tcp_syncache.c revision 332238
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program. [2001 McAfee, Inc.]
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/netinet/tcp_syncache.c 332238 2018-04-07 20:47:25Z tuexen $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_pcbgroup.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/hash.h>
44#include <sys/refcount.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/limits.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#include <sys/proc.h>		/* for proc0 declaration */
53#include <sys/random.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/syslog.h>
57#include <sys/ucred.h>
58
59#include <sys/md5.h>
60#include <crypto/siphash/siphash.h>
61
62#include <vm/uma.h>
63
64#include <net/if.h>
65#include <net/if_var.h>
66#include <net/route.h>
67#include <net/vnet.h>
68
69#include <netinet/in.h>
70#include <netinet/in_systm.h>
71#include <netinet/ip.h>
72#include <netinet/in_var.h>
73#include <netinet/in_pcb.h>
74#include <netinet/ip_var.h>
75#include <netinet/ip_options.h>
76#ifdef INET6
77#include <netinet/ip6.h>
78#include <netinet/icmp6.h>
79#include <netinet6/nd6.h>
80#include <netinet6/ip6_var.h>
81#include <netinet6/in6_pcb.h>
82#endif
83#include <netinet/tcp.h>
84#ifdef TCP_RFC7413
85#include <netinet/tcp_fastopen.h>
86#endif
87#include <netinet/tcp_fsm.h>
88#include <netinet/tcp_seq.h>
89#include <netinet/tcp_timer.h>
90#include <netinet/tcp_var.h>
91#include <netinet/tcp_syncache.h>
92#ifdef INET6
93#include <netinet6/tcp6_var.h>
94#endif
95#ifdef TCP_OFFLOAD
96#include <netinet/toecore.h>
97#endif
98
99#include <netipsec/ipsec_support.h>
100
101#include <machine/in_cksum.h>
102
103#include <security/mac/mac_framework.h>
104
105static VNET_DEFINE(int, tcp_syncookies) = 1;
106#define	V_tcp_syncookies		VNET(tcp_syncookies)
107SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
108    &VNET_NAME(tcp_syncookies), 0,
109    "Use TCP SYN cookies if the syncache overflows");
110
111static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
112#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
113SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
114    &VNET_NAME(tcp_syncookiesonly), 0,
115    "Use only TCP SYN cookies");
116
117#ifdef TCP_OFFLOAD
118#define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
119#endif
120
121static void	 syncache_drop(struct syncache *, struct syncache_head *);
122static void	 syncache_free(struct syncache *);
123static void	 syncache_insert(struct syncache *, struct syncache_head *);
124static int	 syncache_respond(struct syncache *, struct syncache_head *, int,
125		    const struct mbuf *);
126static struct	 socket *syncache_socket(struct syncache *, struct socket *,
127		    struct mbuf *m);
128static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
129		    int docallout);
130static void	 syncache_timer(void *);
131
132static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
133		    uint8_t *, uintptr_t);
134static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
135static struct syncache
136		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
137		    struct syncache *, struct tcphdr *, struct tcpopt *,
138		    struct socket *);
139static void	 syncookie_reseed(void *);
140#ifdef INVARIANTS
141static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
142		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
143		    struct socket *lso);
144#endif
145
146/*
147 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
148 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
149 * the odds are that the user has given up attempting to connect by then.
150 */
151#define SYNCACHE_MAXREXMTS		3
152
153/* Arbitrary values */
154#define TCP_SYNCACHE_HASHSIZE		512
155#define TCP_SYNCACHE_BUCKETLIMIT	30
156
157static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
158#define	V_tcp_syncache			VNET(tcp_syncache)
159
160static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
161    "TCP SYN cache");
162
163SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
164    &VNET_NAME(tcp_syncache.bucket_limit), 0,
165    "Per-bucket hash limit for syncache");
166
167SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
168    &VNET_NAME(tcp_syncache.cache_limit), 0,
169    "Overall entry limit for syncache");
170
171SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
172    &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
173
174SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
175    &VNET_NAME(tcp_syncache.hashsize), 0,
176    "Size of TCP syncache hashtable");
177
178SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_VNET | CTLFLAG_RW,
179    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
180    "Limit on SYN/ACK retransmissions");
181
182VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
183SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
184    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
185    "Send reset on socket allocation failure");
186
187static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
188
189#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
190#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
191#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
192
193/*
194 * Requires the syncache entry to be already removed from the bucket list.
195 */
196static void
197syncache_free(struct syncache *sc)
198{
199
200	if (sc->sc_ipopts)
201		(void) m_free(sc->sc_ipopts);
202	if (sc->sc_cred)
203		crfree(sc->sc_cred);
204#ifdef MAC
205	mac_syncache_destroy(&sc->sc_label);
206#endif
207
208	uma_zfree(V_tcp_syncache.zone, sc);
209}
210
211void
212syncache_init(void)
213{
214	int i;
215
216	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
217	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
218	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
219	V_tcp_syncache.hash_secret = arc4random();
220
221	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
222	    &V_tcp_syncache.hashsize);
223	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
224	    &V_tcp_syncache.bucket_limit);
225	if (!powerof2(V_tcp_syncache.hashsize) ||
226	    V_tcp_syncache.hashsize == 0) {
227		printf("WARNING: syncache hash size is not a power of 2.\n");
228		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
229	}
230	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
231
232	/* Set limits. */
233	V_tcp_syncache.cache_limit =
234	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
235	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
236	    &V_tcp_syncache.cache_limit);
237
238	/* Allocate the hash table. */
239	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
240	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
241
242#ifdef VIMAGE
243	V_tcp_syncache.vnet = curvnet;
244#endif
245
246	/* Initialize the hash buckets. */
247	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
248		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
249		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
250			 NULL, MTX_DEF);
251		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
252			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
253		V_tcp_syncache.hashbase[i].sch_length = 0;
254		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
255		V_tcp_syncache.hashbase[i].sch_last_overflow =
256		    -(SYNCOOKIE_LIFETIME + 1);
257	}
258
259	/* Create the syncache entry zone. */
260	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
261	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
262	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
263	    V_tcp_syncache.cache_limit);
264
265	/* Start the SYN cookie reseeder callout. */
266	callout_init(&V_tcp_syncache.secret.reseed, 1);
267	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
268	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
269	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
270	    syncookie_reseed, &V_tcp_syncache);
271}
272
273#ifdef VIMAGE
274void
275syncache_destroy(void)
276{
277	struct syncache_head *sch;
278	struct syncache *sc, *nsc;
279	int i;
280
281	/*
282	 * Stop the re-seed timer before freeing resources.  No need to
283	 * possibly schedule it another time.
284	 */
285	callout_drain(&V_tcp_syncache.secret.reseed);
286
287	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
288	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
289
290		sch = &V_tcp_syncache.hashbase[i];
291		callout_drain(&sch->sch_timer);
292
293		SCH_LOCK(sch);
294		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
295			syncache_drop(sc, sch);
296		SCH_UNLOCK(sch);
297		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
298		    ("%s: sch->sch_bucket not empty", __func__));
299		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
300		    __func__, sch->sch_length));
301		mtx_destroy(&sch->sch_mtx);
302	}
303
304	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
305	    ("%s: cache_count not 0", __func__));
306
307	/* Free the allocated global resources. */
308	uma_zdestroy(V_tcp_syncache.zone);
309	free(V_tcp_syncache.hashbase, M_SYNCACHE);
310}
311#endif
312
313/*
314 * Inserts a syncache entry into the specified bucket row.
315 * Locks and unlocks the syncache_head autonomously.
316 */
317static void
318syncache_insert(struct syncache *sc, struct syncache_head *sch)
319{
320	struct syncache *sc2;
321
322	SCH_LOCK(sch);
323
324	/*
325	 * Make sure that we don't overflow the per-bucket limit.
326	 * If the bucket is full, toss the oldest element.
327	 */
328	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
329		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
330			("sch->sch_length incorrect"));
331		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
332		sch->sch_last_overflow = time_uptime;
333		syncache_drop(sc2, sch);
334		TCPSTAT_INC(tcps_sc_bucketoverflow);
335	}
336
337	/* Put it into the bucket. */
338	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
339	sch->sch_length++;
340
341#ifdef TCP_OFFLOAD
342	if (ADDED_BY_TOE(sc)) {
343		struct toedev *tod = sc->sc_tod;
344
345		tod->tod_syncache_added(tod, sc->sc_todctx);
346	}
347#endif
348
349	/* Reinitialize the bucket row's timer. */
350	if (sch->sch_length == 1)
351		sch->sch_nextc = ticks + INT_MAX;
352	syncache_timeout(sc, sch, 1);
353
354	SCH_UNLOCK(sch);
355
356	TCPSTATES_INC(TCPS_SYN_RECEIVED);
357	TCPSTAT_INC(tcps_sc_added);
358}
359
360/*
361 * Remove and free entry from syncache bucket row.
362 * Expects locked syncache head.
363 */
364static void
365syncache_drop(struct syncache *sc, struct syncache_head *sch)
366{
367
368	SCH_LOCK_ASSERT(sch);
369
370	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
371	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
372	sch->sch_length--;
373
374#ifdef TCP_OFFLOAD
375	if (ADDED_BY_TOE(sc)) {
376		struct toedev *tod = sc->sc_tod;
377
378		tod->tod_syncache_removed(tod, sc->sc_todctx);
379	}
380#endif
381
382	syncache_free(sc);
383}
384
385/*
386 * Engage/reengage time on bucket row.
387 */
388static void
389syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
390{
391	sc->sc_rxttime = ticks +
392		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
393	sc->sc_rxmits++;
394	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
395		sch->sch_nextc = sc->sc_rxttime;
396		if (docallout)
397			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
398			    syncache_timer, (void *)sch);
399	}
400}
401
402/*
403 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
404 * If we have retransmitted an entry the maximum number of times, expire it.
405 * One separate timer for each bucket row.
406 */
407static void
408syncache_timer(void *xsch)
409{
410	struct syncache_head *sch = (struct syncache_head *)xsch;
411	struct syncache *sc, *nsc;
412	int tick = ticks;
413	char *s;
414
415	CURVNET_SET(sch->sch_sc->vnet);
416
417	/* NB: syncache_head has already been locked by the callout. */
418	SCH_LOCK_ASSERT(sch);
419
420	/*
421	 * In the following cycle we may remove some entries and/or
422	 * advance some timeouts, so re-initialize the bucket timer.
423	 */
424	sch->sch_nextc = tick + INT_MAX;
425
426	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
427		/*
428		 * We do not check if the listen socket still exists
429		 * and accept the case where the listen socket may be
430		 * gone by the time we resend the SYN/ACK.  We do
431		 * not expect this to happens often. If it does,
432		 * then the RST will be sent by the time the remote
433		 * host does the SYN/ACK->ACK.
434		 */
435		if (TSTMP_GT(sc->sc_rxttime, tick)) {
436			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
437				sch->sch_nextc = sc->sc_rxttime;
438			continue;
439		}
440		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
441			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
442				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
443				    "giving up and removing syncache entry\n",
444				    s, __func__);
445				free(s, M_TCPLOG);
446			}
447			syncache_drop(sc, sch);
448			TCPSTAT_INC(tcps_sc_stale);
449			continue;
450		}
451		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
452			log(LOG_DEBUG, "%s; %s: Response timeout, "
453			    "retransmitting (%u) SYN|ACK\n",
454			    s, __func__, sc->sc_rxmits);
455			free(s, M_TCPLOG);
456		}
457
458		syncache_respond(sc, sch, 1, NULL);
459		TCPSTAT_INC(tcps_sc_retransmitted);
460		syncache_timeout(sc, sch, 0);
461	}
462	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
463		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
464			syncache_timer, (void *)(sch));
465	CURVNET_RESTORE();
466}
467
468/*
469 * Find an entry in the syncache.
470 * Returns always with locked syncache_head plus a matching entry or NULL.
471 */
472static struct syncache *
473syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
474{
475	struct syncache *sc;
476	struct syncache_head *sch;
477	uint32_t hash;
478
479	/*
480	 * The hash is built on foreign port + local port + foreign address.
481	 * We rely on the fact that struct in_conninfo starts with 16 bits
482	 * of foreign port, then 16 bits of local port then followed by 128
483	 * bits of foreign address.  In case of IPv4 address, the first 3
484	 * 32-bit words of the address always are zeroes.
485	 */
486	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
487	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
488
489	sch = &V_tcp_syncache.hashbase[hash];
490	*schp = sch;
491	SCH_LOCK(sch);
492
493	/* Circle through bucket row to find matching entry. */
494	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
495		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
496		    sizeof(struct in_endpoints)) == 0)
497			break;
498
499	return (sc);	/* Always returns with locked sch. */
500}
501
502/*
503 * This function is called when we get a RST for a
504 * non-existent connection, so that we can see if the
505 * connection is in the syn cache.  If it is, zap it.
506 */
507void
508syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
509{
510	struct syncache *sc;
511	struct syncache_head *sch;
512	char *s = NULL;
513
514	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
515	SCH_LOCK_ASSERT(sch);
516
517	/*
518	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
519	 * See RFC 793 page 65, section SEGMENT ARRIVES.
520	 */
521	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
522		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
523			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
524			    "FIN flag set, segment ignored\n", s, __func__);
525		TCPSTAT_INC(tcps_badrst);
526		goto done;
527	}
528
529	/*
530	 * No corresponding connection was found in syncache.
531	 * If syncookies are enabled and possibly exclusively
532	 * used, or we are under memory pressure, a valid RST
533	 * may not find a syncache entry.  In that case we're
534	 * done and no SYN|ACK retransmissions will happen.
535	 * Otherwise the RST was misdirected or spoofed.
536	 */
537	if (sc == NULL) {
538		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
539			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
540			    "syncache entry (possibly syncookie only), "
541			    "segment ignored\n", s, __func__);
542		TCPSTAT_INC(tcps_badrst);
543		goto done;
544	}
545
546	/*
547	 * If the RST bit is set, check the sequence number to see
548	 * if this is a valid reset segment.
549	 * RFC 793 page 37:
550	 *   In all states except SYN-SENT, all reset (RST) segments
551	 *   are validated by checking their SEQ-fields.  A reset is
552	 *   valid if its sequence number is in the window.
553	 *
554	 *   The sequence number in the reset segment is normally an
555	 *   echo of our outgoing acknowlegement numbers, but some hosts
556	 *   send a reset with the sequence number at the rightmost edge
557	 *   of our receive window, and we have to handle this case.
558	 */
559	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
560	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
561		syncache_drop(sc, sch);
562		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
563			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
564			    "connection attempt aborted by remote endpoint\n",
565			    s, __func__);
566		TCPSTAT_INC(tcps_sc_reset);
567	} else {
568		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
569			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
570			    "IRS %u (+WND %u), segment ignored\n",
571			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
572		TCPSTAT_INC(tcps_badrst);
573	}
574
575done:
576	if (s != NULL)
577		free(s, M_TCPLOG);
578	SCH_UNLOCK(sch);
579}
580
581void
582syncache_badack(struct in_conninfo *inc)
583{
584	struct syncache *sc;
585	struct syncache_head *sch;
586
587	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
588	SCH_LOCK_ASSERT(sch);
589	if (sc != NULL) {
590		syncache_drop(sc, sch);
591		TCPSTAT_INC(tcps_sc_badack);
592	}
593	SCH_UNLOCK(sch);
594}
595
596void
597syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
598{
599	struct syncache *sc;
600	struct syncache_head *sch;
601
602	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
603	SCH_LOCK_ASSERT(sch);
604	if (sc == NULL)
605		goto done;
606
607	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
608	if (ntohl(th_seq) != sc->sc_iss)
609		goto done;
610
611	/*
612	 * If we've rertransmitted 3 times and this is our second error,
613	 * we remove the entry.  Otherwise, we allow it to continue on.
614	 * This prevents us from incorrectly nuking an entry during a
615	 * spurious network outage.
616	 *
617	 * See tcp_notify().
618	 */
619	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
620		sc->sc_flags |= SCF_UNREACH;
621		goto done;
622	}
623	syncache_drop(sc, sch);
624	TCPSTAT_INC(tcps_sc_unreach);
625done:
626	SCH_UNLOCK(sch);
627}
628
629/*
630 * Build a new TCP socket structure from a syncache entry.
631 *
632 * On success return the newly created socket with its underlying inp locked.
633 */
634static struct socket *
635syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
636{
637	struct tcp_function_block *blk;
638	struct inpcb *inp = NULL;
639	struct socket *so;
640	struct tcpcb *tp;
641	int error;
642	char *s;
643
644	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
645
646	/*
647	 * Ok, create the full blown connection, and set things up
648	 * as they would have been set up if we had created the
649	 * connection when the SYN arrived.  If we can't create
650	 * the connection, abort it.
651	 */
652	so = sonewconn(lso, 0);
653	if (so == NULL) {
654		/*
655		 * Drop the connection; we will either send a RST or
656		 * have the peer retransmit its SYN again after its
657		 * RTO and try again.
658		 */
659		TCPSTAT_INC(tcps_listendrop);
660		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
661			log(LOG_DEBUG, "%s; %s: Socket create failed "
662			    "due to limits or memory shortage\n",
663			    s, __func__);
664			free(s, M_TCPLOG);
665		}
666		goto abort2;
667	}
668#ifdef MAC
669	mac_socketpeer_set_from_mbuf(m, so);
670#endif
671
672	inp = sotoinpcb(so);
673	inp->inp_inc.inc_fibnum = so->so_fibnum;
674	INP_WLOCK(inp);
675	/*
676	 * Exclusive pcbinfo lock is not required in syncache socket case even
677	 * if two inpcb locks can be acquired simultaneously:
678	 *  - the inpcb in LISTEN state,
679	 *  - the newly created inp.
680	 *
681	 * In this case, an inp cannot be at same time in LISTEN state and
682	 * just created by an accept() call.
683	 */
684	INP_HASH_WLOCK(&V_tcbinfo);
685
686	/* Insert new socket into PCB hash list. */
687	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
688#ifdef INET6
689	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
690		inp->inp_vflag &= ~INP_IPV4;
691		inp->inp_vflag |= INP_IPV6;
692		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
693	} else {
694		inp->inp_vflag &= ~INP_IPV6;
695		inp->inp_vflag |= INP_IPV4;
696#endif
697		inp->inp_laddr = sc->sc_inc.inc_laddr;
698#ifdef INET6
699	}
700#endif
701
702	/*
703	 * If there's an mbuf and it has a flowid, then let's initialise the
704	 * inp with that particular flowid.
705	 */
706	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
707		inp->inp_flowid = m->m_pkthdr.flowid;
708		inp->inp_flowtype = M_HASHTYPE_GET(m);
709	}
710
711	/*
712	 * Install in the reservation hash table for now, but don't yet
713	 * install a connection group since the full 4-tuple isn't yet
714	 * configured.
715	 */
716	inp->inp_lport = sc->sc_inc.inc_lport;
717	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
718		/*
719		 * Undo the assignments above if we failed to
720		 * put the PCB on the hash lists.
721		 */
722#ifdef INET6
723		if (sc->sc_inc.inc_flags & INC_ISIPV6)
724			inp->in6p_laddr = in6addr_any;
725		else
726#endif
727			inp->inp_laddr.s_addr = INADDR_ANY;
728		inp->inp_lport = 0;
729		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
730			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
731			    "with error %i\n",
732			    s, __func__, error);
733			free(s, M_TCPLOG);
734		}
735		INP_HASH_WUNLOCK(&V_tcbinfo);
736		goto abort;
737	}
738#ifdef INET6
739	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
740		struct inpcb *oinp = sotoinpcb(lso);
741		struct in6_addr laddr6;
742		struct sockaddr_in6 sin6;
743		/*
744		 * Inherit socket options from the listening socket.
745		 * Note that in6p_inputopts are not (and should not be)
746		 * copied, since it stores previously received options and is
747		 * used to detect if each new option is different than the
748		 * previous one and hence should be passed to a user.
749		 * If we copied in6p_inputopts, a user would not be able to
750		 * receive options just after calling the accept system call.
751		 */
752		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
753		if (oinp->in6p_outputopts)
754			inp->in6p_outputopts =
755			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
756
757		sin6.sin6_family = AF_INET6;
758		sin6.sin6_len = sizeof(sin6);
759		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
760		sin6.sin6_port = sc->sc_inc.inc_fport;
761		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
762		laddr6 = inp->in6p_laddr;
763		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
764			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
765		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
766		    thread0.td_ucred, m)) != 0) {
767			inp->in6p_laddr = laddr6;
768			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
769				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
770				    "with error %i\n",
771				    s, __func__, error);
772				free(s, M_TCPLOG);
773			}
774			INP_HASH_WUNLOCK(&V_tcbinfo);
775			goto abort;
776		}
777		/* Override flowlabel from in6_pcbconnect. */
778		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
779		inp->inp_flow |= sc->sc_flowlabel;
780	}
781#endif /* INET6 */
782#if defined(INET) && defined(INET6)
783	else
784#endif
785#ifdef INET
786	{
787		struct in_addr laddr;
788		struct sockaddr_in sin;
789
790		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
791
792		if (inp->inp_options == NULL) {
793			inp->inp_options = sc->sc_ipopts;
794			sc->sc_ipopts = NULL;
795		}
796
797		sin.sin_family = AF_INET;
798		sin.sin_len = sizeof(sin);
799		sin.sin_addr = sc->sc_inc.inc_faddr;
800		sin.sin_port = sc->sc_inc.inc_fport;
801		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
802		laddr = inp->inp_laddr;
803		if (inp->inp_laddr.s_addr == INADDR_ANY)
804			inp->inp_laddr = sc->sc_inc.inc_laddr;
805		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
806		    thread0.td_ucred, m)) != 0) {
807			inp->inp_laddr = laddr;
808			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
809				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
810				    "with error %i\n",
811				    s, __func__, error);
812				free(s, M_TCPLOG);
813			}
814			INP_HASH_WUNLOCK(&V_tcbinfo);
815			goto abort;
816		}
817	}
818#endif /* INET */
819#if defined(IPSEC) || defined(IPSEC_SUPPORT)
820	/* Copy old policy into new socket's. */
821	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
822		printf("syncache_socket: could not copy policy\n");
823#endif
824	INP_HASH_WUNLOCK(&V_tcbinfo);
825	tp = intotcpcb(inp);
826	tcp_state_change(tp, TCPS_SYN_RECEIVED);
827	tp->iss = sc->sc_iss;
828	tp->irs = sc->sc_irs;
829	tcp_rcvseqinit(tp);
830	tcp_sendseqinit(tp);
831	blk = sototcpcb(lso)->t_fb;
832	if (blk != tp->t_fb) {
833		/*
834		 * Our parents t_fb was not the default,
835		 * we need to release our ref on tp->t_fb and
836		 * pickup one on the new entry.
837		 */
838		struct tcp_function_block *rblk;
839
840		rblk = find_and_ref_tcp_fb(blk);
841		KASSERT(rblk != NULL,
842		    ("cannot find blk %p out of syncache?", blk));
843		if (tp->t_fb->tfb_tcp_fb_fini)
844			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
845		refcount_release(&tp->t_fb->tfb_refcnt);
846		tp->t_fb = rblk;
847		if (tp->t_fb->tfb_tcp_fb_init) {
848			(*tp->t_fb->tfb_tcp_fb_init)(tp);
849		}
850	}
851	tp->snd_wl1 = sc->sc_irs;
852	tp->snd_max = tp->iss + 1;
853	tp->snd_nxt = tp->iss + 1;
854	tp->rcv_up = sc->sc_irs + 1;
855	tp->rcv_wnd = sc->sc_wnd;
856	tp->rcv_adv += tp->rcv_wnd;
857	tp->last_ack_sent = tp->rcv_nxt;
858
859	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
860	if (sc->sc_flags & SCF_NOOPT)
861		tp->t_flags |= TF_NOOPT;
862	else {
863		if (sc->sc_flags & SCF_WINSCALE) {
864			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
865			tp->snd_scale = sc->sc_requested_s_scale;
866			tp->request_r_scale = sc->sc_requested_r_scale;
867		}
868		if (sc->sc_flags & SCF_TIMESTAMP) {
869			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
870			tp->ts_recent = sc->sc_tsreflect;
871			tp->ts_recent_age = tcp_ts_getticks();
872			tp->ts_offset = sc->sc_tsoff;
873		}
874#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
875		if (sc->sc_flags & SCF_SIGNATURE)
876			tp->t_flags |= TF_SIGNATURE;
877#endif
878		if (sc->sc_flags & SCF_SACK)
879			tp->t_flags |= TF_SACK_PERMIT;
880	}
881
882	if (sc->sc_flags & SCF_ECN)
883		tp->t_flags |= TF_ECN_PERMIT;
884
885	/*
886	 * Set up MSS and get cached values from tcp_hostcache.
887	 * This might overwrite some of the defaults we just set.
888	 */
889	tcp_mss(tp, sc->sc_peer_mss);
890
891	/*
892	 * If the SYN,ACK was retransmitted, indicate that CWND to be
893	 * limited to one segment in cc_conn_init().
894	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
895	 */
896	if (sc->sc_rxmits > 1)
897		tp->snd_cwnd = 1;
898
899#ifdef TCP_OFFLOAD
900	/*
901	 * Allow a TOE driver to install its hooks.  Note that we hold the
902	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
903	 * new connection before the TOE driver has done its thing.
904	 */
905	if (ADDED_BY_TOE(sc)) {
906		struct toedev *tod = sc->sc_tod;
907
908		tod->tod_offload_socket(tod, sc->sc_todctx, so);
909	}
910#endif
911	/*
912	 * Copy and activate timers.
913	 */
914	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
915	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
916	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
917	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
918	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
919
920	TCPSTAT_INC(tcps_accepts);
921	return (so);
922
923abort:
924	INP_WUNLOCK(inp);
925abort2:
926	if (so != NULL)
927		soabort(so);
928	return (NULL);
929}
930
931/*
932 * This function gets called when we receive an ACK for a
933 * socket in the LISTEN state.  We look up the connection
934 * in the syncache, and if its there, we pull it out of
935 * the cache and turn it into a full-blown connection in
936 * the SYN-RECEIVED state.
937 *
938 * On syncache_socket() success the newly created socket
939 * has its underlying inp locked.
940 */
941int
942syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
943    struct socket **lsop, struct mbuf *m)
944{
945	struct syncache *sc;
946	struct syncache_head *sch;
947	struct syncache scs;
948	char *s;
949
950	/*
951	 * Global TCP locks are held because we manipulate the PCB lists
952	 * and create a new socket.
953	 */
954	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
955	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
956	    ("%s: can handle only ACK", __func__));
957
958	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
959	SCH_LOCK_ASSERT(sch);
960
961#ifdef INVARIANTS
962	/*
963	 * Test code for syncookies comparing the syncache stored
964	 * values with the reconstructed values from the cookie.
965	 */
966	if (sc != NULL)
967		syncookie_cmp(inc, sch, sc, th, to, *lsop);
968#endif
969
970	if (sc == NULL) {
971		/*
972		 * There is no syncache entry, so see if this ACK is
973		 * a returning syncookie.  To do this, first:
974		 *  A. Check if syncookies are used in case of syncache
975		 *     overflows
976		 *  B. See if this socket has had a syncache entry dropped in
977		 *     the recent past. We don't want to accept a bogus
978		 *     syncookie if we've never received a SYN or accept it
979		 *     twice.
980		 *  C. check that the syncookie is valid.  If it is, then
981		 *     cobble up a fake syncache entry, and return.
982		 */
983		if (!V_tcp_syncookies) {
984			SCH_UNLOCK(sch);
985			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
986				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
987				    "segment rejected (syncookies disabled)\n",
988				    s, __func__);
989			goto failed;
990		}
991		if (!V_tcp_syncookiesonly &&
992		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
993			SCH_UNLOCK(sch);
994			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
995				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
996				    "segment rejected (no syncache entry)\n",
997				    s, __func__);
998			goto failed;
999		}
1000		bzero(&scs, sizeof(scs));
1001		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1002		SCH_UNLOCK(sch);
1003		if (sc == NULL) {
1004			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1005				log(LOG_DEBUG, "%s; %s: Segment failed "
1006				    "SYNCOOKIE authentication, segment rejected "
1007				    "(probably spoofed)\n", s, __func__);
1008			goto failed;
1009		}
1010#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1011		/* If received ACK has MD5 signature, check it. */
1012		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1013		    (!TCPMD5_ENABLED() ||
1014		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1015			/* Drop the ACK. */
1016			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1017				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1018				    "MD5 signature doesn't match.\n",
1019				    s, __func__);
1020				free(s, M_TCPLOG);
1021			}
1022			TCPSTAT_INC(tcps_sig_err_sigopt);
1023			return (-1); /* Do not send RST */
1024		}
1025#endif /* TCP_SIGNATURE */
1026	} else {
1027#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1028		/*
1029		 * If listening socket requested TCP digests, check that
1030		 * received ACK has signature and it is correct.
1031		 * If not, drop the ACK and leave sc entry in th cache,
1032		 * because SYN was received with correct signature.
1033		 */
1034		if (sc->sc_flags & SCF_SIGNATURE) {
1035			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1036				/* No signature */
1037				TCPSTAT_INC(tcps_sig_err_nosigopt);
1038				SCH_UNLOCK(sch);
1039				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1040					log(LOG_DEBUG, "%s; %s: Segment "
1041					    "rejected, MD5 signature wasn't "
1042					    "provided.\n", s, __func__);
1043					free(s, M_TCPLOG);
1044				}
1045				return (-1); /* Do not send RST */
1046			}
1047			if (!TCPMD5_ENABLED() ||
1048			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1049				/* Doesn't match or no SA */
1050				SCH_UNLOCK(sch);
1051				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1052					log(LOG_DEBUG, "%s; %s: Segment "
1053					    "rejected, MD5 signature doesn't "
1054					    "match.\n", s, __func__);
1055					free(s, M_TCPLOG);
1056				}
1057				return (-1); /* Do not send RST */
1058			}
1059		}
1060#endif /* TCP_SIGNATURE */
1061		/*
1062		 * Pull out the entry to unlock the bucket row.
1063		 *
1064		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1065		 * tcp_state_change().  The tcpcb is not existent at this
1066		 * moment.  A new one will be allocated via syncache_socket->
1067		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1068		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1069		 */
1070		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1071		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1072		sch->sch_length--;
1073#ifdef TCP_OFFLOAD
1074		if (ADDED_BY_TOE(sc)) {
1075			struct toedev *tod = sc->sc_tod;
1076
1077			tod->tod_syncache_removed(tod, sc->sc_todctx);
1078		}
1079#endif
1080		SCH_UNLOCK(sch);
1081	}
1082
1083	/*
1084	 * Segment validation:
1085	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1086	 */
1087	if (th->th_ack != sc->sc_iss + 1) {
1088		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1089			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1090			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1091		goto failed;
1092	}
1093
1094	/*
1095	 * The SEQ must fall in the window starting at the received
1096	 * initial receive sequence number + 1 (the SYN).
1097	 */
1098	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1099	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1100		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1101			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1102			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1103		goto failed;
1104	}
1105
1106	/*
1107	 * If timestamps were not negotiated during SYN/ACK they
1108	 * must not appear on any segment during this session.
1109	 */
1110	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1111		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1112			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1113			    "segment rejected\n", s, __func__);
1114		goto failed;
1115	}
1116
1117	/*
1118	 * If timestamps were negotiated during SYN/ACK they should
1119	 * appear on every segment during this session.
1120	 * XXXAO: This is only informal as there have been unverified
1121	 * reports of non-compliants stacks.
1122	 */
1123	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1124		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1125			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1126			    "no action\n", s, __func__);
1127			free(s, M_TCPLOG);
1128			s = NULL;
1129		}
1130	}
1131
1132	/*
1133	 * If timestamps were negotiated, the reflected timestamp
1134	 * must be equal to what we actually sent in the SYN|ACK
1135	 * except in the case of 0. Some boxes are known for sending
1136	 * broken timestamp replies during the 3whs (and potentially
1137	 * during the connection also).
1138	 *
1139	 * Accept the final ACK of 3whs with reflected timestamp of 0
1140	 * instead of sending a RST and deleting the syncache entry.
1141	 */
1142	if ((to->to_flags & TOF_TS) && to->to_tsecr &&
1143	    to->to_tsecr != sc->sc_ts) {
1144		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1145			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1146			    "segment rejected\n",
1147			    s, __func__, to->to_tsecr, sc->sc_ts);
1148		goto failed;
1149	}
1150
1151	*lsop = syncache_socket(sc, *lsop, m);
1152
1153	if (*lsop == NULL)
1154		TCPSTAT_INC(tcps_sc_aborted);
1155	else
1156		TCPSTAT_INC(tcps_sc_completed);
1157
1158/* how do we find the inp for the new socket? */
1159	if (sc != &scs)
1160		syncache_free(sc);
1161	return (1);
1162failed:
1163	if (sc != NULL && sc != &scs)
1164		syncache_free(sc);
1165	if (s != NULL)
1166		free(s, M_TCPLOG);
1167	*lsop = NULL;
1168	return (0);
1169}
1170
1171#ifdef TCP_RFC7413
1172static void
1173syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1174    uint64_t response_cookie)
1175{
1176	struct inpcb *inp;
1177	struct tcpcb *tp;
1178	unsigned int *pending_counter;
1179
1180	/*
1181	 * Global TCP locks are held because we manipulate the PCB lists
1182	 * and create a new socket.
1183	 */
1184	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1185
1186	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1187	*lsop = syncache_socket(sc, *lsop, m);
1188	if (*lsop == NULL) {
1189		TCPSTAT_INC(tcps_sc_aborted);
1190		atomic_subtract_int(pending_counter, 1);
1191	} else {
1192		inp = sotoinpcb(*lsop);
1193		tp = intotcpcb(inp);
1194		tp->t_flags |= TF_FASTOPEN;
1195		tp->t_tfo_cookie = response_cookie;
1196		tp->snd_max = tp->iss;
1197		tp->snd_nxt = tp->iss;
1198		tp->t_tfo_pending = pending_counter;
1199		TCPSTAT_INC(tcps_sc_completed);
1200	}
1201}
1202#endif /* TCP_RFC7413 */
1203
1204/*
1205 * Given a LISTEN socket and an inbound SYN request, add
1206 * this to the syn cache, and send back a segment:
1207 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1208 * to the source.
1209 *
1210 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1211 * Doing so would require that we hold onto the data and deliver it
1212 * to the application.  However, if we are the target of a SYN-flood
1213 * DoS attack, an attacker could send data which would eventually
1214 * consume all available buffer space if it were ACKed.  By not ACKing
1215 * the data, we avoid this DoS scenario.
1216 *
1217 * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1218 * cookie is processed, V_tcp_fastopen_enabled set to true, and the
1219 * TCP_FASTOPEN socket option is set.  In this case, a new socket is created
1220 * and returned via lsop, the mbuf is not freed so that tcp_input() can
1221 * queue its data to the socket, and 1 is returned to indicate the
1222 * TFO-socket-creation path was taken.
1223 */
1224int
1225syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1226    struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1227    void *todctx)
1228{
1229	struct tcpcb *tp;
1230	struct socket *so;
1231	struct syncache *sc = NULL;
1232	struct syncache_head *sch;
1233	struct mbuf *ipopts = NULL;
1234	u_int ltflags;
1235	int win, sb_hiwat, ip_ttl, ip_tos;
1236	char *s;
1237	int rv = 0;
1238#ifdef INET6
1239	int autoflowlabel = 0;
1240#endif
1241#ifdef MAC
1242	struct label *maclabel;
1243#endif
1244	struct syncache scs;
1245	struct ucred *cred;
1246#ifdef TCP_RFC7413
1247	uint64_t tfo_response_cookie;
1248	int tfo_cookie_valid = 0;
1249	int tfo_response_cookie_valid = 0;
1250#endif
1251
1252	INP_WLOCK_ASSERT(inp);			/* listen socket */
1253	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1254	    ("%s: unexpected tcp flags", __func__));
1255
1256	/*
1257	 * Combine all so/tp operations very early to drop the INP lock as
1258	 * soon as possible.
1259	 */
1260	so = *lsop;
1261	tp = sototcpcb(so);
1262	cred = crhold(so->so_cred);
1263
1264#ifdef INET6
1265	if ((inc->inc_flags & INC_ISIPV6) &&
1266	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1267		autoflowlabel = 1;
1268#endif
1269	ip_ttl = inp->inp_ip_ttl;
1270	ip_tos = inp->inp_ip_tos;
1271	win = sbspace(&so->so_rcv);
1272	sb_hiwat = so->so_rcv.sb_hiwat;
1273	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1274
1275#ifdef TCP_RFC7413
1276	if (V_tcp_fastopen_enabled && (tp->t_flags & TF_FASTOPEN) &&
1277	    (tp->t_tfo_pending != NULL) && (to->to_flags & TOF_FASTOPEN)) {
1278		/*
1279		 * Limit the number of pending TFO connections to
1280		 * approximately half of the queue limit.  This prevents TFO
1281		 * SYN floods from starving the service by filling the
1282		 * listen queue with bogus TFO connections.
1283		 */
1284		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1285		    (so->so_qlimit / 2)) {
1286			int result;
1287
1288			result = tcp_fastopen_check_cookie(inc,
1289			    to->to_tfo_cookie, to->to_tfo_len,
1290			    &tfo_response_cookie);
1291			tfo_cookie_valid = (result > 0);
1292			tfo_response_cookie_valid = (result >= 0);
1293		} else
1294			atomic_subtract_int(tp->t_tfo_pending, 1);
1295	}
1296#endif
1297
1298	/* By the time we drop the lock these should no longer be used. */
1299	so = NULL;
1300	tp = NULL;
1301
1302#ifdef MAC
1303	if (mac_syncache_init(&maclabel) != 0) {
1304		INP_WUNLOCK(inp);
1305		goto done;
1306	} else
1307		mac_syncache_create(maclabel, inp);
1308#endif
1309#ifdef TCP_RFC7413
1310	if (!tfo_cookie_valid)
1311#endif
1312		INP_WUNLOCK(inp);
1313
1314	/*
1315	 * Remember the IP options, if any.
1316	 */
1317#ifdef INET6
1318	if (!(inc->inc_flags & INC_ISIPV6))
1319#endif
1320#ifdef INET
1321		ipopts = (m) ? ip_srcroute(m) : NULL;
1322#else
1323		ipopts = NULL;
1324#endif
1325
1326#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1327	/*
1328	 * If listening socket requested TCP digests, check that received
1329	 * SYN has signature and it is correct. If signature doesn't match
1330	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1331	 */
1332	if (ltflags & TF_SIGNATURE) {
1333		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1334			TCPSTAT_INC(tcps_sig_err_nosigopt);
1335			goto done;
1336		}
1337		if (!TCPMD5_ENABLED() ||
1338		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1339			goto done;
1340	}
1341#endif	/* TCP_SIGNATURE */
1342	/*
1343	 * See if we already have an entry for this connection.
1344	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1345	 *
1346	 * XXX: should the syncache be re-initialized with the contents
1347	 * of the new SYN here (which may have different options?)
1348	 *
1349	 * XXX: We do not check the sequence number to see if this is a
1350	 * real retransmit or a new connection attempt.  The question is
1351	 * how to handle such a case; either ignore it as spoofed, or
1352	 * drop the current entry and create a new one?
1353	 */
1354	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1355	SCH_LOCK_ASSERT(sch);
1356	if (sc != NULL) {
1357#ifdef TCP_RFC7413
1358		if (tfo_cookie_valid)
1359			INP_WUNLOCK(inp);
1360#endif
1361		TCPSTAT_INC(tcps_sc_dupsyn);
1362		if (ipopts) {
1363			/*
1364			 * If we were remembering a previous source route,
1365			 * forget it and use the new one we've been given.
1366			 */
1367			if (sc->sc_ipopts)
1368				(void) m_free(sc->sc_ipopts);
1369			sc->sc_ipopts = ipopts;
1370		}
1371		/*
1372		 * Update timestamp if present.
1373		 */
1374		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1375			sc->sc_tsreflect = to->to_tsval;
1376		else
1377			sc->sc_flags &= ~SCF_TIMESTAMP;
1378#ifdef MAC
1379		/*
1380		 * Since we have already unconditionally allocated label
1381		 * storage, free it up.  The syncache entry will already
1382		 * have an initialized label we can use.
1383		 */
1384		mac_syncache_destroy(&maclabel);
1385#endif
1386		/* Retransmit SYN|ACK and reset retransmit count. */
1387		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1388			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1389			    "resetting timer and retransmitting SYN|ACK\n",
1390			    s, __func__);
1391			free(s, M_TCPLOG);
1392		}
1393		if (syncache_respond(sc, sch, 1, m) == 0) {
1394			sc->sc_rxmits = 0;
1395			syncache_timeout(sc, sch, 1);
1396			TCPSTAT_INC(tcps_sndacks);
1397			TCPSTAT_INC(tcps_sndtotal);
1398		}
1399		SCH_UNLOCK(sch);
1400		goto done;
1401	}
1402
1403#ifdef TCP_RFC7413
1404	if (tfo_cookie_valid) {
1405		bzero(&scs, sizeof(scs));
1406		sc = &scs;
1407		goto skip_alloc;
1408	}
1409#endif
1410
1411	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1412	if (sc == NULL) {
1413		/*
1414		 * The zone allocator couldn't provide more entries.
1415		 * Treat this as if the cache was full; drop the oldest
1416		 * entry and insert the new one.
1417		 */
1418		TCPSTAT_INC(tcps_sc_zonefail);
1419		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1420			sch->sch_last_overflow = time_uptime;
1421			syncache_drop(sc, sch);
1422		}
1423		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1424		if (sc == NULL) {
1425			if (V_tcp_syncookies) {
1426				bzero(&scs, sizeof(scs));
1427				sc = &scs;
1428			} else {
1429				SCH_UNLOCK(sch);
1430				if (ipopts)
1431					(void) m_free(ipopts);
1432				goto done;
1433			}
1434		}
1435	}
1436
1437#ifdef TCP_RFC7413
1438skip_alloc:
1439	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1440		sc->sc_tfo_cookie = &tfo_response_cookie;
1441#endif
1442
1443	/*
1444	 * Fill in the syncache values.
1445	 */
1446#ifdef MAC
1447	sc->sc_label = maclabel;
1448#endif
1449	sc->sc_cred = cred;
1450	cred = NULL;
1451	sc->sc_ipopts = ipopts;
1452	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1453#ifdef INET6
1454	if (!(inc->inc_flags & INC_ISIPV6))
1455#endif
1456	{
1457		sc->sc_ip_tos = ip_tos;
1458		sc->sc_ip_ttl = ip_ttl;
1459	}
1460#ifdef TCP_OFFLOAD
1461	sc->sc_tod = tod;
1462	sc->sc_todctx = todctx;
1463#endif
1464	sc->sc_irs = th->th_seq;
1465	sc->sc_iss = arc4random();
1466	sc->sc_flags = 0;
1467	sc->sc_flowlabel = 0;
1468
1469	/*
1470	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1471	 * win was derived from socket earlier in the function.
1472	 */
1473	win = imax(win, 0);
1474	win = imin(win, TCP_MAXWIN);
1475	sc->sc_wnd = win;
1476
1477	if (V_tcp_do_rfc1323) {
1478		/*
1479		 * A timestamp received in a SYN makes
1480		 * it ok to send timestamp requests and replies.
1481		 */
1482		if (to->to_flags & TOF_TS) {
1483			sc->sc_tsreflect = to->to_tsval;
1484			sc->sc_ts = tcp_ts_getticks();
1485			sc->sc_flags |= SCF_TIMESTAMP;
1486		}
1487		if (to->to_flags & TOF_SCALE) {
1488			int wscale = 0;
1489
1490			/*
1491			 * Pick the smallest possible scaling factor that
1492			 * will still allow us to scale up to sb_max, aka
1493			 * kern.ipc.maxsockbuf.
1494			 *
1495			 * We do this because there are broken firewalls that
1496			 * will corrupt the window scale option, leading to
1497			 * the other endpoint believing that our advertised
1498			 * window is unscaled.  At scale factors larger than
1499			 * 5 the unscaled window will drop below 1500 bytes,
1500			 * leading to serious problems when traversing these
1501			 * broken firewalls.
1502			 *
1503			 * With the default maxsockbuf of 256K, a scale factor
1504			 * of 3 will be chosen by this algorithm.  Those who
1505			 * choose a larger maxsockbuf should watch out
1506			 * for the compatibility problems mentioned above.
1507			 *
1508			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1509			 * or <SYN,ACK>) segment itself is never scaled.
1510			 */
1511			while (wscale < TCP_MAX_WINSHIFT &&
1512			    (TCP_MAXWIN << wscale) < sb_max)
1513				wscale++;
1514			sc->sc_requested_r_scale = wscale;
1515			sc->sc_requested_s_scale = to->to_wscale;
1516			sc->sc_flags |= SCF_WINSCALE;
1517		}
1518	}
1519#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1520	/*
1521	 * If listening socket requested TCP digests, flag this in the
1522	 * syncache so that syncache_respond() will do the right thing
1523	 * with the SYN+ACK.
1524	 */
1525	if (ltflags & TF_SIGNATURE)
1526		sc->sc_flags |= SCF_SIGNATURE;
1527#endif	/* TCP_SIGNATURE */
1528	if (to->to_flags & TOF_SACKPERM)
1529		sc->sc_flags |= SCF_SACK;
1530	if (to->to_flags & TOF_MSS)
1531		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1532	if (ltflags & TF_NOOPT)
1533		sc->sc_flags |= SCF_NOOPT;
1534	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1535		sc->sc_flags |= SCF_ECN;
1536
1537	if (V_tcp_syncookies)
1538		sc->sc_iss = syncookie_generate(sch, sc);
1539#ifdef INET6
1540	if (autoflowlabel) {
1541		if (V_tcp_syncookies)
1542			sc->sc_flowlabel = sc->sc_iss;
1543		else
1544			sc->sc_flowlabel = ip6_randomflowlabel();
1545		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1546	}
1547#endif
1548	SCH_UNLOCK(sch);
1549
1550#ifdef TCP_RFC7413
1551	if (tfo_cookie_valid) {
1552		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1553		/* INP_WUNLOCK(inp) will be performed by the called */
1554		rv = 1;
1555		goto tfo_done;
1556	}
1557#endif
1558
1559	/*
1560	 * Do a standard 3-way handshake.
1561	 */
1562	if (syncache_respond(sc, sch, 0, m) == 0) {
1563		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1564			syncache_free(sc);
1565		else if (sc != &scs)
1566			syncache_insert(sc, sch);   /* locks and unlocks sch */
1567		TCPSTAT_INC(tcps_sndacks);
1568		TCPSTAT_INC(tcps_sndtotal);
1569	} else {
1570		if (sc != &scs)
1571			syncache_free(sc);
1572		TCPSTAT_INC(tcps_sc_dropped);
1573	}
1574
1575done:
1576	if (m) {
1577		*lsop = NULL;
1578		m_freem(m);
1579	}
1580#ifdef TCP_RFC7413
1581tfo_done:
1582#endif
1583	if (cred != NULL)
1584		crfree(cred);
1585#ifdef MAC
1586	if (sc == &scs)
1587		mac_syncache_destroy(&maclabel);
1588#endif
1589	return (rv);
1590}
1591
1592/*
1593 * Send SYN|ACK to the peer.  Either in response to the peer's SYN,
1594 * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1595 */
1596static int
1597syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked,
1598    const struct mbuf *m0)
1599{
1600	struct ip *ip = NULL;
1601	struct mbuf *m;
1602	struct tcphdr *th = NULL;
1603	int optlen, error = 0;	/* Make compiler happy */
1604	u_int16_t hlen, tlen, mssopt;
1605	struct tcpopt to;
1606#ifdef INET6
1607	struct ip6_hdr *ip6 = NULL;
1608#endif
1609	hlen =
1610#ifdef INET6
1611	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1612#endif
1613		sizeof(struct ip);
1614	tlen = hlen + sizeof(struct tcphdr);
1615
1616	/* Determine MSS we advertize to other end of connection. */
1617	mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1618
1619	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1620	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1621	    ("syncache: mbuf too small"));
1622
1623	/* Create the IP+TCP header from scratch. */
1624	m = m_gethdr(M_NOWAIT, MT_DATA);
1625	if (m == NULL)
1626		return (ENOBUFS);
1627#ifdef MAC
1628	mac_syncache_create_mbuf(sc->sc_label, m);
1629#endif
1630	m->m_data += max_linkhdr;
1631	m->m_len = tlen;
1632	m->m_pkthdr.len = tlen;
1633	m->m_pkthdr.rcvif = NULL;
1634
1635#ifdef INET6
1636	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1637		ip6 = mtod(m, struct ip6_hdr *);
1638		ip6->ip6_vfc = IPV6_VERSION;
1639		ip6->ip6_nxt = IPPROTO_TCP;
1640		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1641		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1642		ip6->ip6_plen = htons(tlen - hlen);
1643		/* ip6_hlim is set after checksum */
1644		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1645		ip6->ip6_flow |= sc->sc_flowlabel;
1646
1647		th = (struct tcphdr *)(ip6 + 1);
1648	}
1649#endif
1650#if defined(INET6) && defined(INET)
1651	else
1652#endif
1653#ifdef INET
1654	{
1655		ip = mtod(m, struct ip *);
1656		ip->ip_v = IPVERSION;
1657		ip->ip_hl = sizeof(struct ip) >> 2;
1658		ip->ip_len = htons(tlen);
1659		ip->ip_id = 0;
1660		ip->ip_off = 0;
1661		ip->ip_sum = 0;
1662		ip->ip_p = IPPROTO_TCP;
1663		ip->ip_src = sc->sc_inc.inc_laddr;
1664		ip->ip_dst = sc->sc_inc.inc_faddr;
1665		ip->ip_ttl = sc->sc_ip_ttl;
1666		ip->ip_tos = sc->sc_ip_tos;
1667
1668		/*
1669		 * See if we should do MTU discovery.  Route lookups are
1670		 * expensive, so we will only unset the DF bit if:
1671		 *
1672		 *	1) path_mtu_discovery is disabled
1673		 *	2) the SCF_UNREACH flag has been set
1674		 */
1675		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1676		       ip->ip_off |= htons(IP_DF);
1677
1678		th = (struct tcphdr *)(ip + 1);
1679	}
1680#endif /* INET */
1681	th->th_sport = sc->sc_inc.inc_lport;
1682	th->th_dport = sc->sc_inc.inc_fport;
1683
1684	th->th_seq = htonl(sc->sc_iss);
1685	th->th_ack = htonl(sc->sc_irs + 1);
1686	th->th_off = sizeof(struct tcphdr) >> 2;
1687	th->th_x2 = 0;
1688	th->th_flags = TH_SYN|TH_ACK;
1689	th->th_win = htons(sc->sc_wnd);
1690	th->th_urp = 0;
1691
1692	if (sc->sc_flags & SCF_ECN) {
1693		th->th_flags |= TH_ECE;
1694		TCPSTAT_INC(tcps_ecn_shs);
1695	}
1696
1697	/* Tack on the TCP options. */
1698	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1699		to.to_flags = 0;
1700
1701		to.to_mss = mssopt;
1702		to.to_flags = TOF_MSS;
1703		if (sc->sc_flags & SCF_WINSCALE) {
1704			to.to_wscale = sc->sc_requested_r_scale;
1705			to.to_flags |= TOF_SCALE;
1706		}
1707		if (sc->sc_flags & SCF_TIMESTAMP) {
1708			/* Virgin timestamp or TCP cookie enhanced one. */
1709			to.to_tsval = sc->sc_ts;
1710			to.to_tsecr = sc->sc_tsreflect;
1711			to.to_flags |= TOF_TS;
1712		}
1713		if (sc->sc_flags & SCF_SACK)
1714			to.to_flags |= TOF_SACKPERM;
1715#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1716		if (sc->sc_flags & SCF_SIGNATURE)
1717			to.to_flags |= TOF_SIGNATURE;
1718#endif
1719#ifdef TCP_RFC7413
1720		if (sc->sc_tfo_cookie) {
1721			to.to_flags |= TOF_FASTOPEN;
1722			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1723			to.to_tfo_cookie = sc->sc_tfo_cookie;
1724			/* don't send cookie again when retransmitting response */
1725			sc->sc_tfo_cookie = NULL;
1726		}
1727#endif
1728		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1729
1730		/* Adjust headers by option size. */
1731		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1732		m->m_len += optlen;
1733		m->m_pkthdr.len += optlen;
1734#ifdef INET6
1735		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1736			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1737		else
1738#endif
1739			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1740#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1741		if (sc->sc_flags & SCF_SIGNATURE) {
1742			KASSERT(to.to_flags & TOF_SIGNATURE,
1743			    ("tcp_addoptions() didn't set tcp_signature"));
1744
1745			/* NOTE: to.to_signature is inside of mbuf */
1746			if (!TCPMD5_ENABLED() ||
1747			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1748				m_freem(m);
1749				return (EACCES);
1750			}
1751		}
1752#endif
1753	} else
1754		optlen = 0;
1755
1756	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1757	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1758	/*
1759	 * If we have peer's SYN and it has a flowid, then let's assign it to
1760	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1761	 * to SYN|ACK due to lack of inp here.
1762	 */
1763	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1764		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1765		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1766	}
1767#ifdef INET6
1768	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1769		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1770		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1771		    IPPROTO_TCP, 0);
1772		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1773#ifdef TCP_OFFLOAD
1774		if (ADDED_BY_TOE(sc)) {
1775			struct toedev *tod = sc->sc_tod;
1776
1777			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1778
1779			return (error);
1780		}
1781#endif
1782		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1783	}
1784#endif
1785#if defined(INET6) && defined(INET)
1786	else
1787#endif
1788#ifdef INET
1789	{
1790		m->m_pkthdr.csum_flags = CSUM_TCP;
1791		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1792		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1793#ifdef TCP_OFFLOAD
1794		if (ADDED_BY_TOE(sc)) {
1795			struct toedev *tod = sc->sc_tod;
1796
1797			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1798
1799			return (error);
1800		}
1801#endif
1802		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1803	}
1804#endif
1805	return (error);
1806}
1807
1808/*
1809 * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1810 * that exceed the capacity of the syncache by avoiding the storage of any
1811 * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1812 * attacks where the attacker does not have access to our responses.
1813 *
1814 * Syncookies encode and include all necessary information about the
1815 * connection setup within the SYN|ACK that we send back.  That way we
1816 * can avoid keeping any local state until the ACK to our SYN|ACK returns
1817 * (if ever).  Normally the syncache and syncookies are running in parallel
1818 * with the latter taking over when the former is exhausted.  When matching
1819 * syncache entry is found the syncookie is ignored.
1820 *
1821 * The only reliable information persisting the 3WHS is our initial sequence
1822 * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1823 * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1824 * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1825 * returns and signifies a legitimate connection if it matches the ACK.
1826 *
1827 * The available space of 32 bits to store the hash and to encode the SYN
1828 * option information is very tight and we should have at least 24 bits for
1829 * the MAC to keep the number of guesses by blind spoofing reasonably high.
1830 *
1831 * SYN option information we have to encode to fully restore a connection:
1832 * MSS: is imporant to chose an optimal segment size to avoid IP level
1833 *   fragmentation along the path.  The common MSS values can be encoded
1834 *   in a 3-bit table.  Uncommon values are captured by the next lower value
1835 *   in the table leading to a slight increase in packetization overhead.
1836 * WSCALE: is necessary to allow large windows to be used for high delay-
1837 *   bandwidth product links.  Not scaling the window when it was initially
1838 *   negotiated is bad for performance as lack of scaling further decreases
1839 *   the apparent available send window.  We only need to encode the WSCALE
1840 *   we received from the remote end.  Our end can be recalculated at any
1841 *   time.  The common WSCALE values can be encoded in a 3-bit table.
1842 *   Uncommon values are captured by the next lower value in the table
1843 *   making us under-estimate the available window size halving our
1844 *   theoretically possible maximum throughput for that connection.
1845 * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1846 * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1847 *   that are included in all segments on a connection.  We enable them when
1848 *   the ACK has them.
1849 *
1850 * Security of syncookies and attack vectors:
1851 *
1852 * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1853 * together with the gloabl secret to make it unique per connection attempt.
1854 * Thus any change of any of those parameters results in a different MAC output
1855 * in an unpredictable way unless a collision is encountered.  24 bits of the
1856 * MAC are embedded into the ISS.
1857 *
1858 * To prevent replay attacks two rotating global secrets are updated with a
1859 * new random value every 15 seconds.  The life-time of a syncookie is thus
1860 * 15-30 seconds.
1861 *
1862 * Vector 1: Attacking the secret.  This requires finding a weakness in the
1863 * MAC itself or the way it is used here.  The attacker can do a chosen plain
1864 * text attack by varying and testing the all parameters under his control.
1865 * The strength depends on the size and randomness of the secret, and the
1866 * cryptographic security of the MAC function.  Due to the constant updating
1867 * of the secret the attacker has at most 29.999 seconds to find the secret
1868 * and launch spoofed connections.  After that he has to start all over again.
1869 *
1870 * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1871 * size an average of 4,823 attempts are required for a 50% chance of success
1872 * to spoof a single syncookie (birthday collision paradox).  However the
1873 * attacker is blind and doesn't know if one of his attempts succeeded unless
1874 * he has a side channel to interfere success from.  A single connection setup
1875 * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1876 * This many attempts are required for each one blind spoofed connection.  For
1877 * every additional spoofed connection he has to launch another N attempts.
1878 * Thus for a sustained rate 100 spoofed connections per second approximately
1879 * 1,800,000 packets per second would have to be sent.
1880 *
1881 * NB: The MAC function should be fast so that it doesn't become a CPU
1882 * exhaustion attack vector itself.
1883 *
1884 * References:
1885 *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1886 *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1887 *   http://cr.yp.to/syncookies.html    (overview)
1888 *   http://cr.yp.to/syncookies/archive (details)
1889 *
1890 *
1891 * Schematic construction of a syncookie enabled Initial Sequence Number:
1892 *  0        1         2         3
1893 *  12345678901234567890123456789012
1894 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1895 *
1896 *  x 24 MAC (truncated)
1897 *  W  3 Send Window Scale index
1898 *  M  3 MSS index
1899 *  S  1 SACK permitted
1900 *  P  1 Odd/even secret
1901 */
1902
1903/*
1904 * Distribution and probability of certain MSS values.  Those in between are
1905 * rounded down to the next lower one.
1906 * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1907 *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1908 */
1909static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1910
1911/*
1912 * Distribution and probability of certain WSCALE values.  We have to map the
1913 * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1914 * bits based on prevalence of certain values.  Where we don't have an exact
1915 * match for are rounded down to the next lower one letting us under-estimate
1916 * the true available window.  At the moment this would happen only for the
1917 * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1918 * and window size).  The absence of the WSCALE option (no scaling in either
1919 * direction) is encoded with index zero.
1920 * [WSCALE values histograms, Allman, 2012]
1921 *                            X 10 10 35  5  6 14 10%   by host
1922 *                            X 11  4  5  5 18 49  3%   by connections
1923 */
1924static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1925
1926/*
1927 * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1928 * and good cryptographic properties.
1929 */
1930static uint32_t
1931syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1932    uint8_t *secbits, uintptr_t secmod)
1933{
1934	SIPHASH_CTX ctx;
1935	uint32_t siphash[2];
1936
1937	SipHash24_Init(&ctx);
1938	SipHash_SetKey(&ctx, secbits);
1939	switch (inc->inc_flags & INC_ISIPV6) {
1940#ifdef INET
1941	case 0:
1942		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1943		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1944		break;
1945#endif
1946#ifdef INET6
1947	case INC_ISIPV6:
1948		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1949		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1950		break;
1951#endif
1952	}
1953	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1954	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1955	SipHash_Update(&ctx, &irs, sizeof(irs));
1956	SipHash_Update(&ctx, &flags, sizeof(flags));
1957	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1958	SipHash_Final((u_int8_t *)&siphash, &ctx);
1959
1960	return (siphash[0] ^ siphash[1]);
1961}
1962
1963static tcp_seq
1964syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1965{
1966	u_int i, secbit, wscale;
1967	uint32_t iss, hash;
1968	uint8_t *secbits;
1969	union syncookie cookie;
1970
1971	SCH_LOCK_ASSERT(sch);
1972
1973	cookie.cookie = 0;
1974
1975	/* Map our computed MSS into the 3-bit index. */
1976	for (i = nitems(tcp_sc_msstab) - 1;
1977	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
1978	     i--)
1979		;
1980	cookie.flags.mss_idx = i;
1981
1982	/*
1983	 * Map the send window scale into the 3-bit index but only if
1984	 * the wscale option was received.
1985	 */
1986	if (sc->sc_flags & SCF_WINSCALE) {
1987		wscale = sc->sc_requested_s_scale;
1988		for (i = nitems(tcp_sc_wstab) - 1;
1989		    tcp_sc_wstab[i] > wscale && i > 0;
1990		     i--)
1991			;
1992		cookie.flags.wscale_idx = i;
1993	}
1994
1995	/* Can we do SACK? */
1996	if (sc->sc_flags & SCF_SACK)
1997		cookie.flags.sack_ok = 1;
1998
1999	/* Which of the two secrets to use. */
2000	secbit = sch->sch_sc->secret.oddeven & 0x1;
2001	cookie.flags.odd_even = secbit;
2002
2003	secbits = sch->sch_sc->secret.key[secbit];
2004	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2005	    (uintptr_t)sch);
2006
2007	/*
2008	 * Put the flags into the hash and XOR them to get better ISS number
2009	 * variance.  This doesn't enhance the cryptographic strength and is
2010	 * done to prevent the 8 cookie bits from showing up directly on the
2011	 * wire.
2012	 */
2013	iss = hash & ~0xff;
2014	iss |= cookie.cookie ^ (hash >> 24);
2015
2016	/* Randomize the timestamp. */
2017	if (sc->sc_flags & SCF_TIMESTAMP) {
2018		sc->sc_ts = arc4random();
2019		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
2020	}
2021
2022	TCPSTAT_INC(tcps_sc_sendcookie);
2023	return (iss);
2024}
2025
2026static struct syncache *
2027syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2028    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2029    struct socket *lso)
2030{
2031	uint32_t hash;
2032	uint8_t *secbits;
2033	tcp_seq ack, seq;
2034	int wnd, wscale = 0;
2035	union syncookie cookie;
2036
2037	SCH_LOCK_ASSERT(sch);
2038
2039	/*
2040	 * Pull information out of SYN-ACK/ACK and revert sequence number
2041	 * advances.
2042	 */
2043	ack = th->th_ack - 1;
2044	seq = th->th_seq - 1;
2045
2046	/*
2047	 * Unpack the flags containing enough information to restore the
2048	 * connection.
2049	 */
2050	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2051
2052	/* Which of the two secrets to use. */
2053	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
2054
2055	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2056
2057	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2058	if ((ack & ~0xff) != (hash & ~0xff))
2059		return (NULL);
2060
2061	/* Fill in the syncache values. */
2062	sc->sc_flags = 0;
2063	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2064	sc->sc_ipopts = NULL;
2065
2066	sc->sc_irs = seq;
2067	sc->sc_iss = ack;
2068
2069	switch (inc->inc_flags & INC_ISIPV6) {
2070#ifdef INET
2071	case 0:
2072		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2073		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2074		break;
2075#endif
2076#ifdef INET6
2077	case INC_ISIPV6:
2078		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2079			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2080		break;
2081#endif
2082	}
2083
2084	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2085
2086	/* We can simply recompute receive window scale we sent earlier. */
2087	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2088		wscale++;
2089
2090	/* Only use wscale if it was enabled in the orignal SYN. */
2091	if (cookie.flags.wscale_idx > 0) {
2092		sc->sc_requested_r_scale = wscale;
2093		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2094		sc->sc_flags |= SCF_WINSCALE;
2095	}
2096
2097	wnd = sbspace(&lso->so_rcv);
2098	wnd = imax(wnd, 0);
2099	wnd = imin(wnd, TCP_MAXWIN);
2100	sc->sc_wnd = wnd;
2101
2102	if (cookie.flags.sack_ok)
2103		sc->sc_flags |= SCF_SACK;
2104
2105	if (to->to_flags & TOF_TS) {
2106		sc->sc_flags |= SCF_TIMESTAMP;
2107		sc->sc_tsreflect = to->to_tsval;
2108		sc->sc_ts = to->to_tsecr;
2109		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
2110	}
2111
2112	if (to->to_flags & TOF_SIGNATURE)
2113		sc->sc_flags |= SCF_SIGNATURE;
2114
2115	sc->sc_rxmits = 0;
2116
2117	TCPSTAT_INC(tcps_sc_recvcookie);
2118	return (sc);
2119}
2120
2121#ifdef INVARIANTS
2122static int
2123syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2124    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2125    struct socket *lso)
2126{
2127	struct syncache scs, *scx;
2128	char *s;
2129
2130	bzero(&scs, sizeof(scs));
2131	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2132
2133	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2134		return (0);
2135
2136	if (scx != NULL) {
2137		if (sc->sc_peer_mss != scx->sc_peer_mss)
2138			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2139			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2140
2141		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2142			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2143			    s, __func__, sc->sc_requested_r_scale,
2144			    scx->sc_requested_r_scale);
2145
2146		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2147			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2148			    s, __func__, sc->sc_requested_s_scale,
2149			    scx->sc_requested_s_scale);
2150
2151		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2152			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2153	}
2154
2155	if (s != NULL)
2156		free(s, M_TCPLOG);
2157	return (0);
2158}
2159#endif /* INVARIANTS */
2160
2161static void
2162syncookie_reseed(void *arg)
2163{
2164	struct tcp_syncache *sc = arg;
2165	uint8_t *secbits;
2166	int secbit;
2167
2168	/*
2169	 * Reseeding the secret doesn't have to be protected by a lock.
2170	 * It only must be ensured that the new random values are visible
2171	 * to all CPUs in a SMP environment.  The atomic with release
2172	 * semantics ensures that.
2173	 */
2174	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2175	secbits = sc->secret.key[secbit];
2176	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2177	atomic_add_rel_int(&sc->secret.oddeven, 1);
2178
2179	/* Reschedule ourself. */
2180	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2181}
2182
2183/*
2184 * Exports the syncache entries to userland so that netstat can display
2185 * them alongside the other sockets.  This function is intended to be
2186 * called only from tcp_pcblist.
2187 *
2188 * Due to concurrency on an active system, the number of pcbs exported
2189 * may have no relation to max_pcbs.  max_pcbs merely indicates the
2190 * amount of space the caller allocated for this function to use.
2191 */
2192int
2193syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2194{
2195	struct xtcpcb xt;
2196	struct syncache *sc;
2197	struct syncache_head *sch;
2198	int count, error, i;
2199
2200	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2201		sch = &V_tcp_syncache.hashbase[i];
2202		SCH_LOCK(sch);
2203		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2204			if (count >= max_pcbs) {
2205				SCH_UNLOCK(sch);
2206				goto exit;
2207			}
2208			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2209				continue;
2210			bzero(&xt, sizeof(xt));
2211			xt.xt_len = sizeof(xt);
2212			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2213				xt.xt_inp.inp_vflag = INP_IPV6;
2214			else
2215				xt.xt_inp.inp_vflag = INP_IPV4;
2216			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2217			xt.xt_tp.t_inpcb = &xt.xt_inp;
2218			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2219			xt.xt_socket.xso_protocol = IPPROTO_TCP;
2220			xt.xt_socket.xso_len = sizeof (struct xsocket);
2221			xt.xt_socket.so_type = SOCK_STREAM;
2222			xt.xt_socket.so_state = SS_ISCONNECTING;
2223			error = SYSCTL_OUT(req, &xt, sizeof xt);
2224			if (error) {
2225				SCH_UNLOCK(sch);
2226				goto exit;
2227			}
2228			count++;
2229		}
2230		SCH_UNLOCK(sch);
2231	}
2232exit:
2233	*pcbs_exported = count;
2234	return error;
2235}
2236