tcp_syncache.c revision 184205
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/netinet/tcp_syncache.c 184205 2008-10-23 15:53:51Z des $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/md5.h>
51#include <sys/proc.h>		/* for proc0 declaration */
52#include <sys/random.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/syslog.h>
56#include <sys/ucred.h>
57#include <sys/vimage.h>
58
59#include <vm/uma.h>
60
61#include <net/if.h>
62#include <net/route.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#include <netinet/in_var.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip_var.h>
70#include <netinet/ip_options.h>
71#ifdef INET6
72#include <netinet/ip6.h>
73#include <netinet/icmp6.h>
74#include <netinet6/nd6.h>
75#include <netinet6/ip6_var.h>
76#include <netinet6/in6_pcb.h>
77#endif
78#include <netinet/tcp.h>
79#include <netinet/tcp_fsm.h>
80#include <netinet/tcp_seq.h>
81#include <netinet/tcp_timer.h>
82#include <netinet/tcp_var.h>
83#include <netinet/tcp_syncache.h>
84#include <netinet/tcp_offload.h>
85#ifdef INET6
86#include <netinet6/tcp6_var.h>
87#endif
88
89#ifdef IPSEC
90#include <netipsec/ipsec.h>
91#ifdef INET6
92#include <netipsec/ipsec6.h>
93#endif
94#include <netipsec/key.h>
95#endif /*IPSEC*/
96
97#include <machine/in_cksum.h>
98
99#include <security/mac/mac_framework.h>
100
101static int tcp_syncookies = 1;
102SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
103    &tcp_syncookies, 0,
104    "Use TCP SYN cookies if the syncache overflows");
105
106static int tcp_syncookiesonly = 0;
107SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
108    &tcp_syncookiesonly, 0,
109    "Use only TCP SYN cookies");
110
111#ifdef TCP_OFFLOAD_DISABLE
112#define TOEPCB_ISSET(sc) (0)
113#else
114#define TOEPCB_ISSET(sc) ((sc)->sc_toepcb != NULL)
115#endif
116
117static void	 syncache_drop(struct syncache *, struct syncache_head *);
118static void	 syncache_free(struct syncache *);
119static void	 syncache_insert(struct syncache *, struct syncache_head *);
120struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
121static int	 syncache_respond(struct syncache *);
122static struct	 socket *syncache_socket(struct syncache *, struct socket *,
123		    struct mbuf *m);
124static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
125		    int docallout);
126static void	 syncache_timer(void *);
127static void	 syncookie_generate(struct syncache_head *, struct syncache *,
128		    u_int32_t *);
129static struct syncache
130		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
131		    struct syncache *, struct tcpopt *, struct tcphdr *,
132		    struct socket *);
133
134/*
135 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
136 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
137 * the odds are that the user has given up attempting to connect by then.
138 */
139#define SYNCACHE_MAXREXMTS		3
140
141/* Arbitrary values */
142#define TCP_SYNCACHE_HASHSIZE		512
143#define TCP_SYNCACHE_BUCKETLIMIT	30
144
145static struct tcp_syncache tcp_syncache;
146
147SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
148
149SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
150    bucketlimit, CTLFLAG_RDTUN,
151    tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
152
153SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
154    cachelimit, CTLFLAG_RDTUN,
155    tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
156
157SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
158    count, CTLFLAG_RD,
159    tcp_syncache.cache_count, 0, "Current number of entries in syncache");
160
161SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
162    hashsize, CTLFLAG_RDTUN,
163    tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
164
165SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
166    rexmtlimit, CTLFLAG_RW,
167    tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
168
169int	tcp_sc_rst_sock_fail = 1;
170SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
171     rst_on_sock_fail, CTLFLAG_RW,
172     tcp_sc_rst_sock_fail, 0, "Send reset on socket allocation failure");
173
174static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
175
176#define SYNCACHE_HASH(inc, mask)					\
177	((V_tcp_syncache.hash_secret ^					\
178	  (inc)->inc_faddr.s_addr ^					\
179	  ((inc)->inc_faddr.s_addr >> 16) ^				\
180	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
181
182#define SYNCACHE_HASH6(inc, mask)					\
183	((V_tcp_syncache.hash_secret ^					\
184	  (inc)->inc6_faddr.s6_addr32[0] ^				\
185	  (inc)->inc6_faddr.s6_addr32[3] ^				\
186	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
187
188#define ENDPTS_EQ(a, b) (						\
189	(a)->ie_fport == (b)->ie_fport &&				\
190	(a)->ie_lport == (b)->ie_lport &&				\
191	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
192	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
193)
194
195#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
196
197#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
198#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
199#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
200
201/*
202 * Requires the syncache entry to be already removed from the bucket list.
203 */
204static void
205syncache_free(struct syncache *sc)
206{
207	INIT_VNET_INET(curvnet);
208
209	if (sc->sc_ipopts)
210		(void) m_free(sc->sc_ipopts);
211	if (sc->sc_cred)
212		crfree(sc->sc_cred);
213#ifdef MAC
214	mac_syncache_destroy(&sc->sc_label);
215#endif
216
217	uma_zfree(V_tcp_syncache.zone, sc);
218}
219
220void
221syncache_init(void)
222{
223	INIT_VNET_INET(curvnet);
224	int i;
225
226	V_tcp_syncache.cache_count = 0;
227	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
228	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
229	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
230	V_tcp_syncache.hash_secret = arc4random();
231
232	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
233	    &V_tcp_syncache.hashsize);
234	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
235	    &V_tcp_syncache.bucket_limit);
236	if (!powerof2(V_tcp_syncache.hashsize) ||
237	    V_tcp_syncache.hashsize == 0) {
238		printf("WARNING: syncache hash size is not a power of 2.\n");
239		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
240	}
241	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
242
243	/* Set limits. */
244	V_tcp_syncache.cache_limit =
245	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
246	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
247	    &V_tcp_syncache.cache_limit);
248
249	/* Allocate the hash table. */
250	V_tcp_syncache.hashbase = malloc(	    V_tcp_syncache.hashsize * sizeof(struct syncache_head),
251	    M_SYNCACHE, M_WAITOK | M_ZERO);
252
253	/* Initialize the hash buckets. */
254	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
255		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
256		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
257			 NULL, MTX_DEF);
258		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
259			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
260		V_tcp_syncache.hashbase[i].sch_length = 0;
261	}
262
263	/* Create the syncache entry zone. */
264	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
265	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
266	uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit);
267}
268
269/*
270 * Inserts a syncache entry into the specified bucket row.
271 * Locks and unlocks the syncache_head autonomously.
272 */
273static void
274syncache_insert(struct syncache *sc, struct syncache_head *sch)
275{
276	INIT_VNET_INET(sch->sch_vnet);
277	struct syncache *sc2;
278
279	SCH_LOCK(sch);
280
281	/*
282	 * Make sure that we don't overflow the per-bucket limit.
283	 * If the bucket is full, toss the oldest element.
284	 */
285	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
286		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
287			("sch->sch_length incorrect"));
288		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
289		syncache_drop(sc2, sch);
290		V_tcpstat.tcps_sc_bucketoverflow++;
291	}
292
293	/* Put it into the bucket. */
294	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
295	sch->sch_length++;
296
297	/* Reinitialize the bucket row's timer. */
298	if (sch->sch_length == 1)
299		sch->sch_nextc = ticks + INT_MAX;
300	syncache_timeout(sc, sch, 1);
301
302	SCH_UNLOCK(sch);
303
304	V_tcp_syncache.cache_count++;
305	V_tcpstat.tcps_sc_added++;
306}
307
308/*
309 * Remove and free entry from syncache bucket row.
310 * Expects locked syncache head.
311 */
312static void
313syncache_drop(struct syncache *sc, struct syncache_head *sch)
314{
315	INIT_VNET_INET(sch->sch_vnet);
316
317	SCH_LOCK_ASSERT(sch);
318
319	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
320	sch->sch_length--;
321
322#ifndef TCP_OFFLOAD_DISABLE
323	if (sc->sc_tu)
324		sc->sc_tu->tu_syncache_event(TOE_SC_DROP, sc->sc_toepcb);
325#endif
326	syncache_free(sc);
327	V_tcp_syncache.cache_count--;
328}
329
330/*
331 * Engage/reengage time on bucket row.
332 */
333static void
334syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
335{
336	sc->sc_rxttime = ticks +
337		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
338	sc->sc_rxmits++;
339	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
340		sch->sch_nextc = sc->sc_rxttime;
341		if (docallout)
342			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
343			    syncache_timer, (void *)sch);
344	}
345}
346
347/*
348 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
349 * If we have retransmitted an entry the maximum number of times, expire it.
350 * One separate timer for each bucket row.
351 */
352static void
353syncache_timer(void *xsch)
354{
355	struct syncache_head *sch = (struct syncache_head *)xsch;
356	INIT_VNET_INET(sch->sch_vnet);
357	struct syncache *sc, *nsc;
358	int tick = ticks;
359	char *s;
360
361	/* NB: syncache_head has already been locked by the callout. */
362	SCH_LOCK_ASSERT(sch);
363
364	/*
365	 * In the following cycle we may remove some entries and/or
366	 * advance some timeouts, so re-initialize the bucket timer.
367	 */
368	sch->sch_nextc = tick + INT_MAX;
369
370	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
371		/*
372		 * We do not check if the listen socket still exists
373		 * and accept the case where the listen socket may be
374		 * gone by the time we resend the SYN/ACK.  We do
375		 * not expect this to happens often. If it does,
376		 * then the RST will be sent by the time the remote
377		 * host does the SYN/ACK->ACK.
378		 */
379		if (TSTMP_GT(sc->sc_rxttime, tick)) {
380			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
381				sch->sch_nextc = sc->sc_rxttime;
382			continue;
383		}
384		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
385			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
386				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
387				    "giving up and removing syncache entry\n",
388				    s, __func__);
389				free(s, M_TCPLOG);
390			}
391			syncache_drop(sc, sch);
392			V_tcpstat.tcps_sc_stale++;
393			continue;
394		}
395		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
396			log(LOG_DEBUG, "%s; %s: Response timeout, "
397			    "retransmitting (%u) SYN|ACK\n",
398			    s, __func__, sc->sc_rxmits);
399			free(s, M_TCPLOG);
400		}
401
402		(void) syncache_respond(sc);
403		V_tcpstat.tcps_sc_retransmitted++;
404		syncache_timeout(sc, sch, 0);
405	}
406	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
407		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
408			syncache_timer, (void *)(sch));
409}
410
411/*
412 * Find an entry in the syncache.
413 * Returns always with locked syncache_head plus a matching entry or NULL.
414 */
415struct syncache *
416syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
417{
418	INIT_VNET_INET(curvnet);
419	struct syncache *sc;
420	struct syncache_head *sch;
421
422#ifdef INET6
423	if (inc->inc_isipv6) {
424		sch = &V_tcp_syncache.hashbase[
425		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
426		*schp = sch;
427
428		SCH_LOCK(sch);
429
430		/* Circle through bucket row to find matching entry. */
431		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
432			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
433				return (sc);
434		}
435	} else
436#endif
437	{
438		sch = &V_tcp_syncache.hashbase[
439		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
440		*schp = sch;
441
442		SCH_LOCK(sch);
443
444		/* Circle through bucket row to find matching entry. */
445		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
446#ifdef INET6
447			if (sc->sc_inc.inc_isipv6)
448				continue;
449#endif
450			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
451				return (sc);
452		}
453	}
454	SCH_LOCK_ASSERT(*schp);
455	return (NULL);			/* always returns with locked sch */
456}
457
458/*
459 * This function is called when we get a RST for a
460 * non-existent connection, so that we can see if the
461 * connection is in the syn cache.  If it is, zap it.
462 */
463void
464syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
465{
466	INIT_VNET_INET(curvnet);
467	struct syncache *sc;
468	struct syncache_head *sch;
469	char *s = NULL;
470
471	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
472	SCH_LOCK_ASSERT(sch);
473
474	/*
475	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
476	 * See RFC 793 page 65, section SEGMENT ARRIVES.
477	 */
478	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
479		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
480			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
481			    "FIN flag set, segment ignored\n", s, __func__);
482		V_tcpstat.tcps_badrst++;
483		goto done;
484	}
485
486	/*
487	 * No corresponding connection was found in syncache.
488	 * If syncookies are enabled and possibly exclusively
489	 * used, or we are under memory pressure, a valid RST
490	 * may not find a syncache entry.  In that case we're
491	 * done and no SYN|ACK retransmissions will happen.
492	 * Otherwise the the RST was misdirected or spoofed.
493	 */
494	if (sc == NULL) {
495		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
496			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
497			    "syncache entry (possibly syncookie only), "
498			    "segment ignored\n", s, __func__);
499		V_tcpstat.tcps_badrst++;
500		goto done;
501	}
502
503	/*
504	 * If the RST bit is set, check the sequence number to see
505	 * if this is a valid reset segment.
506	 * RFC 793 page 37:
507	 *   In all states except SYN-SENT, all reset (RST) segments
508	 *   are validated by checking their SEQ-fields.  A reset is
509	 *   valid if its sequence number is in the window.
510	 *
511	 *   The sequence number in the reset segment is normally an
512	 *   echo of our outgoing acknowlegement numbers, but some hosts
513	 *   send a reset with the sequence number at the rightmost edge
514	 *   of our receive window, and we have to handle this case.
515	 */
516	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
517	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
518		syncache_drop(sc, sch);
519		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
520			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
521			    "connection attempt aborted by remote endpoint\n",
522			    s, __func__);
523		V_tcpstat.tcps_sc_reset++;
524	} else {
525		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
526			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
527			    "IRS %u (+WND %u), segment ignored\n",
528			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
529		V_tcpstat.tcps_badrst++;
530	}
531
532done:
533	if (s != NULL)
534		free(s, M_TCPLOG);
535	SCH_UNLOCK(sch);
536}
537
538void
539syncache_badack(struct in_conninfo *inc)
540{
541	INIT_VNET_INET(curvnet);
542	struct syncache *sc;
543	struct syncache_head *sch;
544
545	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
546	SCH_LOCK_ASSERT(sch);
547	if (sc != NULL) {
548		syncache_drop(sc, sch);
549		V_tcpstat.tcps_sc_badack++;
550	}
551	SCH_UNLOCK(sch);
552}
553
554void
555syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
556{
557	INIT_VNET_INET(curvnet);
558	struct syncache *sc;
559	struct syncache_head *sch;
560
561	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
562	SCH_LOCK_ASSERT(sch);
563	if (sc == NULL)
564		goto done;
565
566	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
567	if (ntohl(th->th_seq) != sc->sc_iss)
568		goto done;
569
570	/*
571	 * If we've rertransmitted 3 times and this is our second error,
572	 * we remove the entry.  Otherwise, we allow it to continue on.
573	 * This prevents us from incorrectly nuking an entry during a
574	 * spurious network outage.
575	 *
576	 * See tcp_notify().
577	 */
578	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
579		sc->sc_flags |= SCF_UNREACH;
580		goto done;
581	}
582	syncache_drop(sc, sch);
583	V_tcpstat.tcps_sc_unreach++;
584done:
585	SCH_UNLOCK(sch);
586}
587
588/*
589 * Build a new TCP socket structure from a syncache entry.
590 */
591static struct socket *
592syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
593{
594	INIT_VNET_INET(lso->so_vnet);
595	struct inpcb *inp = NULL;
596	struct socket *so;
597	struct tcpcb *tp;
598	char *s;
599
600	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
601
602	/*
603	 * Ok, create the full blown connection, and set things up
604	 * as they would have been set up if we had created the
605	 * connection when the SYN arrived.  If we can't create
606	 * the connection, abort it.
607	 */
608	so = sonewconn(lso, SS_ISCONNECTED);
609	if (so == NULL) {
610		/*
611		 * Drop the connection; we will either send a RST or
612		 * have the peer retransmit its SYN again after its
613		 * RTO and try again.
614		 */
615		V_tcpstat.tcps_listendrop++;
616		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
617			log(LOG_DEBUG, "%s; %s: Socket create failed "
618			    "due to limits or memory shortage\n",
619			    s, __func__);
620			free(s, M_TCPLOG);
621		}
622		goto abort2;
623	}
624#ifdef MAC
625	SOCK_LOCK(so);
626	mac_socketpeer_set_from_mbuf(m, so);
627	SOCK_UNLOCK(so);
628#endif
629
630	inp = sotoinpcb(so);
631	inp->inp_inc.inc_fibnum = sc->sc_inc.inc_fibnum;
632	so->so_fibnum = sc->sc_inc.inc_fibnum;
633	INP_WLOCK(inp);
634
635	/* Insert new socket into PCB hash list. */
636	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
637#ifdef INET6
638	if (sc->sc_inc.inc_isipv6) {
639		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
640	} else {
641		inp->inp_vflag &= ~INP_IPV6;
642		inp->inp_vflag |= INP_IPV4;
643#endif
644		inp->inp_laddr = sc->sc_inc.inc_laddr;
645#ifdef INET6
646	}
647#endif
648	inp->inp_lport = sc->sc_inc.inc_lport;
649	if (in_pcbinshash(inp) != 0) {
650		/*
651		 * Undo the assignments above if we failed to
652		 * put the PCB on the hash lists.
653		 */
654#ifdef INET6
655		if (sc->sc_inc.inc_isipv6)
656			inp->in6p_laddr = in6addr_any;
657		else
658#endif
659			inp->inp_laddr.s_addr = INADDR_ANY;
660		inp->inp_lport = 0;
661		goto abort;
662	}
663#ifdef IPSEC
664	/* Copy old policy into new socket's. */
665	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
666		printf("syncache_socket: could not copy policy\n");
667#endif
668#ifdef INET6
669	if (sc->sc_inc.inc_isipv6) {
670		struct inpcb *oinp = sotoinpcb(lso);
671		struct in6_addr laddr6;
672		struct sockaddr_in6 sin6;
673		/*
674		 * Inherit socket options from the listening socket.
675		 * Note that in6p_inputopts are not (and should not be)
676		 * copied, since it stores previously received options and is
677		 * used to detect if each new option is different than the
678		 * previous one and hence should be passed to a user.
679		 * If we copied in6p_inputopts, a user would not be able to
680		 * receive options just after calling the accept system call.
681		 */
682		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
683		if (oinp->in6p_outputopts)
684			inp->in6p_outputopts =
685			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
686
687		sin6.sin6_family = AF_INET6;
688		sin6.sin6_len = sizeof(sin6);
689		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
690		sin6.sin6_port = sc->sc_inc.inc_fport;
691		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
692		laddr6 = inp->in6p_laddr;
693		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
694			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
695		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
696		    thread0.td_ucred)) {
697			inp->in6p_laddr = laddr6;
698			goto abort;
699		}
700		/* Override flowlabel from in6_pcbconnect. */
701		inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
702		inp->in6p_flowinfo |= sc->sc_flowlabel;
703	} else
704#endif
705	{
706		struct in_addr laddr;
707		struct sockaddr_in sin;
708
709		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
710
711		if (inp->inp_options == NULL) {
712			inp->inp_options = sc->sc_ipopts;
713			sc->sc_ipopts = NULL;
714		}
715
716		sin.sin_family = AF_INET;
717		sin.sin_len = sizeof(sin);
718		sin.sin_addr = sc->sc_inc.inc_faddr;
719		sin.sin_port = sc->sc_inc.inc_fport;
720		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
721		laddr = inp->inp_laddr;
722		if (inp->inp_laddr.s_addr == INADDR_ANY)
723			inp->inp_laddr = sc->sc_inc.inc_laddr;
724		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
725		    thread0.td_ucred)) {
726			inp->inp_laddr = laddr;
727			goto abort;
728		}
729	}
730	tp = intotcpcb(inp);
731	tp->t_state = TCPS_SYN_RECEIVED;
732	tp->iss = sc->sc_iss;
733	tp->irs = sc->sc_irs;
734	tcp_rcvseqinit(tp);
735	tcp_sendseqinit(tp);
736	tp->snd_wl1 = sc->sc_irs;
737	tp->snd_max = tp->iss + 1;
738	tp->snd_nxt = tp->iss + 1;
739	tp->rcv_up = sc->sc_irs + 1;
740	tp->rcv_wnd = sc->sc_wnd;
741	tp->rcv_adv += tp->rcv_wnd;
742	tp->last_ack_sent = tp->rcv_nxt;
743
744	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
745	if (sc->sc_flags & SCF_NOOPT)
746		tp->t_flags |= TF_NOOPT;
747	else {
748		if (sc->sc_flags & SCF_WINSCALE) {
749			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
750			tp->snd_scale = sc->sc_requested_s_scale;
751			tp->request_r_scale = sc->sc_requested_r_scale;
752		}
753		if (sc->sc_flags & SCF_TIMESTAMP) {
754			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
755			tp->ts_recent = sc->sc_tsreflect;
756			tp->ts_recent_age = ticks;
757			tp->ts_offset = sc->sc_tsoff;
758		}
759#ifdef TCP_SIGNATURE
760		if (sc->sc_flags & SCF_SIGNATURE)
761			tp->t_flags |= TF_SIGNATURE;
762#endif
763		if (sc->sc_flags & SCF_SACK)
764			tp->t_flags |= TF_SACK_PERMIT;
765	}
766
767	if (sc->sc_flags & SCF_ECN)
768		tp->t_flags |= TF_ECN_PERMIT;
769
770	/*
771	 * Set up MSS and get cached values from tcp_hostcache.
772	 * This might overwrite some of the defaults we just set.
773	 */
774	tcp_mss(tp, sc->sc_peer_mss);
775
776	/*
777	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
778	 */
779	if (sc->sc_rxmits)
780		tp->snd_cwnd = tp->t_maxseg;
781	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
782
783	INP_WUNLOCK(inp);
784
785	V_tcpstat.tcps_accepts++;
786	return (so);
787
788abort:
789	INP_WUNLOCK(inp);
790abort2:
791	if (so != NULL)
792		soabort(so);
793	return (NULL);
794}
795
796/*
797 * This function gets called when we receive an ACK for a
798 * socket in the LISTEN state.  We look up the connection
799 * in the syncache, and if its there, we pull it out of
800 * the cache and turn it into a full-blown connection in
801 * the SYN-RECEIVED state.
802 */
803int
804syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
805    struct socket **lsop, struct mbuf *m)
806{
807	INIT_VNET_INET(curvnet);
808	struct syncache *sc;
809	struct syncache_head *sch;
810	struct syncache scs;
811	char *s;
812
813	/*
814	 * Global TCP locks are held because we manipulate the PCB lists
815	 * and create a new socket.
816	 */
817	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
818	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
819	    ("%s: can handle only ACK", __func__));
820
821	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
822	SCH_LOCK_ASSERT(sch);
823	if (sc == NULL) {
824		/*
825		 * There is no syncache entry, so see if this ACK is
826		 * a returning syncookie.  To do this, first:
827		 *  A. See if this socket has had a syncache entry dropped in
828		 *     the past.  We don't want to accept a bogus syncookie
829		 *     if we've never received a SYN.
830		 *  B. check that the syncookie is valid.  If it is, then
831		 *     cobble up a fake syncache entry, and return.
832		 */
833		if (!tcp_syncookies) {
834			SCH_UNLOCK(sch);
835			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
836				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
837				    "segment rejected (syncookies disabled)\n",
838				    s, __func__);
839			goto failed;
840		}
841		bzero(&scs, sizeof(scs));
842		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
843		SCH_UNLOCK(sch);
844		if (sc == NULL) {
845			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
846				log(LOG_DEBUG, "%s; %s: Segment failed "
847				    "SYNCOOKIE authentication, segment rejected "
848				    "(probably spoofed)\n", s, __func__);
849			goto failed;
850		}
851	} else {
852		/* Pull out the entry to unlock the bucket row. */
853		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
854		sch->sch_length--;
855		V_tcp_syncache.cache_count--;
856		SCH_UNLOCK(sch);
857	}
858
859	/*
860	 * Segment validation:
861	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
862	 */
863	if (th->th_ack != sc->sc_iss + 1 && !TOEPCB_ISSET(sc)) {
864		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
865			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
866			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
867		goto failed;
868	}
869
870	/*
871	 * The SEQ must fall in the window starting at the received
872	 * initial receive sequence number + 1 (the SYN).
873	 */
874	if ((SEQ_LEQ(th->th_seq, sc->sc_irs) ||
875	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) &&
876	    !TOEPCB_ISSET(sc)) {
877		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
878			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
879			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
880		goto failed;
881	}
882
883	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
884		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
885			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
886			    "segment rejected\n", s, __func__);
887		goto failed;
888	}
889	/*
890	 * If timestamps were negotiated the reflected timestamp
891	 * must be equal to what we actually sent in the SYN|ACK.
892	 */
893	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts &&
894	    !TOEPCB_ISSET(sc)) {
895		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
896			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
897			    "segment rejected\n",
898			    s, __func__, to->to_tsecr, sc->sc_ts);
899		goto failed;
900	}
901
902	*lsop = syncache_socket(sc, *lsop, m);
903
904	if (*lsop == NULL)
905		V_tcpstat.tcps_sc_aborted++;
906	else
907		V_tcpstat.tcps_sc_completed++;
908
909/* how do we find the inp for the new socket? */
910	if (sc != &scs)
911		syncache_free(sc);
912	return (1);
913failed:
914	if (sc != NULL && sc != &scs)
915		syncache_free(sc);
916	if (s != NULL)
917		free(s, M_TCPLOG);
918	*lsop = NULL;
919	return (0);
920}
921
922int
923tcp_offload_syncache_expand(struct in_conninfo *inc, struct tcpopt *to,
924    struct tcphdr *th, struct socket **lsop, struct mbuf *m)
925{
926	int rc;
927
928	INP_INFO_WLOCK(&V_tcbinfo);
929	rc = syncache_expand(inc, to, th, lsop, m);
930	INP_INFO_WUNLOCK(&V_tcbinfo);
931
932	return (rc);
933}
934
935/*
936 * Given a LISTEN socket and an inbound SYN request, add
937 * this to the syn cache, and send back a segment:
938 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
939 * to the source.
940 *
941 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
942 * Doing so would require that we hold onto the data and deliver it
943 * to the application.  However, if we are the target of a SYN-flood
944 * DoS attack, an attacker could send data which would eventually
945 * consume all available buffer space if it were ACKed.  By not ACKing
946 * the data, we avoid this DoS scenario.
947 */
948static void
949_syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
950    struct inpcb *inp, struct socket **lsop, struct mbuf *m,
951    struct toe_usrreqs *tu, void *toepcb)
952{
953	INIT_VNET_INET(inp->inp_vnet);
954	struct tcpcb *tp;
955	struct socket *so;
956	struct syncache *sc = NULL;
957	struct syncache_head *sch;
958	struct mbuf *ipopts = NULL;
959	u_int32_t flowtmp;
960	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
961	char *s;
962#ifdef INET6
963	int autoflowlabel = 0;
964#endif
965#ifdef MAC
966	struct label *maclabel;
967#endif
968	struct syncache scs;
969	struct ucred *cred;
970
971	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
972	INP_WLOCK_ASSERT(inp);			/* listen socket */
973	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
974	    ("%s: unexpected tcp flags", __func__));
975
976	/*
977	 * Combine all so/tp operations very early to drop the INP lock as
978	 * soon as possible.
979	 */
980	so = *lsop;
981	tp = sototcpcb(so);
982	cred = crhold(so->so_cred);
983
984#ifdef INET6
985	if (inc->inc_isipv6 &&
986	    (inp->in6p_flags & IN6P_AUTOFLOWLABEL))
987		autoflowlabel = 1;
988#endif
989	ip_ttl = inp->inp_ip_ttl;
990	ip_tos = inp->inp_ip_tos;
991	win = sbspace(&so->so_rcv);
992	sb_hiwat = so->so_rcv.sb_hiwat;
993	noopt = (tp->t_flags & TF_NOOPT);
994
995	/* By the time we drop the lock these should no longer be used. */
996	so = NULL;
997	tp = NULL;
998
999#ifdef MAC
1000	if (mac_syncache_init(&maclabel) != 0) {
1001		INP_WUNLOCK(inp);
1002		INP_INFO_WUNLOCK(&V_tcbinfo);
1003		goto done;
1004	} else
1005		mac_syncache_create(maclabel, inp);
1006#endif
1007	INP_WUNLOCK(inp);
1008	INP_INFO_WUNLOCK(&V_tcbinfo);
1009
1010	/*
1011	 * Remember the IP options, if any.
1012	 */
1013#ifdef INET6
1014	if (!inc->inc_isipv6)
1015#endif
1016		ipopts = (m) ? ip_srcroute(m) : NULL;
1017
1018	/*
1019	 * See if we already have an entry for this connection.
1020	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1021	 *
1022	 * XXX: should the syncache be re-initialized with the contents
1023	 * of the new SYN here (which may have different options?)
1024	 *
1025	 * XXX: We do not check the sequence number to see if this is a
1026	 * real retransmit or a new connection attempt.  The question is
1027	 * how to handle such a case; either ignore it as spoofed, or
1028	 * drop the current entry and create a new one?
1029	 */
1030	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1031	SCH_LOCK_ASSERT(sch);
1032	if (sc != NULL) {
1033#ifndef TCP_OFFLOAD_DISABLE
1034		if (sc->sc_tu)
1035			sc->sc_tu->tu_syncache_event(TOE_SC_ENTRY_PRESENT,
1036			    sc->sc_toepcb);
1037#endif
1038		V_tcpstat.tcps_sc_dupsyn++;
1039		if (ipopts) {
1040			/*
1041			 * If we were remembering a previous source route,
1042			 * forget it and use the new one we've been given.
1043			 */
1044			if (sc->sc_ipopts)
1045				(void) m_free(sc->sc_ipopts);
1046			sc->sc_ipopts = ipopts;
1047		}
1048		/*
1049		 * Update timestamp if present.
1050		 */
1051		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1052			sc->sc_tsreflect = to->to_tsval;
1053		else
1054			sc->sc_flags &= ~SCF_TIMESTAMP;
1055#ifdef MAC
1056		/*
1057		 * Since we have already unconditionally allocated label
1058		 * storage, free it up.  The syncache entry will already
1059		 * have an initialized label we can use.
1060		 */
1061		mac_syncache_destroy(&maclabel);
1062		KASSERT(sc->sc_label != NULL,
1063		    ("%s: label not initialized", __func__));
1064#endif
1065		/* Retransmit SYN|ACK and reset retransmit count. */
1066		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1067			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1068			    "resetting timer and retransmitting SYN|ACK\n",
1069			    s, __func__);
1070			free(s, M_TCPLOG);
1071		}
1072		if (!TOEPCB_ISSET(sc) && syncache_respond(sc) == 0) {
1073			sc->sc_rxmits = 0;
1074			syncache_timeout(sc, sch, 1);
1075			V_tcpstat.tcps_sndacks++;
1076			V_tcpstat.tcps_sndtotal++;
1077		}
1078		SCH_UNLOCK(sch);
1079		goto done;
1080	}
1081
1082	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1083	if (sc == NULL) {
1084		/*
1085		 * The zone allocator couldn't provide more entries.
1086		 * Treat this as if the cache was full; drop the oldest
1087		 * entry and insert the new one.
1088		 */
1089		V_tcpstat.tcps_sc_zonefail++;
1090		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1091			syncache_drop(sc, sch);
1092		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1093		if (sc == NULL) {
1094			if (tcp_syncookies) {
1095				bzero(&scs, sizeof(scs));
1096				sc = &scs;
1097			} else {
1098				SCH_UNLOCK(sch);
1099				if (ipopts)
1100					(void) m_free(ipopts);
1101				goto done;
1102			}
1103		}
1104	}
1105
1106	/*
1107	 * Fill in the syncache values.
1108	 */
1109#ifdef MAC
1110	sc->sc_label = maclabel;
1111#endif
1112	sc->sc_cred = cred;
1113	cred = NULL;
1114	sc->sc_ipopts = ipopts;
1115	sc->sc_inc.inc_fibnum = inp->inp_inc.inc_fibnum;
1116	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1117#ifdef INET6
1118	if (!inc->inc_isipv6)
1119#endif
1120	{
1121		sc->sc_ip_tos = ip_tos;
1122		sc->sc_ip_ttl = ip_ttl;
1123	}
1124#ifndef TCP_OFFLOAD_DISABLE
1125	sc->sc_tu = tu;
1126	sc->sc_toepcb = toepcb;
1127#endif
1128	sc->sc_irs = th->th_seq;
1129	sc->sc_iss = arc4random();
1130	sc->sc_flags = 0;
1131	sc->sc_flowlabel = 0;
1132
1133	/*
1134	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1135	 * win was derived from socket earlier in the function.
1136	 */
1137	win = imax(win, 0);
1138	win = imin(win, TCP_MAXWIN);
1139	sc->sc_wnd = win;
1140
1141	if (V_tcp_do_rfc1323) {
1142		/*
1143		 * A timestamp received in a SYN makes
1144		 * it ok to send timestamp requests and replies.
1145		 */
1146		if (to->to_flags & TOF_TS) {
1147			sc->sc_tsreflect = to->to_tsval;
1148			sc->sc_ts = ticks;
1149			sc->sc_flags |= SCF_TIMESTAMP;
1150		}
1151		if (to->to_flags & TOF_SCALE) {
1152			int wscale = 0;
1153
1154			/*
1155			 * Pick the smallest possible scaling factor that
1156			 * will still allow us to scale up to sb_max, aka
1157			 * kern.ipc.maxsockbuf.
1158			 *
1159			 * We do this because there are broken firewalls that
1160			 * will corrupt the window scale option, leading to
1161			 * the other endpoint believing that our advertised
1162			 * window is unscaled.  At scale factors larger than
1163			 * 5 the unscaled window will drop below 1500 bytes,
1164			 * leading to serious problems when traversing these
1165			 * broken firewalls.
1166			 *
1167			 * With the default maxsockbuf of 256K, a scale factor
1168			 * of 3 will be chosen by this algorithm.  Those who
1169			 * choose a larger maxsockbuf should watch out
1170			 * for the compatiblity problems mentioned above.
1171			 *
1172			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1173			 * or <SYN,ACK>) segment itself is never scaled.
1174			 */
1175			while (wscale < TCP_MAX_WINSHIFT &&
1176			    (TCP_MAXWIN << wscale) < sb_max)
1177				wscale++;
1178			sc->sc_requested_r_scale = wscale;
1179			sc->sc_requested_s_scale = to->to_wscale;
1180			sc->sc_flags |= SCF_WINSCALE;
1181		}
1182	}
1183#ifdef TCP_SIGNATURE
1184	/*
1185	 * If listening socket requested TCP digests, and received SYN
1186	 * contains the option, flag this in the syncache so that
1187	 * syncache_respond() will do the right thing with the SYN+ACK.
1188	 * XXX: Currently we always record the option by default and will
1189	 * attempt to use it in syncache_respond().
1190	 */
1191	if (to->to_flags & TOF_SIGNATURE)
1192		sc->sc_flags |= SCF_SIGNATURE;
1193#endif
1194	if (to->to_flags & TOF_SACKPERM)
1195		sc->sc_flags |= SCF_SACK;
1196	if (to->to_flags & TOF_MSS)
1197		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1198	if (noopt)
1199		sc->sc_flags |= SCF_NOOPT;
1200	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1201		sc->sc_flags |= SCF_ECN;
1202
1203	if (tcp_syncookies) {
1204		syncookie_generate(sch, sc, &flowtmp);
1205#ifdef INET6
1206		if (autoflowlabel)
1207			sc->sc_flowlabel = flowtmp;
1208#endif
1209	} else {
1210#ifdef INET6
1211		if (autoflowlabel)
1212			sc->sc_flowlabel =
1213			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1214#endif
1215	}
1216	SCH_UNLOCK(sch);
1217
1218	/*
1219	 * Do a standard 3-way handshake.
1220	 */
1221	if (TOEPCB_ISSET(sc) || syncache_respond(sc) == 0) {
1222		if (tcp_syncookies && tcp_syncookiesonly && sc != &scs)
1223			syncache_free(sc);
1224		else if (sc != &scs)
1225			syncache_insert(sc, sch);   /* locks and unlocks sch */
1226		V_tcpstat.tcps_sndacks++;
1227		V_tcpstat.tcps_sndtotal++;
1228	} else {
1229		if (sc != &scs)
1230			syncache_free(sc);
1231		V_tcpstat.tcps_sc_dropped++;
1232	}
1233
1234done:
1235	if (cred != NULL)
1236		crfree(cred);
1237#ifdef MAC
1238	if (sc == &scs)
1239		mac_syncache_destroy(&maclabel);
1240#endif
1241	if (m) {
1242
1243		*lsop = NULL;
1244		m_freem(m);
1245	}
1246	return;
1247}
1248
1249static int
1250syncache_respond(struct syncache *sc)
1251{
1252	INIT_VNET_INET(curvnet);
1253	struct ip *ip = NULL;
1254	struct mbuf *m;
1255	struct tcphdr *th;
1256	int optlen, error;
1257	u_int16_t hlen, tlen, mssopt;
1258	struct tcpopt to;
1259#ifdef INET6
1260	struct ip6_hdr *ip6 = NULL;
1261#endif
1262
1263	hlen =
1264#ifdef INET6
1265	       (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
1266#endif
1267		sizeof(struct ip);
1268	tlen = hlen + sizeof(struct tcphdr);
1269
1270	/* Determine MSS we advertize to other end of connection. */
1271	mssopt = tcp_mssopt(&sc->sc_inc);
1272	if (sc->sc_peer_mss)
1273		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1274
1275	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1276	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1277	    ("syncache: mbuf too small"));
1278
1279	/* Create the IP+TCP header from scratch. */
1280	m = m_gethdr(M_DONTWAIT, MT_DATA);
1281	if (m == NULL)
1282		return (ENOBUFS);
1283#ifdef MAC
1284	mac_syncache_create_mbuf(sc->sc_label, m);
1285#endif
1286	m->m_data += max_linkhdr;
1287	m->m_len = tlen;
1288	m->m_pkthdr.len = tlen;
1289	m->m_pkthdr.rcvif = NULL;
1290
1291#ifdef INET6
1292	if (sc->sc_inc.inc_isipv6) {
1293		ip6 = mtod(m, struct ip6_hdr *);
1294		ip6->ip6_vfc = IPV6_VERSION;
1295		ip6->ip6_nxt = IPPROTO_TCP;
1296		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1297		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1298		ip6->ip6_plen = htons(tlen - hlen);
1299		/* ip6_hlim is set after checksum */
1300		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1301		ip6->ip6_flow |= sc->sc_flowlabel;
1302
1303		th = (struct tcphdr *)(ip6 + 1);
1304	} else
1305#endif
1306	{
1307		ip = mtod(m, struct ip *);
1308		ip->ip_v = IPVERSION;
1309		ip->ip_hl = sizeof(struct ip) >> 2;
1310		ip->ip_len = tlen;
1311		ip->ip_id = 0;
1312		ip->ip_off = 0;
1313		ip->ip_sum = 0;
1314		ip->ip_p = IPPROTO_TCP;
1315		ip->ip_src = sc->sc_inc.inc_laddr;
1316		ip->ip_dst = sc->sc_inc.inc_faddr;
1317		ip->ip_ttl = sc->sc_ip_ttl;
1318		ip->ip_tos = sc->sc_ip_tos;
1319
1320		/*
1321		 * See if we should do MTU discovery.  Route lookups are
1322		 * expensive, so we will only unset the DF bit if:
1323		 *
1324		 *	1) path_mtu_discovery is disabled
1325		 *	2) the SCF_UNREACH flag has been set
1326		 */
1327		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1328		       ip->ip_off |= IP_DF;
1329
1330		th = (struct tcphdr *)(ip + 1);
1331	}
1332	th->th_sport = sc->sc_inc.inc_lport;
1333	th->th_dport = sc->sc_inc.inc_fport;
1334
1335	th->th_seq = htonl(sc->sc_iss);
1336	th->th_ack = htonl(sc->sc_irs + 1);
1337	th->th_off = sizeof(struct tcphdr) >> 2;
1338	th->th_x2 = 0;
1339	th->th_flags = TH_SYN|TH_ACK;
1340	th->th_win = htons(sc->sc_wnd);
1341	th->th_urp = 0;
1342
1343	if (sc->sc_flags & SCF_ECN) {
1344		th->th_flags |= TH_ECE;
1345		V_tcpstat.tcps_ecn_shs++;
1346	}
1347
1348	/* Tack on the TCP options. */
1349	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1350		to.to_flags = 0;
1351
1352		to.to_mss = mssopt;
1353		to.to_flags = TOF_MSS;
1354		if (sc->sc_flags & SCF_WINSCALE) {
1355			to.to_wscale = sc->sc_requested_r_scale;
1356			to.to_flags |= TOF_SCALE;
1357		}
1358		if (sc->sc_flags & SCF_TIMESTAMP) {
1359			/* Virgin timestamp or TCP cookie enhanced one. */
1360			to.to_tsval = sc->sc_ts;
1361			to.to_tsecr = sc->sc_tsreflect;
1362			to.to_flags |= TOF_TS;
1363		}
1364		if (sc->sc_flags & SCF_SACK)
1365			to.to_flags |= TOF_SACKPERM;
1366#ifdef TCP_SIGNATURE
1367		if (sc->sc_flags & SCF_SIGNATURE)
1368			to.to_flags |= TOF_SIGNATURE;
1369#endif
1370		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1371
1372		/* Adjust headers by option size. */
1373		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1374		m->m_len += optlen;
1375		m->m_pkthdr.len += optlen;
1376
1377#ifdef TCP_SIGNATURE
1378		if (sc->sc_flags & SCF_SIGNATURE)
1379			tcp_signature_compute(m, 0, 0, optlen,
1380			    to.to_signature, IPSEC_DIR_OUTBOUND);
1381#endif
1382#ifdef INET6
1383		if (sc->sc_inc.inc_isipv6)
1384			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1385		else
1386#endif
1387			ip->ip_len += optlen;
1388	} else
1389		optlen = 0;
1390
1391#ifdef INET6
1392	if (sc->sc_inc.inc_isipv6) {
1393		th->th_sum = 0;
1394		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1395				       tlen + optlen - hlen);
1396		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1397		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1398	} else
1399#endif
1400	{
1401		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1402		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1403		m->m_pkthdr.csum_flags = CSUM_TCP;
1404		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1405		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1406	}
1407	return (error);
1408}
1409
1410void
1411syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1412    struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1413{
1414	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1415}
1416
1417void
1418tcp_offload_syncache_add(struct in_conninfo *inc, struct tcpopt *to,
1419    struct tcphdr *th, struct inpcb *inp, struct socket **lsop,
1420    struct toe_usrreqs *tu, void *toepcb)
1421{
1422	INIT_VNET_INET(curvnet);
1423
1424	INP_INFO_WLOCK(&V_tcbinfo);
1425	INP_WLOCK(inp);
1426	_syncache_add(inc, to, th, inp, lsop, NULL, tu, toepcb);
1427}
1428
1429/*
1430 * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1431 * receive and to be able to handle SYN floods from bogus source addresses
1432 * (where we will never receive any reply).  SYN floods try to exhaust all
1433 * our memory and available slots in the SYN cache table to cause a denial
1434 * of service to legitimate users of the local host.
1435 *
1436 * The idea of SYN cookies is to encode and include all necessary information
1437 * about the connection setup state within the SYN-ACK we send back and thus
1438 * to get along without keeping any local state until the ACK to the SYN-ACK
1439 * arrives (if ever).  Everything we need to know should be available from
1440 * the information we encoded in the SYN-ACK.
1441 *
1442 * More information about the theory behind SYN cookies and its first
1443 * discussion and specification can be found at:
1444 *  http://cr.yp.to/syncookies.html    (overview)
1445 *  http://cr.yp.to/syncookies/archive (gory details)
1446 *
1447 * This implementation extends the orginal idea and first implementation
1448 * of FreeBSD by using not only the initial sequence number field to store
1449 * information but also the timestamp field if present.  This way we can
1450 * keep track of the entire state we need to know to recreate the session in
1451 * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1452 * these days.  For those that do not we still have to live with the known
1453 * shortcomings of the ISN only SYN cookies.
1454 *
1455 * Cookie layers:
1456 *
1457 * Initial sequence number we send:
1458 * 31|................................|0
1459 *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1460 *    D = MD5 Digest (first dword)
1461 *    M = MSS index
1462 *    R = Rotation of secret
1463 *    P = Odd or Even secret
1464 *
1465 * The MD5 Digest is computed with over following parameters:
1466 *  a) randomly rotated secret
1467 *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1468 *  c) the received initial sequence number from remote host
1469 *  d) the rotation offset and odd/even bit
1470 *
1471 * Timestamp we send:
1472 * 31|................................|0
1473 *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1474 *    D = MD5 Digest (third dword) (only as filler)
1475 *    S = Requested send window scale
1476 *    R = Requested receive window scale
1477 *    A = SACK allowed
1478 *    5 = TCP-MD5 enabled (not implemented yet)
1479 *    XORed with MD5 Digest (forth dword)
1480 *
1481 * The timestamp isn't cryptographically secure and doesn't need to be.
1482 * The double use of the MD5 digest dwords ties it to a specific remote/
1483 * local host/port, remote initial sequence number and our local time
1484 * limited secret.  A received timestamp is reverted (XORed) and then
1485 * the contained MD5 dword is compared to the computed one to ensure the
1486 * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1487 * have been tampered with but this isn't different from supplying bogus
1488 * values in the SYN in the first place.
1489 *
1490 * Some problems with SYN cookies remain however:
1491 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1492 * original SYN was accepted, the connection is established.  The second
1493 * SYN is inflight, and if it arrives with an ISN that falls within the
1494 * receive window, the connection is killed.
1495 *
1496 * Notes:
1497 * A heuristic to determine when to accept syn cookies is not necessary.
1498 * An ACK flood would cause the syncookie verification to be attempted,
1499 * but a SYN flood causes syncookies to be generated.  Both are of equal
1500 * cost, so there's no point in trying to optimize the ACK flood case.
1501 * Also, if you don't process certain ACKs for some reason, then all someone
1502 * would have to do is launch a SYN and ACK flood at the same time, which
1503 * would stop cookie verification and defeat the entire purpose of syncookies.
1504 */
1505static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1506
1507static void
1508syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1509    u_int32_t *flowlabel)
1510{
1511	INIT_VNET_INET(curvnet);
1512	MD5_CTX ctx;
1513	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1514	u_int32_t data;
1515	u_int32_t *secbits;
1516	u_int off, pmss, mss;
1517	int i;
1518
1519	SCH_LOCK_ASSERT(sch);
1520
1521	/* Which of the two secrets to use. */
1522	secbits = sch->sch_oddeven ?
1523			sch->sch_secbits_odd : sch->sch_secbits_even;
1524
1525	/* Reseed secret if too old. */
1526	if (sch->sch_reseed < time_uptime) {
1527		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1528		secbits = sch->sch_oddeven ?
1529				sch->sch_secbits_odd : sch->sch_secbits_even;
1530		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1531			secbits[i] = arc4random();
1532		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1533	}
1534
1535	/* Secret rotation offset. */
1536	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1537
1538	/* Maximum segment size calculation. */
1539	pmss =
1540	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1541	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1542		if (tcp_sc_msstab[mss] <= pmss)
1543			break;
1544
1545	/* Fold parameters and MD5 digest into the ISN we will send. */
1546	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1547	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1548	data |= mss << 4;	/* mss, 3 bits */
1549
1550	MD5Init(&ctx);
1551	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1552	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1553	MD5Update(&ctx, secbits, off);
1554	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1555	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1556	MD5Update(&ctx, &data, sizeof(data));
1557	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1558
1559	data |= (md5_buffer[0] << 7);
1560	sc->sc_iss = data;
1561
1562#ifdef INET6
1563	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1564#endif
1565
1566	/* Additional parameters are stored in the timestamp if present. */
1567	if (sc->sc_flags & SCF_TIMESTAMP) {
1568		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1569		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1570		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1571		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1572		data |= md5_buffer[2] << 10;		/* more digest bits */
1573		data ^= md5_buffer[3];
1574		sc->sc_ts = data;
1575		sc->sc_tsoff = data - ticks;		/* after XOR */
1576	}
1577
1578	V_tcpstat.tcps_sc_sendcookie++;
1579	return;
1580}
1581
1582static struct syncache *
1583syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1584    struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1585    struct socket *so)
1586{
1587	INIT_VNET_INET(curvnet);
1588	MD5_CTX ctx;
1589	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1590	u_int32_t data = 0;
1591	u_int32_t *secbits;
1592	tcp_seq ack, seq;
1593	int off, mss, wnd, flags;
1594
1595	SCH_LOCK_ASSERT(sch);
1596
1597	/*
1598	 * Pull information out of SYN-ACK/ACK and
1599	 * revert sequence number advances.
1600	 */
1601	ack = th->th_ack - 1;
1602	seq = th->th_seq - 1;
1603	off = (ack >> 1) & 0x7;
1604	mss = (ack >> 4) & 0x7;
1605	flags = ack & 0x7f;
1606
1607	/* Which of the two secrets to use. */
1608	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1609
1610	/*
1611	 * The secret wasn't updated for the lifetime of a syncookie,
1612	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1613	 */
1614	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1615		return (NULL);
1616	}
1617
1618	/* Recompute the digest so we can compare it. */
1619	MD5Init(&ctx);
1620	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1621	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1622	MD5Update(&ctx, secbits, off);
1623	MD5Update(&ctx, inc, sizeof(*inc));
1624	MD5Update(&ctx, &seq, sizeof(seq));
1625	MD5Update(&ctx, &flags, sizeof(flags));
1626	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1627
1628	/* Does the digest part of or ACK'ed ISS match? */
1629	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1630		return (NULL);
1631
1632	/* Does the digest part of our reflected timestamp match? */
1633	if (to->to_flags & TOF_TS) {
1634		data = md5_buffer[3] ^ to->to_tsecr;
1635		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1636			return (NULL);
1637	}
1638
1639	/* Fill in the syncache values. */
1640	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1641	sc->sc_ipopts = NULL;
1642
1643	sc->sc_irs = seq;
1644	sc->sc_iss = ack;
1645
1646#ifdef INET6
1647	if (inc->inc_isipv6) {
1648		if (sotoinpcb(so)->in6p_flags & IN6P_AUTOFLOWLABEL)
1649			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1650	} else
1651#endif
1652	{
1653		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1654		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1655	}
1656
1657	/* Additional parameters that were encoded in the timestamp. */
1658	if (data) {
1659		sc->sc_flags |= SCF_TIMESTAMP;
1660		sc->sc_tsreflect = to->to_tsval;
1661		sc->sc_ts = to->to_tsecr;
1662		sc->sc_tsoff = to->to_tsecr - ticks;
1663		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1664		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1665		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1666		    TCP_MAX_WINSHIFT);
1667		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1668		    TCP_MAX_WINSHIFT);
1669		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1670			sc->sc_flags |= SCF_WINSCALE;
1671	} else
1672		sc->sc_flags |= SCF_NOOPT;
1673
1674	wnd = sbspace(&so->so_rcv);
1675	wnd = imax(wnd, 0);
1676	wnd = imin(wnd, TCP_MAXWIN);
1677	sc->sc_wnd = wnd;
1678
1679	sc->sc_rxmits = 0;
1680	sc->sc_peer_mss = tcp_sc_msstab[mss];
1681
1682	V_tcpstat.tcps_sc_recvcookie++;
1683	return (sc);
1684}
1685
1686/*
1687 * Returns the current number of syncache entries.  This number
1688 * will probably change before you get around to calling
1689 * syncache_pcblist.
1690 */
1691
1692int
1693syncache_pcbcount(void)
1694{
1695	INIT_VNET_INET(curvnet);
1696	struct syncache_head *sch;
1697	int count, i;
1698
1699	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1700		/* No need to lock for a read. */
1701		sch = &V_tcp_syncache.hashbase[i];
1702		count += sch->sch_length;
1703	}
1704	return count;
1705}
1706
1707/*
1708 * Exports the syncache entries to userland so that netstat can display
1709 * them alongside the other sockets.  This function is intended to be
1710 * called only from tcp_pcblist.
1711 *
1712 * Due to concurrency on an active system, the number of pcbs exported
1713 * may have no relation to max_pcbs.  max_pcbs merely indicates the
1714 * amount of space the caller allocated for this function to use.
1715 */
1716int
1717syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1718{
1719	INIT_VNET_INET(curvnet);
1720	struct xtcpcb xt;
1721	struct syncache *sc;
1722	struct syncache_head *sch;
1723	int count, error, i;
1724
1725	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1726		sch = &V_tcp_syncache.hashbase[i];
1727		SCH_LOCK(sch);
1728		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1729			if (count >= max_pcbs) {
1730				SCH_UNLOCK(sch);
1731				goto exit;
1732			}
1733			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1734				continue;
1735			bzero(&xt, sizeof(xt));
1736			xt.xt_len = sizeof(xt);
1737			if (sc->sc_inc.inc_isipv6)
1738				xt.xt_inp.inp_vflag = INP_IPV6;
1739			else
1740				xt.xt_inp.inp_vflag = INP_IPV4;
1741			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1742			xt.xt_tp.t_inpcb = &xt.xt_inp;
1743			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1744			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1745			xt.xt_socket.xso_len = sizeof (struct xsocket);
1746			xt.xt_socket.so_type = SOCK_STREAM;
1747			xt.xt_socket.so_state = SS_ISCONNECTING;
1748			error = SYSCTL_OUT(req, &xt, sizeof xt);
1749			if (error) {
1750				SCH_UNLOCK(sch);
1751				goto exit;
1752			}
1753			count++;
1754		}
1755		SCH_UNLOCK(sch);
1756	}
1757exit:
1758	*pcbs_exported = count;
1759	return error;
1760}
1761