tcp_input.c revision 258821
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 2007-2008,2010
5 *	Swinburne University of Technology, Melbourne, Australia.
6 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7 * Copyright (c) 2010 The FreeBSD Foundation
8 * Copyright (c) 2010-2011 Juniper Networks, Inc.
9 * All rights reserved.
10 *
11 * Portions of this software were developed at the Centre for Advanced Internet
12 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13 * James Healy and David Hayes, made possible in part by a grant from the Cisco
14 * University Research Program Fund at Community Foundation Silicon Valley.
15 *
16 * Portions of this software were developed at the Centre for Advanced
17 * Internet Architectures, Swinburne University of Technology, Melbourne,
18 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19 *
20 * Portions of this software were developed by Robert N. M. Watson under
21 * contract to Juniper Networks, Inc.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the above copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 4. Neither the name of the University nor the names of its contributors
32 *    may be used to endorse or promote products derived from this software
33 *    without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 *
47 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/netinet/tcp_input.c 258821 2013-12-02 03:11:25Z eadler $");
52
53#include "opt_ipfw.h"		/* for ipfw_fwd	*/
54#include "opt_inet.h"
55#include "opt_inet6.h"
56#include "opt_ipsec.h"
57#include "opt_tcpdebug.h"
58
59#include <sys/param.h>
60#include <sys/kernel.h>
61#include <sys/hhook.h>
62#include <sys/malloc.h>
63#include <sys/mbuf.h>
64#include <sys/proc.h>		/* for proc0 declaration */
65#include <sys/protosw.h>
66#include <sys/sdt.h>
67#include <sys/signalvar.h>
68#include <sys/socket.h>
69#include <sys/socketvar.h>
70#include <sys/sysctl.h>
71#include <sys/syslog.h>
72#include <sys/systm.h>
73
74#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
75
76#include <vm/uma.h>
77
78#include <net/if.h>
79#include <net/if_var.h>
80#include <net/route.h>
81#include <net/vnet.h>
82
83#define TCPSTATES		/* for logging */
84
85#include <netinet/cc.h>
86#include <netinet/in.h>
87#include <netinet/in_kdtrace.h>
88#include <netinet/in_pcb.h>
89#include <netinet/in_systm.h>
90#include <netinet/in_var.h>
91#include <netinet/ip.h>
92#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
93#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
94#include <netinet/ip_var.h>
95#include <netinet/ip_options.h>
96#include <netinet/ip6.h>
97#include <netinet/icmp6.h>
98#include <netinet6/in6_pcb.h>
99#include <netinet6/ip6_var.h>
100#include <netinet6/nd6.h>
101#include <netinet/tcp_fsm.h>
102#include <netinet/tcp_seq.h>
103#include <netinet/tcp_timer.h>
104#include <netinet/tcp_var.h>
105#include <netinet6/tcp6_var.h>
106#include <netinet/tcpip.h>
107#include <netinet/tcp_syncache.h>
108#ifdef TCPDEBUG
109#include <netinet/tcp_debug.h>
110#endif /* TCPDEBUG */
111#ifdef TCP_OFFLOAD
112#include <netinet/tcp_offload.h>
113#endif
114
115#ifdef IPSEC
116#include <netipsec/ipsec.h>
117#include <netipsec/ipsec6.h>
118#endif /*IPSEC*/
119
120#include <machine/in_cksum.h>
121
122#include <security/mac/mac_framework.h>
123
124const int tcprexmtthresh = 3;
125
126int tcp_log_in_vain = 0;
127SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
128    &tcp_log_in_vain, 0,
129    "Log all incoming TCP segments to closed ports");
130
131VNET_DEFINE(int, blackhole) = 0;
132#define	V_blackhole		VNET(blackhole)
133SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
134    &VNET_NAME(blackhole), 0,
135    "Do not send RST on segments to closed ports");
136
137VNET_DEFINE(int, tcp_delack_enabled) = 1;
138SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
139    &VNET_NAME(tcp_delack_enabled), 0,
140    "Delay ACK to try and piggyback it onto a data packet");
141
142VNET_DEFINE(int, drop_synfin) = 0;
143#define	V_drop_synfin		VNET(drop_synfin)
144SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
145    &VNET_NAME(drop_synfin), 0,
146    "Drop TCP packets with SYN+FIN set");
147
148VNET_DEFINE(int, tcp_do_rfc3042) = 1;
149#define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
150SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
151    &VNET_NAME(tcp_do_rfc3042), 0,
152    "Enable RFC 3042 (Limited Transmit)");
153
154VNET_DEFINE(int, tcp_do_rfc3390) = 1;
155SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
156    &VNET_NAME(tcp_do_rfc3390), 0,
157    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
158
159SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
160    "Experimental TCP extensions");
161
162VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
163SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
164    &VNET_NAME(tcp_do_initcwnd10), 0,
165    "Enable draft-ietf-tcpm-initcwnd-05 (Increasing initial CWND to 10)");
166
167VNET_DEFINE(int, tcp_do_rfc3465) = 1;
168SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
169    &VNET_NAME(tcp_do_rfc3465), 0,
170    "Enable RFC 3465 (Appropriate Byte Counting)");
171
172VNET_DEFINE(int, tcp_abc_l_var) = 2;
173SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
174    &VNET_NAME(tcp_abc_l_var), 2,
175    "Cap the max cwnd increment during slow-start to this number of segments");
176
177static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
178
179VNET_DEFINE(int, tcp_do_ecn) = 0;
180SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
181    &VNET_NAME(tcp_do_ecn), 0,
182    "TCP ECN support");
183
184VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
185SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
186    &VNET_NAME(tcp_ecn_maxretries), 0,
187    "Max retries before giving up on ECN");
188
189VNET_DEFINE(int, tcp_insecure_rst) = 0;
190#define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
191SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
192    &VNET_NAME(tcp_insecure_rst), 0,
193    "Follow the old (insecure) criteria for accepting RST packets");
194
195VNET_DEFINE(int, tcp_recvspace) = 1024*64;
196#define	V_tcp_recvspace	VNET(tcp_recvspace)
197SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
198    &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
199
200VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
201#define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
202SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
203    &VNET_NAME(tcp_do_autorcvbuf), 0,
204    "Enable automatic receive buffer sizing");
205
206VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
207#define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
208SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
209    &VNET_NAME(tcp_autorcvbuf_inc), 0,
210    "Incrementor step size of automatic receive buffer");
211
212VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
213#define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
214SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
215    &VNET_NAME(tcp_autorcvbuf_max), 0,
216    "Max size of automatic receive buffer");
217
218VNET_DEFINE(struct inpcbhead, tcb);
219#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
220VNET_DEFINE(struct inpcbinfo, tcbinfo);
221
222static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
223static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
224		     struct socket *, struct tcpcb *, int, int, uint8_t,
225		     int);
226static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
227		     struct tcpcb *, int, int);
228static void	 tcp_pulloutofband(struct socket *,
229		     struct tcphdr *, struct mbuf *, int);
230static void	 tcp_xmit_timer(struct tcpcb *, int);
231static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
232static void inline 	tcp_fields_to_host(struct tcphdr *);
233#ifdef TCP_SIGNATURE
234static void inline 	tcp_fields_to_net(struct tcphdr *);
235static int inline	tcp_signature_verify_input(struct mbuf *, int, int,
236			    int, struct tcpopt *, struct tcphdr *, u_int);
237#endif
238static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
239			    uint16_t type);
240static void inline	cc_conn_init(struct tcpcb *tp);
241static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
242static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
243			    struct tcphdr *th, struct tcpopt *to);
244
245/*
246 * TCP statistics are stored in an "array" of counter(9)s.
247 */
248VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
249VNET_PCPUSTAT_SYSINIT(tcpstat);
250SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
251    tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
252
253#ifdef VIMAGE
254VNET_PCPUSTAT_SYSUNINIT(tcpstat);
255#endif /* VIMAGE */
256/*
257 * Kernel module interface for updating tcpstat.  The argument is an index
258 * into tcpstat treated as an array.
259 */
260void
261kmod_tcpstat_inc(int statnum)
262{
263
264	counter_u64_add(VNET(tcpstat)[statnum], 1);
265}
266
267/*
268 * Wrapper for the TCP established input helper hook.
269 */
270static void inline
271hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
272{
273	struct tcp_hhook_data hhook_data;
274
275	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
276		hhook_data.tp = tp;
277		hhook_data.th = th;
278		hhook_data.to = to;
279
280		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
281		    tp->osd);
282	}
283}
284
285/*
286 * CC wrapper hook functions
287 */
288static void inline
289cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
290{
291	INP_WLOCK_ASSERT(tp->t_inpcb);
292
293	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
294	if (tp->snd_cwnd <= tp->snd_wnd)
295		tp->ccv->flags |= CCF_CWND_LIMITED;
296	else
297		tp->ccv->flags &= ~CCF_CWND_LIMITED;
298
299	if (type == CC_ACK) {
300		if (tp->snd_cwnd > tp->snd_ssthresh) {
301			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
302			     V_tcp_abc_l_var * tp->t_maxseg);
303			if (tp->t_bytes_acked >= tp->snd_cwnd) {
304				tp->t_bytes_acked -= tp->snd_cwnd;
305				tp->ccv->flags |= CCF_ABC_SENTAWND;
306			}
307		} else {
308				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
309				tp->t_bytes_acked = 0;
310		}
311	}
312
313	if (CC_ALGO(tp)->ack_received != NULL) {
314		/* XXXLAS: Find a way to live without this */
315		tp->ccv->curack = th->th_ack;
316		CC_ALGO(tp)->ack_received(tp->ccv, type);
317	}
318}
319
320static void inline
321cc_conn_init(struct tcpcb *tp)
322{
323	struct hc_metrics_lite metrics;
324	struct inpcb *inp = tp->t_inpcb;
325	int rtt;
326
327	INP_WLOCK_ASSERT(tp->t_inpcb);
328
329	tcp_hc_get(&inp->inp_inc, &metrics);
330
331	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
332		tp->t_srtt = rtt;
333		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
334		TCPSTAT_INC(tcps_usedrtt);
335		if (metrics.rmx_rttvar) {
336			tp->t_rttvar = metrics.rmx_rttvar;
337			TCPSTAT_INC(tcps_usedrttvar);
338		} else {
339			/* default variation is +- 1 rtt */
340			tp->t_rttvar =
341			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
342		}
343		TCPT_RANGESET(tp->t_rxtcur,
344		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
345		    tp->t_rttmin, TCPTV_REXMTMAX);
346	}
347	if (metrics.rmx_ssthresh) {
348		/*
349		 * There's some sort of gateway or interface
350		 * buffer limit on the path.  Use this to set
351		 * the slow start threshhold, but set the
352		 * threshold to no less than 2*mss.
353		 */
354		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
355		TCPSTAT_INC(tcps_usedssthresh);
356	}
357
358	/*
359	 * Set the initial slow-start flight size.
360	 *
361	 * RFC5681 Section 3.1 specifies the default conservative values.
362	 * RFC3390 specifies slightly more aggressive values.
363	 * Draft-ietf-tcpm-initcwnd-05 increases it to ten segments.
364	 *
365	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
366	 * reduce the initial CWND to one segment as congestion is likely
367	 * requiring us to be cautious.
368	 */
369	if (tp->snd_cwnd == 1)
370		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
371	else if (V_tcp_do_initcwnd10)
372		tp->snd_cwnd = min(10 * tp->t_maxseg,
373		    max(2 * tp->t_maxseg, 14600));
374	else if (V_tcp_do_rfc3390)
375		tp->snd_cwnd = min(4 * tp->t_maxseg,
376		    max(2 * tp->t_maxseg, 4380));
377	else {
378		/* Per RFC5681 Section 3.1 */
379		if (tp->t_maxseg > 2190)
380			tp->snd_cwnd = 2 * tp->t_maxseg;
381		else if (tp->t_maxseg > 1095)
382			tp->snd_cwnd = 3 * tp->t_maxseg;
383		else
384			tp->snd_cwnd = 4 * tp->t_maxseg;
385	}
386
387	if (CC_ALGO(tp)->conn_init != NULL)
388		CC_ALGO(tp)->conn_init(tp->ccv);
389}
390
391void inline
392cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
393{
394	INP_WLOCK_ASSERT(tp->t_inpcb);
395
396	switch(type) {
397	case CC_NDUPACK:
398		if (!IN_FASTRECOVERY(tp->t_flags)) {
399			tp->snd_recover = tp->snd_max;
400			if (tp->t_flags & TF_ECN_PERMIT)
401				tp->t_flags |= TF_ECN_SND_CWR;
402		}
403		break;
404	case CC_ECN:
405		if (!IN_CONGRECOVERY(tp->t_flags)) {
406			TCPSTAT_INC(tcps_ecn_rcwnd);
407			tp->snd_recover = tp->snd_max;
408			if (tp->t_flags & TF_ECN_PERMIT)
409				tp->t_flags |= TF_ECN_SND_CWR;
410		}
411		break;
412	case CC_RTO:
413		tp->t_dupacks = 0;
414		tp->t_bytes_acked = 0;
415		EXIT_RECOVERY(tp->t_flags);
416		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
417		    tp->t_maxseg) * tp->t_maxseg;
418		tp->snd_cwnd = tp->t_maxseg;
419		break;
420	case CC_RTO_ERR:
421		TCPSTAT_INC(tcps_sndrexmitbad);
422		/* RTO was unnecessary, so reset everything. */
423		tp->snd_cwnd = tp->snd_cwnd_prev;
424		tp->snd_ssthresh = tp->snd_ssthresh_prev;
425		tp->snd_recover = tp->snd_recover_prev;
426		if (tp->t_flags & TF_WASFRECOVERY)
427			ENTER_FASTRECOVERY(tp->t_flags);
428		if (tp->t_flags & TF_WASCRECOVERY)
429			ENTER_CONGRECOVERY(tp->t_flags);
430		tp->snd_nxt = tp->snd_max;
431		tp->t_flags &= ~TF_PREVVALID;
432		tp->t_badrxtwin = 0;
433		break;
434	}
435
436	if (CC_ALGO(tp)->cong_signal != NULL) {
437		if (th != NULL)
438			tp->ccv->curack = th->th_ack;
439		CC_ALGO(tp)->cong_signal(tp->ccv, type);
440	}
441}
442
443static void inline
444cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
445{
446	INP_WLOCK_ASSERT(tp->t_inpcb);
447
448	/* XXXLAS: KASSERT that we're in recovery? */
449
450	if (CC_ALGO(tp)->post_recovery != NULL) {
451		tp->ccv->curack = th->th_ack;
452		CC_ALGO(tp)->post_recovery(tp->ccv);
453	}
454	/* XXXLAS: EXIT_RECOVERY ? */
455	tp->t_bytes_acked = 0;
456}
457
458static inline void
459tcp_fields_to_host(struct tcphdr *th)
460{
461
462	th->th_seq = ntohl(th->th_seq);
463	th->th_ack = ntohl(th->th_ack);
464	th->th_win = ntohs(th->th_win);
465	th->th_urp = ntohs(th->th_urp);
466}
467
468#ifdef TCP_SIGNATURE
469static inline void
470tcp_fields_to_net(struct tcphdr *th)
471{
472
473	th->th_seq = htonl(th->th_seq);
474	th->th_ack = htonl(th->th_ack);
475	th->th_win = htons(th->th_win);
476	th->th_urp = htons(th->th_urp);
477}
478
479static inline int
480tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
481    struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
482{
483	int ret;
484
485	tcp_fields_to_net(th);
486	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
487	tcp_fields_to_host(th);
488	return (ret);
489}
490#endif
491
492/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
493#ifdef INET6
494#define ND6_HINT(tp) \
495do { \
496	if ((tp) && (tp)->t_inpcb && \
497	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
498		nd6_nud_hint(NULL, NULL, 0); \
499} while (0)
500#else
501#define ND6_HINT(tp)
502#endif
503
504/*
505 * Indicate whether this ack should be delayed.  We can delay the ack if
506 *	- there is no delayed ack timer in progress and
507 *	- our last ack wasn't a 0-sized window.  We never want to delay
508 *	  the ack that opens up a 0-sized window and
509 *		- delayed acks are enabled or
510 *		- this is a half-synchronized T/TCP connection.
511 *	- the segment size is not larger than the MSS and LRO wasn't used
512 *	  for this segment.
513 */
514#define DELAY_ACK(tp, tlen)						\
515	((!tcp_timer_active(tp, TT_DELACK) &&				\
516	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
517	    (tlen <= tp->t_maxopd) &&					\
518	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
519
520/*
521 * TCP input handling is split into multiple parts:
522 *   tcp6_input is a thin wrapper around tcp_input for the extended
523 *	ip6_protox[] call format in ip6_input
524 *   tcp_input handles primary segment validation, inpcb lookup and
525 *	SYN processing on listen sockets
526 *   tcp_do_segment processes the ACK and text of the segment for
527 *	establishing, established and closing connections
528 */
529#ifdef INET6
530int
531tcp6_input(struct mbuf **mp, int *offp, int proto)
532{
533	struct mbuf *m = *mp;
534	struct in6_ifaddr *ia6;
535
536	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
537
538	/*
539	 * draft-itojun-ipv6-tcp-to-anycast
540	 * better place to put this in?
541	 */
542	ia6 = ip6_getdstifaddr(m);
543	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
544		struct ip6_hdr *ip6;
545
546		ifa_free(&ia6->ia_ifa);
547		ip6 = mtod(m, struct ip6_hdr *);
548		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
549			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
550		return IPPROTO_DONE;
551	}
552	if (ia6)
553		ifa_free(&ia6->ia_ifa);
554
555	tcp_input(m, *offp);
556	return IPPROTO_DONE;
557}
558#endif /* INET6 */
559
560void
561tcp_input(struct mbuf *m, int off0)
562{
563	struct tcphdr *th = NULL;
564	struct ip *ip = NULL;
565	struct inpcb *inp = NULL;
566	struct tcpcb *tp = NULL;
567	struct socket *so = NULL;
568	u_char *optp = NULL;
569	int optlen = 0;
570#ifdef INET
571	int len;
572#endif
573	int tlen = 0, off;
574	int drop_hdrlen;
575	int thflags;
576	int rstreason = 0;	/* For badport_bandlim accounting purposes */
577#ifdef TCP_SIGNATURE
578	uint8_t sig_checked = 0;
579#endif
580	uint8_t iptos = 0;
581	struct m_tag *fwd_tag = NULL;
582#ifdef INET6
583	struct ip6_hdr *ip6 = NULL;
584	int isipv6;
585#else
586	const void *ip6 = NULL;
587#endif /* INET6 */
588	struct tcpopt to;		/* options in this segment */
589	char *s = NULL;			/* address and port logging */
590	int ti_locked;
591#define	TI_UNLOCKED	1
592#define	TI_WLOCKED	2
593
594#ifdef TCPDEBUG
595	/*
596	 * The size of tcp_saveipgen must be the size of the max ip header,
597	 * now IPv6.
598	 */
599	u_char tcp_saveipgen[IP6_HDR_LEN];
600	struct tcphdr tcp_savetcp;
601	short ostate = 0;
602#endif
603
604#ifdef INET6
605	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
606#endif
607
608	to.to_flags = 0;
609	TCPSTAT_INC(tcps_rcvtotal);
610
611#ifdef INET6
612	if (isipv6) {
613		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
614
615		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
616			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
617			if (m == NULL) {
618				TCPSTAT_INC(tcps_rcvshort);
619				return;
620			}
621		}
622
623		ip6 = mtod(m, struct ip6_hdr *);
624		th = (struct tcphdr *)((caddr_t)ip6 + off0);
625		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
626		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
627			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
628				th->th_sum = m->m_pkthdr.csum_data;
629			else
630				th->th_sum = in6_cksum_pseudo(ip6, tlen,
631				    IPPROTO_TCP, m->m_pkthdr.csum_data);
632			th->th_sum ^= 0xffff;
633		} else
634			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
635		if (th->th_sum) {
636			TCPSTAT_INC(tcps_rcvbadsum);
637			goto drop;
638		}
639
640		/*
641		 * Be proactive about unspecified IPv6 address in source.
642		 * As we use all-zero to indicate unbounded/unconnected pcb,
643		 * unspecified IPv6 address can be used to confuse us.
644		 *
645		 * Note that packets with unspecified IPv6 destination is
646		 * already dropped in ip6_input.
647		 */
648		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
649			/* XXX stat */
650			goto drop;
651		}
652	}
653#endif
654#if defined(INET) && defined(INET6)
655	else
656#endif
657#ifdef INET
658	{
659		/*
660		 * Get IP and TCP header together in first mbuf.
661		 * Note: IP leaves IP header in first mbuf.
662		 */
663		if (off0 > sizeof (struct ip)) {
664			ip_stripoptions(m);
665			off0 = sizeof(struct ip);
666		}
667		if (m->m_len < sizeof (struct tcpiphdr)) {
668			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
669			    == NULL) {
670				TCPSTAT_INC(tcps_rcvshort);
671				return;
672			}
673		}
674		ip = mtod(m, struct ip *);
675		th = (struct tcphdr *)((caddr_t)ip + off0);
676		tlen = ntohs(ip->ip_len) - off0;
677
678		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
679			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
680				th->th_sum = m->m_pkthdr.csum_data;
681			else
682				th->th_sum = in_pseudo(ip->ip_src.s_addr,
683				    ip->ip_dst.s_addr,
684				    htonl(m->m_pkthdr.csum_data + tlen +
685				    IPPROTO_TCP));
686			th->th_sum ^= 0xffff;
687		} else {
688			struct ipovly *ipov = (struct ipovly *)ip;
689
690			/*
691			 * Checksum extended TCP header and data.
692			 */
693			len = off0 + tlen;
694			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
695			ipov->ih_len = htons(tlen);
696			th->th_sum = in_cksum(m, len);
697			/* Reset length for SDT probes. */
698			ip->ip_len = htons(tlen + off0);
699		}
700
701		if (th->th_sum) {
702			TCPSTAT_INC(tcps_rcvbadsum);
703			goto drop;
704		}
705		/* Re-initialization for later version check */
706		ip->ip_v = IPVERSION;
707	}
708#endif /* INET */
709
710#ifdef INET6
711	if (isipv6)
712		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
713#endif
714#if defined(INET) && defined(INET6)
715	else
716#endif
717#ifdef INET
718		iptos = ip->ip_tos;
719#endif
720
721	/*
722	 * Check that TCP offset makes sense,
723	 * pull out TCP options and adjust length.		XXX
724	 */
725	off = th->th_off << 2;
726	if (off < sizeof (struct tcphdr) || off > tlen) {
727		TCPSTAT_INC(tcps_rcvbadoff);
728		goto drop;
729	}
730	tlen -= off;	/* tlen is used instead of ti->ti_len */
731	if (off > sizeof (struct tcphdr)) {
732#ifdef INET6
733		if (isipv6) {
734			IP6_EXTHDR_CHECK(m, off0, off, );
735			ip6 = mtod(m, struct ip6_hdr *);
736			th = (struct tcphdr *)((caddr_t)ip6 + off0);
737		}
738#endif
739#if defined(INET) && defined(INET6)
740		else
741#endif
742#ifdef INET
743		{
744			if (m->m_len < sizeof(struct ip) + off) {
745				if ((m = m_pullup(m, sizeof (struct ip) + off))
746				    == NULL) {
747					TCPSTAT_INC(tcps_rcvshort);
748					return;
749				}
750				ip = mtod(m, struct ip *);
751				th = (struct tcphdr *)((caddr_t)ip + off0);
752			}
753		}
754#endif
755		optlen = off - sizeof (struct tcphdr);
756		optp = (u_char *)(th + 1);
757	}
758	thflags = th->th_flags;
759
760	/*
761	 * Convert TCP protocol specific fields to host format.
762	 */
763	tcp_fields_to_host(th);
764
765	/*
766	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
767	 */
768	drop_hdrlen = off0 + off;
769
770	/*
771	 * Locate pcb for segment; if we're likely to add or remove a
772	 * connection then first acquire pcbinfo lock.  There are two cases
773	 * where we might discover later we need a write lock despite the
774	 * flags: ACKs moving a connection out of the syncache, and ACKs for
775	 * a connection in TIMEWAIT.
776	 */
777	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
778		INP_INFO_WLOCK(&V_tcbinfo);
779		ti_locked = TI_WLOCKED;
780	} else
781		ti_locked = TI_UNLOCKED;
782
783	/*
784	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
785	 */
786        if (
787#ifdef INET6
788	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
789#ifdef INET
790	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
791#endif
792#endif
793#if defined(INET) && !defined(INET6)
794	    (m->m_flags & M_IP_NEXTHOP)
795#endif
796	    )
797		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
798
799findpcb:
800#ifdef INVARIANTS
801	if (ti_locked == TI_WLOCKED) {
802		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
803	} else {
804		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
805	}
806#endif
807#ifdef INET6
808	if (isipv6 && fwd_tag != NULL) {
809		struct sockaddr_in6 *next_hop6;
810
811		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
812		/*
813		 * Transparently forwarded. Pretend to be the destination.
814		 * Already got one like this?
815		 */
816		inp = in6_pcblookup_mbuf(&V_tcbinfo,
817		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
818		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
819		if (!inp) {
820			/*
821			 * It's new.  Try to find the ambushing socket.
822			 * Because we've rewritten the destination address,
823			 * any hardware-generated hash is ignored.
824			 */
825			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
826			    th->th_sport, &next_hop6->sin6_addr,
827			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
828			    th->th_dport, INPLOOKUP_WILDCARD |
829			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
830		}
831	} else if (isipv6) {
832		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
833		    th->th_sport, &ip6->ip6_dst, th->th_dport,
834		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
835		    m->m_pkthdr.rcvif, m);
836	}
837#endif /* INET6 */
838#if defined(INET6) && defined(INET)
839	else
840#endif
841#ifdef INET
842	if (fwd_tag != NULL) {
843		struct sockaddr_in *next_hop;
844
845		next_hop = (struct sockaddr_in *)(fwd_tag+1);
846		/*
847		 * Transparently forwarded. Pretend to be the destination.
848		 * already got one like this?
849		 */
850		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
851		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
852		    m->m_pkthdr.rcvif, m);
853		if (!inp) {
854			/*
855			 * It's new.  Try to find the ambushing socket.
856			 * Because we've rewritten the destination address,
857			 * any hardware-generated hash is ignored.
858			 */
859			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
860			    th->th_sport, next_hop->sin_addr,
861			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
862			    th->th_dport, INPLOOKUP_WILDCARD |
863			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
864		}
865	} else
866		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
867		    th->th_sport, ip->ip_dst, th->th_dport,
868		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
869		    m->m_pkthdr.rcvif, m);
870#endif /* INET */
871
872	/*
873	 * If the INPCB does not exist then all data in the incoming
874	 * segment is discarded and an appropriate RST is sent back.
875	 * XXX MRT Send RST using which routing table?
876	 */
877	if (inp == NULL) {
878		/*
879		 * Log communication attempts to ports that are not
880		 * in use.
881		 */
882		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
883		    tcp_log_in_vain == 2) {
884			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
885				log(LOG_INFO, "%s; %s: Connection attempt "
886				    "to closed port\n", s, __func__);
887		}
888		/*
889		 * When blackholing do not respond with a RST but
890		 * completely ignore the segment and drop it.
891		 */
892		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
893		    V_blackhole == 2)
894			goto dropunlock;
895
896		rstreason = BANDLIM_RST_CLOSEDPORT;
897		goto dropwithreset;
898	}
899	INP_WLOCK_ASSERT(inp);
900	if (!(inp->inp_flags & INP_HW_FLOWID)
901	    && (m->m_flags & M_FLOWID)
902	    && ((inp->inp_socket == NULL)
903		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
904		inp->inp_flags |= INP_HW_FLOWID;
905		inp->inp_flags &= ~INP_SW_FLOWID;
906		inp->inp_flowid = m->m_pkthdr.flowid;
907	}
908#ifdef IPSEC
909#ifdef INET6
910	if (isipv6 && ipsec6_in_reject(m, inp)) {
911		IPSEC6STAT_INC(ips_in_polvio);
912		goto dropunlock;
913	} else
914#endif /* INET6 */
915	if (ipsec4_in_reject(m, inp) != 0) {
916		IPSECSTAT_INC(ips_in_polvio);
917		goto dropunlock;
918	}
919#endif /* IPSEC */
920
921	/*
922	 * Check the minimum TTL for socket.
923	 */
924	if (inp->inp_ip_minttl != 0) {
925#ifdef INET6
926		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
927			goto dropunlock;
928		else
929#endif
930		if (inp->inp_ip_minttl > ip->ip_ttl)
931			goto dropunlock;
932	}
933
934	/*
935	 * A previous connection in TIMEWAIT state is supposed to catch stray
936	 * or duplicate segments arriving late.  If this segment was a
937	 * legitimate new connection attempt, the old INPCB gets removed and
938	 * we can try again to find a listening socket.
939	 *
940	 * At this point, due to earlier optimism, we may hold only an inpcb
941	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
942	 * acquire it, or if that fails, acquire a reference on the inpcb,
943	 * drop all locks, acquire a global write lock, and then re-acquire
944	 * the inpcb lock.  We may at that point discover that another thread
945	 * has tried to free the inpcb, in which case we need to loop back
946	 * and try to find a new inpcb to deliver to.
947	 *
948	 * XXXRW: It may be time to rethink timewait locking.
949	 */
950relocked:
951	if (inp->inp_flags & INP_TIMEWAIT) {
952		if (ti_locked == TI_UNLOCKED) {
953			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
954				in_pcbref(inp);
955				INP_WUNLOCK(inp);
956				INP_INFO_WLOCK(&V_tcbinfo);
957				ti_locked = TI_WLOCKED;
958				INP_WLOCK(inp);
959				if (in_pcbrele_wlocked(inp)) {
960					inp = NULL;
961					goto findpcb;
962				}
963			} else
964				ti_locked = TI_WLOCKED;
965		}
966		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
967
968		if (thflags & TH_SYN)
969			tcp_dooptions(&to, optp, optlen, TO_SYN);
970		/*
971		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
972		 */
973		if (tcp_twcheck(inp, &to, th, m, tlen))
974			goto findpcb;
975		INP_INFO_WUNLOCK(&V_tcbinfo);
976		return;
977	}
978	/*
979	 * The TCPCB may no longer exist if the connection is winding
980	 * down or it is in the CLOSED state.  Either way we drop the
981	 * segment and send an appropriate response.
982	 */
983	tp = intotcpcb(inp);
984	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
985		rstreason = BANDLIM_RST_CLOSEDPORT;
986		goto dropwithreset;
987	}
988
989#ifdef TCP_OFFLOAD
990	if (tp->t_flags & TF_TOE) {
991		tcp_offload_input(tp, m);
992		m = NULL;	/* consumed by the TOE driver */
993		goto dropunlock;
994	}
995#endif
996
997	/*
998	 * We've identified a valid inpcb, but it could be that we need an
999	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1000	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1001	 * relock, we have to jump back to 'relocked' as the connection might
1002	 * now be in TIMEWAIT.
1003	 */
1004#ifdef INVARIANTS
1005	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
1006		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1007#endif
1008	if (tp->t_state != TCPS_ESTABLISHED) {
1009		if (ti_locked == TI_UNLOCKED) {
1010			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
1011				in_pcbref(inp);
1012				INP_WUNLOCK(inp);
1013				INP_INFO_WLOCK(&V_tcbinfo);
1014				ti_locked = TI_WLOCKED;
1015				INP_WLOCK(inp);
1016				if (in_pcbrele_wlocked(inp)) {
1017					inp = NULL;
1018					goto findpcb;
1019				}
1020				goto relocked;
1021			} else
1022				ti_locked = TI_WLOCKED;
1023		}
1024		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1025	}
1026
1027#ifdef MAC
1028	INP_WLOCK_ASSERT(inp);
1029	if (mac_inpcb_check_deliver(inp, m))
1030		goto dropunlock;
1031#endif
1032	so = inp->inp_socket;
1033	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1034#ifdef TCPDEBUG
1035	if (so->so_options & SO_DEBUG) {
1036		ostate = tp->t_state;
1037#ifdef INET6
1038		if (isipv6) {
1039			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1040		} else
1041#endif
1042			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1043		tcp_savetcp = *th;
1044	}
1045#endif /* TCPDEBUG */
1046	/*
1047	 * When the socket is accepting connections (the INPCB is in LISTEN
1048	 * state) we look into the SYN cache if this is a new connection
1049	 * attempt or the completion of a previous one.  Because listen
1050	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1051	 * held in this case.
1052	 */
1053	if (so->so_options & SO_ACCEPTCONN) {
1054		struct in_conninfo inc;
1055
1056		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1057		    "tp not listening", __func__));
1058		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1059
1060		bzero(&inc, sizeof(inc));
1061#ifdef INET6
1062		if (isipv6) {
1063			inc.inc_flags |= INC_ISIPV6;
1064			inc.inc6_faddr = ip6->ip6_src;
1065			inc.inc6_laddr = ip6->ip6_dst;
1066		} else
1067#endif
1068		{
1069			inc.inc_faddr = ip->ip_src;
1070			inc.inc_laddr = ip->ip_dst;
1071		}
1072		inc.inc_fport = th->th_sport;
1073		inc.inc_lport = th->th_dport;
1074		inc.inc_fibnum = so->so_fibnum;
1075
1076		/*
1077		 * Check for an existing connection attempt in syncache if
1078		 * the flag is only ACK.  A successful lookup creates a new
1079		 * socket appended to the listen queue in SYN_RECEIVED state.
1080		 */
1081		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1082			/*
1083			 * Parse the TCP options here because
1084			 * syncookies need access to the reflected
1085			 * timestamp.
1086			 */
1087			tcp_dooptions(&to, optp, optlen, 0);
1088			/*
1089			 * NB: syncache_expand() doesn't unlock
1090			 * inp and tcpinfo locks.
1091			 */
1092			if (!syncache_expand(&inc, &to, th, &so, m)) {
1093				/*
1094				 * No syncache entry or ACK was not
1095				 * for our SYN/ACK.  Send a RST.
1096				 * NB: syncache did its own logging
1097				 * of the failure cause.
1098				 */
1099				rstreason = BANDLIM_RST_OPENPORT;
1100				goto dropwithreset;
1101			}
1102			if (so == NULL) {
1103				/*
1104				 * We completed the 3-way handshake
1105				 * but could not allocate a socket
1106				 * either due to memory shortage,
1107				 * listen queue length limits or
1108				 * global socket limits.  Send RST
1109				 * or wait and have the remote end
1110				 * retransmit the ACK for another
1111				 * try.
1112				 */
1113				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1114					log(LOG_DEBUG, "%s; %s: Listen socket: "
1115					    "Socket allocation failed due to "
1116					    "limits or memory shortage, %s\n",
1117					    s, __func__,
1118					    V_tcp_sc_rst_sock_fail ?
1119					    "sending RST" : "try again");
1120				if (V_tcp_sc_rst_sock_fail) {
1121					rstreason = BANDLIM_UNLIMITED;
1122					goto dropwithreset;
1123				} else
1124					goto dropunlock;
1125			}
1126			/*
1127			 * Socket is created in state SYN_RECEIVED.
1128			 * Unlock the listen socket, lock the newly
1129			 * created socket and update the tp variable.
1130			 */
1131			INP_WUNLOCK(inp);	/* listen socket */
1132			inp = sotoinpcb(so);
1133			INP_WLOCK(inp);		/* new connection */
1134			tp = intotcpcb(inp);
1135			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1136			    ("%s: ", __func__));
1137#ifdef TCP_SIGNATURE
1138			if (sig_checked == 0)  {
1139				tcp_dooptions(&to, optp, optlen,
1140				    (thflags & TH_SYN) ? TO_SYN : 0);
1141				if (!tcp_signature_verify_input(m, off0, tlen,
1142				    optlen, &to, th, tp->t_flags)) {
1143
1144					/*
1145					 * In SYN_SENT state if it receives an
1146					 * RST, it is allowed for further
1147					 * processing.
1148					 */
1149					if ((thflags & TH_RST) == 0 ||
1150					    (tp->t_state == TCPS_SYN_SENT) == 0)
1151						goto dropunlock;
1152				}
1153				sig_checked = 1;
1154			}
1155#endif
1156
1157			/*
1158			 * Process the segment and the data it
1159			 * contains.  tcp_do_segment() consumes
1160			 * the mbuf chain and unlocks the inpcb.
1161			 */
1162			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1163			    iptos, ti_locked);
1164			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1165			return;
1166		}
1167		/*
1168		 * Segment flag validation for new connection attempts:
1169		 *
1170		 * Our (SYN|ACK) response was rejected.
1171		 * Check with syncache and remove entry to prevent
1172		 * retransmits.
1173		 *
1174		 * NB: syncache_chkrst does its own logging of failure
1175		 * causes.
1176		 */
1177		if (thflags & TH_RST) {
1178			syncache_chkrst(&inc, th);
1179			goto dropunlock;
1180		}
1181		/*
1182		 * We can't do anything without SYN.
1183		 */
1184		if ((thflags & TH_SYN) == 0) {
1185			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1186				log(LOG_DEBUG, "%s; %s: Listen socket: "
1187				    "SYN is missing, segment ignored\n",
1188				    s, __func__);
1189			TCPSTAT_INC(tcps_badsyn);
1190			goto dropunlock;
1191		}
1192		/*
1193		 * (SYN|ACK) is bogus on a listen socket.
1194		 */
1195		if (thflags & TH_ACK) {
1196			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1197				log(LOG_DEBUG, "%s; %s: Listen socket: "
1198				    "SYN|ACK invalid, segment rejected\n",
1199				    s, __func__);
1200			syncache_badack(&inc);	/* XXX: Not needed! */
1201			TCPSTAT_INC(tcps_badsyn);
1202			rstreason = BANDLIM_RST_OPENPORT;
1203			goto dropwithreset;
1204		}
1205		/*
1206		 * If the drop_synfin option is enabled, drop all
1207		 * segments with both the SYN and FIN bits set.
1208		 * This prevents e.g. nmap from identifying the
1209		 * TCP/IP stack.
1210		 * XXX: Poor reasoning.  nmap has other methods
1211		 * and is constantly refining its stack detection
1212		 * strategies.
1213		 * XXX: This is a violation of the TCP specification
1214		 * and was used by RFC1644.
1215		 */
1216		if ((thflags & TH_FIN) && V_drop_synfin) {
1217			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1218				log(LOG_DEBUG, "%s; %s: Listen socket: "
1219				    "SYN|FIN segment ignored (based on "
1220				    "sysctl setting)\n", s, __func__);
1221			TCPSTAT_INC(tcps_badsyn);
1222			goto dropunlock;
1223		}
1224		/*
1225		 * Segment's flags are (SYN) or (SYN|FIN).
1226		 *
1227		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1228		 * as they do not affect the state of the TCP FSM.
1229		 * The data pointed to by TH_URG and th_urp is ignored.
1230		 */
1231		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1232		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1233		KASSERT(thflags & (TH_SYN),
1234		    ("%s: Listen socket: TH_SYN not set", __func__));
1235#ifdef INET6
1236		/*
1237		 * If deprecated address is forbidden,
1238		 * we do not accept SYN to deprecated interface
1239		 * address to prevent any new inbound connection from
1240		 * getting established.
1241		 * When we do not accept SYN, we send a TCP RST,
1242		 * with deprecated source address (instead of dropping
1243		 * it).  We compromise it as it is much better for peer
1244		 * to send a RST, and RST will be the final packet
1245		 * for the exchange.
1246		 *
1247		 * If we do not forbid deprecated addresses, we accept
1248		 * the SYN packet.  RFC2462 does not suggest dropping
1249		 * SYN in this case.
1250		 * If we decipher RFC2462 5.5.4, it says like this:
1251		 * 1. use of deprecated addr with existing
1252		 *    communication is okay - "SHOULD continue to be
1253		 *    used"
1254		 * 2. use of it with new communication:
1255		 *   (2a) "SHOULD NOT be used if alternate address
1256		 *        with sufficient scope is available"
1257		 *   (2b) nothing mentioned otherwise.
1258		 * Here we fall into (2b) case as we have no choice in
1259		 * our source address selection - we must obey the peer.
1260		 *
1261		 * The wording in RFC2462 is confusing, and there are
1262		 * multiple description text for deprecated address
1263		 * handling - worse, they are not exactly the same.
1264		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1265		 */
1266		if (isipv6 && !V_ip6_use_deprecated) {
1267			struct in6_ifaddr *ia6;
1268
1269			ia6 = ip6_getdstifaddr(m);
1270			if (ia6 != NULL &&
1271			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1272				ifa_free(&ia6->ia_ifa);
1273				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1274				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1275					"Connection attempt to deprecated "
1276					"IPv6 address rejected\n",
1277					s, __func__);
1278				rstreason = BANDLIM_RST_OPENPORT;
1279				goto dropwithreset;
1280			}
1281			if (ia6)
1282				ifa_free(&ia6->ia_ifa);
1283		}
1284#endif /* INET6 */
1285		/*
1286		 * Basic sanity checks on incoming SYN requests:
1287		 *   Don't respond if the destination is a link layer
1288		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1289		 *   If it is from this socket it must be forged.
1290		 *   Don't respond if the source or destination is a
1291		 *	global or subnet broad- or multicast address.
1292		 *   Note that it is quite possible to receive unicast
1293		 *	link-layer packets with a broadcast IP address. Use
1294		 *	in_broadcast() to find them.
1295		 */
1296		if (m->m_flags & (M_BCAST|M_MCAST)) {
1297			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1298			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1299				"Connection attempt from broad- or multicast "
1300				"link layer address ignored\n", s, __func__);
1301			goto dropunlock;
1302		}
1303#ifdef INET6
1304		if (isipv6) {
1305			if (th->th_dport == th->th_sport &&
1306			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1307				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1308				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1309					"Connection attempt to/from self "
1310					"ignored\n", s, __func__);
1311				goto dropunlock;
1312			}
1313			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1314			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1315				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1316				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1317					"Connection attempt from/to multicast "
1318					"address ignored\n", s, __func__);
1319				goto dropunlock;
1320			}
1321		}
1322#endif
1323#if defined(INET) && defined(INET6)
1324		else
1325#endif
1326#ifdef INET
1327		{
1328			if (th->th_dport == th->th_sport &&
1329			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1330				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1331				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1332					"Connection attempt from/to self "
1333					"ignored\n", s, __func__);
1334				goto dropunlock;
1335			}
1336			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1337			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1338			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1339			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1340				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1341				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1342					"Connection attempt from/to broad- "
1343					"or multicast address ignored\n",
1344					s, __func__);
1345				goto dropunlock;
1346			}
1347		}
1348#endif
1349		/*
1350		 * SYN appears to be valid.  Create compressed TCP state
1351		 * for syncache.
1352		 */
1353#ifdef TCPDEBUG
1354		if (so->so_options & SO_DEBUG)
1355			tcp_trace(TA_INPUT, ostate, tp,
1356			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1357#endif
1358		tcp_dooptions(&to, optp, optlen, TO_SYN);
1359		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1360		/*
1361		 * Entry added to syncache and mbuf consumed.
1362		 * Everything already unlocked by syncache_add().
1363		 */
1364		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1365		return;
1366	} else if (tp->t_state == TCPS_LISTEN) {
1367		/*
1368		 * When a listen socket is torn down the SO_ACCEPTCONN
1369		 * flag is removed first while connections are drained
1370		 * from the accept queue in a unlock/lock cycle of the
1371		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1372		 * attempt go through unhandled.
1373		 */
1374		goto dropunlock;
1375	}
1376
1377#ifdef TCP_SIGNATURE
1378	if (sig_checked == 0)  {
1379		tcp_dooptions(&to, optp, optlen,
1380		    (thflags & TH_SYN) ? TO_SYN : 0);
1381		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1382		    th, tp->t_flags)) {
1383
1384			/*
1385			 * In SYN_SENT state if it receives an RST, it is
1386			 * allowed for further processing.
1387			 */
1388			if ((thflags & TH_RST) == 0 ||
1389			    (tp->t_state == TCPS_SYN_SENT) == 0)
1390				goto dropunlock;
1391		}
1392		sig_checked = 1;
1393	}
1394#endif
1395
1396	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1397
1398	/*
1399	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1400	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1401	 * the inpcb, and unlocks pcbinfo.
1402	 */
1403	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1404	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1405	return;
1406
1407dropwithreset:
1408	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1409
1410	if (ti_locked == TI_WLOCKED) {
1411		INP_INFO_WUNLOCK(&V_tcbinfo);
1412		ti_locked = TI_UNLOCKED;
1413	}
1414#ifdef INVARIANTS
1415	else {
1416		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1417		    "ti_locked: %d", __func__, ti_locked));
1418		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1419	}
1420#endif
1421
1422	if (inp != NULL) {
1423		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1424		INP_WUNLOCK(inp);
1425	} else
1426		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1427	m = NULL;	/* mbuf chain got consumed. */
1428	goto drop;
1429
1430dropunlock:
1431	if (m != NULL)
1432		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1433
1434	if (ti_locked == TI_WLOCKED) {
1435		INP_INFO_WUNLOCK(&V_tcbinfo);
1436		ti_locked = TI_UNLOCKED;
1437	}
1438#ifdef INVARIANTS
1439	else {
1440		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1441		    "ti_locked: %d", __func__, ti_locked));
1442		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1443	}
1444#endif
1445
1446	if (inp != NULL)
1447		INP_WUNLOCK(inp);
1448
1449drop:
1450	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1451	if (s != NULL)
1452		free(s, M_TCPLOG);
1453	if (m != NULL)
1454		m_freem(m);
1455}
1456
1457static void
1458tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1459    struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1460    int ti_locked)
1461{
1462	int thflags, acked, ourfinisacked, needoutput = 0;
1463	int rstreason, todrop, win;
1464	u_long tiwin;
1465	char *s;
1466	struct in_conninfo *inc;
1467	struct mbuf *mfree;
1468	struct tcpopt to;
1469
1470#ifdef TCPDEBUG
1471	/*
1472	 * The size of tcp_saveipgen must be the size of the max ip header,
1473	 * now IPv6.
1474	 */
1475	u_char tcp_saveipgen[IP6_HDR_LEN];
1476	struct tcphdr tcp_savetcp;
1477	short ostate = 0;
1478#endif
1479	thflags = th->th_flags;
1480	inc = &tp->t_inpcb->inp_inc;
1481	tp->sackhint.last_sack_ack = 0;
1482
1483	/*
1484	 * If this is either a state-changing packet or current state isn't
1485	 * established, we require a write lock on tcbinfo.  Otherwise, we
1486	 * allow the tcbinfo to be in either alocked or unlocked, as the
1487	 * caller may have unnecessarily acquired a write lock due to a race.
1488	 */
1489	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1490	    tp->t_state != TCPS_ESTABLISHED) {
1491		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1492		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1493		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1494	} else {
1495#ifdef INVARIANTS
1496		if (ti_locked == TI_WLOCKED)
1497			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1498		else {
1499			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1500			    "ti_locked: %d", __func__, ti_locked));
1501			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1502		}
1503#endif
1504	}
1505	INP_WLOCK_ASSERT(tp->t_inpcb);
1506	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1507	    __func__));
1508	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1509	    __func__));
1510
1511	/*
1512	 * Segment received on connection.
1513	 * Reset idle time and keep-alive timer.
1514	 * XXX: This should be done after segment
1515	 * validation to ignore broken/spoofed segs.
1516	 */
1517	tp->t_rcvtime = ticks;
1518	if (TCPS_HAVEESTABLISHED(tp->t_state))
1519		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1520
1521	/*
1522	 * Unscale the window into a 32-bit value.
1523	 * For the SYN_SENT state the scale is zero.
1524	 */
1525	tiwin = th->th_win << tp->snd_scale;
1526
1527	/*
1528	 * TCP ECN processing.
1529	 */
1530	if (tp->t_flags & TF_ECN_PERMIT) {
1531		if (thflags & TH_CWR)
1532			tp->t_flags &= ~TF_ECN_SND_ECE;
1533		switch (iptos & IPTOS_ECN_MASK) {
1534		case IPTOS_ECN_CE:
1535			tp->t_flags |= TF_ECN_SND_ECE;
1536			TCPSTAT_INC(tcps_ecn_ce);
1537			break;
1538		case IPTOS_ECN_ECT0:
1539			TCPSTAT_INC(tcps_ecn_ect0);
1540			break;
1541		case IPTOS_ECN_ECT1:
1542			TCPSTAT_INC(tcps_ecn_ect1);
1543			break;
1544		}
1545		/* Congestion experienced. */
1546		if (thflags & TH_ECE) {
1547			cc_cong_signal(tp, th, CC_ECN);
1548		}
1549	}
1550
1551	/*
1552	 * Parse options on any incoming segment.
1553	 */
1554	tcp_dooptions(&to, (u_char *)(th + 1),
1555	    (th->th_off << 2) - sizeof(struct tcphdr),
1556	    (thflags & TH_SYN) ? TO_SYN : 0);
1557
1558	/*
1559	 * If echoed timestamp is later than the current time,
1560	 * fall back to non RFC1323 RTT calculation.  Normalize
1561	 * timestamp if syncookies were used when this connection
1562	 * was established.
1563	 */
1564	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1565		to.to_tsecr -= tp->ts_offset;
1566		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1567			to.to_tsecr = 0;
1568	}
1569	/*
1570	 * If timestamps were negotiated during SYN/ACK they should
1571	 * appear on every segment during this session and vice versa.
1572	 */
1573	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1574		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1575			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1576			    "no action\n", s, __func__);
1577			free(s, M_TCPLOG);
1578		}
1579	}
1580	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1581		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1582			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1583			    "no action\n", s, __func__);
1584			free(s, M_TCPLOG);
1585		}
1586	}
1587
1588	/*
1589	 * Process options only when we get SYN/ACK back. The SYN case
1590	 * for incoming connections is handled in tcp_syncache.
1591	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1592	 * or <SYN,ACK>) segment itself is never scaled.
1593	 * XXX this is traditional behavior, may need to be cleaned up.
1594	 */
1595	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1596		if ((to.to_flags & TOF_SCALE) &&
1597		    (tp->t_flags & TF_REQ_SCALE)) {
1598			tp->t_flags |= TF_RCVD_SCALE;
1599			tp->snd_scale = to.to_wscale;
1600		}
1601		/*
1602		 * Initial send window.  It will be updated with
1603		 * the next incoming segment to the scaled value.
1604		 */
1605		tp->snd_wnd = th->th_win;
1606		if (to.to_flags & TOF_TS) {
1607			tp->t_flags |= TF_RCVD_TSTMP;
1608			tp->ts_recent = to.to_tsval;
1609			tp->ts_recent_age = tcp_ts_getticks();
1610		}
1611		if (to.to_flags & TOF_MSS)
1612			tcp_mss(tp, to.to_mss);
1613		if ((tp->t_flags & TF_SACK_PERMIT) &&
1614		    (to.to_flags & TOF_SACKPERM) == 0)
1615			tp->t_flags &= ~TF_SACK_PERMIT;
1616	}
1617
1618	/*
1619	 * Header prediction: check for the two common cases
1620	 * of a uni-directional data xfer.  If the packet has
1621	 * no control flags, is in-sequence, the window didn't
1622	 * change and we're not retransmitting, it's a
1623	 * candidate.  If the length is zero and the ack moved
1624	 * forward, we're the sender side of the xfer.  Just
1625	 * free the data acked & wake any higher level process
1626	 * that was blocked waiting for space.  If the length
1627	 * is non-zero and the ack didn't move, we're the
1628	 * receiver side.  If we're getting packets in-order
1629	 * (the reassembly queue is empty), add the data to
1630	 * the socket buffer and note that we need a delayed ack.
1631	 * Make sure that the hidden state-flags are also off.
1632	 * Since we check for TCPS_ESTABLISHED first, it can only
1633	 * be TH_NEEDSYN.
1634	 */
1635	if (tp->t_state == TCPS_ESTABLISHED &&
1636	    th->th_seq == tp->rcv_nxt &&
1637	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1638	    tp->snd_nxt == tp->snd_max &&
1639	    tiwin && tiwin == tp->snd_wnd &&
1640	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1641	    LIST_EMPTY(&tp->t_segq) &&
1642	    ((to.to_flags & TOF_TS) == 0 ||
1643	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1644
1645		/*
1646		 * If last ACK falls within this segment's sequence numbers,
1647		 * record the timestamp.
1648		 * NOTE that the test is modified according to the latest
1649		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1650		 */
1651		if ((to.to_flags & TOF_TS) != 0 &&
1652		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1653			tp->ts_recent_age = tcp_ts_getticks();
1654			tp->ts_recent = to.to_tsval;
1655		}
1656
1657		if (tlen == 0) {
1658			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1659			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1660			    !IN_RECOVERY(tp->t_flags) &&
1661			    (to.to_flags & TOF_SACK) == 0 &&
1662			    TAILQ_EMPTY(&tp->snd_holes)) {
1663				/*
1664				 * This is a pure ack for outstanding data.
1665				 */
1666				if (ti_locked == TI_WLOCKED)
1667					INP_INFO_WUNLOCK(&V_tcbinfo);
1668				ti_locked = TI_UNLOCKED;
1669
1670				TCPSTAT_INC(tcps_predack);
1671
1672				/*
1673				 * "bad retransmit" recovery.
1674				 */
1675				if (tp->t_rxtshift == 1 &&
1676				    tp->t_flags & TF_PREVVALID &&
1677				    (int)(ticks - tp->t_badrxtwin) < 0) {
1678					cc_cong_signal(tp, th, CC_RTO_ERR);
1679				}
1680
1681				/*
1682				 * Recalculate the transmit timer / rtt.
1683				 *
1684				 * Some boxes send broken timestamp replies
1685				 * during the SYN+ACK phase, ignore
1686				 * timestamps of 0 or we could calculate a
1687				 * huge RTT and blow up the retransmit timer.
1688				 */
1689				if ((to.to_flags & TOF_TS) != 0 &&
1690				    to.to_tsecr) {
1691					u_int t;
1692
1693					t = tcp_ts_getticks() - to.to_tsecr;
1694					if (!tp->t_rttlow || tp->t_rttlow > t)
1695						tp->t_rttlow = t;
1696					tcp_xmit_timer(tp,
1697					    TCP_TS_TO_TICKS(t) + 1);
1698				} else if (tp->t_rtttime &&
1699				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1700					if (!tp->t_rttlow ||
1701					    tp->t_rttlow > ticks - tp->t_rtttime)
1702						tp->t_rttlow = ticks - tp->t_rtttime;
1703					tcp_xmit_timer(tp,
1704							ticks - tp->t_rtttime);
1705				}
1706				acked = BYTES_THIS_ACK(tp, th);
1707
1708				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1709				hhook_run_tcp_est_in(tp, th, &to);
1710
1711				TCPSTAT_INC(tcps_rcvackpack);
1712				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1713				sbdrop(&so->so_snd, acked);
1714				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1715				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1716					tp->snd_recover = th->th_ack - 1;
1717
1718				/*
1719				 * Let the congestion control algorithm update
1720				 * congestion control related information. This
1721				 * typically means increasing the congestion
1722				 * window.
1723				 */
1724				cc_ack_received(tp, th, CC_ACK);
1725
1726				tp->snd_una = th->th_ack;
1727				/*
1728				 * Pull snd_wl2 up to prevent seq wrap relative
1729				 * to th_ack.
1730				 */
1731				tp->snd_wl2 = th->th_ack;
1732				tp->t_dupacks = 0;
1733				m_freem(m);
1734				ND6_HINT(tp); /* Some progress has been made. */
1735
1736				/*
1737				 * If all outstanding data are acked, stop
1738				 * retransmit timer, otherwise restart timer
1739				 * using current (possibly backed-off) value.
1740				 * If process is waiting for space,
1741				 * wakeup/selwakeup/signal.  If data
1742				 * are ready to send, let tcp_output
1743				 * decide between more output or persist.
1744				 */
1745#ifdef TCPDEBUG
1746				if (so->so_options & SO_DEBUG)
1747					tcp_trace(TA_INPUT, ostate, tp,
1748					    (void *)tcp_saveipgen,
1749					    &tcp_savetcp, 0);
1750#endif
1751				if (tp->snd_una == tp->snd_max)
1752					tcp_timer_activate(tp, TT_REXMT, 0);
1753				else if (!tcp_timer_active(tp, TT_PERSIST))
1754					tcp_timer_activate(tp, TT_REXMT,
1755						      tp->t_rxtcur);
1756				sowwakeup(so);
1757				if (so->so_snd.sb_cc)
1758					(void) tcp_output(tp);
1759				goto check_delack;
1760			}
1761		} else if (th->th_ack == tp->snd_una &&
1762		    tlen <= sbspace(&so->so_rcv)) {
1763			int newsize = 0;	/* automatic sockbuf scaling */
1764
1765			/*
1766			 * This is a pure, in-sequence data packet with
1767			 * nothing on the reassembly queue and we have enough
1768			 * buffer space to take it.
1769			 */
1770			if (ti_locked == TI_WLOCKED)
1771				INP_INFO_WUNLOCK(&V_tcbinfo);
1772			ti_locked = TI_UNLOCKED;
1773
1774			/* Clean receiver SACK report if present */
1775			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1776				tcp_clean_sackreport(tp);
1777			TCPSTAT_INC(tcps_preddat);
1778			tp->rcv_nxt += tlen;
1779			/*
1780			 * Pull snd_wl1 up to prevent seq wrap relative to
1781			 * th_seq.
1782			 */
1783			tp->snd_wl1 = th->th_seq;
1784			/*
1785			 * Pull rcv_up up to prevent seq wrap relative to
1786			 * rcv_nxt.
1787			 */
1788			tp->rcv_up = tp->rcv_nxt;
1789			TCPSTAT_INC(tcps_rcvpack);
1790			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1791			ND6_HINT(tp);	/* Some progress has been made */
1792#ifdef TCPDEBUG
1793			if (so->so_options & SO_DEBUG)
1794				tcp_trace(TA_INPUT, ostate, tp,
1795				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1796#endif
1797		/*
1798		 * Automatic sizing of receive socket buffer.  Often the send
1799		 * buffer size is not optimally adjusted to the actual network
1800		 * conditions at hand (delay bandwidth product).  Setting the
1801		 * buffer size too small limits throughput on links with high
1802		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1803		 *
1804		 * On the receive side the socket buffer memory is only rarely
1805		 * used to any significant extent.  This allows us to be much
1806		 * more aggressive in scaling the receive socket buffer.  For
1807		 * the case that the buffer space is actually used to a large
1808		 * extent and we run out of kernel memory we can simply drop
1809		 * the new segments; TCP on the sender will just retransmit it
1810		 * later.  Setting the buffer size too big may only consume too
1811		 * much kernel memory if the application doesn't read() from
1812		 * the socket or packet loss or reordering makes use of the
1813		 * reassembly queue.
1814		 *
1815		 * The criteria to step up the receive buffer one notch are:
1816		 *  1. the number of bytes received during the time it takes
1817		 *     one timestamp to be reflected back to us (the RTT);
1818		 *  2. received bytes per RTT is within seven eighth of the
1819		 *     current socket buffer size;
1820		 *  3. receive buffer size has not hit maximal automatic size;
1821		 *
1822		 * This algorithm does one step per RTT at most and only if
1823		 * we receive a bulk stream w/o packet losses or reorderings.
1824		 * Shrinking the buffer during idle times is not necessary as
1825		 * it doesn't consume any memory when idle.
1826		 *
1827		 * TODO: Only step up if the application is actually serving
1828		 * the buffer to better manage the socket buffer resources.
1829		 */
1830			if (V_tcp_do_autorcvbuf &&
1831			    to.to_tsecr &&
1832			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1833				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1834				    to.to_tsecr - tp->rfbuf_ts < hz) {
1835					if (tp->rfbuf_cnt >
1836					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1837					    so->so_rcv.sb_hiwat <
1838					    V_tcp_autorcvbuf_max) {
1839						newsize =
1840						    min(so->so_rcv.sb_hiwat +
1841						    V_tcp_autorcvbuf_inc,
1842						    V_tcp_autorcvbuf_max);
1843					}
1844					/* Start over with next RTT. */
1845					tp->rfbuf_ts = 0;
1846					tp->rfbuf_cnt = 0;
1847				} else
1848					tp->rfbuf_cnt += tlen;	/* add up */
1849			}
1850
1851			/* Add data to socket buffer. */
1852			SOCKBUF_LOCK(&so->so_rcv);
1853			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1854				m_freem(m);
1855			} else {
1856				/*
1857				 * Set new socket buffer size.
1858				 * Give up when limit is reached.
1859				 */
1860				if (newsize)
1861					if (!sbreserve_locked(&so->so_rcv,
1862					    newsize, so, NULL))
1863						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1864				m_adj(m, drop_hdrlen);	/* delayed header drop */
1865				sbappendstream_locked(&so->so_rcv, m);
1866			}
1867			/* NB: sorwakeup_locked() does an implicit unlock. */
1868			sorwakeup_locked(so);
1869			if (DELAY_ACK(tp, tlen)) {
1870				tp->t_flags |= TF_DELACK;
1871			} else {
1872				tp->t_flags |= TF_ACKNOW;
1873				tcp_output(tp);
1874			}
1875			goto check_delack;
1876		}
1877	}
1878
1879	/*
1880	 * Calculate amount of space in receive window,
1881	 * and then do TCP input processing.
1882	 * Receive window is amount of space in rcv queue,
1883	 * but not less than advertised window.
1884	 */
1885	win = sbspace(&so->so_rcv);
1886	if (win < 0)
1887		win = 0;
1888	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1889
1890	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1891	tp->rfbuf_ts = 0;
1892	tp->rfbuf_cnt = 0;
1893
1894	switch (tp->t_state) {
1895
1896	/*
1897	 * If the state is SYN_RECEIVED:
1898	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1899	 */
1900	case TCPS_SYN_RECEIVED:
1901		if ((thflags & TH_ACK) &&
1902		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1903		     SEQ_GT(th->th_ack, tp->snd_max))) {
1904				rstreason = BANDLIM_RST_OPENPORT;
1905				goto dropwithreset;
1906		}
1907		break;
1908
1909	/*
1910	 * If the state is SYN_SENT:
1911	 *	if seg contains an ACK, but not for our SYN, drop the input.
1912	 *	if seg contains a RST, then drop the connection.
1913	 *	if seg does not contain SYN, then drop it.
1914	 * Otherwise this is an acceptable SYN segment
1915	 *	initialize tp->rcv_nxt and tp->irs
1916	 *	if seg contains ack then advance tp->snd_una
1917	 *	if seg contains an ECE and ECN support is enabled, the stream
1918	 *	    is ECN capable.
1919	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1920	 *	arrange for segment to be acked (eventually)
1921	 *	continue processing rest of data/controls, beginning with URG
1922	 */
1923	case TCPS_SYN_SENT:
1924		if ((thflags & TH_ACK) &&
1925		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1926		     SEQ_GT(th->th_ack, tp->snd_max))) {
1927			rstreason = BANDLIM_UNLIMITED;
1928			goto dropwithreset;
1929		}
1930		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1931			TCP_PROBE5(connect__refused, NULL, tp,
1932			    mtod(m, const char *), tp, th);
1933			tp = tcp_drop(tp, ECONNREFUSED);
1934		}
1935		if (thflags & TH_RST)
1936			goto drop;
1937		if (!(thflags & TH_SYN))
1938			goto drop;
1939
1940		tp->irs = th->th_seq;
1941		tcp_rcvseqinit(tp);
1942		if (thflags & TH_ACK) {
1943			TCPSTAT_INC(tcps_connects);
1944			soisconnected(so);
1945#ifdef MAC
1946			mac_socketpeer_set_from_mbuf(m, so);
1947#endif
1948			/* Do window scaling on this connection? */
1949			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1950				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1951				tp->rcv_scale = tp->request_r_scale;
1952			}
1953			tp->rcv_adv += imin(tp->rcv_wnd,
1954			    TCP_MAXWIN << tp->rcv_scale);
1955			tp->snd_una++;		/* SYN is acked */
1956			/*
1957			 * If there's data, delay ACK; if there's also a FIN
1958			 * ACKNOW will be turned on later.
1959			 */
1960			if (DELAY_ACK(tp, tlen) && tlen != 0)
1961				tcp_timer_activate(tp, TT_DELACK,
1962				    tcp_delacktime);
1963			else
1964				tp->t_flags |= TF_ACKNOW;
1965
1966			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1967				tp->t_flags |= TF_ECN_PERMIT;
1968				TCPSTAT_INC(tcps_ecn_shs);
1969			}
1970
1971			/*
1972			 * Received <SYN,ACK> in SYN_SENT[*] state.
1973			 * Transitions:
1974			 *	SYN_SENT  --> ESTABLISHED
1975			 *	SYN_SENT* --> FIN_WAIT_1
1976			 */
1977			tp->t_starttime = ticks;
1978			if (tp->t_flags & TF_NEEDFIN) {
1979				tcp_state_change(tp, TCPS_FIN_WAIT_1);
1980				tp->t_flags &= ~TF_NEEDFIN;
1981				thflags &= ~TH_SYN;
1982			} else {
1983				tcp_state_change(tp, TCPS_ESTABLISHED);
1984				TCP_PROBE5(connect__established, NULL, tp,
1985				    mtod(m, const char *), tp, th);
1986				cc_conn_init(tp);
1987				tcp_timer_activate(tp, TT_KEEP,
1988				    TP_KEEPIDLE(tp));
1989			}
1990		} else {
1991			/*
1992			 * Received initial SYN in SYN-SENT[*] state =>
1993			 * simultaneous open.  If segment contains CC option
1994			 * and there is a cached CC, apply TAO test.
1995			 * If it succeeds, connection is * half-synchronized.
1996			 * Otherwise, do 3-way handshake:
1997			 *        SYN-SENT -> SYN-RECEIVED
1998			 *        SYN-SENT* -> SYN-RECEIVED*
1999			 * If there was no CC option, clear cached CC value.
2000			 */
2001			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2002			tcp_timer_activate(tp, TT_REXMT, 0);
2003			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2004		}
2005
2006		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
2007		    "ti_locked %d", __func__, ti_locked));
2008		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2009		INP_WLOCK_ASSERT(tp->t_inpcb);
2010
2011		/*
2012		 * Advance th->th_seq to correspond to first data byte.
2013		 * If data, trim to stay within window,
2014		 * dropping FIN if necessary.
2015		 */
2016		th->th_seq++;
2017		if (tlen > tp->rcv_wnd) {
2018			todrop = tlen - tp->rcv_wnd;
2019			m_adj(m, -todrop);
2020			tlen = tp->rcv_wnd;
2021			thflags &= ~TH_FIN;
2022			TCPSTAT_INC(tcps_rcvpackafterwin);
2023			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2024		}
2025		tp->snd_wl1 = th->th_seq - 1;
2026		tp->rcv_up = th->th_seq;
2027		/*
2028		 * Client side of transaction: already sent SYN and data.
2029		 * If the remote host used T/TCP to validate the SYN,
2030		 * our data will be ACK'd; if so, enter normal data segment
2031		 * processing in the middle of step 5, ack processing.
2032		 * Otherwise, goto step 6.
2033		 */
2034		if (thflags & TH_ACK)
2035			goto process_ACK;
2036
2037		goto step6;
2038
2039	/*
2040	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2041	 *      do normal processing.
2042	 *
2043	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2044	 */
2045	case TCPS_LAST_ACK:
2046	case TCPS_CLOSING:
2047		break;  /* continue normal processing */
2048	}
2049
2050	/*
2051	 * States other than LISTEN or SYN_SENT.
2052	 * First check the RST flag and sequence number since reset segments
2053	 * are exempt from the timestamp and connection count tests.  This
2054	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2055	 * below which allowed reset segments in half the sequence space
2056	 * to fall though and be processed (which gives forged reset
2057	 * segments with a random sequence number a 50 percent chance of
2058	 * killing a connection).
2059	 * Then check timestamp, if present.
2060	 * Then check the connection count, if present.
2061	 * Then check that at least some bytes of segment are within
2062	 * receive window.  If segment begins before rcv_nxt,
2063	 * drop leading data (and SYN); if nothing left, just ack.
2064	 *
2065	 *
2066	 * If the RST bit is set, check the sequence number to see
2067	 * if this is a valid reset segment.
2068	 * RFC 793 page 37:
2069	 *   In all states except SYN-SENT, all reset (RST) segments
2070	 *   are validated by checking their SEQ-fields.  A reset is
2071	 *   valid if its sequence number is in the window.
2072	 * Note: this does not take into account delayed ACKs, so
2073	 *   we should test against last_ack_sent instead of rcv_nxt.
2074	 *   The sequence number in the reset segment is normally an
2075	 *   echo of our outgoing acknowlegement numbers, but some hosts
2076	 *   send a reset with the sequence number at the rightmost edge
2077	 *   of our receive window, and we have to handle this case.
2078	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2079	 *   that brute force RST attacks are possible.  To combat this,
2080	 *   we use a much stricter check while in the ESTABLISHED state,
2081	 *   only accepting RSTs where the sequence number is equal to
2082	 *   last_ack_sent.  In all other states (the states in which a
2083	 *   RST is more likely), the more permissive check is used.
2084	 * If we have multiple segments in flight, the initial reset
2085	 * segment sequence numbers will be to the left of last_ack_sent,
2086	 * but they will eventually catch up.
2087	 * In any case, it never made sense to trim reset segments to
2088	 * fit the receive window since RFC 1122 says:
2089	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2090	 *
2091	 *    A TCP SHOULD allow a received RST segment to include data.
2092	 *
2093	 *    DISCUSSION
2094	 *         It has been suggested that a RST segment could contain
2095	 *         ASCII text that encoded and explained the cause of the
2096	 *         RST.  No standard has yet been established for such
2097	 *         data.
2098	 *
2099	 * If the reset segment passes the sequence number test examine
2100	 * the state:
2101	 *    SYN_RECEIVED STATE:
2102	 *	If passive open, return to LISTEN state.
2103	 *	If active open, inform user that connection was refused.
2104	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2105	 *	Inform user that connection was reset, and close tcb.
2106	 *    CLOSING, LAST_ACK STATES:
2107	 *	Close the tcb.
2108	 *    TIME_WAIT STATE:
2109	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2110	 *      RFC 1337.
2111	 */
2112	if (thflags & TH_RST) {
2113		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2114		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2115			switch (tp->t_state) {
2116
2117			case TCPS_SYN_RECEIVED:
2118				so->so_error = ECONNREFUSED;
2119				goto close;
2120
2121			case TCPS_ESTABLISHED:
2122				if (V_tcp_insecure_rst == 0 &&
2123				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2124				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2125				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2126				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2127					TCPSTAT_INC(tcps_badrst);
2128					goto drop;
2129				}
2130				/* FALLTHROUGH */
2131			case TCPS_FIN_WAIT_1:
2132			case TCPS_FIN_WAIT_2:
2133			case TCPS_CLOSE_WAIT:
2134				so->so_error = ECONNRESET;
2135			close:
2136				KASSERT(ti_locked == TI_WLOCKED,
2137				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2138				    ti_locked));
2139				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2140
2141				tcp_state_change(tp, TCPS_CLOSED);
2142				TCPSTAT_INC(tcps_drops);
2143				tp = tcp_close(tp);
2144				break;
2145
2146			case TCPS_CLOSING:
2147			case TCPS_LAST_ACK:
2148				KASSERT(ti_locked == TI_WLOCKED,
2149				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2150				    ti_locked));
2151				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2152
2153				tp = tcp_close(tp);
2154				break;
2155			}
2156		}
2157		goto drop;
2158	}
2159
2160	/*
2161	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2162	 * and it's less than ts_recent, drop it.
2163	 */
2164	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2165	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2166
2167		/* Check to see if ts_recent is over 24 days old.  */
2168		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2169			/*
2170			 * Invalidate ts_recent.  If this segment updates
2171			 * ts_recent, the age will be reset later and ts_recent
2172			 * will get a valid value.  If it does not, setting
2173			 * ts_recent to zero will at least satisfy the
2174			 * requirement that zero be placed in the timestamp
2175			 * echo reply when ts_recent isn't valid.  The
2176			 * age isn't reset until we get a valid ts_recent
2177			 * because we don't want out-of-order segments to be
2178			 * dropped when ts_recent is old.
2179			 */
2180			tp->ts_recent = 0;
2181		} else {
2182			TCPSTAT_INC(tcps_rcvduppack);
2183			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2184			TCPSTAT_INC(tcps_pawsdrop);
2185			if (tlen)
2186				goto dropafterack;
2187			goto drop;
2188		}
2189	}
2190
2191	/*
2192	 * In the SYN-RECEIVED state, validate that the packet belongs to
2193	 * this connection before trimming the data to fit the receive
2194	 * window.  Check the sequence number versus IRS since we know
2195	 * the sequence numbers haven't wrapped.  This is a partial fix
2196	 * for the "LAND" DoS attack.
2197	 */
2198	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2199		rstreason = BANDLIM_RST_OPENPORT;
2200		goto dropwithreset;
2201	}
2202
2203	todrop = tp->rcv_nxt - th->th_seq;
2204	if (todrop > 0) {
2205		/*
2206		 * If this is a duplicate SYN for our current connection,
2207		 * advance over it and pretend and it's not a SYN.
2208		 */
2209		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2210			thflags &= ~TH_SYN;
2211			th->th_seq++;
2212			if (th->th_urp > 1)
2213				th->th_urp--;
2214			else
2215				thflags &= ~TH_URG;
2216			todrop--;
2217		}
2218		/*
2219		 * Following if statement from Stevens, vol. 2, p. 960.
2220		 */
2221		if (todrop > tlen
2222		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2223			/*
2224			 * Any valid FIN must be to the left of the window.
2225			 * At this point the FIN must be a duplicate or out
2226			 * of sequence; drop it.
2227			 */
2228			thflags &= ~TH_FIN;
2229
2230			/*
2231			 * Send an ACK to resynchronize and drop any data.
2232			 * But keep on processing for RST or ACK.
2233			 */
2234			tp->t_flags |= TF_ACKNOW;
2235			todrop = tlen;
2236			TCPSTAT_INC(tcps_rcvduppack);
2237			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2238		} else {
2239			TCPSTAT_INC(tcps_rcvpartduppack);
2240			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2241		}
2242		drop_hdrlen += todrop;	/* drop from the top afterwards */
2243		th->th_seq += todrop;
2244		tlen -= todrop;
2245		if (th->th_urp > todrop)
2246			th->th_urp -= todrop;
2247		else {
2248			thflags &= ~TH_URG;
2249			th->th_urp = 0;
2250		}
2251	}
2252
2253	/*
2254	 * If new data are received on a connection after the
2255	 * user processes are gone, then RST the other end.
2256	 */
2257	if ((so->so_state & SS_NOFDREF) &&
2258	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2259		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2260		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2261		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2262
2263		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2264			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2265			    "after socket was closed, "
2266			    "sending RST and removing tcpcb\n",
2267			    s, __func__, tcpstates[tp->t_state], tlen);
2268			free(s, M_TCPLOG);
2269		}
2270		tp = tcp_close(tp);
2271		TCPSTAT_INC(tcps_rcvafterclose);
2272		rstreason = BANDLIM_UNLIMITED;
2273		goto dropwithreset;
2274	}
2275
2276	/*
2277	 * If segment ends after window, drop trailing data
2278	 * (and PUSH and FIN); if nothing left, just ACK.
2279	 */
2280	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2281	if (todrop > 0) {
2282		TCPSTAT_INC(tcps_rcvpackafterwin);
2283		if (todrop >= tlen) {
2284			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2285			/*
2286			 * If window is closed can only take segments at
2287			 * window edge, and have to drop data and PUSH from
2288			 * incoming segments.  Continue processing, but
2289			 * remember to ack.  Otherwise, drop segment
2290			 * and ack.
2291			 */
2292			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2293				tp->t_flags |= TF_ACKNOW;
2294				TCPSTAT_INC(tcps_rcvwinprobe);
2295			} else
2296				goto dropafterack;
2297		} else
2298			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2299		m_adj(m, -todrop);
2300		tlen -= todrop;
2301		thflags &= ~(TH_PUSH|TH_FIN);
2302	}
2303
2304	/*
2305	 * If last ACK falls within this segment's sequence numbers,
2306	 * record its timestamp.
2307	 * NOTE:
2308	 * 1) That the test incorporates suggestions from the latest
2309	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2310	 * 2) That updating only on newer timestamps interferes with
2311	 *    our earlier PAWS tests, so this check should be solely
2312	 *    predicated on the sequence space of this segment.
2313	 * 3) That we modify the segment boundary check to be
2314	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2315	 *    instead of RFC1323's
2316	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2317	 *    This modified check allows us to overcome RFC1323's
2318	 *    limitations as described in Stevens TCP/IP Illustrated
2319	 *    Vol. 2 p.869. In such cases, we can still calculate the
2320	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2321	 */
2322	if ((to.to_flags & TOF_TS) != 0 &&
2323	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2324	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2325		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2326		tp->ts_recent_age = tcp_ts_getticks();
2327		tp->ts_recent = to.to_tsval;
2328	}
2329
2330	/*
2331	 * If a SYN is in the window, then this is an
2332	 * error and we send an RST and drop the connection.
2333	 */
2334	if (thflags & TH_SYN) {
2335		KASSERT(ti_locked == TI_WLOCKED,
2336		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2337		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2338
2339		tp = tcp_drop(tp, ECONNRESET);
2340		rstreason = BANDLIM_UNLIMITED;
2341		goto drop;
2342	}
2343
2344	/*
2345	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2346	 * flag is on (half-synchronized state), then queue data for
2347	 * later processing; else drop segment and return.
2348	 */
2349	if ((thflags & TH_ACK) == 0) {
2350		if (tp->t_state == TCPS_SYN_RECEIVED ||
2351		    (tp->t_flags & TF_NEEDSYN))
2352			goto step6;
2353		else if (tp->t_flags & TF_ACKNOW)
2354			goto dropafterack;
2355		else
2356			goto drop;
2357	}
2358
2359	/*
2360	 * Ack processing.
2361	 */
2362	switch (tp->t_state) {
2363
2364	/*
2365	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2366	 * ESTABLISHED state and continue processing.
2367	 * The ACK was checked above.
2368	 */
2369	case TCPS_SYN_RECEIVED:
2370
2371		TCPSTAT_INC(tcps_connects);
2372		soisconnected(so);
2373		/* Do window scaling? */
2374		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2375			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2376			tp->rcv_scale = tp->request_r_scale;
2377			tp->snd_wnd = tiwin;
2378		}
2379		/*
2380		 * Make transitions:
2381		 *      SYN-RECEIVED  -> ESTABLISHED
2382		 *      SYN-RECEIVED* -> FIN-WAIT-1
2383		 */
2384		tp->t_starttime = ticks;
2385		if (tp->t_flags & TF_NEEDFIN) {
2386			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2387			tp->t_flags &= ~TF_NEEDFIN;
2388		} else {
2389			tcp_state_change(tp, TCPS_ESTABLISHED);
2390			TCP_PROBE5(accept__established, NULL, tp,
2391			    mtod(m, const char *), tp, th);
2392			cc_conn_init(tp);
2393			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2394		}
2395		/*
2396		 * If segment contains data or ACK, will call tcp_reass()
2397		 * later; if not, do so now to pass queued data to user.
2398		 */
2399		if (tlen == 0 && (thflags & TH_FIN) == 0)
2400			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2401			    (struct mbuf *)0);
2402		tp->snd_wl1 = th->th_seq - 1;
2403		/* FALLTHROUGH */
2404
2405	/*
2406	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2407	 * ACKs.  If the ack is in the range
2408	 *	tp->snd_una < th->th_ack <= tp->snd_max
2409	 * then advance tp->snd_una to th->th_ack and drop
2410	 * data from the retransmission queue.  If this ACK reflects
2411	 * more up to date window information we update our window information.
2412	 */
2413	case TCPS_ESTABLISHED:
2414	case TCPS_FIN_WAIT_1:
2415	case TCPS_FIN_WAIT_2:
2416	case TCPS_CLOSE_WAIT:
2417	case TCPS_CLOSING:
2418	case TCPS_LAST_ACK:
2419		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2420			TCPSTAT_INC(tcps_rcvacktoomuch);
2421			goto dropafterack;
2422		}
2423		if ((tp->t_flags & TF_SACK_PERMIT) &&
2424		    ((to.to_flags & TOF_SACK) ||
2425		     !TAILQ_EMPTY(&tp->snd_holes)))
2426			tcp_sack_doack(tp, &to, th->th_ack);
2427
2428		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2429		hhook_run_tcp_est_in(tp, th, &to);
2430
2431		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2432			if (tlen == 0 && tiwin == tp->snd_wnd &&
2433			    !(thflags & TH_FIN)) {
2434				TCPSTAT_INC(tcps_rcvdupack);
2435				/*
2436				 * If we have outstanding data (other than
2437				 * a window probe), this is a completely
2438				 * duplicate ack (ie, window info didn't
2439				 * change and FIN isn't set),
2440				 * the ack is the biggest we've
2441				 * seen and we've seen exactly our rexmt
2442				 * threshhold of them, assume a packet
2443				 * has been dropped and retransmit it.
2444				 * Kludge snd_nxt & the congestion
2445				 * window so we send only this one
2446				 * packet.
2447				 *
2448				 * We know we're losing at the current
2449				 * window size so do congestion avoidance
2450				 * (set ssthresh to half the current window
2451				 * and pull our congestion window back to
2452				 * the new ssthresh).
2453				 *
2454				 * Dup acks mean that packets have left the
2455				 * network (they're now cached at the receiver)
2456				 * so bump cwnd by the amount in the receiver
2457				 * to keep a constant cwnd packets in the
2458				 * network.
2459				 *
2460				 * When using TCP ECN, notify the peer that
2461				 * we reduced the cwnd.
2462				 */
2463				if (!tcp_timer_active(tp, TT_REXMT) ||
2464				    th->th_ack != tp->snd_una)
2465					tp->t_dupacks = 0;
2466				else if (++tp->t_dupacks > tcprexmtthresh ||
2467				     IN_FASTRECOVERY(tp->t_flags)) {
2468					cc_ack_received(tp, th, CC_DUPACK);
2469					if ((tp->t_flags & TF_SACK_PERMIT) &&
2470					    IN_FASTRECOVERY(tp->t_flags)) {
2471						int awnd;
2472
2473						/*
2474						 * Compute the amount of data in flight first.
2475						 * We can inject new data into the pipe iff
2476						 * we have less than 1/2 the original window's
2477						 * worth of data in flight.
2478						 */
2479						awnd = (tp->snd_nxt - tp->snd_fack) +
2480							tp->sackhint.sack_bytes_rexmit;
2481						if (awnd < tp->snd_ssthresh) {
2482							tp->snd_cwnd += tp->t_maxseg;
2483							if (tp->snd_cwnd > tp->snd_ssthresh)
2484								tp->snd_cwnd = tp->snd_ssthresh;
2485						}
2486					} else
2487						tp->snd_cwnd += tp->t_maxseg;
2488					if ((thflags & TH_FIN) &&
2489					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2490						/*
2491						 * If its a fin we need to process
2492						 * it to avoid a race where both
2493						 * sides enter FIN-WAIT and send FIN|ACK
2494						 * at the same time.
2495						 */
2496						break;
2497					}
2498					(void) tcp_output(tp);
2499					goto drop;
2500				} else if (tp->t_dupacks == tcprexmtthresh) {
2501					tcp_seq onxt = tp->snd_nxt;
2502
2503					/*
2504					 * If we're doing sack, check to
2505					 * see if we're already in sack
2506					 * recovery. If we're not doing sack,
2507					 * check to see if we're in newreno
2508					 * recovery.
2509					 */
2510					if (tp->t_flags & TF_SACK_PERMIT) {
2511						if (IN_FASTRECOVERY(tp->t_flags)) {
2512							tp->t_dupacks = 0;
2513							break;
2514						}
2515					} else {
2516						if (SEQ_LEQ(th->th_ack,
2517						    tp->snd_recover)) {
2518							tp->t_dupacks = 0;
2519							break;
2520						}
2521					}
2522					/* Congestion signal before ack. */
2523					cc_cong_signal(tp, th, CC_NDUPACK);
2524					cc_ack_received(tp, th, CC_DUPACK);
2525					tcp_timer_activate(tp, TT_REXMT, 0);
2526					tp->t_rtttime = 0;
2527					if (tp->t_flags & TF_SACK_PERMIT) {
2528						TCPSTAT_INC(
2529						    tcps_sack_recovery_episode);
2530						tp->sack_newdata = tp->snd_nxt;
2531						tp->snd_cwnd = tp->t_maxseg;
2532						(void) tcp_output(tp);
2533						goto drop;
2534					}
2535					tp->snd_nxt = th->th_ack;
2536					tp->snd_cwnd = tp->t_maxseg;
2537					if ((thflags & TH_FIN) &&
2538					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2539						/*
2540						 * If its a fin we need to process
2541						 * it to avoid a race where both
2542						 * sides enter FIN-WAIT and send FIN|ACK
2543						 * at the same time.
2544						 */
2545						break;
2546					}
2547					(void) tcp_output(tp);
2548					KASSERT(tp->snd_limited <= 2,
2549					    ("%s: tp->snd_limited too big",
2550					    __func__));
2551					tp->snd_cwnd = tp->snd_ssthresh +
2552					     tp->t_maxseg *
2553					     (tp->t_dupacks - tp->snd_limited);
2554					if (SEQ_GT(onxt, tp->snd_nxt))
2555						tp->snd_nxt = onxt;
2556					goto drop;
2557				} else if (V_tcp_do_rfc3042) {
2558					cc_ack_received(tp, th, CC_DUPACK);
2559					u_long oldcwnd = tp->snd_cwnd;
2560					tcp_seq oldsndmax = tp->snd_max;
2561					u_int sent;
2562					int avail;
2563
2564					KASSERT(tp->t_dupacks == 1 ||
2565					    tp->t_dupacks == 2,
2566					    ("%s: dupacks not 1 or 2",
2567					    __func__));
2568					if (tp->t_dupacks == 1)
2569						tp->snd_limited = 0;
2570					tp->snd_cwnd =
2571					    (tp->snd_nxt - tp->snd_una) +
2572					    (tp->t_dupacks - tp->snd_limited) *
2573					    tp->t_maxseg;
2574					if ((thflags & TH_FIN) &&
2575					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2576						/*
2577						 * If its a fin we need to process
2578						 * it to avoid a race where both
2579						 * sides enter FIN-WAIT and send FIN|ACK
2580						 * at the same time.
2581						 */
2582						break;
2583					}
2584					/*
2585					 * Only call tcp_output when there
2586					 * is new data available to be sent.
2587					 * Otherwise we would send pure ACKs.
2588					 */
2589					SOCKBUF_LOCK(&so->so_snd);
2590					avail = so->so_snd.sb_cc -
2591					    (tp->snd_nxt - tp->snd_una);
2592					SOCKBUF_UNLOCK(&so->so_snd);
2593					if (avail > 0)
2594						(void) tcp_output(tp);
2595					sent = tp->snd_max - oldsndmax;
2596					if (sent > tp->t_maxseg) {
2597						KASSERT((tp->t_dupacks == 2 &&
2598						    tp->snd_limited == 0) ||
2599						   (sent == tp->t_maxseg + 1 &&
2600						    tp->t_flags & TF_SENTFIN),
2601						    ("%s: sent too much",
2602						    __func__));
2603						tp->snd_limited = 2;
2604					} else if (sent > 0)
2605						++tp->snd_limited;
2606					tp->snd_cwnd = oldcwnd;
2607					goto drop;
2608				}
2609			} else
2610				tp->t_dupacks = 0;
2611			break;
2612		}
2613
2614		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2615		    ("%s: th_ack <= snd_una", __func__));
2616
2617		/*
2618		 * If the congestion window was inflated to account
2619		 * for the other side's cached packets, retract it.
2620		 */
2621		if (IN_FASTRECOVERY(tp->t_flags)) {
2622			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2623				if (tp->t_flags & TF_SACK_PERMIT)
2624					tcp_sack_partialack(tp, th);
2625				else
2626					tcp_newreno_partial_ack(tp, th);
2627			} else
2628				cc_post_recovery(tp, th);
2629		}
2630		tp->t_dupacks = 0;
2631		/*
2632		 * If we reach this point, ACK is not a duplicate,
2633		 *     i.e., it ACKs something we sent.
2634		 */
2635		if (tp->t_flags & TF_NEEDSYN) {
2636			/*
2637			 * T/TCP: Connection was half-synchronized, and our
2638			 * SYN has been ACK'd (so connection is now fully
2639			 * synchronized).  Go to non-starred state,
2640			 * increment snd_una for ACK of SYN, and check if
2641			 * we can do window scaling.
2642			 */
2643			tp->t_flags &= ~TF_NEEDSYN;
2644			tp->snd_una++;
2645			/* Do window scaling? */
2646			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2647				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2648				tp->rcv_scale = tp->request_r_scale;
2649				/* Send window already scaled. */
2650			}
2651		}
2652
2653process_ACK:
2654		INP_WLOCK_ASSERT(tp->t_inpcb);
2655
2656		acked = BYTES_THIS_ACK(tp, th);
2657		TCPSTAT_INC(tcps_rcvackpack);
2658		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2659
2660		/*
2661		 * If we just performed our first retransmit, and the ACK
2662		 * arrives within our recovery window, then it was a mistake
2663		 * to do the retransmit in the first place.  Recover our
2664		 * original cwnd and ssthresh, and proceed to transmit where
2665		 * we left off.
2666		 */
2667		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2668		    (int)(ticks - tp->t_badrxtwin) < 0)
2669			cc_cong_signal(tp, th, CC_RTO_ERR);
2670
2671		/*
2672		 * If we have a timestamp reply, update smoothed
2673		 * round trip time.  If no timestamp is present but
2674		 * transmit timer is running and timed sequence
2675		 * number was acked, update smoothed round trip time.
2676		 * Since we now have an rtt measurement, cancel the
2677		 * timer backoff (cf., Phil Karn's retransmit alg.).
2678		 * Recompute the initial retransmit timer.
2679		 *
2680		 * Some boxes send broken timestamp replies
2681		 * during the SYN+ACK phase, ignore
2682		 * timestamps of 0 or we could calculate a
2683		 * huge RTT and blow up the retransmit timer.
2684		 */
2685		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2686			u_int t;
2687
2688			t = tcp_ts_getticks() - to.to_tsecr;
2689			if (!tp->t_rttlow || tp->t_rttlow > t)
2690				tp->t_rttlow = t;
2691			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2692		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2693			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2694				tp->t_rttlow = ticks - tp->t_rtttime;
2695			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2696		}
2697
2698		/*
2699		 * If all outstanding data is acked, stop retransmit
2700		 * timer and remember to restart (more output or persist).
2701		 * If there is more data to be acked, restart retransmit
2702		 * timer, using current (possibly backed-off) value.
2703		 */
2704		if (th->th_ack == tp->snd_max) {
2705			tcp_timer_activate(tp, TT_REXMT, 0);
2706			needoutput = 1;
2707		} else if (!tcp_timer_active(tp, TT_PERSIST))
2708			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2709
2710		/*
2711		 * If no data (only SYN) was ACK'd,
2712		 *    skip rest of ACK processing.
2713		 */
2714		if (acked == 0)
2715			goto step6;
2716
2717		/*
2718		 * Let the congestion control algorithm update congestion
2719		 * control related information. This typically means increasing
2720		 * the congestion window.
2721		 */
2722		cc_ack_received(tp, th, CC_ACK);
2723
2724		SOCKBUF_LOCK(&so->so_snd);
2725		if (acked > so->so_snd.sb_cc) {
2726			tp->snd_wnd -= so->so_snd.sb_cc;
2727			mfree = sbcut_locked(&so->so_snd,
2728			    (int)so->so_snd.sb_cc);
2729			ourfinisacked = 1;
2730		} else {
2731			mfree = sbcut_locked(&so->so_snd, acked);
2732			tp->snd_wnd -= acked;
2733			ourfinisacked = 0;
2734		}
2735		/* NB: sowwakeup_locked() does an implicit unlock. */
2736		sowwakeup_locked(so);
2737		m_freem(mfree);
2738		/* Detect una wraparound. */
2739		if (!IN_RECOVERY(tp->t_flags) &&
2740		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2741		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2742			tp->snd_recover = th->th_ack - 1;
2743		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2744		if (IN_RECOVERY(tp->t_flags) &&
2745		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2746			EXIT_RECOVERY(tp->t_flags);
2747		}
2748		tp->snd_una = th->th_ack;
2749		if (tp->t_flags & TF_SACK_PERMIT) {
2750			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2751				tp->snd_recover = tp->snd_una;
2752		}
2753		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2754			tp->snd_nxt = tp->snd_una;
2755
2756		switch (tp->t_state) {
2757
2758		/*
2759		 * In FIN_WAIT_1 STATE in addition to the processing
2760		 * for the ESTABLISHED state if our FIN is now acknowledged
2761		 * then enter FIN_WAIT_2.
2762		 */
2763		case TCPS_FIN_WAIT_1:
2764			if (ourfinisacked) {
2765				/*
2766				 * If we can't receive any more
2767				 * data, then closing user can proceed.
2768				 * Starting the timer is contrary to the
2769				 * specification, but if we don't get a FIN
2770				 * we'll hang forever.
2771				 *
2772				 * XXXjl:
2773				 * we should release the tp also, and use a
2774				 * compressed state.
2775				 */
2776				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2777					soisdisconnected(so);
2778					tcp_timer_activate(tp, TT_2MSL,
2779					    (tcp_fast_finwait2_recycle ?
2780					    tcp_finwait2_timeout :
2781					    TP_MAXIDLE(tp)));
2782				}
2783				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2784			}
2785			break;
2786
2787		/*
2788		 * In CLOSING STATE in addition to the processing for
2789		 * the ESTABLISHED state if the ACK acknowledges our FIN
2790		 * then enter the TIME-WAIT state, otherwise ignore
2791		 * the segment.
2792		 */
2793		case TCPS_CLOSING:
2794			if (ourfinisacked) {
2795				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2796				tcp_twstart(tp);
2797				INP_INFO_WUNLOCK(&V_tcbinfo);
2798				m_freem(m);
2799				return;
2800			}
2801			break;
2802
2803		/*
2804		 * In LAST_ACK, we may still be waiting for data to drain
2805		 * and/or to be acked, as well as for the ack of our FIN.
2806		 * If our FIN is now acknowledged, delete the TCB,
2807		 * enter the closed state and return.
2808		 */
2809		case TCPS_LAST_ACK:
2810			if (ourfinisacked) {
2811				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2812				tp = tcp_close(tp);
2813				goto drop;
2814			}
2815			break;
2816		}
2817	}
2818
2819step6:
2820	INP_WLOCK_ASSERT(tp->t_inpcb);
2821
2822	/*
2823	 * Update window information.
2824	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2825	 */
2826	if ((thflags & TH_ACK) &&
2827	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2828	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2829	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2830		/* keep track of pure window updates */
2831		if (tlen == 0 &&
2832		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2833			TCPSTAT_INC(tcps_rcvwinupd);
2834		tp->snd_wnd = tiwin;
2835		tp->snd_wl1 = th->th_seq;
2836		tp->snd_wl2 = th->th_ack;
2837		if (tp->snd_wnd > tp->max_sndwnd)
2838			tp->max_sndwnd = tp->snd_wnd;
2839		needoutput = 1;
2840	}
2841
2842	/*
2843	 * Process segments with URG.
2844	 */
2845	if ((thflags & TH_URG) && th->th_urp &&
2846	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2847		/*
2848		 * This is a kludge, but if we receive and accept
2849		 * random urgent pointers, we'll crash in
2850		 * soreceive.  It's hard to imagine someone
2851		 * actually wanting to send this much urgent data.
2852		 */
2853		SOCKBUF_LOCK(&so->so_rcv);
2854		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2855			th->th_urp = 0;			/* XXX */
2856			thflags &= ~TH_URG;		/* XXX */
2857			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2858			goto dodata;			/* XXX */
2859		}
2860		/*
2861		 * If this segment advances the known urgent pointer,
2862		 * then mark the data stream.  This should not happen
2863		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2864		 * a FIN has been received from the remote side.
2865		 * In these states we ignore the URG.
2866		 *
2867		 * According to RFC961 (Assigned Protocols),
2868		 * the urgent pointer points to the last octet
2869		 * of urgent data.  We continue, however,
2870		 * to consider it to indicate the first octet
2871		 * of data past the urgent section as the original
2872		 * spec states (in one of two places).
2873		 */
2874		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2875			tp->rcv_up = th->th_seq + th->th_urp;
2876			so->so_oobmark = so->so_rcv.sb_cc +
2877			    (tp->rcv_up - tp->rcv_nxt) - 1;
2878			if (so->so_oobmark == 0)
2879				so->so_rcv.sb_state |= SBS_RCVATMARK;
2880			sohasoutofband(so);
2881			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2882		}
2883		SOCKBUF_UNLOCK(&so->so_rcv);
2884		/*
2885		 * Remove out of band data so doesn't get presented to user.
2886		 * This can happen independent of advancing the URG pointer,
2887		 * but if two URG's are pending at once, some out-of-band
2888		 * data may creep in... ick.
2889		 */
2890		if (th->th_urp <= (u_long)tlen &&
2891		    !(so->so_options & SO_OOBINLINE)) {
2892			/* hdr drop is delayed */
2893			tcp_pulloutofband(so, th, m, drop_hdrlen);
2894		}
2895	} else {
2896		/*
2897		 * If no out of band data is expected,
2898		 * pull receive urgent pointer along
2899		 * with the receive window.
2900		 */
2901		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2902			tp->rcv_up = tp->rcv_nxt;
2903	}
2904dodata:							/* XXX */
2905	INP_WLOCK_ASSERT(tp->t_inpcb);
2906
2907	/*
2908	 * Process the segment text, merging it into the TCP sequencing queue,
2909	 * and arranging for acknowledgment of receipt if necessary.
2910	 * This process logically involves adjusting tp->rcv_wnd as data
2911	 * is presented to the user (this happens in tcp_usrreq.c,
2912	 * case PRU_RCVD).  If a FIN has already been received on this
2913	 * connection then we just ignore the text.
2914	 */
2915	if ((tlen || (thflags & TH_FIN)) &&
2916	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2917		tcp_seq save_start = th->th_seq;
2918		m_adj(m, drop_hdrlen);	/* delayed header drop */
2919		/*
2920		 * Insert segment which includes th into TCP reassembly queue
2921		 * with control block tp.  Set thflags to whether reassembly now
2922		 * includes a segment with FIN.  This handles the common case
2923		 * inline (segment is the next to be received on an established
2924		 * connection, and the queue is empty), avoiding linkage into
2925		 * and removal from the queue and repetition of various
2926		 * conversions.
2927		 * Set DELACK for segments received in order, but ack
2928		 * immediately when segments are out of order (so
2929		 * fast retransmit can work).
2930		 */
2931		if (th->th_seq == tp->rcv_nxt &&
2932		    LIST_EMPTY(&tp->t_segq) &&
2933		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2934			if (DELAY_ACK(tp, tlen))
2935				tp->t_flags |= TF_DELACK;
2936			else
2937				tp->t_flags |= TF_ACKNOW;
2938			tp->rcv_nxt += tlen;
2939			thflags = th->th_flags & TH_FIN;
2940			TCPSTAT_INC(tcps_rcvpack);
2941			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2942			ND6_HINT(tp);
2943			SOCKBUF_LOCK(&so->so_rcv);
2944			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2945				m_freem(m);
2946			else
2947				sbappendstream_locked(&so->so_rcv, m);
2948			/* NB: sorwakeup_locked() does an implicit unlock. */
2949			sorwakeup_locked(so);
2950		} else {
2951			/*
2952			 * XXX: Due to the header drop above "th" is
2953			 * theoretically invalid by now.  Fortunately
2954			 * m_adj() doesn't actually frees any mbufs
2955			 * when trimming from the head.
2956			 */
2957			thflags = tcp_reass(tp, th, &tlen, m);
2958			tp->t_flags |= TF_ACKNOW;
2959		}
2960		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2961			tcp_update_sack_list(tp, save_start, save_start + tlen);
2962#if 0
2963		/*
2964		 * Note the amount of data that peer has sent into
2965		 * our window, in order to estimate the sender's
2966		 * buffer size.
2967		 * XXX: Unused.
2968		 */
2969		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2970			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2971		else
2972			len = so->so_rcv.sb_hiwat;
2973#endif
2974	} else {
2975		m_freem(m);
2976		thflags &= ~TH_FIN;
2977	}
2978
2979	/*
2980	 * If FIN is received ACK the FIN and let the user know
2981	 * that the connection is closing.
2982	 */
2983	if (thflags & TH_FIN) {
2984		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2985			socantrcvmore(so);
2986			/*
2987			 * If connection is half-synchronized
2988			 * (ie NEEDSYN flag on) then delay ACK,
2989			 * so it may be piggybacked when SYN is sent.
2990			 * Otherwise, since we received a FIN then no
2991			 * more input can be expected, send ACK now.
2992			 */
2993			if (tp->t_flags & TF_NEEDSYN)
2994				tp->t_flags |= TF_DELACK;
2995			else
2996				tp->t_flags |= TF_ACKNOW;
2997			tp->rcv_nxt++;
2998		}
2999		switch (tp->t_state) {
3000
3001		/*
3002		 * In SYN_RECEIVED and ESTABLISHED STATES
3003		 * enter the CLOSE_WAIT state.
3004		 */
3005		case TCPS_SYN_RECEIVED:
3006			tp->t_starttime = ticks;
3007			/* FALLTHROUGH */
3008		case TCPS_ESTABLISHED:
3009			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3010			break;
3011
3012		/*
3013		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3014		 * enter the CLOSING state.
3015		 */
3016		case TCPS_FIN_WAIT_1:
3017			tcp_state_change(tp, TCPS_CLOSING);
3018			break;
3019
3020		/*
3021		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3022		 * starting the time-wait timer, turning off the other
3023		 * standard timers.
3024		 */
3025		case TCPS_FIN_WAIT_2:
3026			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
3027			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
3028			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3029			    ti_locked));
3030
3031			tcp_twstart(tp);
3032			INP_INFO_WUNLOCK(&V_tcbinfo);
3033			return;
3034		}
3035	}
3036	if (ti_locked == TI_WLOCKED)
3037		INP_INFO_WUNLOCK(&V_tcbinfo);
3038	ti_locked = TI_UNLOCKED;
3039
3040#ifdef TCPDEBUG
3041	if (so->so_options & SO_DEBUG)
3042		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3043			  &tcp_savetcp, 0);
3044#endif
3045
3046	/*
3047	 * Return any desired output.
3048	 */
3049	if (needoutput || (tp->t_flags & TF_ACKNOW))
3050		(void) tcp_output(tp);
3051
3052check_delack:
3053	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3054	    __func__, ti_locked));
3055	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3056	INP_WLOCK_ASSERT(tp->t_inpcb);
3057
3058	if (tp->t_flags & TF_DELACK) {
3059		tp->t_flags &= ~TF_DELACK;
3060		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3061	}
3062	INP_WUNLOCK(tp->t_inpcb);
3063	return;
3064
3065dropafterack:
3066	/*
3067	 * Generate an ACK dropping incoming segment if it occupies
3068	 * sequence space, where the ACK reflects our state.
3069	 *
3070	 * We can now skip the test for the RST flag since all
3071	 * paths to this code happen after packets containing
3072	 * RST have been dropped.
3073	 *
3074	 * In the SYN-RECEIVED state, don't send an ACK unless the
3075	 * segment we received passes the SYN-RECEIVED ACK test.
3076	 * If it fails send a RST.  This breaks the loop in the
3077	 * "LAND" DoS attack, and also prevents an ACK storm
3078	 * between two listening ports that have been sent forged
3079	 * SYN segments, each with the source address of the other.
3080	 */
3081	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3082	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3083	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3084		rstreason = BANDLIM_RST_OPENPORT;
3085		goto dropwithreset;
3086	}
3087#ifdef TCPDEBUG
3088	if (so->so_options & SO_DEBUG)
3089		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3090			  &tcp_savetcp, 0);
3091#endif
3092	if (ti_locked == TI_WLOCKED)
3093		INP_INFO_WUNLOCK(&V_tcbinfo);
3094	ti_locked = TI_UNLOCKED;
3095
3096	tp->t_flags |= TF_ACKNOW;
3097	(void) tcp_output(tp);
3098	INP_WUNLOCK(tp->t_inpcb);
3099	m_freem(m);
3100	return;
3101
3102dropwithreset:
3103	if (ti_locked == TI_WLOCKED)
3104		INP_INFO_WUNLOCK(&V_tcbinfo);
3105	ti_locked = TI_UNLOCKED;
3106
3107	if (tp != NULL) {
3108		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3109		INP_WUNLOCK(tp->t_inpcb);
3110	} else
3111		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3112	return;
3113
3114drop:
3115	if (ti_locked == TI_WLOCKED) {
3116		INP_INFO_WUNLOCK(&V_tcbinfo);
3117		ti_locked = TI_UNLOCKED;
3118	}
3119#ifdef INVARIANTS
3120	else
3121		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3122#endif
3123
3124	/*
3125	 * Drop space held by incoming segment and return.
3126	 */
3127#ifdef TCPDEBUG
3128	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3129		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3130			  &tcp_savetcp, 0);
3131#endif
3132	if (tp != NULL)
3133		INP_WUNLOCK(tp->t_inpcb);
3134	m_freem(m);
3135}
3136
3137/*
3138 * Issue RST and make ACK acceptable to originator of segment.
3139 * The mbuf must still include the original packet header.
3140 * tp may be NULL.
3141 */
3142static void
3143tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3144    int tlen, int rstreason)
3145{
3146#ifdef INET
3147	struct ip *ip;
3148#endif
3149#ifdef INET6
3150	struct ip6_hdr *ip6;
3151#endif
3152
3153	if (tp != NULL) {
3154		INP_WLOCK_ASSERT(tp->t_inpcb);
3155	}
3156
3157	/* Don't bother if destination was broadcast/multicast. */
3158	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3159		goto drop;
3160#ifdef INET6
3161	if (mtod(m, struct ip *)->ip_v == 6) {
3162		ip6 = mtod(m, struct ip6_hdr *);
3163		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3164		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3165			goto drop;
3166		/* IPv6 anycast check is done at tcp6_input() */
3167	}
3168#endif
3169#if defined(INET) && defined(INET6)
3170	else
3171#endif
3172#ifdef INET
3173	{
3174		ip = mtod(m, struct ip *);
3175		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3176		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3177		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3178		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3179			goto drop;
3180	}
3181#endif
3182
3183	/* Perform bandwidth limiting. */
3184	if (badport_bandlim(rstreason) < 0)
3185		goto drop;
3186
3187	/* tcp_respond consumes the mbuf chain. */
3188	if (th->th_flags & TH_ACK) {
3189		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3190		    th->th_ack, TH_RST);
3191	} else {
3192		if (th->th_flags & TH_SYN)
3193			tlen++;
3194		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3195		    (tcp_seq)0, TH_RST|TH_ACK);
3196	}
3197	return;
3198drop:
3199	m_freem(m);
3200}
3201
3202/*
3203 * Parse TCP options and place in tcpopt.
3204 */
3205static void
3206tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3207{
3208	int opt, optlen;
3209
3210	to->to_flags = 0;
3211	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3212		opt = cp[0];
3213		if (opt == TCPOPT_EOL)
3214			break;
3215		if (opt == TCPOPT_NOP)
3216			optlen = 1;
3217		else {
3218			if (cnt < 2)
3219				break;
3220			optlen = cp[1];
3221			if (optlen < 2 || optlen > cnt)
3222				break;
3223		}
3224		switch (opt) {
3225		case TCPOPT_MAXSEG:
3226			if (optlen != TCPOLEN_MAXSEG)
3227				continue;
3228			if (!(flags & TO_SYN))
3229				continue;
3230			to->to_flags |= TOF_MSS;
3231			bcopy((char *)cp + 2,
3232			    (char *)&to->to_mss, sizeof(to->to_mss));
3233			to->to_mss = ntohs(to->to_mss);
3234			break;
3235		case TCPOPT_WINDOW:
3236			if (optlen != TCPOLEN_WINDOW)
3237				continue;
3238			if (!(flags & TO_SYN))
3239				continue;
3240			to->to_flags |= TOF_SCALE;
3241			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3242			break;
3243		case TCPOPT_TIMESTAMP:
3244			if (optlen != TCPOLEN_TIMESTAMP)
3245				continue;
3246			to->to_flags |= TOF_TS;
3247			bcopy((char *)cp + 2,
3248			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3249			to->to_tsval = ntohl(to->to_tsval);
3250			bcopy((char *)cp + 6,
3251			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3252			to->to_tsecr = ntohl(to->to_tsecr);
3253			break;
3254#ifdef TCP_SIGNATURE
3255		/*
3256		 * XXX In order to reply to a host which has set the
3257		 * TCP_SIGNATURE option in its initial SYN, we have to
3258		 * record the fact that the option was observed here
3259		 * for the syncache code to perform the correct response.
3260		 */
3261		case TCPOPT_SIGNATURE:
3262			if (optlen != TCPOLEN_SIGNATURE)
3263				continue;
3264			to->to_flags |= TOF_SIGNATURE;
3265			to->to_signature = cp + 2;
3266			break;
3267#endif
3268		case TCPOPT_SACK_PERMITTED:
3269			if (optlen != TCPOLEN_SACK_PERMITTED)
3270				continue;
3271			if (!(flags & TO_SYN))
3272				continue;
3273			if (!V_tcp_do_sack)
3274				continue;
3275			to->to_flags |= TOF_SACKPERM;
3276			break;
3277		case TCPOPT_SACK:
3278			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3279				continue;
3280			if (flags & TO_SYN)
3281				continue;
3282			to->to_flags |= TOF_SACK;
3283			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3284			to->to_sacks = cp + 2;
3285			TCPSTAT_INC(tcps_sack_rcv_blocks);
3286			break;
3287		default:
3288			continue;
3289		}
3290	}
3291}
3292
3293/*
3294 * Pull out of band byte out of a segment so
3295 * it doesn't appear in the user's data queue.
3296 * It is still reflected in the segment length for
3297 * sequencing purposes.
3298 */
3299static void
3300tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3301    int off)
3302{
3303	int cnt = off + th->th_urp - 1;
3304
3305	while (cnt >= 0) {
3306		if (m->m_len > cnt) {
3307			char *cp = mtod(m, caddr_t) + cnt;
3308			struct tcpcb *tp = sototcpcb(so);
3309
3310			INP_WLOCK_ASSERT(tp->t_inpcb);
3311
3312			tp->t_iobc = *cp;
3313			tp->t_oobflags |= TCPOOB_HAVEDATA;
3314			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3315			m->m_len--;
3316			if (m->m_flags & M_PKTHDR)
3317				m->m_pkthdr.len--;
3318			return;
3319		}
3320		cnt -= m->m_len;
3321		m = m->m_next;
3322		if (m == NULL)
3323			break;
3324	}
3325	panic("tcp_pulloutofband");
3326}
3327
3328/*
3329 * Collect new round-trip time estimate
3330 * and update averages and current timeout.
3331 */
3332static void
3333tcp_xmit_timer(struct tcpcb *tp, int rtt)
3334{
3335	int delta;
3336
3337	INP_WLOCK_ASSERT(tp->t_inpcb);
3338
3339	TCPSTAT_INC(tcps_rttupdated);
3340	tp->t_rttupdated++;
3341	if (tp->t_srtt != 0) {
3342		/*
3343		 * srtt is stored as fixed point with 5 bits after the
3344		 * binary point (i.e., scaled by 8).  The following magic
3345		 * is equivalent to the smoothing algorithm in rfc793 with
3346		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3347		 * point).  Adjust rtt to origin 0.
3348		 */
3349		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3350			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3351
3352		if ((tp->t_srtt += delta) <= 0)
3353			tp->t_srtt = 1;
3354
3355		/*
3356		 * We accumulate a smoothed rtt variance (actually, a
3357		 * smoothed mean difference), then set the retransmit
3358		 * timer to smoothed rtt + 4 times the smoothed variance.
3359		 * rttvar is stored as fixed point with 4 bits after the
3360		 * binary point (scaled by 16).  The following is
3361		 * equivalent to rfc793 smoothing with an alpha of .75
3362		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3363		 * rfc793's wired-in beta.
3364		 */
3365		if (delta < 0)
3366			delta = -delta;
3367		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3368		if ((tp->t_rttvar += delta) <= 0)
3369			tp->t_rttvar = 1;
3370		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3371		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3372	} else {
3373		/*
3374		 * No rtt measurement yet - use the unsmoothed rtt.
3375		 * Set the variance to half the rtt (so our first
3376		 * retransmit happens at 3*rtt).
3377		 */
3378		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3379		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3380		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3381	}
3382	tp->t_rtttime = 0;
3383	tp->t_rxtshift = 0;
3384
3385	/*
3386	 * the retransmit should happen at rtt + 4 * rttvar.
3387	 * Because of the way we do the smoothing, srtt and rttvar
3388	 * will each average +1/2 tick of bias.  When we compute
3389	 * the retransmit timer, we want 1/2 tick of rounding and
3390	 * 1 extra tick because of +-1/2 tick uncertainty in the
3391	 * firing of the timer.  The bias will give us exactly the
3392	 * 1.5 tick we need.  But, because the bias is
3393	 * statistical, we have to test that we don't drop below
3394	 * the minimum feasible timer (which is 2 ticks).
3395	 */
3396	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3397		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3398
3399	/*
3400	 * We received an ack for a packet that wasn't retransmitted;
3401	 * it is probably safe to discard any error indications we've
3402	 * received recently.  This isn't quite right, but close enough
3403	 * for now (a route might have failed after we sent a segment,
3404	 * and the return path might not be symmetrical).
3405	 */
3406	tp->t_softerror = 0;
3407}
3408
3409/*
3410 * Determine a reasonable value for maxseg size.
3411 * If the route is known, check route for mtu.
3412 * If none, use an mss that can be handled on the outgoing interface
3413 * without forcing IP to fragment.  If no route is found, route has no mtu,
3414 * or the destination isn't local, use a default, hopefully conservative
3415 * size (usually 512 or the default IP max size, but no more than the mtu
3416 * of the interface), as we can't discover anything about intervening
3417 * gateways or networks.  We also initialize the congestion/slow start
3418 * window to be a single segment if the destination isn't local.
3419 * While looking at the routing entry, we also initialize other path-dependent
3420 * parameters from pre-set or cached values in the routing entry.
3421 *
3422 * Also take into account the space needed for options that we
3423 * send regularly.  Make maxseg shorter by that amount to assure
3424 * that we can send maxseg amount of data even when the options
3425 * are present.  Store the upper limit of the length of options plus
3426 * data in maxopd.
3427 *
3428 * NOTE that this routine is only called when we process an incoming
3429 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3430 * settings are handled in tcp_mssopt().
3431 */
3432void
3433tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3434    struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3435{
3436	int mss = 0;
3437	u_long maxmtu = 0;
3438	struct inpcb *inp = tp->t_inpcb;
3439	struct hc_metrics_lite metrics;
3440	int origoffer;
3441#ifdef INET6
3442	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3443	size_t min_protoh = isipv6 ?
3444			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3445			    sizeof (struct tcpiphdr);
3446#else
3447	const size_t min_protoh = sizeof(struct tcpiphdr);
3448#endif
3449
3450	INP_WLOCK_ASSERT(tp->t_inpcb);
3451
3452	if (mtuoffer != -1) {
3453		KASSERT(offer == -1, ("%s: conflict", __func__));
3454		offer = mtuoffer - min_protoh;
3455	}
3456	origoffer = offer;
3457
3458	/* Initialize. */
3459#ifdef INET6
3460	if (isipv6) {
3461		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3462		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3463	}
3464#endif
3465#if defined(INET) && defined(INET6)
3466	else
3467#endif
3468#ifdef INET
3469	{
3470		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3471		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3472	}
3473#endif
3474
3475	/*
3476	 * No route to sender, stay with default mss and return.
3477	 */
3478	if (maxmtu == 0) {
3479		/*
3480		 * In case we return early we need to initialize metrics
3481		 * to a defined state as tcp_hc_get() would do for us
3482		 * if there was no cache hit.
3483		 */
3484		if (metricptr != NULL)
3485			bzero(metricptr, sizeof(struct hc_metrics_lite));
3486		return;
3487	}
3488
3489	/* What have we got? */
3490	switch (offer) {
3491		case 0:
3492			/*
3493			 * Offer == 0 means that there was no MSS on the SYN
3494			 * segment, in this case we use tcp_mssdflt as
3495			 * already assigned to t_maxopd above.
3496			 */
3497			offer = tp->t_maxopd;
3498			break;
3499
3500		case -1:
3501			/*
3502			 * Offer == -1 means that we didn't receive SYN yet.
3503			 */
3504			/* FALLTHROUGH */
3505
3506		default:
3507			/*
3508			 * Prevent DoS attack with too small MSS. Round up
3509			 * to at least minmss.
3510			 */
3511			offer = max(offer, V_tcp_minmss);
3512	}
3513
3514	/*
3515	 * rmx information is now retrieved from tcp_hostcache.
3516	 */
3517	tcp_hc_get(&inp->inp_inc, &metrics);
3518	if (metricptr != NULL)
3519		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3520
3521	/*
3522	 * If there's a discovered mtu int tcp hostcache, use it
3523	 * else, use the link mtu.
3524	 */
3525	if (metrics.rmx_mtu)
3526		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3527	else {
3528#ifdef INET6
3529		if (isipv6) {
3530			mss = maxmtu - min_protoh;
3531			if (!V_path_mtu_discovery &&
3532			    !in6_localaddr(&inp->in6p_faddr))
3533				mss = min(mss, V_tcp_v6mssdflt);
3534		}
3535#endif
3536#if defined(INET) && defined(INET6)
3537		else
3538#endif
3539#ifdef INET
3540		{
3541			mss = maxmtu - min_protoh;
3542			if (!V_path_mtu_discovery &&
3543			    !in_localaddr(inp->inp_faddr))
3544				mss = min(mss, V_tcp_mssdflt);
3545		}
3546#endif
3547		/*
3548		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3549		 * probably violates the TCP spec.
3550		 * The problem is that, since we don't know the
3551		 * other end's MSS, we are supposed to use a conservative
3552		 * default.  But, if we do that, then MTU discovery will
3553		 * never actually take place, because the conservative
3554		 * default is much less than the MTUs typically seen
3555		 * on the Internet today.  For the moment, we'll sweep
3556		 * this under the carpet.
3557		 *
3558		 * The conservative default might not actually be a problem
3559		 * if the only case this occurs is when sending an initial
3560		 * SYN with options and data to a host we've never talked
3561		 * to before.  Then, they will reply with an MSS value which
3562		 * will get recorded and the new parameters should get
3563		 * recomputed.  For Further Study.
3564		 */
3565	}
3566	mss = min(mss, offer);
3567
3568	/*
3569	 * Sanity check: make sure that maxopd will be large
3570	 * enough to allow some data on segments even if the
3571	 * all the option space is used (40bytes).  Otherwise
3572	 * funny things may happen in tcp_output.
3573	 */
3574	mss = max(mss, 64);
3575
3576	/*
3577	 * maxopd stores the maximum length of data AND options
3578	 * in a segment; maxseg is the amount of data in a normal
3579	 * segment.  We need to store this value (maxopd) apart
3580	 * from maxseg, because now every segment carries options
3581	 * and thus we normally have somewhat less data in segments.
3582	 */
3583	tp->t_maxopd = mss;
3584
3585	/*
3586	 * origoffer==-1 indicates that no segments were received yet.
3587	 * In this case we just guess.
3588	 */
3589	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3590	    (origoffer == -1 ||
3591	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3592		mss -= TCPOLEN_TSTAMP_APPA;
3593
3594	tp->t_maxseg = mss;
3595}
3596
3597void
3598tcp_mss(struct tcpcb *tp, int offer)
3599{
3600	int mss;
3601	u_long bufsize;
3602	struct inpcb *inp;
3603	struct socket *so;
3604	struct hc_metrics_lite metrics;
3605	struct tcp_ifcap cap;
3606
3607	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3608
3609	bzero(&cap, sizeof(cap));
3610	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3611
3612	mss = tp->t_maxseg;
3613	inp = tp->t_inpcb;
3614
3615	/*
3616	 * If there's a pipesize, change the socket buffer to that size,
3617	 * don't change if sb_hiwat is different than default (then it
3618	 * has been changed on purpose with setsockopt).
3619	 * Make the socket buffers an integral number of mss units;
3620	 * if the mss is larger than the socket buffer, decrease the mss.
3621	 */
3622	so = inp->inp_socket;
3623	SOCKBUF_LOCK(&so->so_snd);
3624	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3625		bufsize = metrics.rmx_sendpipe;
3626	else
3627		bufsize = so->so_snd.sb_hiwat;
3628	if (bufsize < mss)
3629		mss = bufsize;
3630	else {
3631		bufsize = roundup(bufsize, mss);
3632		if (bufsize > sb_max)
3633			bufsize = sb_max;
3634		if (bufsize > so->so_snd.sb_hiwat)
3635			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3636	}
3637	SOCKBUF_UNLOCK(&so->so_snd);
3638	tp->t_maxseg = mss;
3639
3640	SOCKBUF_LOCK(&so->so_rcv);
3641	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3642		bufsize = metrics.rmx_recvpipe;
3643	else
3644		bufsize = so->so_rcv.sb_hiwat;
3645	if (bufsize > mss) {
3646		bufsize = roundup(bufsize, mss);
3647		if (bufsize > sb_max)
3648			bufsize = sb_max;
3649		if (bufsize > so->so_rcv.sb_hiwat)
3650			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3651	}
3652	SOCKBUF_UNLOCK(&so->so_rcv);
3653
3654	/* Check the interface for TSO capabilities. */
3655	if (cap.ifcap & CSUM_TSO) {
3656		tp->t_flags |= TF_TSO;
3657		tp->t_tsomax = cap.tsomax;
3658	}
3659}
3660
3661/*
3662 * Determine the MSS option to send on an outgoing SYN.
3663 */
3664int
3665tcp_mssopt(struct in_conninfo *inc)
3666{
3667	int mss = 0;
3668	u_long maxmtu = 0;
3669	u_long thcmtu = 0;
3670	size_t min_protoh;
3671
3672	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3673
3674#ifdef INET6
3675	if (inc->inc_flags & INC_ISIPV6) {
3676		mss = V_tcp_v6mssdflt;
3677		maxmtu = tcp_maxmtu6(inc, NULL);
3678		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3679	}
3680#endif
3681#if defined(INET) && defined(INET6)
3682	else
3683#endif
3684#ifdef INET
3685	{
3686		mss = V_tcp_mssdflt;
3687		maxmtu = tcp_maxmtu(inc, NULL);
3688		min_protoh = sizeof(struct tcpiphdr);
3689	}
3690#endif
3691#if defined(INET6) || defined(INET)
3692	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3693#endif
3694
3695	if (maxmtu && thcmtu)
3696		mss = min(maxmtu, thcmtu) - min_protoh;
3697	else if (maxmtu || thcmtu)
3698		mss = max(maxmtu, thcmtu) - min_protoh;
3699
3700	return (mss);
3701}
3702
3703
3704/*
3705 * On a partial ack arrives, force the retransmission of the
3706 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3707 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3708 * be started again.
3709 */
3710static void
3711tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3712{
3713	tcp_seq onxt = tp->snd_nxt;
3714	u_long  ocwnd = tp->snd_cwnd;
3715
3716	INP_WLOCK_ASSERT(tp->t_inpcb);
3717
3718	tcp_timer_activate(tp, TT_REXMT, 0);
3719	tp->t_rtttime = 0;
3720	tp->snd_nxt = th->th_ack;
3721	/*
3722	 * Set snd_cwnd to one segment beyond acknowledged offset.
3723	 * (tp->snd_una has not yet been updated when this function is called.)
3724	 */
3725	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3726	tp->t_flags |= TF_ACKNOW;
3727	(void) tcp_output(tp);
3728	tp->snd_cwnd = ocwnd;
3729	if (SEQ_GT(onxt, tp->snd_nxt))
3730		tp->snd_nxt = onxt;
3731	/*
3732	 * Partial window deflation.  Relies on fact that tp->snd_una
3733	 * not updated yet.
3734	 */
3735	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3736		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3737	else
3738		tp->snd_cwnd = 0;
3739	tp->snd_cwnd += tp->t_maxseg;
3740}
3741