
425			 */
426			nth->th_sport = th->th_sport;
427			nth->th_dport = th->th_dport;
428		}
429		xchg(nth->th_dport, nth->th_sport, n_short);
430#undef xchg
431	}
432#ifdef INET6
433	if (isipv6) {
434		ip6->ip6_flow = 0;
435		ip6->ip6_vfc = IPV6_VERSION;
436		ip6->ip6_nxt = IPPROTO_TCP;
437		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
438						tlen));
439		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
440	} else
441#endif
442      {
443	tlen += sizeof (struct tcpiphdr);
444	ip->ip_len = tlen;
445	ip->ip_ttl = ip_defttl;
446      }
447	m->m_len = tlen;
448	m->m_pkthdr.len = tlen;
449	m->m_pkthdr.rcvif = (struct ifnet *) 0;
450#ifdef MAC
451	if (tp != NULL) {
452		/*
453		 * Packet is associated with a socket, so allow the
454		 * label of the response to reflect the socket label.
455		 */
456		mac_create_mbuf_from_socket(tp->t_inpcb->inp_socket, m);
457	} else {
458		/*
459		 * XXXMAC: This will need to call a mac function that
460		 * modifies the mbuf label in place for TCP datagrams
461		 * not associated with a PCB.
462		 */
463	}
464#endif
465	nth->th_seq = htonl(seq);
466	nth->th_ack = htonl(ack);
467	nth->th_x2 = 0;
468	nth->th_off = sizeof (struct tcphdr) >> 2;
469	nth->th_flags = flags;
470	if (tp)
471		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
472	else
473		nth->th_win = htons((u_short)win);
474	nth->th_urp = 0;
475#ifdef INET6
476	if (isipv6) {
477		nth->th_sum = 0;
478		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
479					sizeof(struct ip6_hdr),
480					tlen - sizeof(struct ip6_hdr));
481		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
482					       ro6 && ro6->ro_rt ?
483					       ro6->ro_rt->rt_ifp :
484					       NULL);
485	} else
486#endif /* INET6 */
487      {
488        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
489	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
490        m->m_pkthdr.csum_flags = CSUM_TCP;
491        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
492      }
493#ifdef TCPDEBUG
494	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
495		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
496#endif
497#ifdef IPSEC
498	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
499		m_freem(m);
500		return;
501	}
502#endif
503#ifdef INET6
504	if (isipv6) {
505		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
506		if (ro6 == &sro6 && ro6->ro_rt) {
507			RTFREE(ro6->ro_rt);
508			ro6->ro_rt = NULL;
509		}
510	} else
511#endif /* INET6 */
512      {
513	(void) ip_output(m, NULL, ro, ipflags, NULL);
514	if (ro == &sro && ro->ro_rt) {
515		RTFREE(ro->ro_rt);
516		ro->ro_rt = NULL;
517	}
518      }
519}
520
521/*
522 * Create a new TCP control block, making an
523 * empty reassembly queue and hooking it to the argument
524 * protocol control block.  The `inp' parameter must have
525 * come from the zone allocator set up in tcp_init().
526 */
527struct tcpcb *
528tcp_newtcpcb(inp)
529	struct inpcb *inp;
530{
531	struct inp_tp *it;
532	register struct tcpcb *tp;
533#ifdef INET6
534	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
535#endif /* INET6 */
536
537	it = (struct inp_tp *)inp;
538	tp = &it->tcb;
539	bzero((char *) tp, sizeof(struct tcpcb));
540	LIST_INIT(&tp->t_segq);
541	tp->t_maxseg = tp->t_maxopd =
542#ifdef INET6
543		isipv6 ? tcp_v6mssdflt :
544#endif /* INET6 */
545		tcp_mssdflt;
546
547	/* Set up our timeouts. */
548	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
549	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
550	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
551	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
552	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
553
554	if (tcp_do_rfc1323)
555		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
556	if (tcp_do_rfc1644)
557		tp->t_flags |= TF_REQ_CC;
558	tp->t_inpcb = inp;	/* XXX */
559	/*
560	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
561	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
562	 * reasonable initial retransmit time.
563	 */
564	tp->t_srtt = TCPTV_SRTTBASE;
565	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
566	tp->t_rttmin = tcp_rexmit_min;
567	tp->t_rxtcur = TCPTV_RTOBASE;
568	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
569	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
570	tp->t_rcvtime = ticks;
571        /*
572	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
573	 * because the socket may be bound to an IPv6 wildcard address,
574	 * which may match an IPv4-mapped IPv6 address.
575	 */
576	inp->inp_ip_ttl = ip_defttl;
577	inp->inp_ppcb = (caddr_t)tp;
578	return (tp);		/* XXX */
579}
580
581/*
582 * Drop a TCP connection, reporting
583 * the specified error.  If connection is synchronized,
584 * then send a RST to peer.
585 */
586struct tcpcb *
587tcp_drop(tp, errno)
588	register struct tcpcb *tp;
589	int errno;
590{
591	struct socket *so = tp->t_inpcb->inp_socket;
592
593	if (TCPS_HAVERCVDSYN(tp->t_state)) {
594		tp->t_state = TCPS_CLOSED;
595		(void) tcp_output(tp);
596		tcpstat.tcps_drops++;
597	} else
598		tcpstat.tcps_conndrops++;
599	if (errno == ETIMEDOUT && tp->t_softerror)
600		errno = tp->t_softerror;
601	so->so_error = errno;
602	return (tcp_close(tp));
603}
604
605/*
606 * Close a TCP control block:
607 *	discard all space held by the tcp
608 *	discard internet protocol block
609 *	wake up any sleepers
610 */
611struct tcpcb *
612tcp_close(tp)
613	register struct tcpcb *tp;
614{
615	register struct tseg_qent *q;
616	struct inpcb *inp = tp->t_inpcb;
617	struct socket *so = inp->inp_socket;
618#ifdef INET6
619	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
620#endif /* INET6 */
621	register struct rtentry *rt;
622	int dosavessthresh;
623
624	/*
625	 * Make sure that all of our timers are stopped before we
626	 * delete the PCB.
627	 */
628	callout_stop(tp->tt_rexmt);
629	callout_stop(tp->tt_persist);
630	callout_stop(tp->tt_keep);
631	callout_stop(tp->tt_2msl);
632	callout_stop(tp->tt_delack);
633
634	/*
635	 * If we got enough samples through the srtt filter,
636	 * save the rtt and rttvar in the routing entry.
637	 * 'Enough' is arbitrarily defined as the 16 samples.
638	 * 16 samples is enough for the srtt filter to converge
639	 * to within 5% of the correct value; fewer samples and
640	 * we could save a very bogus rtt.
641	 *
642	 * Don't update the default route's characteristics and don't
643	 * update anything that the user "locked".
644	 */
645	if (tp->t_rttupdated >= 16) {
646		register u_long i = 0;
647#ifdef INET6
648		if (isipv6) {
649			struct sockaddr_in6 *sin6;
650
651			if ((rt = inp->in6p_route.ro_rt) == NULL)
652				goto no_valid_rt;
653			sin6 = (struct sockaddr_in6 *)rt_key(rt);
654			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
655				goto no_valid_rt;
656		}
657		else
658#endif /* INET6 */
659		if ((rt = inp->inp_route.ro_rt) == NULL ||
660		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
661		    == INADDR_ANY)
662			goto no_valid_rt;
663
664		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
665			i = tp->t_srtt *
666			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
667			if (rt->rt_rmx.rmx_rtt && i)
668				/*
669				 * filter this update to half the old & half
670				 * the new values, converting scale.
671				 * See route.h and tcp_var.h for a
672				 * description of the scaling constants.
673				 */
674				rt->rt_rmx.rmx_rtt =
675				    (rt->rt_rmx.rmx_rtt + i) / 2;
676			else
677				rt->rt_rmx.rmx_rtt = i;
678			tcpstat.tcps_cachedrtt++;
679		}
680		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
681			i = tp->t_rttvar *
682			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
683			if (rt->rt_rmx.rmx_rttvar && i)
684				rt->rt_rmx.rmx_rttvar =
685				    (rt->rt_rmx.rmx_rttvar + i) / 2;
686			else
687				rt->rt_rmx.rmx_rttvar = i;
688			tcpstat.tcps_cachedrttvar++;
689		}
690		/*
691		 * The old comment here said:
692		 * update the pipelimit (ssthresh) if it has been updated
693		 * already or if a pipesize was specified & the threshhold
694		 * got below half the pipesize.  I.e., wait for bad news
695		 * before we start updating, then update on both good
696		 * and bad news.
697		 *
698		 * But we want to save the ssthresh even if no pipesize is
699		 * specified explicitly in the route, because such
700		 * connections still have an implicit pipesize specified
701		 * by the global tcp_sendspace.  In the absence of a reliable
702		 * way to calculate the pipesize, it will have to do.
703		 */
704		i = tp->snd_ssthresh;
705		if (rt->rt_rmx.rmx_sendpipe != 0)
706			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
707		else
708			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
709		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
710		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
711		    || dosavessthresh) {
712			/*
713			 * convert the limit from user data bytes to
714			 * packets then to packet data bytes.
715			 */
716			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
717			if (i < 2)
718				i = 2;
719			i *= (u_long)(tp->t_maxseg +
720#ifdef INET6
721				      (isipv6 ? sizeof (struct ip6_hdr) +
722					       sizeof (struct tcphdr) :
723#endif
724				       sizeof (struct tcpiphdr)
725#ifdef INET6
726				       )
727#endif
728				      );
729			if (rt->rt_rmx.rmx_ssthresh)
730				rt->rt_rmx.rmx_ssthresh =
731				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
732			else
733				rt->rt_rmx.rmx_ssthresh = i;
734			tcpstat.tcps_cachedssthresh++;
735		}
736	}
737    no_valid_rt:
738	/* free the reassembly queue, if any */
739	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
740		LIST_REMOVE(q, tqe_q);
741		m_freem(q->tqe_m);
742		FREE(q, M_TSEGQ);
743	}
744	inp->inp_ppcb = NULL;
745	soisdisconnected(so);
746#ifdef INET6
747	if (INP_CHECK_SOCKAF(so, AF_INET6))
748		in6_pcbdetach(inp);
749	else
750#endif /* INET6 */
751	in_pcbdetach(inp);
752	tcpstat.tcps_closed++;
753	return ((struct tcpcb *)0);
754}
755
756void
757tcp_drain()
758{
759	if (do_tcpdrain)
760	{
761		struct inpcb *inpb;
762		struct tcpcb *tcpb;
763		struct tseg_qent *te;
764
765	/*
766	 * Walk the tcpbs, if existing, and flush the reassembly queue,
767	 * if there is one...
768	 * XXX: The "Net/3" implementation doesn't imply that the TCP
769	 *      reassembly queue should be flushed, but in a situation
770	 * 	where we're really low on mbufs, this is potentially
771	 *  	usefull.
772	 */
773		INP_INFO_RLOCK(&tcbinfo);
774		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
775			INP_LOCK(inpb);
776			if ((tcpb = intotcpcb(inpb))) {
777				while ((te = LIST_FIRST(&tcpb->t_segq))
778			            != NULL) {
779					LIST_REMOVE(te, tqe_q);
780					m_freem(te->tqe_m);
781					FREE(te, M_TSEGQ);
782				}
783			}
784			INP_UNLOCK(inpb);
785		}
786		INP_INFO_RUNLOCK(&tcbinfo);
787	}
788}
789
790/*
791 * Notify a tcp user of an asynchronous error;
792 * store error as soft error, but wake up user
793 * (for now, won't do anything until can select for soft error).
794 *
795 * Do not wake up user since there currently is no mechanism for
796 * reporting soft errors (yet - a kqueue filter may be added).
797 */
798static struct inpcb *
799tcp_notify(inp, error)
800	struct inpcb *inp;
801	int error;
802{
803	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
804
805	/*
806	 * Ignore some errors if we are hooked up.
807	 * If connection hasn't completed, has retransmitted several times,
808	 * and receives a second error, give up now.  This is better
809	 * than waiting a long time to establish a connection that
810	 * can never complete.
811	 */
812	if (tp->t_state == TCPS_ESTABLISHED &&
813	     (error == EHOSTUNREACH || error == ENETUNREACH ||
814	      error == EHOSTDOWN)) {
815		return inp;
816	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
817	    tp->t_softerror) {
818		tcp_drop(tp, error);
819		return (struct inpcb *)0;
820	} else {
821		tp->t_softerror = error;
822		return inp;
823	}
824#if 0
825	wakeup((caddr_t) &so->so_timeo);
826	sorwakeup(so);
827	sowwakeup(so);
828#endif
829}
830
831static int
832tcp_pcblist(SYSCTL_HANDLER_ARGS)
833{
834	int error, i, n, s;
835	struct inpcb *inp, **inp_list;
836	inp_gen_t gencnt;
837	struct xinpgen xig;
838
839	/*
840	 * The process of preparing the TCB list is too time-consuming and
841	 * resource-intensive to repeat twice on every request.
842	 */
843	if (req->oldptr == 0) {
844		n = tcbinfo.ipi_count;
845		req->oldidx = 2 * (sizeof xig)
846			+ (n + n/8) * sizeof(struct xtcpcb);
847		return 0;
848	}
849
850	if (req->newptr != 0)
851		return EPERM;
852
853	/*
854	 * OK, now we're committed to doing something.
855	 */
856	s = splnet();
857	INP_INFO_RLOCK(&tcbinfo);
858	gencnt = tcbinfo.ipi_gencnt;
859	n = tcbinfo.ipi_count;
860	INP_INFO_RUNLOCK(&tcbinfo);
861	splx(s);
862
863	sysctl_wire_old_buffer(req, 2 * (sizeof xig)
864		+ n * sizeof(struct xtcpcb));
865
866	xig.xig_len = sizeof xig;
867	xig.xig_count = n;
868	xig.xig_gen = gencnt;
869	xig.xig_sogen = so_gencnt;
870	error = SYSCTL_OUT(req, &xig, sizeof xig);
871	if (error)
872		return error;
873
874	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
875	if (inp_list == 0)
876		return ENOMEM;
877
878	s = splnet();
879	INP_INFO_RLOCK(&tcbinfo);
880	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
881	     inp = LIST_NEXT(inp, inp_list)) {
882		INP_LOCK(inp);
883		if (inp->inp_gencnt <= gencnt &&
884		    cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0)
885			inp_list[i++] = inp;
886		INP_UNLOCK(inp);
887	}
888	INP_INFO_RUNLOCK(&tcbinfo);
889	splx(s);
890	n = i;
891
892	error = 0;
893	for (i = 0; i < n; i++) {
894		inp = inp_list[i];
895		INP_LOCK(inp);
896		if (inp->inp_gencnt <= gencnt) {
897			struct xtcpcb xt;
898			caddr_t inp_ppcb;
899			xt.xt_len = sizeof xt;
900			/* XXX should avoid extra copy */
901			bcopy(inp, &xt.xt_inp, sizeof *inp);
902			inp_ppcb = inp->inp_ppcb;
903			if (inp_ppcb != NULL)
904				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
905			else
906				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
907			if (inp->inp_socket)
908				sotoxsocket(inp->inp_socket, &xt.xt_socket);
909			error = SYSCTL_OUT(req, &xt, sizeof xt);
910		}
911		INP_UNLOCK(inp);
912	}
913	if (!error) {
914		/*
915		 * Give the user an updated idea of our state.
916		 * If the generation differs from what we told
917		 * her before, she knows that something happened
918		 * while we were processing this request, and it
919		 * might be necessary to retry.
920		 */
921		s = splnet();
922		INP_INFO_RLOCK(&tcbinfo);
923		xig.xig_gen = tcbinfo.ipi_gencnt;
924		xig.xig_sogen = so_gencnt;
925		xig.xig_count = tcbinfo.ipi_count;
926		INP_INFO_RUNLOCK(&tcbinfo);
927		splx(s);
928		error = SYSCTL_OUT(req, &xig, sizeof xig);
929	}
930	free(inp_list, M_TEMP);
931	return error;
932}
933
934SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
935	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
936
937static int
938tcp_getcred(SYSCTL_HANDLER_ARGS)
939{
940	struct xucred xuc;
941	struct sockaddr_in addrs[2];
942	struct inpcb *inp;
943	int error, s;
944
945	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
946	if (error)
947		return (error);
948	error = SYSCTL_IN(req, addrs, sizeof(addrs));
949	if (error)
950		return (error);
951	s = splnet();
952	INP_INFO_RLOCK(&tcbinfo);
953	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
954	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
955	if (inp == NULL) {
956		error = ENOENT;
957		goto outunlocked;
958	}
959	INP_LOCK(inp);
960	if (inp->inp_socket == NULL) {
961		error = ENOENT;
962		goto out;
963	}
964	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
965	if (error)
966		goto out;
967	cru2x(inp->inp_socket->so_cred, &xuc);
968out:
969	INP_UNLOCK(inp);
970outunlocked:
971	INP_INFO_RUNLOCK(&tcbinfo);
972	splx(s);
973	if (error == 0)
974		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
975	return (error);
976}
977
978SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
979    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
980    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
981
982#ifdef INET6
983static int
984tcp6_getcred(SYSCTL_HANDLER_ARGS)
985{
986	struct xucred xuc;
987	struct sockaddr_in6 addrs[2];
988	struct inpcb *inp;
989	int error, s, mapped = 0;
990
991	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
992	if (error)
993		return (error);
994	error = SYSCTL_IN(req, addrs, sizeof(addrs));
995	if (error)
996		return (error);
997	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
998		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
999			mapped = 1;
1000		else
1001			return (EINVAL);
1002	}
1003	s = splnet();
1004	INP_INFO_RLOCK(&tcbinfo);
1005	if (mapped == 1)
1006		inp = in_pcblookup_hash(&tcbinfo,
1007			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1008			addrs[1].sin6_port,
1009			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1010			addrs[0].sin6_port,
1011			0, NULL);
1012	else
1013		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1014				 addrs[1].sin6_port,
1015				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1016				 0, NULL);
1017	if (inp == NULL) {
1018		error = ENOENT;
1019		goto outunlocked;
1020	}
1021	INP_LOCK(inp);
1022	if (inp->inp_socket == NULL) {
1023		error = ENOENT;
1024		goto out;
1025	}
1026	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1027	if (error)
1028		goto out;
1029	cru2x(inp->inp_socket->so_cred, &xuc);
1030out:
1031	INP_UNLOCK(inp);
1032outunlocked:
1033	INP_INFO_RUNLOCK(&tcbinfo);
1034	splx(s);
1035	if (error == 0)
1036		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1037	return (error);
1038}
1039
1040SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1041    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1042    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1043#endif
1044
1045
1046void
1047tcp_ctlinput(cmd, sa, vip)
1048	int cmd;
1049	struct sockaddr *sa;
1050	void *vip;
1051{
1052	struct ip *ip = vip;
1053	struct tcphdr *th;
1054	struct in_addr faddr;
1055	struct inpcb *inp;
1056	struct tcpcb *tp;
1057	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1058	tcp_seq icmp_seq;
1059	int s;
1060
1061	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1062	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1063		return;
1064
1065	if (cmd == PRC_QUENCH)
1066		notify = tcp_quench;
1067	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1068		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1069		notify = tcp_drop_syn_sent;
1070	else if (cmd == PRC_MSGSIZE)
1071		notify = tcp_mtudisc;
1072	else if (PRC_IS_REDIRECT(cmd)) {
1073		ip = 0;
1074		notify = in_rtchange;
1075	} else if (cmd == PRC_HOSTDEAD)
1076		ip = 0;
1077	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1078		return;
1079	if (ip) {
1080		s = splnet();
1081		th = (struct tcphdr *)((caddr_t)ip
1082				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1083		INP_INFO_WLOCK(&tcbinfo);
1084		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1085		    ip->ip_src, th->th_sport, 0, NULL);
1086		if (inp != NULL)  {
1087			INP_LOCK(inp);
1088			if (inp->inp_socket != NULL) {
1089				icmp_seq = htonl(th->th_seq);
1090				tp = intotcpcb(inp);
1091				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1092			    		SEQ_LT(icmp_seq, tp->snd_max))
1093					inp = (*notify)(inp, inetctlerrmap[cmd]);
1094			}
1095			if (inp)
1096				INP_UNLOCK(inp);
1097		} else {
1098			struct in_conninfo inc;
1099
1100			inc.inc_fport = th->th_dport;
1101			inc.inc_lport = th->th_sport;
1102			inc.inc_faddr = faddr;
1103			inc.inc_laddr = ip->ip_src;
1104#ifdef INET6
1105			inc.inc_isipv6 = 0;
1106#endif
1107			syncache_unreach(&inc, th);
1108		}
1109		INP_INFO_WUNLOCK(&tcbinfo);
1110		splx(s);
1111	} else
1112		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1113}
1114
1115#ifdef INET6
1116void
1117tcp6_ctlinput(cmd, sa, d)
1118	int cmd;
1119	struct sockaddr *sa;
1120	void *d;
1121{
1122	struct tcphdr th;
1123	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1124	struct ip6_hdr *ip6;
1125	struct mbuf *m;
1126	struct ip6ctlparam *ip6cp = NULL;
1127	const struct sockaddr_in6 *sa6_src = NULL;
1128	int off;
1129	struct tcp_portonly {
1130		u_int16_t th_sport;
1131		u_int16_t th_dport;
1132	} *thp;
1133
1134	if (sa->sa_family != AF_INET6 ||
1135	    sa->sa_len != sizeof(struct sockaddr_in6))
1136		return;
1137
1138	if (cmd == PRC_QUENCH)
1139		notify = tcp_quench;
1140	else if (cmd == PRC_MSGSIZE)
1141		notify = tcp_mtudisc;
1142	else if (!PRC_IS_REDIRECT(cmd) &&
1143		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1144		return;
1145
1146	/* if the parameter is from icmp6, decode it. */
1147	if (d != NULL) {
1148		ip6cp = (struct ip6ctlparam *)d;
1149		m = ip6cp->ip6c_m;
1150		ip6 = ip6cp->ip6c_ip6;
1151		off = ip6cp->ip6c_off;
1152		sa6_src = ip6cp->ip6c_src;
1153	} else {
1154		m = NULL;
1155		ip6 = NULL;
1156		off = 0;	/* fool gcc */
1157		sa6_src = &sa6_any;
1158	}
1159
1160	if (ip6) {
1161		struct in_conninfo inc;
1162		/*
1163		 * XXX: We assume that when IPV6 is non NULL,
1164		 * M and OFF are valid.
1165		 */
1166
1167		/* check if we can safely examine src and dst ports */
1168		if (m->m_pkthdr.len < off + sizeof(*thp))
1169			return;
1170
1171		bzero(&th, sizeof(th));
1172		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1173
1174		in6_pcbnotify(&tcb, sa, th.th_dport,
1175		    (struct sockaddr *)ip6cp->ip6c_src,
1176		    th.th_sport, cmd, notify);
1177
1178		inc.inc_fport = th.th_dport;
1179		inc.inc_lport = th.th_sport;
1180		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1181		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1182		inc.inc_isipv6 = 1;
1183		syncache_unreach(&inc, &th);
1184	} else
1185		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1186			      0, cmd, notify);
1187}
1188#endif /* INET6 */
1189
1190
1191/*
1192 * Following is where TCP initial sequence number generation occurs.
1193 *
1194 * There are two places where we must use initial sequence numbers:
1195 * 1.  In SYN-ACK packets.
1196 * 2.  In SYN packets.
1197 *
1198 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1199 * tcp_syncache.c for details.
1200 *
1201 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1202 * depends on this property.  In addition, these ISNs should be
1203 * unguessable so as to prevent connection hijacking.  To satisfy
1204 * the requirements of this situation, the algorithm outlined in
1205 * RFC 1948 is used to generate sequence numbers.
1206 *
1207 * Implementation details:
1208 *
1209 * Time is based off the system timer, and is corrected so that it
1210 * increases by one megabyte per second.  This allows for proper
1211 * recycling on high speed LANs while still leaving over an hour
1212 * before rollover.
1213 *
1214 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1215 * between seeding of isn_secret.  This is normally set to zero,
1216 * as reseeding should not be necessary.
1217 *
1218 */
1219
1220#define ISN_BYTES_PER_SECOND 1048576
1221
1222u_char isn_secret[32];
1223int isn_last_reseed;
1224MD5_CTX isn_ctx;
1225
1226tcp_seq
1227tcp_new_isn(tp)
1228	struct tcpcb *tp;
1229{
1230	u_int32_t md5_buffer[4];
1231	tcp_seq new_isn;
1232
1233	/* Seed if this is the first use, reseed if requested. */
1234	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1235	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1236		< (u_int)ticks))) {
1237		read_random(&isn_secret, sizeof(isn_secret));
1238		isn_last_reseed = ticks;
1239	}
1240
1241	/* Compute the md5 hash and return the ISN. */
1242	MD5Init(&isn_ctx);
1243	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1244	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1245#ifdef INET6
1246	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1247		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1248			  sizeof(struct in6_addr));
1249		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1250			  sizeof(struct in6_addr));
1251	} else
1252#endif
1253	{
1254		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1255			  sizeof(struct in_addr));
1256		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1257			  sizeof(struct in_addr));
1258	}
1259	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1260	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1261	new_isn = (tcp_seq) md5_buffer[0];
1262	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1263	return new_isn;
1264}
1265
1266/*
1267 * When a source quench is received, close congestion window
1268 * to one segment.  We will gradually open it again as we proceed.
1269 */
1270struct inpcb *
1271tcp_quench(inp, errno)
1272	struct inpcb *inp;
1273	int errno;
1274{
1275	struct tcpcb *tp = intotcpcb(inp);
1276
1277	if (tp)
1278		tp->snd_cwnd = tp->t_maxseg;
1279	return (inp);
1280}
1281
1282/*
1283 * When a specific ICMP unreachable message is received and the
1284 * connection state is SYN-SENT, drop the connection.  This behavior
1285 * is controlled by the icmp_may_rst sysctl.
1286 */
1287struct inpcb *
1288tcp_drop_syn_sent(inp, errno)
1289	struct inpcb *inp;
1290	int errno;
1291{
1292	struct tcpcb *tp = intotcpcb(inp);
1293
1294	if (tp && tp->t_state == TCPS_SYN_SENT) {
1295		tcp_drop(tp, errno);
1296		return (struct inpcb *)0;
1297	}
1298	return inp;
1299}
1300
1301/*
1302 * When `need fragmentation' ICMP is received, update our idea of the MSS
1303 * based on the new value in the route.  Also nudge TCP to send something,
1304 * since we know the packet we just sent was dropped.
1305 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1306 */
1307struct inpcb *
1308tcp_mtudisc(inp, errno)
1309	struct inpcb *inp;
1310	int errno;
1311{
1312	struct tcpcb *tp = intotcpcb(inp);
1313	struct rtentry *rt;
1314	struct rmxp_tao *taop;
1315	struct socket *so = inp->inp_socket;
1316	int offered;
1317	int mss;
1318#ifdef INET6
1319	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1320#endif /* INET6 */
1321
1322	if (tp) {
1323#ifdef INET6
1324		if (isipv6)
1325			rt = tcp_rtlookup6(&inp->inp_inc);
1326		else
1327#endif /* INET6 */
1328		rt = tcp_rtlookup(&inp->inp_inc);
1329		if (!rt || !rt->rt_rmx.rmx_mtu) {
1330			tp->t_maxopd = tp->t_maxseg =
1331#ifdef INET6
1332				isipv6 ? tcp_v6mssdflt :
1333#endif /* INET6 */
1334				tcp_mssdflt;
1335			return inp;
1336		}
1337		taop = rmx_taop(rt->rt_rmx);
1338		offered = taop->tao_mssopt;
1339		mss = rt->rt_rmx.rmx_mtu -
1340#ifdef INET6
1341			(isipv6 ?
1342			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1343#endif /* INET6 */
1344			 sizeof(struct tcpiphdr)
1345#ifdef INET6
1346			 )
1347#endif /* INET6 */
1348			;
1349
1350		if (offered)
1351			mss = min(mss, offered);
1352		/*
1353		 * XXX - The above conditional probably violates the TCP
1354		 * spec.  The problem is that, since we don't know the
1355		 * other end's MSS, we are supposed to use a conservative
1356		 * default.  But, if we do that, then MTU discovery will
1357		 * never actually take place, because the conservative
1358		 * default is much less than the MTUs typically seen
1359		 * on the Internet today.  For the moment, we'll sweep
1360		 * this under the carpet.
1361		 *
1362		 * The conservative default might not actually be a problem
1363		 * if the only case this occurs is when sending an initial
1364		 * SYN with options and data to a host we've never talked
1365		 * to before.  Then, they will reply with an MSS value which
1366		 * will get recorded and the new parameters should get
1367		 * recomputed.  For Further Study.
1368		 */
1369		if (tp->t_maxopd <= mss)
1370			return inp;
1371		tp->t_maxopd = mss;
1372
1373		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1374		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1375			mss -= TCPOLEN_TSTAMP_APPA;
1376		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1377		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1378			mss -= TCPOLEN_CC_APPA;
1379#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1380		if (mss > MCLBYTES)
1381			mss &= ~(MCLBYTES-1);
1382#else
1383		if (mss > MCLBYTES)
1384			mss = mss / MCLBYTES * MCLBYTES;
1385#endif
1386		if (so->so_snd.sb_hiwat < mss)
1387			mss = so->so_snd.sb_hiwat;
1388
1389		tp->t_maxseg = mss;
1390
1391		tcpstat.tcps_mturesent++;
1392		tp->t_rtttime = 0;
1393		tp->snd_nxt = tp->snd_una;
1394		tcp_output(tp);
1395	}
1396	return inp;
1397}
1398
1399/*
1400 * Look-up the routing entry to the peer of this inpcb.  If no route
1401 * is found and it cannot be allocated the return NULL.  This routine
1402 * is called by TCP routines that access the rmx structure and by tcp_mss
1403 * to get the interface MTU.
1404 */
1405struct rtentry *
1406tcp_rtlookup(inc)
1407	struct in_conninfo *inc;
1408{
1409	struct route *ro;
1410	struct rtentry *rt;
1411
1412	ro = &inc->inc_route;
1413	rt = ro->ro_rt;
1414	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1415		/* No route yet, so try to acquire one */
1416		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1417			ro->ro_dst.sa_family = AF_INET;
1418			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1419			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1420			    inc->inc_faddr;
1421			rtalloc(ro);
1422			rt = ro->ro_rt;
1423		}
1424	}
1425	return rt;
1426}
1427
1428#ifdef INET6
1429struct rtentry *
1430tcp_rtlookup6(inc)
1431	struct in_conninfo *inc;
1432{
1433	struct route_in6 *ro6;
1434	struct rtentry *rt;
1435
1436	ro6 = &inc->inc6_route;
1437	rt = ro6->ro_rt;
1438	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1439		/* No route yet, so try to acquire one */
1440		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1441			ro6->ro_dst.sin6_family = AF_INET6;
1442			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1443			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1444			rtalloc((struct route *)ro6);
1445			rt = ro6->ro_rt;
1446		}
1447	}
1448	return rt;
1449}
1450#endif /* INET6 */
1451
1452#ifdef IPSEC
1453/* compute ESP/AH header size for TCP, including outer IP header. */
1454size_t
1455ipsec_hdrsiz_tcp(tp)
1456	struct tcpcb *tp;
1457{
1458	struct inpcb *inp;
1459	struct mbuf *m;
1460	size_t hdrsiz;
1461	struct ip *ip;
1462#ifdef INET6
1463	struct ip6_hdr *ip6;
1464#endif /* INET6 */
1465	struct tcphdr *th;
1466
1467	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1468		return 0;
1469	MGETHDR(m, M_DONTWAIT, MT_DATA);
1470	if (!m)
1471		return 0;
1472
1473#ifdef INET6
1474	if ((inp->inp_vflag & INP_IPV6) != 0) {
1475		ip6 = mtod(m, struct ip6_hdr *);
1476		th = (struct tcphdr *)(ip6 + 1);
1477		m->m_pkthdr.len = m->m_len =
1478			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1479		tcp_fillheaders(tp, ip6, th);
1480		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1481	} else
1482#endif /* INET6 */
1483      {
1484	ip = mtod(m, struct ip *);
1485	th = (struct tcphdr *)(ip + 1);
1486	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1487	tcp_fillheaders(tp, ip, th);
1488	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1489      }
1490
1491	m_free(m);
1492	return hdrsiz;
1493}
1494#endif /*IPSEC*/
1495
1496/*
1497 * Return a pointer to the cached information about the remote host.
1498 * The cached information is stored in the protocol specific part of
1499 * the route metrics.
1500 */
1501struct rmxp_tao *
1502tcp_gettaocache(inc)
1503	struct in_conninfo *inc;
1504{
1505	struct rtentry *rt;
1506
1507#ifdef INET6
1508	if (inc->inc_isipv6)
1509		rt = tcp_rtlookup6(inc);
1510	else
1511#endif /* INET6 */
1512	rt = tcp_rtlookup(inc);
1513
1514	/* Make sure this is a host route and is up. */
1515	if (rt == NULL ||
1516	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1517		return NULL;
1518
1519	return rmx_taop(rt->rt_rmx);
1520}
1521
1522/*
1523 * Clear all the TAO cache entries, called from tcp_init.
1524 *
1525 * XXX
1526 * This routine is just an empty one, because we assume that the routing
1527 * routing tables are initialized at the same time when TCP, so there is
1528 * nothing in the cache left over.
1529 */
1530static void
1531tcp_cleartaocache()
1532{
1533}
1534