tcp_input.c revision 159949
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_input.c 159949 2006-06-26 15:35:25Z andre $
31 */
32
33#include "opt_ipfw.h"		/* for ipfw_fwd		*/
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_input.h"
40#include "opt_tcp_sack.h"
41
42#include <sys/param.h>
43#include <sys/kernel.h>
44#include <sys/mac.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/proc.h>		/* for proc0 declaration */
48#include <sys/protosw.h>
49#include <sys/signalvar.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53#include <sys/syslog.h>
54#include <sys/systm.h>
55
56#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57
58#include <vm/uma.h>
59
60#include <net/if.h>
61#include <net/route.h>
62
63#include <netinet/in.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_systm.h>
66#include <netinet/in_var.h>
67#include <netinet/ip.h>
68#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
69#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
70#include <netinet/ip_var.h>
71#include <netinet/ip_options.h>
72#include <netinet/ip6.h>
73#include <netinet/icmp6.h>
74#include <netinet6/in6_pcb.h>
75#include <netinet6/ip6_var.h>
76#include <netinet6/nd6.h>
77#include <netinet/tcp.h>
78#include <netinet/tcp_fsm.h>
79#include <netinet/tcp_seq.h>
80#include <netinet/tcp_timer.h>
81#include <netinet/tcp_var.h>
82#include <netinet6/tcp6_var.h>
83#include <netinet/tcpip.h>
84#ifdef TCPDEBUG
85#include <netinet/tcp_debug.h>
86#endif /* TCPDEBUG */
87
88#ifdef FAST_IPSEC
89#include <netipsec/ipsec.h>
90#include <netipsec/ipsec6.h>
91#endif /*FAST_IPSEC*/
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#include <netinet6/ipsec6.h>
96#include <netkey/key.h>
97#endif /*IPSEC*/
98
99#include <machine/in_cksum.h>
100
101static const int tcprexmtthresh = 3;
102
103struct	tcpstat tcpstat;
104SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
105    &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
106
107static int log_in_vain = 0;
108SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
109    &log_in_vain, 0, "Log all incoming TCP connections");
110
111static int blackhole = 0;
112SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
113	&blackhole, 0, "Do not send RST when dropping refused connections");
114
115int tcp_delack_enabled = 1;
116SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
117    &tcp_delack_enabled, 0,
118    "Delay ACK to try and piggyback it onto a data packet");
119
120#ifdef TCP_DROP_SYNFIN
121static int drop_synfin = 0;
122SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
123    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
124#endif
125
126static int tcp_do_rfc3042 = 1;
127SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
128    &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
129
130static int tcp_do_rfc3390 = 1;
131SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
132    &tcp_do_rfc3390, 0,
133    "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
134
135static int tcp_insecure_rst = 0;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
137    &tcp_insecure_rst, 0,
138    "Follow the old (insecure) criteria for accepting RST packets.");
139
140SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
141	    "TCP Segment Reassembly Queue");
142
143static int tcp_reass_maxseg = 0;
144SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RDTUN,
145	   &tcp_reass_maxseg, 0,
146	   "Global maximum number of TCP Segments in Reassembly Queue");
147
148int tcp_reass_qsize = 0;
149SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
150	   &tcp_reass_qsize, 0,
151	   "Global number of TCP Segments currently in Reassembly Queue");
152
153static int tcp_reass_maxqlen = 48;
154SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxqlen, CTLFLAG_RW,
155	   &tcp_reass_maxqlen, 0,
156	   "Maximum number of TCP Segments per individual Reassembly Queue");
157
158static int tcp_reass_overflows = 0;
159SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
160	   &tcp_reass_overflows, 0,
161	   "Global number of TCP Segment Reassembly Queue Overflows");
162
163struct inpcbhead tcb;
164#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
165struct inpcbinfo tcbinfo;
166struct mtx	*tcbinfo_mtx;
167
168static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
169
170static void	 tcp_pulloutofband(struct socket *,
171		     struct tcphdr *, struct mbuf *, int);
172static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
173		     struct mbuf *);
174static void	 tcp_xmit_timer(struct tcpcb *, int);
175static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
176static int	 tcp_timewait(struct inpcb *, struct tcpopt *,
177		     struct tcphdr *, struct mbuf *, int);
178
179/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
180#ifdef INET6
181#define ND6_HINT(tp) \
182do { \
183	if ((tp) && (tp)->t_inpcb && \
184	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
185		nd6_nud_hint(NULL, NULL, 0); \
186} while (0)
187#else
188#define ND6_HINT(tp)
189#endif
190
191/*
192 * Indicate whether this ack should be delayed.  We can delay the ack if
193 *	- there is no delayed ack timer in progress and
194 *	- our last ack wasn't a 0-sized window.  We never want to delay
195 *	  the ack that opens up a 0-sized window and
196 *		- delayed acks are enabled or
197 *		- this is a half-synchronized T/TCP connection.
198 */
199#define DELAY_ACK(tp)							\
200	((!callout_active(tp->tt_delack) &&				\
201	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
202	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
203
204/* Initialize TCP reassembly queue */
205static void
206tcp_reass_zone_change(void *tag)
207{
208
209	tcp_reass_maxseg = nmbclusters / 16;
210	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
211}
212
213uma_zone_t	tcp_reass_zone;
214void
215tcp_reass_init()
216{
217	tcp_reass_maxseg = nmbclusters / 16;
218	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
219	    &tcp_reass_maxseg);
220	tcp_reass_zone = uma_zcreate("tcpreass", sizeof (struct tseg_qent),
221	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
223	EVENTHANDLER_REGISTER(nmbclusters_change,
224	    tcp_reass_zone_change, NULL, EVENTHANDLER_PRI_ANY);
225}
226
227static int
228tcp_reass(tp, th, tlenp, m)
229	register struct tcpcb *tp;
230	register struct tcphdr *th;
231	int *tlenp;
232	struct mbuf *m;
233{
234	struct tseg_qent *q;
235	struct tseg_qent *p = NULL;
236	struct tseg_qent *nq;
237	struct tseg_qent *te = NULL;
238	struct socket *so = tp->t_inpcb->inp_socket;
239	int flags;
240
241	INP_LOCK_ASSERT(tp->t_inpcb);
242
243	/*
244	 * XXX: tcp_reass() is rather inefficient with its data structures
245	 * and should be rewritten (see NetBSD for optimizations).  While
246	 * doing that it should move to its own file tcp_reass.c.
247	 */
248
249	/*
250	 * Call with th==NULL after become established to
251	 * force pre-ESTABLISHED data up to user socket.
252	 */
253	if (th == NULL)
254		goto present;
255
256	/*
257	 * Limit the number of segments in the reassembly queue to prevent
258	 * holding on to too many segments (and thus running out of mbufs).
259	 * Make sure to let the missing segment through which caused this
260	 * queue.  Always keep one global queue entry spare to be able to
261	 * process the missing segment.
262	 */
263	if (th->th_seq != tp->rcv_nxt &&
264	    (tcp_reass_qsize + 1 >= tcp_reass_maxseg ||
265	     tp->t_segqlen >= tcp_reass_maxqlen)) {
266		tcp_reass_overflows++;
267		tcpstat.tcps_rcvmemdrop++;
268		m_freem(m);
269		*tlenp = 0;
270		return (0);
271	}
272
273	/*
274	 * Allocate a new queue entry. If we can't, or hit the zone limit
275	 * just drop the pkt.
276	 */
277	te = uma_zalloc(tcp_reass_zone, M_NOWAIT);
278	if (te == NULL) {
279		tcpstat.tcps_rcvmemdrop++;
280		m_freem(m);
281		*tlenp = 0;
282		return (0);
283	}
284	tp->t_segqlen++;
285	tcp_reass_qsize++;
286
287	/*
288	 * Find a segment which begins after this one does.
289	 */
290	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
291		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
292			break;
293		p = q;
294	}
295
296	/*
297	 * If there is a preceding segment, it may provide some of
298	 * our data already.  If so, drop the data from the incoming
299	 * segment.  If it provides all of our data, drop us.
300	 */
301	if (p != NULL) {
302		register int i;
303		/* conversion to int (in i) handles seq wraparound */
304		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
305		if (i > 0) {
306			if (i >= *tlenp) {
307				tcpstat.tcps_rcvduppack++;
308				tcpstat.tcps_rcvdupbyte += *tlenp;
309				m_freem(m);
310				uma_zfree(tcp_reass_zone, te);
311				tp->t_segqlen--;
312				tcp_reass_qsize--;
313				/*
314				 * Try to present any queued data
315				 * at the left window edge to the user.
316				 * This is needed after the 3-WHS
317				 * completes.
318				 */
319				goto present;	/* ??? */
320			}
321			m_adj(m, i);
322			*tlenp -= i;
323			th->th_seq += i;
324		}
325	}
326	tcpstat.tcps_rcvoopack++;
327	tcpstat.tcps_rcvoobyte += *tlenp;
328
329	/*
330	 * While we overlap succeeding segments trim them or,
331	 * if they are completely covered, dequeue them.
332	 */
333	while (q) {
334		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
335		if (i <= 0)
336			break;
337		if (i < q->tqe_len) {
338			q->tqe_th->th_seq += i;
339			q->tqe_len -= i;
340			m_adj(q->tqe_m, i);
341			break;
342		}
343
344		nq = LIST_NEXT(q, tqe_q);
345		LIST_REMOVE(q, tqe_q);
346		m_freem(q->tqe_m);
347		uma_zfree(tcp_reass_zone, q);
348		tp->t_segqlen--;
349		tcp_reass_qsize--;
350		q = nq;
351	}
352
353	/* Insert the new segment queue entry into place. */
354	te->tqe_m = m;
355	te->tqe_th = th;
356	te->tqe_len = *tlenp;
357
358	if (p == NULL) {
359		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
360	} else {
361		LIST_INSERT_AFTER(p, te, tqe_q);
362	}
363
364present:
365	/*
366	 * Present data to user, advancing rcv_nxt through
367	 * completed sequence space.
368	 */
369	if (!TCPS_HAVEESTABLISHED(tp->t_state))
370		return (0);
371	q = LIST_FIRST(&tp->t_segq);
372	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
373		return (0);
374	SOCKBUF_LOCK(&so->so_rcv);
375	do {
376		tp->rcv_nxt += q->tqe_len;
377		flags = q->tqe_th->th_flags & TH_FIN;
378		nq = LIST_NEXT(q, tqe_q);
379		LIST_REMOVE(q, tqe_q);
380		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
381			m_freem(q->tqe_m);
382		else
383			sbappendstream_locked(&so->so_rcv, q->tqe_m);
384		uma_zfree(tcp_reass_zone, q);
385		tp->t_segqlen--;
386		tcp_reass_qsize--;
387		q = nq;
388	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
389	ND6_HINT(tp);
390	sorwakeup_locked(so);
391	return (flags);
392}
393
394/*
395 * TCP input routine, follows pages 65-76 of the
396 * protocol specification dated September, 1981 very closely.
397 */
398#ifdef INET6
399int
400tcp6_input(mp, offp, proto)
401	struct mbuf **mp;
402	int *offp, proto;
403{
404	register struct mbuf *m = *mp;
405	struct in6_ifaddr *ia6;
406
407	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
408
409	/*
410	 * draft-itojun-ipv6-tcp-to-anycast
411	 * better place to put this in?
412	 */
413	ia6 = ip6_getdstifaddr(m);
414	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
415		struct ip6_hdr *ip6;
416
417		ip6 = mtod(m, struct ip6_hdr *);
418		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
419			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
420		return IPPROTO_DONE;
421	}
422
423	tcp_input(m, *offp);
424	return IPPROTO_DONE;
425}
426#endif
427
428void
429tcp_input(m, off0)
430	register struct mbuf *m;
431	int off0;
432{
433	register struct tcphdr *th;
434	register struct ip *ip = NULL;
435	register struct ipovly *ipov;
436	register struct inpcb *inp = NULL;
437	u_char *optp = NULL;
438	int optlen = 0;
439	int len, tlen, off;
440	int drop_hdrlen;
441	register struct tcpcb *tp = 0;
442	register int thflags;
443	struct socket *so = 0;
444	int todrop, acked, ourfinisacked, needoutput = 0;
445	u_long tiwin;
446	struct tcpopt to;		/* options in this segment */
447	int headlocked = 0;
448#ifdef IPFIREWALL_FORWARD
449	struct m_tag *fwd_tag;
450#endif
451	int rstreason; /* For badport_bandlim accounting purposes */
452
453	struct ip6_hdr *ip6 = NULL;
454#ifdef INET6
455	int isipv6;
456#else
457	const int isipv6 = 0;
458#endif
459
460#ifdef TCPDEBUG
461	/*
462	 * The size of tcp_saveipgen must be the size of the max ip header,
463	 * now IPv6.
464	 */
465	u_char tcp_saveipgen[40];
466	struct tcphdr tcp_savetcp;
467	short ostate = 0;
468#endif
469
470#ifdef INET6
471	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
472#endif
473	bzero((char *)&to, sizeof(to));
474
475	tcpstat.tcps_rcvtotal++;
476
477	if (isipv6) {
478#ifdef INET6
479		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
480		ip6 = mtod(m, struct ip6_hdr *);
481		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
482		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
483			tcpstat.tcps_rcvbadsum++;
484			goto drop;
485		}
486		th = (struct tcphdr *)((caddr_t)ip6 + off0);
487
488		/*
489		 * Be proactive about unspecified IPv6 address in source.
490		 * As we use all-zero to indicate unbounded/unconnected pcb,
491		 * unspecified IPv6 address can be used to confuse us.
492		 *
493		 * Note that packets with unspecified IPv6 destination is
494		 * already dropped in ip6_input.
495		 */
496		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
497			/* XXX stat */
498			goto drop;
499		}
500#else
501		th = NULL;		/* XXX: avoid compiler warning */
502#endif
503	} else {
504		/*
505		 * Get IP and TCP header together in first mbuf.
506		 * Note: IP leaves IP header in first mbuf.
507		 */
508		if (off0 > sizeof (struct ip)) {
509			ip_stripoptions(m, (struct mbuf *)0);
510			off0 = sizeof(struct ip);
511		}
512		if (m->m_len < sizeof (struct tcpiphdr)) {
513			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
514				tcpstat.tcps_rcvshort++;
515				return;
516			}
517		}
518		ip = mtod(m, struct ip *);
519		ipov = (struct ipovly *)ip;
520		th = (struct tcphdr *)((caddr_t)ip + off0);
521		tlen = ip->ip_len;
522
523		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
524			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
525				th->th_sum = m->m_pkthdr.csum_data;
526			else
527				th->th_sum = in_pseudo(ip->ip_src.s_addr,
528						ip->ip_dst.s_addr,
529						htonl(m->m_pkthdr.csum_data +
530							ip->ip_len +
531							IPPROTO_TCP));
532			th->th_sum ^= 0xffff;
533#ifdef TCPDEBUG
534			ipov->ih_len = (u_short)tlen;
535			ipov->ih_len = htons(ipov->ih_len);
536#endif
537		} else {
538			/*
539			 * Checksum extended TCP header and data.
540			 */
541			len = sizeof (struct ip) + tlen;
542			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
543			ipov->ih_len = (u_short)tlen;
544			ipov->ih_len = htons(ipov->ih_len);
545			th->th_sum = in_cksum(m, len);
546		}
547		if (th->th_sum) {
548			tcpstat.tcps_rcvbadsum++;
549			goto drop;
550		}
551#ifdef INET6
552		/* Re-initialization for later version check */
553		ip->ip_v = IPVERSION;
554#endif
555	}
556
557	/*
558	 * Check that TCP offset makes sense,
559	 * pull out TCP options and adjust length.		XXX
560	 */
561	off = th->th_off << 2;
562	if (off < sizeof (struct tcphdr) || off > tlen) {
563		tcpstat.tcps_rcvbadoff++;
564		goto drop;
565	}
566	tlen -= off;	/* tlen is used instead of ti->ti_len */
567	if (off > sizeof (struct tcphdr)) {
568		if (isipv6) {
569#ifdef INET6
570			IP6_EXTHDR_CHECK(m, off0, off, );
571			ip6 = mtod(m, struct ip6_hdr *);
572			th = (struct tcphdr *)((caddr_t)ip6 + off0);
573#endif
574		} else {
575			if (m->m_len < sizeof(struct ip) + off) {
576				if ((m = m_pullup(m, sizeof (struct ip) + off))
577						== 0) {
578					tcpstat.tcps_rcvshort++;
579					return;
580				}
581				ip = mtod(m, struct ip *);
582				ipov = (struct ipovly *)ip;
583				th = (struct tcphdr *)((caddr_t)ip + off0);
584			}
585		}
586		optlen = off - sizeof (struct tcphdr);
587		optp = (u_char *)(th + 1);
588	}
589	thflags = th->th_flags;
590
591#ifdef TCP_DROP_SYNFIN
592	/*
593	 * If the drop_synfin option is enabled, drop all packets with
594	 * both the SYN and FIN bits set. This prevents e.g. nmap from
595	 * identifying the TCP/IP stack.
596	 *
597	 * This is a violation of the TCP specification.
598	 */
599	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
600		goto drop;
601#endif
602
603	/*
604	 * Convert TCP protocol specific fields to host format.
605	 */
606	th->th_seq = ntohl(th->th_seq);
607	th->th_ack = ntohl(th->th_ack);
608	th->th_win = ntohs(th->th_win);
609	th->th_urp = ntohs(th->th_urp);
610
611	/*
612	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
613	 * until after ip6_savecontrol() is called and before other functions
614	 * which don't want those proto headers.
615	 * Because ip6_savecontrol() is going to parse the mbuf to
616	 * search for data to be passed up to user-land, it wants mbuf
617	 * parameters to be unchanged.
618	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
619	 * latest version of the advanced API (20020110).
620	 */
621	drop_hdrlen = off0 + off;
622
623	/*
624	 * Locate pcb for segment.
625	 */
626	INP_INFO_WLOCK(&tcbinfo);
627	headlocked = 1;
628findpcb:
629	KASSERT(headlocked, ("tcp_input: findpcb: head not locked"));
630#ifdef IPFIREWALL_FORWARD
631	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
632	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
633
634	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
635		struct sockaddr_in *next_hop;
636
637		next_hop = (struct sockaddr_in *)(fwd_tag+1);
638		/*
639		 * Transparently forwarded. Pretend to be the destination.
640		 * already got one like this?
641		 */
642		inp = in_pcblookup_hash(&tcbinfo,
643					ip->ip_src, th->th_sport,
644					ip->ip_dst, th->th_dport,
645					0, m->m_pkthdr.rcvif);
646		if (!inp) {
647			/* It's new.  Try to find the ambushing socket. */
648			inp = in_pcblookup_hash(&tcbinfo,
649						ip->ip_src, th->th_sport,
650						next_hop->sin_addr,
651						next_hop->sin_port ?
652						    ntohs(next_hop->sin_port) :
653						    th->th_dport,
654						1, m->m_pkthdr.rcvif);
655		}
656		/* Remove the tag from the packet.  We don't need it anymore. */
657		m_tag_delete(m, fwd_tag);
658	} else {
659#endif /* IPFIREWALL_FORWARD */
660		if (isipv6) {
661#ifdef INET6
662			inp = in6_pcblookup_hash(&tcbinfo,
663						 &ip6->ip6_src, th->th_sport,
664						 &ip6->ip6_dst, th->th_dport,
665						 1, m->m_pkthdr.rcvif);
666#endif
667		} else
668			inp = in_pcblookup_hash(&tcbinfo,
669						ip->ip_src, th->th_sport,
670						ip->ip_dst, th->th_dport,
671						1, m->m_pkthdr.rcvif);
672#ifdef IPFIREWALL_FORWARD
673	}
674#endif /* IPFIREWALL_FORWARD */
675
676#if defined(IPSEC) || defined(FAST_IPSEC)
677#ifdef INET6
678	if (isipv6) {
679		if (inp != NULL && ipsec6_in_reject(m, inp)) {
680#ifdef IPSEC
681			ipsec6stat.in_polvio++;
682#endif
683			goto drop;
684		}
685	} else
686#endif /* INET6 */
687	if (inp != NULL && ipsec4_in_reject(m, inp)) {
688#ifdef IPSEC
689		ipsecstat.in_polvio++;
690#endif
691		goto drop;
692	}
693#endif /*IPSEC || FAST_IPSEC*/
694
695	/*
696	 * If the state is CLOSED (i.e., TCB does not exist) then
697	 * all data in the incoming segment is discarded.
698	 * If the TCB exists but is in CLOSED state, it is embryonic,
699	 * but should either do a listen or a connect soon.
700	 */
701	if (inp == NULL) {
702		if (log_in_vain) {
703#ifdef INET6
704			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
705#else
706			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
707#endif
708
709			if (isipv6) {
710#ifdef INET6
711				strcpy(dbuf, "[");
712				strcpy(sbuf, "[");
713				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
714				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
715				strcat(dbuf, "]");
716				strcat(sbuf, "]");
717#endif
718			} else {
719				strcpy(dbuf, inet_ntoa(ip->ip_dst));
720				strcpy(sbuf, inet_ntoa(ip->ip_src));
721			}
722			switch (log_in_vain) {
723			case 1:
724				if ((thflags & TH_SYN) == 0)
725					break;
726				/* FALLTHROUGH */
727			case 2:
728				log(LOG_INFO,
729				    "Connection attempt to TCP %s:%d "
730				    "from %s:%d flags:0x%02x\n",
731				    dbuf, ntohs(th->th_dport), sbuf,
732				    ntohs(th->th_sport), thflags);
733				break;
734			default:
735				break;
736			}
737		}
738		if (blackhole) {
739			switch (blackhole) {
740			case 1:
741				if (thflags & TH_SYN)
742					goto drop;
743				break;
744			case 2:
745				goto drop;
746			default:
747				goto drop;
748			}
749		}
750		rstreason = BANDLIM_RST_CLOSEDPORT;
751		goto dropwithreset;
752	}
753	INP_LOCK(inp);
754
755	/* Check the minimum TTL for socket. */
756	if (inp->inp_ip_minttl != 0) {
757#ifdef INET6
758		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
759			goto drop;
760		else
761#endif
762		if (inp->inp_ip_minttl > ip->ip_ttl)
763			goto drop;
764	}
765
766	if (inp->inp_vflag & INP_TIMEWAIT) {
767		/*
768		 * The only option of relevance is TOF_CC, and only if
769		 * present in a SYN segment.  See tcp_timewait().
770		 */
771		if (thflags & TH_SYN)
772			tcp_dooptions(&to, optp, optlen, TO_SYN);
773		if (tcp_timewait(inp, &to, th, m, tlen))
774			goto findpcb;
775		/*
776		 * tcp_timewait unlocks inp.
777		 */
778		INP_INFO_WUNLOCK(&tcbinfo);
779		return;
780	}
781	tp = intotcpcb(inp);
782	if (tp == 0) {
783		INP_UNLOCK(inp);
784		rstreason = BANDLIM_RST_CLOSEDPORT;
785		goto dropwithreset;
786	}
787	if (tp->t_state == TCPS_CLOSED)
788		goto drop;
789
790#ifdef MAC
791	INP_LOCK_ASSERT(inp);
792	if (mac_check_inpcb_deliver(inp, m))
793		goto drop;
794#endif
795	so = inp->inp_socket;
796	KASSERT(so != NULL, ("tcp_input: so == NULL"));
797#ifdef TCPDEBUG
798	if (so->so_options & SO_DEBUG) {
799		ostate = tp->t_state;
800		if (isipv6)
801			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
802		else
803			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
804		tcp_savetcp = *th;
805	}
806#endif
807	if (so->so_options & SO_ACCEPTCONN) {
808		struct in_conninfo inc;
809
810#ifdef INET6
811		inc.inc_isipv6 = isipv6;
812#endif
813		if (isipv6) {
814			inc.inc6_faddr = ip6->ip6_src;
815			inc.inc6_laddr = ip6->ip6_dst;
816		} else {
817			inc.inc_faddr = ip->ip_src;
818			inc.inc_laddr = ip->ip_dst;
819		}
820		inc.inc_fport = th->th_sport;
821		inc.inc_lport = th->th_dport;
822
823	        /*
824	         * If the state is LISTEN then ignore segment if it contains
825		 * a RST.  If the segment contains an ACK then it is bad and
826		 * send a RST.  If it does not contain a SYN then it is not
827		 * interesting; drop it.
828		 *
829		 * If the state is SYN_RECEIVED (syncache) and seg contains
830		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
831		 * contains a RST, check the sequence number to see if it
832		 * is a valid reset segment.
833		 */
834		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
835			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
836				if (!syncache_expand(&inc, th, &so, m)) {
837					/*
838					 * No syncache entry, or ACK was not
839					 * for our SYN/ACK.  Send a RST.
840					 */
841					tcpstat.tcps_badsyn++;
842					rstreason = BANDLIM_RST_OPENPORT;
843					goto dropwithreset;
844				}
845				if (so == NULL) {
846					/*
847					 * Could not complete 3-way handshake,
848					 * connection is being closed down, and
849					 * syncache has free'd mbuf.
850					 */
851					INP_UNLOCK(inp);
852					INP_INFO_WUNLOCK(&tcbinfo);
853					return;
854				}
855				/*
856				 * Socket is created in state SYN_RECEIVED.
857				 * Continue processing segment.
858				 */
859				INP_UNLOCK(inp);
860				inp = sotoinpcb(so);
861				INP_LOCK(inp);
862				tp = intotcpcb(inp);
863				/*
864				 * This is what would have happened in
865				 * tcp_output() when the SYN,ACK was sent.
866				 */
867				tp->snd_up = tp->snd_una;
868				tp->snd_max = tp->snd_nxt = tp->iss + 1;
869				tp->last_ack_sent = tp->rcv_nxt;
870				goto after_listen;
871			}
872			if (thflags & TH_RST) {
873				syncache_chkrst(&inc, th);
874				goto drop;
875			}
876			if (thflags & TH_ACK) {
877				syncache_badack(&inc);
878				tcpstat.tcps_badsyn++;
879				rstreason = BANDLIM_RST_OPENPORT;
880				goto dropwithreset;
881			}
882			goto drop;
883		}
884
885		/*
886		 * Segment's flags are (SYN) or (SYN|FIN).
887		 */
888#ifdef INET6
889		/*
890		 * If deprecated address is forbidden,
891		 * we do not accept SYN to deprecated interface
892		 * address to prevent any new inbound connection from
893		 * getting established.
894		 * When we do not accept SYN, we send a TCP RST,
895		 * with deprecated source address (instead of dropping
896		 * it).  We compromise it as it is much better for peer
897		 * to send a RST, and RST will be the final packet
898		 * for the exchange.
899		 *
900		 * If we do not forbid deprecated addresses, we accept
901		 * the SYN packet.  RFC2462 does not suggest dropping
902		 * SYN in this case.
903		 * If we decipher RFC2462 5.5.4, it says like this:
904		 * 1. use of deprecated addr with existing
905		 *    communication is okay - "SHOULD continue to be
906		 *    used"
907		 * 2. use of it with new communication:
908		 *   (2a) "SHOULD NOT be used if alternate address
909		 *        with sufficient scope is available"
910		 *   (2b) nothing mentioned otherwise.
911		 * Here we fall into (2b) case as we have no choice in
912		 * our source address selection - we must obey the peer.
913		 *
914		 * The wording in RFC2462 is confusing, and there are
915		 * multiple description text for deprecated address
916		 * handling - worse, they are not exactly the same.
917		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
918		 */
919		if (isipv6 && !ip6_use_deprecated) {
920			struct in6_ifaddr *ia6;
921
922			if ((ia6 = ip6_getdstifaddr(m)) &&
923			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
924				INP_UNLOCK(inp);
925				tp = NULL;
926				rstreason = BANDLIM_RST_OPENPORT;
927				goto dropwithreset;
928			}
929		}
930#endif
931		/*
932		 * If it is from this socket, drop it, it must be forged.
933		 * Don't bother responding if the destination was a broadcast.
934		 */
935		if (th->th_dport == th->th_sport) {
936			if (isipv6) {
937				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
938						       &ip6->ip6_src))
939					goto drop;
940			} else {
941				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
942					goto drop;
943			}
944		}
945		/*
946		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
947		 *
948		 * Note that it is quite possible to receive unicast
949		 * link-layer packets with a broadcast IP address. Use
950		 * in_broadcast() to find them.
951		 */
952		if (m->m_flags & (M_BCAST|M_MCAST))
953			goto drop;
954		if (isipv6) {
955			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
956			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
957				goto drop;
958		} else {
959			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
960			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
961			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
962			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
963				goto drop;
964		}
965		/*
966		 * SYN appears to be valid; create compressed TCP state
967		 * for syncache, or perform t/tcp connection.
968		 */
969		if (so->so_qlen <= so->so_qlimit) {
970#ifdef TCPDEBUG
971			if (so->so_options & SO_DEBUG)
972				tcp_trace(TA_INPUT, ostate, tp,
973				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
974#endif
975			tcp_dooptions(&to, optp, optlen, TO_SYN);
976			if (!syncache_add(&inc, &to, th, inp, &so, m))
977				goto drop;	/* XXX: does not happen */
978			if (so == NULL) {
979				/*
980				 * Entry added to syncache, mbuf used to
981				 * send SYN,ACK packet.  Everything unlocked
982				 * already.
983				 */
984				return;
985			}
986			panic("T/TCP not supported at the moment");
987#if 0 /* T/TCP */
988			/*
989			 * Segment passed TAO tests.
990			 * XXX: Can't happen at the moment.
991			 */
992			INP_UNLOCK(inp);
993			inp = sotoinpcb(so);
994			INP_LOCK(inp);
995			tp = intotcpcb(inp);
996			tp->t_starttime = ticks;
997			tp->t_state = TCPS_ESTABLISHED;
998
999			/*
1000			 * T/TCP logic:
1001			 * If there is a FIN or if there is data, then
1002			 * delay SYN,ACK(SYN) in the hope of piggy-backing
1003			 * it on a response segment.  Otherwise must send
1004			 * ACK now in case the other side is slow starting.
1005			 */
1006			if (thflags & TH_FIN || tlen != 0)
1007				tp->t_flags |= (TF_DELACK | TF_NEEDSYN);
1008			else
1009				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1010			tiwin = th->th_win << tp->snd_scale;
1011			tcpstat.tcps_connects++;
1012			soisconnected(so);
1013			goto trimthenstep6;
1014#endif	/* T/TCP */
1015		}
1016		goto drop;
1017	}
1018after_listen:
1019	KASSERT(headlocked, ("tcp_input: after_listen: head not locked"));
1020	INP_LOCK_ASSERT(inp);
1021
1022	/* Syncache takes care of sockets in the listen state. */
1023	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN"));
1024
1025	/*
1026	 * This is the second part of the MSS DoS prevention code (after
1027	 * minmss on the sending side) and it deals with too many too small
1028	 * tcp packets in a too short timeframe (1 second).
1029	 *
1030	 * For every full second we count the number of received packets
1031	 * and bytes. If we get a lot of packets per second for this connection
1032	 * (tcp_minmssoverload) we take a closer look at it and compute the
1033	 * average packet size for the past second. If that is less than
1034	 * tcp_minmss we get too many packets with very small payload which
1035	 * is not good and burdens our system (and every packet generates
1036	 * a wakeup to the process connected to our socket). We can reasonable
1037	 * expect this to be small packet DoS attack to exhaust our CPU
1038	 * cycles.
1039	 *
1040	 * Care has to be taken for the minimum packet overload value. This
1041	 * value defines the minimum number of packets per second before we
1042	 * start to worry. This must not be too low to avoid killing for
1043	 * example interactive connections with many small packets like
1044	 * telnet or SSH.
1045	 *
1046	 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1047	 * this check.
1048	 *
1049	 * Account for packet if payload packet, skip over ACK, etc.
1050	 */
1051	if (tcp_minmss && tcp_minmssoverload &&
1052	    tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
1053		if ((unsigned int)(tp->rcv_second - ticks) < hz) {
1054			tp->rcv_pps++;
1055			tp->rcv_byps += tlen + off;
1056			if (tp->rcv_pps > tcp_minmssoverload) {
1057				if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) {
1058					printf("too many small tcp packets from "
1059					       "%s:%u, av. %lubyte/packet, "
1060					       "dropping connection\n",
1061#ifdef INET6
1062						isipv6 ?
1063						ip6_sprintf(&inp->inp_inc.inc6_faddr) :
1064#endif
1065						inet_ntoa(inp->inp_inc.inc_faddr),
1066						inp->inp_inc.inc_fport,
1067						tp->rcv_byps / tp->rcv_pps);
1068					KASSERT(headlocked, ("tcp_input: "
1069					    "after_listen: tcp_drop: head "
1070					    "not locked"));
1071					tp = tcp_drop(tp, ECONNRESET);
1072					tcpstat.tcps_minmssdrops++;
1073					goto drop;
1074				}
1075			}
1076		} else {
1077			tp->rcv_second = ticks + hz;
1078			tp->rcv_pps = 1;
1079			tp->rcv_byps = tlen + off;
1080		}
1081	}
1082
1083	/*
1084	 * Segment received on connection.
1085	 * Reset idle time and keep-alive timer.
1086	 */
1087	tp->t_rcvtime = ticks;
1088	if (TCPS_HAVEESTABLISHED(tp->t_state))
1089		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1090
1091	/*
1092	 * Unscale the window into a 32-bit value.
1093	 * This value is bogus for the TCPS_SYN_SENT state
1094	 * and is overwritten later.
1095	 */
1096	tiwin = th->th_win << tp->snd_scale;
1097
1098	/*
1099	 * Parse options on any incoming segment.
1100	 */
1101	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) ? TO_SYN : 0);
1102
1103	/*
1104	 * If echoed timestamp is later than the current time,
1105	 * fall back to non RFC1323 RTT calculation.
1106	 */
1107	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
1108	    TSTMP_GT(to.to_tsecr, ticks))
1109		to.to_tsecr = 0;
1110
1111	/*
1112	 * Process options only when we get SYN/ACK back. The SYN case
1113	 * for incoming connections is handled in tcp_syncache.
1114	 * XXX this is traditional behavior, may need to be cleaned up.
1115	 */
1116	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1117		if ((to.to_flags & TOF_SCALE) &&
1118		    (tp->t_flags & TF_REQ_SCALE)) {
1119			tp->t_flags |= TF_RCVD_SCALE;
1120			tp->snd_scale = to.to_requested_s_scale;
1121			tp->snd_wnd = th->th_win << tp->snd_scale;
1122			tiwin = tp->snd_wnd;
1123		}
1124		if (to.to_flags & TOF_TS) {
1125			tp->t_flags |= TF_RCVD_TSTMP;
1126			tp->ts_recent = to.to_tsval;
1127			tp->ts_recent_age = ticks;
1128		}
1129		if (to.to_flags & TOF_MSS)
1130			tcp_mss(tp, to.to_mss);
1131		if (tp->sack_enable) {
1132			if (!(to.to_flags & TOF_SACK))
1133				tp->sack_enable = 0;
1134			else
1135				tp->t_flags |= TF_SACK_PERMIT;
1136		}
1137
1138	}
1139
1140	/*
1141	 * Header prediction: check for the two common cases
1142	 * of a uni-directional data xfer.  If the packet has
1143	 * no control flags, is in-sequence, the window didn't
1144	 * change and we're not retransmitting, it's a
1145	 * candidate.  If the length is zero and the ack moved
1146	 * forward, we're the sender side of the xfer.  Just
1147	 * free the data acked & wake any higher level process
1148	 * that was blocked waiting for space.  If the length
1149	 * is non-zero and the ack didn't move, we're the
1150	 * receiver side.  If we're getting packets in-order
1151	 * (the reassembly queue is empty), add the data to
1152	 * the socket buffer and note that we need a delayed ack.
1153	 * Make sure that the hidden state-flags are also off.
1154	 * Since we check for TCPS_ESTABLISHED above, it can only
1155	 * be TH_NEEDSYN.
1156	 */
1157	if (tp->t_state == TCPS_ESTABLISHED &&
1158	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1159	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1160	    ((to.to_flags & TOF_TS) == 0 ||
1161	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1162	     th->th_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd &&
1163	     tp->snd_nxt == tp->snd_max) {
1164
1165		/*
1166		 * If last ACK falls within this segment's sequence numbers,
1167		 * record the timestamp.
1168		 * NOTE that the test is modified according to the latest
1169		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1170		 */
1171		if ((to.to_flags & TOF_TS) != 0 &&
1172		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1173			tp->ts_recent_age = ticks;
1174			tp->ts_recent = to.to_tsval;
1175		}
1176
1177		if (tlen == 0) {
1178			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1179			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1180			    tp->snd_cwnd >= tp->snd_wnd &&
1181			    ((!tcp_do_newreno && !tp->sack_enable &&
1182			      tp->t_dupacks < tcprexmtthresh) ||
1183			     ((tcp_do_newreno || tp->sack_enable) &&
1184			      !IN_FASTRECOVERY(tp) && to.to_nsacks == 0 &&
1185			      TAILQ_EMPTY(&tp->snd_holes)))) {
1186				KASSERT(headlocked, ("headlocked"));
1187				INP_INFO_WUNLOCK(&tcbinfo);
1188				headlocked = 0;
1189				/*
1190				 * this is a pure ack for outstanding data.
1191				 */
1192				++tcpstat.tcps_predack;
1193				/*
1194				 * "bad retransmit" recovery
1195				 */
1196				if (tp->t_rxtshift == 1 &&
1197				    ticks < tp->t_badrxtwin) {
1198					++tcpstat.tcps_sndrexmitbad;
1199					tp->snd_cwnd = tp->snd_cwnd_prev;
1200					tp->snd_ssthresh =
1201					    tp->snd_ssthresh_prev;
1202					tp->snd_recover = tp->snd_recover_prev;
1203					if (tp->t_flags & TF_WASFRECOVERY)
1204					    ENTER_FASTRECOVERY(tp);
1205					tp->snd_nxt = tp->snd_max;
1206					tp->t_badrxtwin = 0;
1207				}
1208
1209				/*
1210				 * Recalculate the transmit timer / rtt.
1211				 *
1212				 * Some boxes send broken timestamp replies
1213				 * during the SYN+ACK phase, ignore
1214				 * timestamps of 0 or we could calculate a
1215				 * huge RTT and blow up the retransmit timer.
1216				 */
1217				if ((to.to_flags & TOF_TS) != 0 &&
1218				    to.to_tsecr) {
1219					if (!tp->t_rttlow ||
1220					    tp->t_rttlow > ticks - to.to_tsecr)
1221						tp->t_rttlow = ticks - to.to_tsecr;
1222					tcp_xmit_timer(tp,
1223					    ticks - to.to_tsecr + 1);
1224				} else if (tp->t_rtttime &&
1225					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1226					if (!tp->t_rttlow ||
1227					    tp->t_rttlow > ticks - tp->t_rtttime)
1228						tp->t_rttlow = ticks - tp->t_rtttime;
1229					tcp_xmit_timer(tp,
1230							ticks - tp->t_rtttime);
1231				}
1232				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1233				acked = th->th_ack - tp->snd_una;
1234				tcpstat.tcps_rcvackpack++;
1235				tcpstat.tcps_rcvackbyte += acked;
1236				sbdrop(&so->so_snd, acked);
1237				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1238				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1239					tp->snd_recover = th->th_ack - 1;
1240				tp->snd_una = th->th_ack;
1241				/*
1242				 * pull snd_wl2 up to prevent seq wrap relative
1243				 * to th_ack.
1244				 */
1245				tp->snd_wl2 = th->th_ack;
1246				tp->t_dupacks = 0;
1247				m_freem(m);
1248				ND6_HINT(tp); /* some progress has been done */
1249
1250				/*
1251				 * If all outstanding data are acked, stop
1252				 * retransmit timer, otherwise restart timer
1253				 * using current (possibly backed-off) value.
1254				 * If process is waiting for space,
1255				 * wakeup/selwakeup/signal.  If data
1256				 * are ready to send, let tcp_output
1257				 * decide between more output or persist.
1258
1259#ifdef TCPDEBUG
1260				if (so->so_options & SO_DEBUG)
1261					tcp_trace(TA_INPUT, ostate, tp,
1262					    (void *)tcp_saveipgen,
1263					    &tcp_savetcp, 0);
1264#endif
1265				 */
1266				if (tp->snd_una == tp->snd_max)
1267					callout_stop(tp->tt_rexmt);
1268				else if (!callout_active(tp->tt_persist))
1269					callout_reset(tp->tt_rexmt,
1270						      tp->t_rxtcur,
1271						      tcp_timer_rexmt, tp);
1272
1273				sowwakeup(so);
1274				if (so->so_snd.sb_cc)
1275					(void) tcp_output(tp);
1276				goto check_delack;
1277			}
1278		} else if (th->th_ack == tp->snd_una &&
1279		    LIST_EMPTY(&tp->t_segq) &&
1280		    tlen <= sbspace(&so->so_rcv)) {
1281			KASSERT(headlocked, ("headlocked"));
1282			INP_INFO_WUNLOCK(&tcbinfo);
1283			headlocked = 0;
1284			/*
1285			 * this is a pure, in-sequence data packet
1286			 * with nothing on the reassembly queue and
1287			 * we have enough buffer space to take it.
1288			 */
1289			/* Clean receiver SACK report if present */
1290			if (tp->sack_enable && tp->rcv_numsacks)
1291				tcp_clean_sackreport(tp);
1292			++tcpstat.tcps_preddat;
1293			tp->rcv_nxt += tlen;
1294			/*
1295			 * Pull snd_wl1 up to prevent seq wrap relative to
1296			 * th_seq.
1297			 */
1298			tp->snd_wl1 = th->th_seq;
1299			/*
1300			 * Pull rcv_up up to prevent seq wrap relative to
1301			 * rcv_nxt.
1302			 */
1303			tp->rcv_up = tp->rcv_nxt;
1304			tcpstat.tcps_rcvpack++;
1305			tcpstat.tcps_rcvbyte += tlen;
1306			ND6_HINT(tp);	/* some progress has been done */
1307			/*
1308#ifdef TCPDEBUG
1309			if (so->so_options & SO_DEBUG)
1310				tcp_trace(TA_INPUT, ostate, tp,
1311				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1312#endif
1313			 * Add data to socket buffer.
1314			 */
1315			SOCKBUF_LOCK(&so->so_rcv);
1316			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1317				m_freem(m);
1318			} else {
1319				m_adj(m, drop_hdrlen);	/* delayed header drop */
1320				sbappendstream_locked(&so->so_rcv, m);
1321			}
1322			sorwakeup_locked(so);
1323			if (DELAY_ACK(tp)) {
1324				tp->t_flags |= TF_DELACK;
1325			} else {
1326				tp->t_flags |= TF_ACKNOW;
1327				tcp_output(tp);
1328			}
1329			goto check_delack;
1330		}
1331	}
1332
1333	/*
1334	 * Calculate amount of space in receive window,
1335	 * and then do TCP input processing.
1336	 * Receive window is amount of space in rcv queue,
1337	 * but not less than advertised window.
1338	 */
1339	{ int win;
1340
1341	win = sbspace(&so->so_rcv);
1342	if (win < 0)
1343		win = 0;
1344	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1345	}
1346
1347	switch (tp->t_state) {
1348
1349	/*
1350	 * If the state is SYN_RECEIVED:
1351	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1352	 */
1353	case TCPS_SYN_RECEIVED:
1354		if ((thflags & TH_ACK) &&
1355		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1356		     SEQ_GT(th->th_ack, tp->snd_max))) {
1357				rstreason = BANDLIM_RST_OPENPORT;
1358				goto dropwithreset;
1359		}
1360		break;
1361
1362	/*
1363	 * If the state is SYN_SENT:
1364	 *	if seg contains an ACK, but not for our SYN, drop the input.
1365	 *	if seg contains a RST, then drop the connection.
1366	 *	if seg does not contain SYN, then drop it.
1367	 * Otherwise this is an acceptable SYN segment
1368	 *	initialize tp->rcv_nxt and tp->irs
1369	 *	if seg contains ack then advance tp->snd_una
1370	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1371	 *	arrange for segment to be acked (eventually)
1372	 *	continue processing rest of data/controls, beginning with URG
1373	 */
1374	case TCPS_SYN_SENT:
1375		if ((thflags & TH_ACK) &&
1376		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1377		     SEQ_GT(th->th_ack, tp->snd_max))) {
1378			rstreason = BANDLIM_UNLIMITED;
1379			goto dropwithreset;
1380		}
1381		if (thflags & TH_RST) {
1382			if (thflags & TH_ACK) {
1383				KASSERT(headlocked, ("tcp_input: after_listen"
1384				    ": tcp_drop.2: head not locked"));
1385				tp = tcp_drop(tp, ECONNREFUSED);
1386			}
1387			goto drop;
1388		}
1389		if ((thflags & TH_SYN) == 0)
1390			goto drop;
1391
1392		/* Initial send window, already scaled. */
1393		tp->snd_wnd = th->th_win;
1394
1395		tp->irs = th->th_seq;
1396		tcp_rcvseqinit(tp);
1397		if (thflags & TH_ACK) {
1398			tcpstat.tcps_connects++;
1399			soisconnected(so);
1400#ifdef MAC
1401			SOCK_LOCK(so);
1402			mac_set_socket_peer_from_mbuf(m, so);
1403			SOCK_UNLOCK(so);
1404#endif
1405			/* Do window scaling on this connection? */
1406			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1407				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1408				tp->rcv_scale = tp->request_r_scale;
1409			}
1410			tp->rcv_adv += tp->rcv_wnd;
1411			tp->snd_una++;		/* SYN is acked */
1412			/*
1413			 * If there's data, delay ACK; if there's also a FIN
1414			 * ACKNOW will be turned on later.
1415			 */
1416			if (DELAY_ACK(tp) && tlen != 0)
1417				callout_reset(tp->tt_delack, tcp_delacktime,
1418				    tcp_timer_delack, tp);
1419			else
1420				tp->t_flags |= TF_ACKNOW;
1421			/*
1422			 * Received <SYN,ACK> in SYN_SENT[*] state.
1423			 * Transitions:
1424			 *	SYN_SENT  --> ESTABLISHED
1425			 *	SYN_SENT* --> FIN_WAIT_1
1426			 */
1427			tp->t_starttime = ticks;
1428			if (tp->t_flags & TF_NEEDFIN) {
1429				tp->t_state = TCPS_FIN_WAIT_1;
1430				tp->t_flags &= ~TF_NEEDFIN;
1431				thflags &= ~TH_SYN;
1432			} else {
1433				tp->t_state = TCPS_ESTABLISHED;
1434				callout_reset(tp->tt_keep, tcp_keepidle,
1435					      tcp_timer_keep, tp);
1436			}
1437		} else {
1438			/*
1439			 * Received initial SYN in SYN-SENT[*] state =>
1440			 * simultaneous open.  If segment contains CC option
1441			 * and there is a cached CC, apply TAO test.
1442			 * If it succeeds, connection is * half-synchronized.
1443			 * Otherwise, do 3-way handshake:
1444			 *        SYN-SENT -> SYN-RECEIVED
1445			 *        SYN-SENT* -> SYN-RECEIVED*
1446			 * If there was no CC option, clear cached CC value.
1447			 */
1448			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1449			callout_stop(tp->tt_rexmt);
1450			tp->t_state = TCPS_SYN_RECEIVED;
1451		}
1452
1453#if 0 /* T/TCP */
1454trimthenstep6:
1455#endif
1456		KASSERT(headlocked, ("tcp_input: trimthenstep6: head not "
1457		    "locked"));
1458		INP_LOCK_ASSERT(inp);
1459
1460		/*
1461		 * Advance th->th_seq to correspond to first data byte.
1462		 * If data, trim to stay within window,
1463		 * dropping FIN if necessary.
1464		 */
1465		th->th_seq++;
1466		if (tlen > tp->rcv_wnd) {
1467			todrop = tlen - tp->rcv_wnd;
1468			m_adj(m, -todrop);
1469			tlen = tp->rcv_wnd;
1470			thflags &= ~TH_FIN;
1471			tcpstat.tcps_rcvpackafterwin++;
1472			tcpstat.tcps_rcvbyteafterwin += todrop;
1473		}
1474		tp->snd_wl1 = th->th_seq - 1;
1475		tp->rcv_up = th->th_seq;
1476		/*
1477		 * Client side of transaction: already sent SYN and data.
1478		 * If the remote host used T/TCP to validate the SYN,
1479		 * our data will be ACK'd; if so, enter normal data segment
1480		 * processing in the middle of step 5, ack processing.
1481		 * Otherwise, goto step 6.
1482		 */
1483		if (thflags & TH_ACK)
1484			goto process_ACK;
1485
1486		goto step6;
1487
1488	/*
1489	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1490	 *      do normal processing.
1491	 *
1492	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1493	 */
1494	case TCPS_LAST_ACK:
1495	case TCPS_CLOSING:
1496	case TCPS_TIME_WAIT:
1497		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1498		break;  /* continue normal processing */
1499	}
1500
1501	/*
1502	 * States other than LISTEN or SYN_SENT.
1503	 * First check the RST flag and sequence number since reset segments
1504	 * are exempt from the timestamp and connection count tests.  This
1505	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1506	 * below which allowed reset segments in half the sequence space
1507	 * to fall though and be processed (which gives forged reset
1508	 * segments with a random sequence number a 50 percent chance of
1509	 * killing a connection).
1510	 * Then check timestamp, if present.
1511	 * Then check the connection count, if present.
1512	 * Then check that at least some bytes of segment are within
1513	 * receive window.  If segment begins before rcv_nxt,
1514	 * drop leading data (and SYN); if nothing left, just ack.
1515	 *
1516	 *
1517	 * If the RST bit is set, check the sequence number to see
1518	 * if this is a valid reset segment.
1519	 * RFC 793 page 37:
1520	 *   In all states except SYN-SENT, all reset (RST) segments
1521	 *   are validated by checking their SEQ-fields.  A reset is
1522	 *   valid if its sequence number is in the window.
1523	 * Note: this does not take into account delayed ACKs, so
1524	 *   we should test against last_ack_sent instead of rcv_nxt.
1525	 *   The sequence number in the reset segment is normally an
1526	 *   echo of our outgoing acknowlegement numbers, but some hosts
1527	 *   send a reset with the sequence number at the rightmost edge
1528	 *   of our receive window, and we have to handle this case.
1529	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1530	 *   that brute force RST attacks are possible.  To combat this,
1531	 *   we use a much stricter check while in the ESTABLISHED state,
1532	 *   only accepting RSTs where the sequence number is equal to
1533	 *   last_ack_sent.  In all other states (the states in which a
1534	 *   RST is more likely), the more permissive check is used.
1535	 * If we have multiple segments in flight, the intial reset
1536	 * segment sequence numbers will be to the left of last_ack_sent,
1537	 * but they will eventually catch up.
1538	 * In any case, it never made sense to trim reset segments to
1539	 * fit the receive window since RFC 1122 says:
1540	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1541	 *
1542	 *    A TCP SHOULD allow a received RST segment to include data.
1543	 *
1544	 *    DISCUSSION
1545	 *         It has been suggested that a RST segment could contain
1546	 *         ASCII text that encoded and explained the cause of the
1547	 *         RST.  No standard has yet been established for such
1548	 *         data.
1549	 *
1550	 * If the reset segment passes the sequence number test examine
1551	 * the state:
1552	 *    SYN_RECEIVED STATE:
1553	 *	If passive open, return to LISTEN state.
1554	 *	If active open, inform user that connection was refused.
1555	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1556	 *	Inform user that connection was reset, and close tcb.
1557	 *    CLOSING, LAST_ACK STATES:
1558	 *	Close the tcb.
1559	 *    TIME_WAIT STATE:
1560	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1561	 *      RFC 1337.
1562	 */
1563	if (thflags & TH_RST) {
1564		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1565		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1566		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
1567			switch (tp->t_state) {
1568
1569			case TCPS_SYN_RECEIVED:
1570				so->so_error = ECONNREFUSED;
1571				goto close;
1572
1573			case TCPS_ESTABLISHED:
1574				if (tp->last_ack_sent != th->th_seq &&
1575			 	    tcp_insecure_rst == 0) {
1576					tcpstat.tcps_badrst++;
1577					goto drop;
1578				}
1579			case TCPS_FIN_WAIT_1:
1580			case TCPS_FIN_WAIT_2:
1581			case TCPS_CLOSE_WAIT:
1582				so->so_error = ECONNRESET;
1583			close:
1584				tp->t_state = TCPS_CLOSED;
1585				tcpstat.tcps_drops++;
1586				KASSERT(headlocked, ("tcp_input: "
1587				    "trimthenstep6: tcp_close: head not "
1588				    "locked"));
1589				tp = tcp_close(tp);
1590				break;
1591
1592			case TCPS_CLOSING:
1593			case TCPS_LAST_ACK:
1594				KASSERT(headlocked, ("trimthenstep6: "
1595				    "tcp_close.2: head not locked"));
1596				tp = tcp_close(tp);
1597				break;
1598
1599			case TCPS_TIME_WAIT:
1600				KASSERT(tp->t_state != TCPS_TIME_WAIT,
1601				    ("timewait"));
1602				break;
1603			}
1604		}
1605		goto drop;
1606	}
1607
1608	/*
1609	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1610	 * and it's less than ts_recent, drop it.
1611	 */
1612	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1613	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1614
1615		/* Check to see if ts_recent is over 24 days old.  */
1616		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1617			/*
1618			 * Invalidate ts_recent.  If this segment updates
1619			 * ts_recent, the age will be reset later and ts_recent
1620			 * will get a valid value.  If it does not, setting
1621			 * ts_recent to zero will at least satisfy the
1622			 * requirement that zero be placed in the timestamp
1623			 * echo reply when ts_recent isn't valid.  The
1624			 * age isn't reset until we get a valid ts_recent
1625			 * because we don't want out-of-order segments to be
1626			 * dropped when ts_recent is old.
1627			 */
1628			tp->ts_recent = 0;
1629		} else {
1630			tcpstat.tcps_rcvduppack++;
1631			tcpstat.tcps_rcvdupbyte += tlen;
1632			tcpstat.tcps_pawsdrop++;
1633			if (tlen)
1634				goto dropafterack;
1635			goto drop;
1636		}
1637	}
1638
1639	/*
1640	 * In the SYN-RECEIVED state, validate that the packet belongs to
1641	 * this connection before trimming the data to fit the receive
1642	 * window.  Check the sequence number versus IRS since we know
1643	 * the sequence numbers haven't wrapped.  This is a partial fix
1644	 * for the "LAND" DoS attack.
1645	 */
1646	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1647		rstreason = BANDLIM_RST_OPENPORT;
1648		goto dropwithreset;
1649	}
1650
1651	todrop = tp->rcv_nxt - th->th_seq;
1652	if (todrop > 0) {
1653		if (thflags & TH_SYN) {
1654			thflags &= ~TH_SYN;
1655			th->th_seq++;
1656			if (th->th_urp > 1)
1657				th->th_urp--;
1658			else
1659				thflags &= ~TH_URG;
1660			todrop--;
1661		}
1662		/*
1663		 * Following if statement from Stevens, vol. 2, p. 960.
1664		 */
1665		if (todrop > tlen
1666		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1667			/*
1668			 * Any valid FIN must be to the left of the window.
1669			 * At this point the FIN must be a duplicate or out
1670			 * of sequence; drop it.
1671			 */
1672			thflags &= ~TH_FIN;
1673
1674			/*
1675			 * Send an ACK to resynchronize and drop any data.
1676			 * But keep on processing for RST or ACK.
1677			 */
1678			tp->t_flags |= TF_ACKNOW;
1679			todrop = tlen;
1680			tcpstat.tcps_rcvduppack++;
1681			tcpstat.tcps_rcvdupbyte += todrop;
1682		} else {
1683			tcpstat.tcps_rcvpartduppack++;
1684			tcpstat.tcps_rcvpartdupbyte += todrop;
1685		}
1686		drop_hdrlen += todrop;	/* drop from the top afterwards */
1687		th->th_seq += todrop;
1688		tlen -= todrop;
1689		if (th->th_urp > todrop)
1690			th->th_urp -= todrop;
1691		else {
1692			thflags &= ~TH_URG;
1693			th->th_urp = 0;
1694		}
1695	}
1696
1697	/*
1698	 * If new data are received on a connection after the
1699	 * user processes are gone, then RST the other end.
1700	 */
1701	if ((so->so_state & SS_NOFDREF) &&
1702	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1703		KASSERT(headlocked, ("trimthenstep6: tcp_close.3: head not "
1704		    "locked"));
1705		tp = tcp_close(tp);
1706		tcpstat.tcps_rcvafterclose++;
1707		rstreason = BANDLIM_UNLIMITED;
1708		goto dropwithreset;
1709	}
1710
1711	/*
1712	 * If segment ends after window, drop trailing data
1713	 * (and PUSH and FIN); if nothing left, just ACK.
1714	 */
1715	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1716	if (todrop > 0) {
1717		tcpstat.tcps_rcvpackafterwin++;
1718		if (todrop >= tlen) {
1719			tcpstat.tcps_rcvbyteafterwin += tlen;
1720			/*
1721			 * If a new connection request is received
1722			 * while in TIME_WAIT, drop the old connection
1723			 * and start over if the sequence numbers
1724			 * are above the previous ones.
1725			 */
1726			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1727			if (thflags & TH_SYN &&
1728			    tp->t_state == TCPS_TIME_WAIT &&
1729			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1730				KASSERT(headlocked, ("trimthenstep6: "
1731				    "tcp_close.4: head not locked"));
1732				tp = tcp_close(tp);
1733				goto findpcb;
1734			}
1735			/*
1736			 * If window is closed can only take segments at
1737			 * window edge, and have to drop data and PUSH from
1738			 * incoming segments.  Continue processing, but
1739			 * remember to ack.  Otherwise, drop segment
1740			 * and ack.
1741			 */
1742			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1743				tp->t_flags |= TF_ACKNOW;
1744				tcpstat.tcps_rcvwinprobe++;
1745			} else
1746				goto dropafterack;
1747		} else
1748			tcpstat.tcps_rcvbyteafterwin += todrop;
1749		m_adj(m, -todrop);
1750		tlen -= todrop;
1751		thflags &= ~(TH_PUSH|TH_FIN);
1752	}
1753
1754	/*
1755	 * If last ACK falls within this segment's sequence numbers,
1756	 * record its timestamp.
1757	 * NOTE:
1758	 * 1) That the test incorporates suggestions from the latest
1759	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1760	 * 2) That updating only on newer timestamps interferes with
1761	 *    our earlier PAWS tests, so this check should be solely
1762	 *    predicated on the sequence space of this segment.
1763	 * 3) That we modify the segment boundary check to be
1764	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1765	 *    instead of RFC1323's
1766	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1767	 *    This modified check allows us to overcome RFC1323's
1768	 *    limitations as described in Stevens TCP/IP Illustrated
1769	 *    Vol. 2 p.869. In such cases, we can still calculate the
1770	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1771	 */
1772	if ((to.to_flags & TOF_TS) != 0 &&
1773	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1774	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1775		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1776		tp->ts_recent_age = ticks;
1777		tp->ts_recent = to.to_tsval;
1778	}
1779
1780	/*
1781	 * If a SYN is in the window, then this is an
1782	 * error and we send an RST and drop the connection.
1783	 */
1784	if (thflags & TH_SYN) {
1785		KASSERT(headlocked, ("tcp_input: tcp_drop: trimthenstep6: "
1786		    "head not locked"));
1787		tp = tcp_drop(tp, ECONNRESET);
1788		rstreason = BANDLIM_UNLIMITED;
1789		goto drop;
1790	}
1791
1792	/*
1793	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1794	 * flag is on (half-synchronized state), then queue data for
1795	 * later processing; else drop segment and return.
1796	 */
1797	if ((thflags & TH_ACK) == 0) {
1798		if (tp->t_state == TCPS_SYN_RECEIVED ||
1799		    (tp->t_flags & TF_NEEDSYN))
1800			goto step6;
1801		else if (tp->t_flags & TF_ACKNOW)
1802			goto dropafterack;
1803		else
1804			goto drop;
1805	}
1806
1807	/*
1808	 * Ack processing.
1809	 */
1810	switch (tp->t_state) {
1811
1812	/*
1813	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1814	 * ESTABLISHED state and continue processing.
1815	 * The ACK was checked above.
1816	 */
1817	case TCPS_SYN_RECEIVED:
1818
1819		tcpstat.tcps_connects++;
1820		soisconnected(so);
1821		/* Do window scaling? */
1822		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1823			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1824			tp->rcv_scale = tp->request_r_scale;
1825			tp->snd_wnd = tiwin;
1826		}
1827		/*
1828		 * Make transitions:
1829		 *      SYN-RECEIVED  -> ESTABLISHED
1830		 *      SYN-RECEIVED* -> FIN-WAIT-1
1831		 */
1832		tp->t_starttime = ticks;
1833		if (tp->t_flags & TF_NEEDFIN) {
1834			tp->t_state = TCPS_FIN_WAIT_1;
1835			tp->t_flags &= ~TF_NEEDFIN;
1836		} else {
1837			tp->t_state = TCPS_ESTABLISHED;
1838			callout_reset(tp->tt_keep, tcp_keepidle,
1839				      tcp_timer_keep, tp);
1840		}
1841		/*
1842		 * If segment contains data or ACK, will call tcp_reass()
1843		 * later; if not, do so now to pass queued data to user.
1844		 */
1845		if (tlen == 0 && (thflags & TH_FIN) == 0)
1846			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1847			    (struct mbuf *)0);
1848		tp->snd_wl1 = th->th_seq - 1;
1849		/* FALLTHROUGH */
1850
1851	/*
1852	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1853	 * ACKs.  If the ack is in the range
1854	 *	tp->snd_una < th->th_ack <= tp->snd_max
1855	 * then advance tp->snd_una to th->th_ack and drop
1856	 * data from the retransmission queue.  If this ACK reflects
1857	 * more up to date window information we update our window information.
1858	 */
1859	case TCPS_ESTABLISHED:
1860	case TCPS_FIN_WAIT_1:
1861	case TCPS_FIN_WAIT_2:
1862	case TCPS_CLOSE_WAIT:
1863	case TCPS_CLOSING:
1864	case TCPS_LAST_ACK:
1865	case TCPS_TIME_WAIT:
1866		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1867		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1868			tcpstat.tcps_rcvacktoomuch++;
1869			goto dropafterack;
1870		}
1871		if (tp->sack_enable &&
1872		    (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes)))
1873			tcp_sack_doack(tp, &to, th->th_ack);
1874		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1875			if (tlen == 0 && tiwin == tp->snd_wnd) {
1876				tcpstat.tcps_rcvdupack++;
1877				/*
1878				 * If we have outstanding data (other than
1879				 * a window probe), this is a completely
1880				 * duplicate ack (ie, window info didn't
1881				 * change), the ack is the biggest we've
1882				 * seen and we've seen exactly our rexmt
1883				 * threshhold of them, assume a packet
1884				 * has been dropped and retransmit it.
1885				 * Kludge snd_nxt & the congestion
1886				 * window so we send only this one
1887				 * packet.
1888				 *
1889				 * We know we're losing at the current
1890				 * window size so do congestion avoidance
1891				 * (set ssthresh to half the current window
1892				 * and pull our congestion window back to
1893				 * the new ssthresh).
1894				 *
1895				 * Dup acks mean that packets have left the
1896				 * network (they're now cached at the receiver)
1897				 * so bump cwnd by the amount in the receiver
1898				 * to keep a constant cwnd packets in the
1899				 * network.
1900				 */
1901				if (!callout_active(tp->tt_rexmt) ||
1902				    th->th_ack != tp->snd_una)
1903					tp->t_dupacks = 0;
1904				else if (++tp->t_dupacks > tcprexmtthresh ||
1905					 ((tcp_do_newreno || tp->sack_enable) &&
1906					  IN_FASTRECOVERY(tp))) {
1907                                        if (tp->sack_enable && IN_FASTRECOVERY(tp)) {
1908						int awnd;
1909
1910						/*
1911						 * Compute the amount of data in flight first.
1912						 * We can inject new data into the pipe iff
1913						 * we have less than 1/2 the original window's
1914						 * worth of data in flight.
1915						 */
1916						awnd = (tp->snd_nxt - tp->snd_fack) +
1917							tp->sackhint.sack_bytes_rexmit;
1918						if (awnd < tp->snd_ssthresh) {
1919							tp->snd_cwnd += tp->t_maxseg;
1920							if (tp->snd_cwnd > tp->snd_ssthresh)
1921								tp->snd_cwnd = tp->snd_ssthresh;
1922						}
1923					} else
1924						tp->snd_cwnd += tp->t_maxseg;
1925					(void) tcp_output(tp);
1926					goto drop;
1927				} else if (tp->t_dupacks == tcprexmtthresh) {
1928					tcp_seq onxt = tp->snd_nxt;
1929					u_int win;
1930
1931					/*
1932					 * If we're doing sack, check to
1933					 * see if we're already in sack
1934					 * recovery. If we're not doing sack,
1935					 * check to see if we're in newreno
1936					 * recovery.
1937					 */
1938					if (tp->sack_enable) {
1939						if (IN_FASTRECOVERY(tp)) {
1940							tp->t_dupacks = 0;
1941							break;
1942						}
1943					} else if (tcp_do_newreno) {
1944						if (SEQ_LEQ(th->th_ack,
1945						    tp->snd_recover)) {
1946							tp->t_dupacks = 0;
1947							break;
1948						}
1949					}
1950					win = min(tp->snd_wnd, tp->snd_cwnd) /
1951					    2 / tp->t_maxseg;
1952					if (win < 2)
1953						win = 2;
1954					tp->snd_ssthresh = win * tp->t_maxseg;
1955					ENTER_FASTRECOVERY(tp);
1956					tp->snd_recover = tp->snd_max;
1957					callout_stop(tp->tt_rexmt);
1958					tp->t_rtttime = 0;
1959					if (tp->sack_enable) {
1960						tcpstat.tcps_sack_recovery_episode++;
1961						tp->sack_newdata = tp->snd_nxt;
1962						tp->snd_cwnd = tp->t_maxseg;
1963						(void) tcp_output(tp);
1964						goto drop;
1965					}
1966					tp->snd_nxt = th->th_ack;
1967					tp->snd_cwnd = tp->t_maxseg;
1968					(void) tcp_output(tp);
1969					KASSERT(tp->snd_limited <= 2,
1970					    ("tp->snd_limited too big"));
1971					tp->snd_cwnd = tp->snd_ssthresh +
1972					     tp->t_maxseg *
1973					     (tp->t_dupacks - tp->snd_limited);
1974					if (SEQ_GT(onxt, tp->snd_nxt))
1975						tp->snd_nxt = onxt;
1976					goto drop;
1977				} else if (tcp_do_rfc3042) {
1978					u_long oldcwnd = tp->snd_cwnd;
1979					tcp_seq oldsndmax = tp->snd_max;
1980					u_int sent;
1981
1982					KASSERT(tp->t_dupacks == 1 ||
1983					    tp->t_dupacks == 2,
1984					    ("dupacks not 1 or 2"));
1985					if (tp->t_dupacks == 1)
1986						tp->snd_limited = 0;
1987					tp->snd_cwnd =
1988					    (tp->snd_nxt - tp->snd_una) +
1989					    (tp->t_dupacks - tp->snd_limited) *
1990					    tp->t_maxseg;
1991					(void) tcp_output(tp);
1992					sent = tp->snd_max - oldsndmax;
1993					if (sent > tp->t_maxseg) {
1994						KASSERT((tp->t_dupacks == 2 &&
1995						    tp->snd_limited == 0) ||
1996						   (sent == tp->t_maxseg + 1 &&
1997						    tp->t_flags & TF_SENTFIN),
1998						    ("sent too much"));
1999						tp->snd_limited = 2;
2000					} else if (sent > 0)
2001						++tp->snd_limited;
2002					tp->snd_cwnd = oldcwnd;
2003					goto drop;
2004				}
2005			} else
2006				tp->t_dupacks = 0;
2007			break;
2008		}
2009
2010		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2011
2012		/*
2013		 * If the congestion window was inflated to account
2014		 * for the other side's cached packets, retract it.
2015		 */
2016		if (tcp_do_newreno || tp->sack_enable) {
2017			if (IN_FASTRECOVERY(tp)) {
2018				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2019					if (tp->sack_enable)
2020						tcp_sack_partialack(tp, th);
2021					else
2022						tcp_newreno_partial_ack(tp, th);
2023				} else {
2024					/*
2025					 * Out of fast recovery.
2026					 * Window inflation should have left us
2027					 * with approximately snd_ssthresh
2028					 * outstanding data.
2029					 * But in case we would be inclined to
2030					 * send a burst, better to do it via
2031					 * the slow start mechanism.
2032					 */
2033					if (SEQ_GT(th->th_ack +
2034							tp->snd_ssthresh,
2035						   tp->snd_max))
2036						tp->snd_cwnd = tp->snd_max -
2037								th->th_ack +
2038								tp->t_maxseg;
2039					else
2040						tp->snd_cwnd = tp->snd_ssthresh;
2041				}
2042			}
2043		} else {
2044			if (tp->t_dupacks >= tcprexmtthresh &&
2045			    tp->snd_cwnd > tp->snd_ssthresh)
2046				tp->snd_cwnd = tp->snd_ssthresh;
2047		}
2048		tp->t_dupacks = 0;
2049		/*
2050		 * If we reach this point, ACK is not a duplicate,
2051		 *     i.e., it ACKs something we sent.
2052		 */
2053		if (tp->t_flags & TF_NEEDSYN) {
2054			/*
2055			 * T/TCP: Connection was half-synchronized, and our
2056			 * SYN has been ACK'd (so connection is now fully
2057			 * synchronized).  Go to non-starred state,
2058			 * increment snd_una for ACK of SYN, and check if
2059			 * we can do window scaling.
2060			 */
2061			tp->t_flags &= ~TF_NEEDSYN;
2062			tp->snd_una++;
2063			/* Do window scaling? */
2064			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2065				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2066				tp->rcv_scale = tp->request_r_scale;
2067				/* Send window already scaled. */
2068			}
2069		}
2070
2071process_ACK:
2072		KASSERT(headlocked, ("tcp_input: process_ACK: head not "
2073		    "locked"));
2074		INP_LOCK_ASSERT(inp);
2075
2076		acked = th->th_ack - tp->snd_una;
2077		tcpstat.tcps_rcvackpack++;
2078		tcpstat.tcps_rcvackbyte += acked;
2079
2080		/*
2081		 * If we just performed our first retransmit, and the ACK
2082		 * arrives within our recovery window, then it was a mistake
2083		 * to do the retransmit in the first place.  Recover our
2084		 * original cwnd and ssthresh, and proceed to transmit where
2085		 * we left off.
2086		 */
2087		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2088			++tcpstat.tcps_sndrexmitbad;
2089			tp->snd_cwnd = tp->snd_cwnd_prev;
2090			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2091			tp->snd_recover = tp->snd_recover_prev;
2092			if (tp->t_flags & TF_WASFRECOVERY)
2093				ENTER_FASTRECOVERY(tp);
2094			tp->snd_nxt = tp->snd_max;
2095			tp->t_badrxtwin = 0;	/* XXX probably not required */
2096		}
2097
2098		/*
2099		 * If we have a timestamp reply, update smoothed
2100		 * round trip time.  If no timestamp is present but
2101		 * transmit timer is running and timed sequence
2102		 * number was acked, update smoothed round trip time.
2103		 * Since we now have an rtt measurement, cancel the
2104		 * timer backoff (cf., Phil Karn's retransmit alg.).
2105		 * Recompute the initial retransmit timer.
2106		 *
2107		 * Some boxes send broken timestamp replies
2108		 * during the SYN+ACK phase, ignore
2109		 * timestamps of 0 or we could calculate a
2110		 * huge RTT and blow up the retransmit timer.
2111		 */
2112		if ((to.to_flags & TOF_TS) != 0 &&
2113		    to.to_tsecr) {
2114			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2115				tp->t_rttlow = ticks - to.to_tsecr;
2116			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2117		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2118			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2119				tp->t_rttlow = ticks - tp->t_rtttime;
2120			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2121		}
2122		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2123
2124		/*
2125		 * If all outstanding data is acked, stop retransmit
2126		 * timer and remember to restart (more output or persist).
2127		 * If there is more data to be acked, restart retransmit
2128		 * timer, using current (possibly backed-off) value.
2129		 */
2130		if (th->th_ack == tp->snd_max) {
2131			callout_stop(tp->tt_rexmt);
2132			needoutput = 1;
2133		} else if (!callout_active(tp->tt_persist))
2134			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2135				      tcp_timer_rexmt, tp);
2136
2137		/*
2138		 * If no data (only SYN) was ACK'd,
2139		 *    skip rest of ACK processing.
2140		 */
2141		if (acked == 0)
2142			goto step6;
2143
2144		/*
2145		 * When new data is acked, open the congestion window.
2146		 * If the window gives us less than ssthresh packets
2147		 * in flight, open exponentially (maxseg per packet).
2148		 * Otherwise open linearly: maxseg per window
2149		 * (maxseg^2 / cwnd per packet).
2150		 */
2151		if ((!tcp_do_newreno && !tp->sack_enable) ||
2152		    !IN_FASTRECOVERY(tp)) {
2153			register u_int cw = tp->snd_cwnd;
2154			register u_int incr = tp->t_maxseg;
2155			if (cw > tp->snd_ssthresh)
2156				incr = incr * incr / cw;
2157			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2158		}
2159		SOCKBUF_LOCK(&so->so_snd);
2160		if (acked > so->so_snd.sb_cc) {
2161			tp->snd_wnd -= so->so_snd.sb_cc;
2162			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2163			ourfinisacked = 1;
2164		} else {
2165			sbdrop_locked(&so->so_snd, acked);
2166			tp->snd_wnd -= acked;
2167			ourfinisacked = 0;
2168		}
2169		sowwakeup_locked(so);
2170		/* detect una wraparound */
2171		if ((tcp_do_newreno || tp->sack_enable) &&
2172		    !IN_FASTRECOVERY(tp) &&
2173		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2174		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2175			tp->snd_recover = th->th_ack - 1;
2176		if ((tcp_do_newreno || tp->sack_enable) &&
2177		    IN_FASTRECOVERY(tp) &&
2178		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2179			EXIT_FASTRECOVERY(tp);
2180		tp->snd_una = th->th_ack;
2181		if (tp->sack_enable) {
2182			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2183				tp->snd_recover = tp->snd_una;
2184		}
2185		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2186			tp->snd_nxt = tp->snd_una;
2187
2188		switch (tp->t_state) {
2189
2190		/*
2191		 * In FIN_WAIT_1 STATE in addition to the processing
2192		 * for the ESTABLISHED state if our FIN is now acknowledged
2193		 * then enter FIN_WAIT_2.
2194		 */
2195		case TCPS_FIN_WAIT_1:
2196			if (ourfinisacked) {
2197				/*
2198				 * If we can't receive any more
2199				 * data, then closing user can proceed.
2200				 * Starting the timer is contrary to the
2201				 * specification, but if we don't get a FIN
2202				 * we'll hang forever.
2203				 */
2204		/* XXXjl
2205		 * we should release the tp also, and use a
2206		 * compressed state.
2207		 */
2208				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2209					soisdisconnected(so);
2210					callout_reset(tp->tt_2msl, tcp_maxidle,
2211						      tcp_timer_2msl, tp);
2212				}
2213				tp->t_state = TCPS_FIN_WAIT_2;
2214			}
2215			break;
2216
2217		/*
2218		 * In CLOSING STATE in addition to the processing for
2219		 * the ESTABLISHED state if the ACK acknowledges our FIN
2220		 * then enter the TIME-WAIT state, otherwise ignore
2221		 * the segment.
2222		 */
2223		case TCPS_CLOSING:
2224			if (ourfinisacked) {
2225				KASSERT(headlocked, ("tcp_input: process_ACK: "
2226				    "head not locked"));
2227				tcp_twstart(tp);
2228				INP_INFO_WUNLOCK(&tcbinfo);
2229				m_freem(m);
2230				return;
2231			}
2232			break;
2233
2234		/*
2235		 * In LAST_ACK, we may still be waiting for data to drain
2236		 * and/or to be acked, as well as for the ack of our FIN.
2237		 * If our FIN is now acknowledged, delete the TCB,
2238		 * enter the closed state and return.
2239		 */
2240		case TCPS_LAST_ACK:
2241			if (ourfinisacked) {
2242				KASSERT(headlocked, ("tcp_input: process_ACK:"
2243				    " tcp_close: head not locked"));
2244				tp = tcp_close(tp);
2245				goto drop;
2246			}
2247			break;
2248
2249		/*
2250		 * In TIME_WAIT state the only thing that should arrive
2251		 * is a retransmission of the remote FIN.  Acknowledge
2252		 * it and restart the finack timer.
2253		 */
2254		case TCPS_TIME_WAIT:
2255			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2256			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2257				      tcp_timer_2msl, tp);
2258			goto dropafterack;
2259		}
2260	}
2261
2262step6:
2263	KASSERT(headlocked, ("tcp_input: step6: head not locked"));
2264	INP_LOCK_ASSERT(inp);
2265
2266	/*
2267	 * Update window information.
2268	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2269	 */
2270	if ((thflags & TH_ACK) &&
2271	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2272	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2273	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2274		/* keep track of pure window updates */
2275		if (tlen == 0 &&
2276		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2277			tcpstat.tcps_rcvwinupd++;
2278		tp->snd_wnd = tiwin;
2279		tp->snd_wl1 = th->th_seq;
2280		tp->snd_wl2 = th->th_ack;
2281		if (tp->snd_wnd > tp->max_sndwnd)
2282			tp->max_sndwnd = tp->snd_wnd;
2283		needoutput = 1;
2284	}
2285
2286	/*
2287	 * Process segments with URG.
2288	 */
2289	if ((thflags & TH_URG) && th->th_urp &&
2290	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2291		/*
2292		 * This is a kludge, but if we receive and accept
2293		 * random urgent pointers, we'll crash in
2294		 * soreceive.  It's hard to imagine someone
2295		 * actually wanting to send this much urgent data.
2296		 */
2297		SOCKBUF_LOCK(&so->so_rcv);
2298		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2299			th->th_urp = 0;			/* XXX */
2300			thflags &= ~TH_URG;		/* XXX */
2301			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2302			goto dodata;			/* XXX */
2303		}
2304		/*
2305		 * If this segment advances the known urgent pointer,
2306		 * then mark the data stream.  This should not happen
2307		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2308		 * a FIN has been received from the remote side.
2309		 * In these states we ignore the URG.
2310		 *
2311		 * According to RFC961 (Assigned Protocols),
2312		 * the urgent pointer points to the last octet
2313		 * of urgent data.  We continue, however,
2314		 * to consider it to indicate the first octet
2315		 * of data past the urgent section as the original
2316		 * spec states (in one of two places).
2317		 */
2318		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2319			tp->rcv_up = th->th_seq + th->th_urp;
2320			so->so_oobmark = so->so_rcv.sb_cc +
2321			    (tp->rcv_up - tp->rcv_nxt) - 1;
2322			if (so->so_oobmark == 0)
2323				so->so_rcv.sb_state |= SBS_RCVATMARK;
2324			sohasoutofband(so);
2325			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2326		}
2327		SOCKBUF_UNLOCK(&so->so_rcv);
2328		/*
2329		 * Remove out of band data so doesn't get presented to user.
2330		 * This can happen independent of advancing the URG pointer,
2331		 * but if two URG's are pending at once, some out-of-band
2332		 * data may creep in... ick.
2333		 */
2334		if (th->th_urp <= (u_long)tlen &&
2335		    !(so->so_options & SO_OOBINLINE)) {
2336			/* hdr drop is delayed */
2337			tcp_pulloutofband(so, th, m, drop_hdrlen);
2338		}
2339	} else {
2340		/*
2341		 * If no out of band data is expected,
2342		 * pull receive urgent pointer along
2343		 * with the receive window.
2344		 */
2345		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2346			tp->rcv_up = tp->rcv_nxt;
2347	}
2348dodata:							/* XXX */
2349	KASSERT(headlocked, ("tcp_input: dodata: head not locked"));
2350	INP_LOCK_ASSERT(inp);
2351
2352	/*
2353	 * Process the segment text, merging it into the TCP sequencing queue,
2354	 * and arranging for acknowledgment of receipt if necessary.
2355	 * This process logically involves adjusting tp->rcv_wnd as data
2356	 * is presented to the user (this happens in tcp_usrreq.c,
2357	 * case PRU_RCVD).  If a FIN has already been received on this
2358	 * connection then we just ignore the text.
2359	 */
2360	if ((tlen || (thflags & TH_FIN)) &&
2361	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2362		tcp_seq save_start = th->th_seq;
2363		tcp_seq save_end = th->th_seq + tlen;
2364		m_adj(m, drop_hdrlen);	/* delayed header drop */
2365		/*
2366		 * Insert segment which includes th into TCP reassembly queue
2367		 * with control block tp.  Set thflags to whether reassembly now
2368		 * includes a segment with FIN.  This handles the common case
2369		 * inline (segment is the next to be received on an established
2370		 * connection, and the queue is empty), avoiding linkage into
2371		 * and removal from the queue and repetition of various
2372		 * conversions.
2373		 * Set DELACK for segments received in order, but ack
2374		 * immediately when segments are out of order (so
2375		 * fast retransmit can work).
2376		 */
2377		if (th->th_seq == tp->rcv_nxt &&
2378		    LIST_EMPTY(&tp->t_segq) &&
2379		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2380			if (DELAY_ACK(tp))
2381				tp->t_flags |= TF_DELACK;
2382			else
2383				tp->t_flags |= TF_ACKNOW;
2384			tp->rcv_nxt += tlen;
2385			thflags = th->th_flags & TH_FIN;
2386			tcpstat.tcps_rcvpack++;
2387			tcpstat.tcps_rcvbyte += tlen;
2388			ND6_HINT(tp);
2389			SOCKBUF_LOCK(&so->so_rcv);
2390			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2391				m_freem(m);
2392			else
2393				sbappendstream_locked(&so->so_rcv, m);
2394			sorwakeup_locked(so);
2395		} else {
2396			thflags = tcp_reass(tp, th, &tlen, m);
2397			tp->t_flags |= TF_ACKNOW;
2398		}
2399		if (tlen > 0 && tp->sack_enable)
2400			tcp_update_sack_list(tp, save_start, save_end);
2401		/*
2402		 * Note the amount of data that peer has sent into
2403		 * our window, in order to estimate the sender's
2404		 * buffer size.
2405		 */
2406		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2407	} else {
2408		m_freem(m);
2409		thflags &= ~TH_FIN;
2410	}
2411
2412	/*
2413	 * If FIN is received ACK the FIN and let the user know
2414	 * that the connection is closing.
2415	 */
2416	if (thflags & TH_FIN) {
2417		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2418			socantrcvmore(so);
2419			/*
2420			 * If connection is half-synchronized
2421			 * (ie NEEDSYN flag on) then delay ACK,
2422			 * so it may be piggybacked when SYN is sent.
2423			 * Otherwise, since we received a FIN then no
2424			 * more input can be expected, send ACK now.
2425			 */
2426			if (tp->t_flags & TF_NEEDSYN)
2427				tp->t_flags |= TF_DELACK;
2428			else
2429				tp->t_flags |= TF_ACKNOW;
2430			tp->rcv_nxt++;
2431		}
2432		switch (tp->t_state) {
2433
2434		/*
2435		 * In SYN_RECEIVED and ESTABLISHED STATES
2436		 * enter the CLOSE_WAIT state.
2437		 */
2438		case TCPS_SYN_RECEIVED:
2439			tp->t_starttime = ticks;
2440			/*FALLTHROUGH*/
2441		case TCPS_ESTABLISHED:
2442			tp->t_state = TCPS_CLOSE_WAIT;
2443			break;
2444
2445		/*
2446		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2447		 * enter the CLOSING state.
2448		 */
2449		case TCPS_FIN_WAIT_1:
2450			tp->t_state = TCPS_CLOSING;
2451			break;
2452
2453		/*
2454		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2455		 * starting the time-wait timer, turning off the other
2456		 * standard timers.
2457		 */
2458		case TCPS_FIN_WAIT_2:
2459			KASSERT(headlocked == 1, ("tcp_input: dodata: "
2460			    "TCP_FIN_WAIT_2: head not locked"));
2461			tcp_twstart(tp);
2462			INP_INFO_WUNLOCK(&tcbinfo);
2463			return;
2464
2465		/*
2466		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2467		 */
2468		case TCPS_TIME_WAIT:
2469			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2470			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2471				      tcp_timer_2msl, tp);
2472			break;
2473		}
2474	}
2475	INP_INFO_WUNLOCK(&tcbinfo);
2476	headlocked = 0;
2477#ifdef TCPDEBUG
2478	if (so->so_options & SO_DEBUG)
2479		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2480			  &tcp_savetcp, 0);
2481#endif
2482
2483	/*
2484	 * Return any desired output.
2485	 */
2486	if (needoutput || (tp->t_flags & TF_ACKNOW))
2487		(void) tcp_output(tp);
2488
2489check_delack:
2490	KASSERT(headlocked == 0, ("tcp_input: check_delack: head locked"));
2491	INP_LOCK_ASSERT(inp);
2492	if (tp->t_flags & TF_DELACK) {
2493		tp->t_flags &= ~TF_DELACK;
2494		callout_reset(tp->tt_delack, tcp_delacktime,
2495		    tcp_timer_delack, tp);
2496	}
2497	INP_UNLOCK(inp);
2498	return;
2499
2500dropafterack:
2501	KASSERT(headlocked, ("tcp_input: dropafterack: head not locked"));
2502	/*
2503	 * Generate an ACK dropping incoming segment if it occupies
2504	 * sequence space, where the ACK reflects our state.
2505	 *
2506	 * We can now skip the test for the RST flag since all
2507	 * paths to this code happen after packets containing
2508	 * RST have been dropped.
2509	 *
2510	 * In the SYN-RECEIVED state, don't send an ACK unless the
2511	 * segment we received passes the SYN-RECEIVED ACK test.
2512	 * If it fails send a RST.  This breaks the loop in the
2513	 * "LAND" DoS attack, and also prevents an ACK storm
2514	 * between two listening ports that have been sent forged
2515	 * SYN segments, each with the source address of the other.
2516	 */
2517	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2518	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2519	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2520		rstreason = BANDLIM_RST_OPENPORT;
2521		goto dropwithreset;
2522	}
2523#ifdef TCPDEBUG
2524	if (so->so_options & SO_DEBUG)
2525		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2526			  &tcp_savetcp, 0);
2527#endif
2528	KASSERT(headlocked, ("headlocked should be 1"));
2529	INP_INFO_WUNLOCK(&tcbinfo);
2530	tp->t_flags |= TF_ACKNOW;
2531	(void) tcp_output(tp);
2532	INP_UNLOCK(inp);
2533	m_freem(m);
2534	return;
2535
2536dropwithreset:
2537	KASSERT(headlocked, ("tcp_input: dropwithreset: head not locked"));
2538	/*
2539	 * Generate a RST, dropping incoming segment.
2540	 * Make ACK acceptable to originator of segment.
2541	 * Don't bother to respond if destination was broadcast/multicast.
2542	 */
2543	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2544		goto drop;
2545	if (isipv6) {
2546		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2547		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2548			goto drop;
2549	} else {
2550		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2551		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2552		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2553		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2554			goto drop;
2555	}
2556	/* IPv6 anycast check is done at tcp6_input() */
2557
2558	/*
2559	 * Perform bandwidth limiting.
2560	 */
2561	if (badport_bandlim(rstreason) < 0)
2562		goto drop;
2563
2564#ifdef TCPDEBUG
2565	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2566		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2567			  &tcp_savetcp, 0);
2568#endif
2569
2570	if (thflags & TH_ACK)
2571		/* mtod() below is safe as long as hdr dropping is delayed */
2572		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2573			    TH_RST);
2574	else {
2575		if (thflags & TH_SYN)
2576			tlen++;
2577		/* mtod() below is safe as long as hdr dropping is delayed */
2578		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2579			    (tcp_seq)0, TH_RST|TH_ACK);
2580	}
2581
2582	if (tp != NULL)
2583		INP_UNLOCK(inp);
2584	if (headlocked)
2585		INP_INFO_WUNLOCK(&tcbinfo);
2586	return;
2587
2588drop:
2589	/*
2590	 * Drop space held by incoming segment and return.
2591	 */
2592#ifdef TCPDEBUG
2593	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2594		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2595			  &tcp_savetcp, 0);
2596#endif
2597	if (tp != NULL)
2598		INP_UNLOCK(inp);
2599	if (headlocked)
2600		INP_INFO_WUNLOCK(&tcbinfo);
2601	m_freem(m);
2602	return;
2603}
2604
2605/*
2606 * Parse TCP options and place in tcpopt.
2607 */
2608static void
2609tcp_dooptions(to, cp, cnt, flags)
2610	struct tcpopt *to;
2611	u_char *cp;
2612	int cnt;
2613	int flags;
2614{
2615	int opt, optlen;
2616
2617	to->to_flags = 0;
2618	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2619		opt = cp[0];
2620		if (opt == TCPOPT_EOL)
2621			break;
2622		if (opt == TCPOPT_NOP)
2623			optlen = 1;
2624		else {
2625			if (cnt < 2)
2626				break;
2627			optlen = cp[1];
2628			if (optlen < 2 || optlen > cnt)
2629				break;
2630		}
2631		switch (opt) {
2632		case TCPOPT_MAXSEG:
2633			if (optlen != TCPOLEN_MAXSEG)
2634				continue;
2635			if (!(flags & TO_SYN))
2636				continue;
2637			to->to_flags |= TOF_MSS;
2638			bcopy((char *)cp + 2,
2639			    (char *)&to->to_mss, sizeof(to->to_mss));
2640			to->to_mss = ntohs(to->to_mss);
2641			break;
2642		case TCPOPT_WINDOW:
2643			if (optlen != TCPOLEN_WINDOW)
2644				continue;
2645			if (!(flags & TO_SYN))
2646				continue;
2647			to->to_flags |= TOF_SCALE;
2648			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2649			break;
2650		case TCPOPT_TIMESTAMP:
2651			if (optlen != TCPOLEN_TIMESTAMP)
2652				continue;
2653			to->to_flags |= TOF_TS;
2654			bcopy((char *)cp + 2,
2655			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2656			to->to_tsval = ntohl(to->to_tsval);
2657			bcopy((char *)cp + 6,
2658			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2659			to->to_tsecr = ntohl(to->to_tsecr);
2660			break;
2661#ifdef TCP_SIGNATURE
2662		/*
2663		 * XXX In order to reply to a host which has set the
2664		 * TCP_SIGNATURE option in its initial SYN, we have to
2665		 * record the fact that the option was observed here
2666		 * for the syncache code to perform the correct response.
2667		 */
2668		case TCPOPT_SIGNATURE:
2669			if (optlen != TCPOLEN_SIGNATURE)
2670				continue;
2671			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2672			break;
2673#endif
2674		case TCPOPT_SACK_PERMITTED:
2675			if (optlen != TCPOLEN_SACK_PERMITTED)
2676				continue;
2677			if (!(flags & TO_SYN))
2678				continue;
2679			if (!tcp_do_sack)
2680				continue;
2681			to->to_flags |= TOF_SACK;
2682			break;
2683		case TCPOPT_SACK:
2684			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2685				continue;
2686			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2687			to->to_sacks = cp + 2;
2688			tcpstat.tcps_sack_rcv_blocks++;
2689			break;
2690		default:
2691			continue;
2692		}
2693	}
2694}
2695
2696/*
2697 * Pull out of band byte out of a segment so
2698 * it doesn't appear in the user's data queue.
2699 * It is still reflected in the segment length for
2700 * sequencing purposes.
2701 */
2702static void
2703tcp_pulloutofband(so, th, m, off)
2704	struct socket *so;
2705	struct tcphdr *th;
2706	register struct mbuf *m;
2707	int off;		/* delayed to be droped hdrlen */
2708{
2709	int cnt = off + th->th_urp - 1;
2710
2711	while (cnt >= 0) {
2712		if (m->m_len > cnt) {
2713			char *cp = mtod(m, caddr_t) + cnt;
2714			struct tcpcb *tp = sototcpcb(so);
2715
2716			tp->t_iobc = *cp;
2717			tp->t_oobflags |= TCPOOB_HAVEDATA;
2718			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2719			m->m_len--;
2720			if (m->m_flags & M_PKTHDR)
2721				m->m_pkthdr.len--;
2722			return;
2723		}
2724		cnt -= m->m_len;
2725		m = m->m_next;
2726		if (m == 0)
2727			break;
2728	}
2729	panic("tcp_pulloutofband");
2730}
2731
2732/*
2733 * Collect new round-trip time estimate
2734 * and update averages and current timeout.
2735 */
2736static void
2737tcp_xmit_timer(tp, rtt)
2738	register struct tcpcb *tp;
2739	int rtt;
2740{
2741	register int delta;
2742
2743	INP_LOCK_ASSERT(tp->t_inpcb);
2744
2745	tcpstat.tcps_rttupdated++;
2746	tp->t_rttupdated++;
2747	if (tp->t_srtt != 0) {
2748		/*
2749		 * srtt is stored as fixed point with 5 bits after the
2750		 * binary point (i.e., scaled by 8).  The following magic
2751		 * is equivalent to the smoothing algorithm in rfc793 with
2752		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2753		 * point).  Adjust rtt to origin 0.
2754		 */
2755		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2756			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2757
2758		if ((tp->t_srtt += delta) <= 0)
2759			tp->t_srtt = 1;
2760
2761		/*
2762		 * We accumulate a smoothed rtt variance (actually, a
2763		 * smoothed mean difference), then set the retransmit
2764		 * timer to smoothed rtt + 4 times the smoothed variance.
2765		 * rttvar is stored as fixed point with 4 bits after the
2766		 * binary point (scaled by 16).  The following is
2767		 * equivalent to rfc793 smoothing with an alpha of .75
2768		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2769		 * rfc793's wired-in beta.
2770		 */
2771		if (delta < 0)
2772			delta = -delta;
2773		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2774		if ((tp->t_rttvar += delta) <= 0)
2775			tp->t_rttvar = 1;
2776		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2777		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2778	} else {
2779		/*
2780		 * No rtt measurement yet - use the unsmoothed rtt.
2781		 * Set the variance to half the rtt (so our first
2782		 * retransmit happens at 3*rtt).
2783		 */
2784		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2785		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2786		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2787	}
2788	tp->t_rtttime = 0;
2789	tp->t_rxtshift = 0;
2790
2791	/*
2792	 * the retransmit should happen at rtt + 4 * rttvar.
2793	 * Because of the way we do the smoothing, srtt and rttvar
2794	 * will each average +1/2 tick of bias.  When we compute
2795	 * the retransmit timer, we want 1/2 tick of rounding and
2796	 * 1 extra tick because of +-1/2 tick uncertainty in the
2797	 * firing of the timer.  The bias will give us exactly the
2798	 * 1.5 tick we need.  But, because the bias is
2799	 * statistical, we have to test that we don't drop below
2800	 * the minimum feasible timer (which is 2 ticks).
2801	 */
2802	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2803		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2804
2805	/*
2806	 * We received an ack for a packet that wasn't retransmitted;
2807	 * it is probably safe to discard any error indications we've
2808	 * received recently.  This isn't quite right, but close enough
2809	 * for now (a route might have failed after we sent a segment,
2810	 * and the return path might not be symmetrical).
2811	 */
2812	tp->t_softerror = 0;
2813}
2814
2815/*
2816 * Determine a reasonable value for maxseg size.
2817 * If the route is known, check route for mtu.
2818 * If none, use an mss that can be handled on the outgoing
2819 * interface without forcing IP to fragment; if bigger than
2820 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2821 * to utilize large mbufs.  If no route is found, route has no mtu,
2822 * or the destination isn't local, use a default, hopefully conservative
2823 * size (usually 512 or the default IP max size, but no more than the mtu
2824 * of the interface), as we can't discover anything about intervening
2825 * gateways or networks.  We also initialize the congestion/slow start
2826 * window to be a single segment if the destination isn't local.
2827 * While looking at the routing entry, we also initialize other path-dependent
2828 * parameters from pre-set or cached values in the routing entry.
2829 *
2830 * Also take into account the space needed for options that we
2831 * send regularly.  Make maxseg shorter by that amount to assure
2832 * that we can send maxseg amount of data even when the options
2833 * are present.  Store the upper limit of the length of options plus
2834 * data in maxopd.
2835 *
2836 *
2837 * In case of T/TCP, we call this routine during implicit connection
2838 * setup as well (offer = -1), to initialize maxseg from the cached
2839 * MSS of our peer.
2840 *
2841 * NOTE that this routine is only called when we process an incoming
2842 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2843 */
2844void
2845tcp_mss(tp, offer)
2846	struct tcpcb *tp;
2847	int offer;
2848{
2849	int rtt, mss;
2850	u_long bufsize;
2851	u_long maxmtu;
2852	struct inpcb *inp = tp->t_inpcb;
2853	struct socket *so;
2854	struct hc_metrics_lite metrics;
2855	int origoffer = offer;
2856#ifdef INET6
2857	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2858	size_t min_protoh = isipv6 ?
2859			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2860			    sizeof (struct tcpiphdr);
2861#else
2862	const size_t min_protoh = sizeof(struct tcpiphdr);
2863#endif
2864
2865	/* initialize */
2866#ifdef INET6
2867	if (isipv6) {
2868		maxmtu = tcp_maxmtu6(&inp->inp_inc);
2869		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2870	} else
2871#endif
2872	{
2873		maxmtu = tcp_maxmtu(&inp->inp_inc);
2874		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2875	}
2876	so = inp->inp_socket;
2877
2878	/*
2879	 * no route to sender, stay with default mss and return
2880	 */
2881	if (maxmtu == 0)
2882		return;
2883
2884	/* what have we got? */
2885	switch (offer) {
2886		case 0:
2887			/*
2888			 * Offer == 0 means that there was no MSS on the SYN
2889			 * segment, in this case we use tcp_mssdflt.
2890			 */
2891			offer =
2892#ifdef INET6
2893				isipv6 ? tcp_v6mssdflt :
2894#endif
2895				tcp_mssdflt;
2896			break;
2897
2898		case -1:
2899			/*
2900			 * Offer == -1 means that we didn't receive SYN yet.
2901			 */
2902			/* FALLTHROUGH */
2903
2904		default:
2905			/*
2906			 * Prevent DoS attack with too small MSS. Round up
2907			 * to at least minmss.
2908			 */
2909			offer = max(offer, tcp_minmss);
2910			/*
2911			 * Sanity check: make sure that maxopd will be large
2912			 * enough to allow some data on segments even if the
2913			 * all the option space is used (40bytes).  Otherwise
2914			 * funny things may happen in tcp_output.
2915			 */
2916			offer = max(offer, 64);
2917	}
2918
2919	/*
2920	 * rmx information is now retrieved from tcp_hostcache
2921	 */
2922	tcp_hc_get(&inp->inp_inc, &metrics);
2923
2924	/*
2925	 * if there's a discovered mtu int tcp hostcache, use it
2926	 * else, use the link mtu.
2927	 */
2928	if (metrics.rmx_mtu)
2929		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2930	else {
2931#ifdef INET6
2932		if (isipv6) {
2933			mss = maxmtu - min_protoh;
2934			if (!path_mtu_discovery &&
2935			    !in6_localaddr(&inp->in6p_faddr))
2936				mss = min(mss, tcp_v6mssdflt);
2937		} else
2938#endif
2939		{
2940			mss = maxmtu - min_protoh;
2941			if (!path_mtu_discovery &&
2942			    !in_localaddr(inp->inp_faddr))
2943				mss = min(mss, tcp_mssdflt);
2944		}
2945	}
2946	mss = min(mss, offer);
2947
2948	/*
2949	 * maxopd stores the maximum length of data AND options
2950	 * in a segment; maxseg is the amount of data in a normal
2951	 * segment.  We need to store this value (maxopd) apart
2952	 * from maxseg, because now every segment carries options
2953	 * and thus we normally have somewhat less data in segments.
2954	 */
2955	tp->t_maxopd = mss;
2956
2957	/*
2958	 * origoffer==-1 indicates, that no segments were received yet.
2959	 * In this case we just guess.
2960	 */
2961	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2962	    (origoffer == -1 ||
2963	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2964		mss -= TCPOLEN_TSTAMP_APPA;
2965	tp->t_maxseg = mss;
2966
2967#if	(MCLBYTES & (MCLBYTES - 1)) == 0
2968		if (mss > MCLBYTES)
2969			mss &= ~(MCLBYTES-1);
2970#else
2971		if (mss > MCLBYTES)
2972			mss = mss / MCLBYTES * MCLBYTES;
2973#endif
2974	tp->t_maxseg = mss;
2975
2976	/*
2977	 * If there's a pipesize, change the socket buffer to that size,
2978	 * don't change if sb_hiwat is different than default (then it
2979	 * has been changed on purpose with setsockopt).
2980	 * Make the socket buffers an integral number of mss units;
2981	 * if the mss is larger than the socket buffer, decrease the mss.
2982	 */
2983	SOCKBUF_LOCK(&so->so_snd);
2984	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2985		bufsize = metrics.rmx_sendpipe;
2986	else
2987		bufsize = so->so_snd.sb_hiwat;
2988	if (bufsize < mss)
2989		mss = bufsize;
2990	else {
2991		bufsize = roundup(bufsize, mss);
2992		if (bufsize > sb_max)
2993			bufsize = sb_max;
2994		if (bufsize > so->so_snd.sb_hiwat)
2995			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2996	}
2997	SOCKBUF_UNLOCK(&so->so_snd);
2998	tp->t_maxseg = mss;
2999
3000	SOCKBUF_LOCK(&so->so_rcv);
3001	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3002		bufsize = metrics.rmx_recvpipe;
3003	else
3004		bufsize = so->so_rcv.sb_hiwat;
3005	if (bufsize > mss) {
3006		bufsize = roundup(bufsize, mss);
3007		if (bufsize > sb_max)
3008			bufsize = sb_max;
3009		if (bufsize > so->so_rcv.sb_hiwat)
3010			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3011	}
3012	SOCKBUF_UNLOCK(&so->so_rcv);
3013	/*
3014	 * While we're here, check the others too
3015	 */
3016	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
3017		tp->t_srtt = rtt;
3018		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3019		tcpstat.tcps_usedrtt++;
3020		if (metrics.rmx_rttvar) {
3021			tp->t_rttvar = metrics.rmx_rttvar;
3022			tcpstat.tcps_usedrttvar++;
3023		} else {
3024			/* default variation is +- 1 rtt */
3025			tp->t_rttvar =
3026			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3027		}
3028		TCPT_RANGESET(tp->t_rxtcur,
3029			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3030			      tp->t_rttmin, TCPTV_REXMTMAX);
3031	}
3032	if (metrics.rmx_ssthresh) {
3033		/*
3034		 * There's some sort of gateway or interface
3035		 * buffer limit on the path.  Use this to set
3036		 * the slow start threshhold, but set the
3037		 * threshold to no less than 2*mss.
3038		 */
3039		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3040		tcpstat.tcps_usedssthresh++;
3041	}
3042	if (metrics.rmx_bandwidth)
3043		tp->snd_bandwidth = metrics.rmx_bandwidth;
3044
3045	/*
3046	 * Set the slow-start flight size depending on whether this
3047	 * is a local network or not.
3048	 *
3049	 * Extend this so we cache the cwnd too and retrieve it here.
3050	 * Make cwnd even bigger than RFC3390 suggests but only if we
3051	 * have previous experience with the remote host. Be careful
3052	 * not make cwnd bigger than remote receive window or our own
3053	 * send socket buffer. Maybe put some additional upper bound
3054	 * on the retrieved cwnd. Should do incremental updates to
3055	 * hostcache when cwnd collapses so next connection doesn't
3056	 * overloads the path again.
3057	 *
3058	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3059	 * We currently check only in syncache_socket for that.
3060	 */
3061#define TCP_METRICS_CWND
3062#ifdef TCP_METRICS_CWND
3063	if (metrics.rmx_cwnd)
3064		tp->snd_cwnd = max(mss,
3065				min(metrics.rmx_cwnd / 2,
3066				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3067	else
3068#endif
3069	if (tcp_do_rfc3390)
3070		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3071#ifdef INET6
3072	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3073		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3074#else
3075	else if (in_localaddr(inp->inp_faddr))
3076#endif
3077		tp->snd_cwnd = mss * ss_fltsz_local;
3078	else
3079		tp->snd_cwnd = mss * ss_fltsz;
3080}
3081
3082/*
3083 * Determine the MSS option to send on an outgoing SYN.
3084 */
3085int
3086tcp_mssopt(inc)
3087	struct in_conninfo *inc;
3088{
3089	int mss = 0;
3090	u_long maxmtu = 0;
3091	u_long thcmtu = 0;
3092	size_t min_protoh;
3093#ifdef INET6
3094	int isipv6 = inc->inc_isipv6 ? 1 : 0;
3095#endif
3096
3097	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3098
3099#ifdef INET6
3100	if (isipv6) {
3101		mss = tcp_v6mssdflt;
3102		maxmtu = tcp_maxmtu6(inc);
3103		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3104		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3105	} else
3106#endif
3107	{
3108		mss = tcp_mssdflt;
3109		maxmtu = tcp_maxmtu(inc);
3110		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3111		min_protoh = sizeof(struct tcpiphdr);
3112	}
3113	if (maxmtu && thcmtu)
3114		mss = min(maxmtu, thcmtu) - min_protoh;
3115	else if (maxmtu || thcmtu)
3116		mss = max(maxmtu, thcmtu) - min_protoh;
3117
3118	return (mss);
3119}
3120
3121
3122/*
3123 * On a partial ack arrives, force the retransmission of the
3124 * next unacknowledged segment.  Do not clear tp->t_dupacks.
3125 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3126 * be started again.
3127 */
3128static void
3129tcp_newreno_partial_ack(tp, th)
3130	struct tcpcb *tp;
3131	struct tcphdr *th;
3132{
3133	tcp_seq onxt = tp->snd_nxt;
3134	u_long  ocwnd = tp->snd_cwnd;
3135
3136	callout_stop(tp->tt_rexmt);
3137	tp->t_rtttime = 0;
3138	tp->snd_nxt = th->th_ack;
3139	/*
3140	 * Set snd_cwnd to one segment beyond acknowledged offset.
3141	 * (tp->snd_una has not yet been updated when this function is called.)
3142	 */
3143	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3144	tp->t_flags |= TF_ACKNOW;
3145	(void) tcp_output(tp);
3146	tp->snd_cwnd = ocwnd;
3147	if (SEQ_GT(onxt, tp->snd_nxt))
3148		tp->snd_nxt = onxt;
3149	/*
3150	 * Partial window deflation.  Relies on fact that tp->snd_una
3151	 * not updated yet.
3152	 */
3153	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3154		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3155	else
3156		tp->snd_cwnd = 0;
3157	tp->snd_cwnd += tp->t_maxseg;
3158}
3159
3160/*
3161 * Returns 1 if the TIME_WAIT state was killed and we should start over,
3162 * looking for a pcb in the listen state.  Returns 0 otherwise.
3163 */
3164static int
3165tcp_timewait(inp, to, th, m, tlen)
3166	struct inpcb *inp;
3167	struct tcpopt *to;
3168	struct tcphdr *th;
3169	struct mbuf *m;
3170	int tlen;
3171{
3172	struct tcptw *tw;
3173	int thflags;
3174	tcp_seq seq;
3175#ifdef INET6
3176	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
3177#else
3178	const int isipv6 = 0;
3179#endif
3180
3181	/* tcbinfo lock required for tcp_twclose(), tcp_2msl_reset. */
3182	INP_INFO_WLOCK_ASSERT(&tcbinfo);
3183	INP_LOCK_ASSERT(inp);
3184
3185	/*
3186	 * XXXRW: Time wait state for inpcb has been recycled, but inpcb is
3187	 * still present.  This is undesirable, but temporarily necessary
3188	 * until we work out how to handle inpcb's who's timewait state has
3189	 * been removed.
3190	 */
3191	tw = intotw(inp);
3192	if (tw == NULL)
3193		goto drop;
3194
3195	thflags = th->th_flags;
3196
3197	/*
3198	 * NOTE: for FIN_WAIT_2 (to be added later),
3199	 * must validate sequence number before accepting RST
3200	 */
3201
3202	/*
3203	 * If the segment contains RST:
3204	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
3205	 *      RFC 1337.
3206	 */
3207	if (thflags & TH_RST)
3208		goto drop;
3209
3210#if 0
3211/* PAWS not needed at the moment */
3212	/*
3213	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3214	 * and it's less than ts_recent, drop it.
3215	 */
3216	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3217	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3218		if ((thflags & TH_ACK) == 0)
3219			goto drop;
3220		goto ack;
3221	}
3222	/*
3223	 * ts_recent is never updated because we never accept new segments.
3224	 */
3225#endif
3226
3227	/*
3228	 * If a new connection request is received
3229	 * while in TIME_WAIT, drop the old connection
3230	 * and start over if the sequence numbers
3231	 * are above the previous ones.
3232	 */
3233	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
3234		tcp_twclose(tw, 0);
3235		return (1);
3236	}
3237
3238	/*
3239	 * Drop the the segment if it does not contain an ACK.
3240	 */
3241	if ((thflags & TH_ACK) == 0)
3242		goto drop;
3243
3244	/*
3245	 * Reset the 2MSL timer if this is a duplicate FIN.
3246	 */
3247	if (thflags & TH_FIN) {
3248		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
3249		if (seq + 1 == tw->rcv_nxt)
3250			tcp_timer_2msl_reset(tw, 2 * tcp_msl);
3251	}
3252
3253	/*
3254	 * Acknowledge the segment if it has data or is not a duplicate ACK.
3255	 */
3256	if (thflags != TH_ACK || tlen != 0 ||
3257	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
3258		tcp_twrespond(tw, TH_ACK);
3259	goto drop;
3260
3261	/*
3262	 * Generate a RST, dropping incoming segment.
3263	 * Make ACK acceptable to originator of segment.
3264	 * Don't bother to respond if destination was broadcast/multicast.
3265	 */
3266	if (m->m_flags & (M_BCAST|M_MCAST))
3267		goto drop;
3268	if (isipv6) {
3269		struct ip6_hdr *ip6;
3270
3271		/* IPv6 anycast check is done at tcp6_input() */
3272		ip6 = mtod(m, struct ip6_hdr *);
3273		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3274		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3275			goto drop;
3276	} else {
3277		struct ip *ip;
3278
3279		ip = mtod(m, struct ip *);
3280		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3281		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3282		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3283		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3284			goto drop;
3285	}
3286	if (thflags & TH_ACK) {
3287		tcp_respond(NULL,
3288		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
3289	} else {
3290		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
3291		tcp_respond(NULL,
3292		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
3293	}
3294	INP_UNLOCK(inp);
3295	return (0);
3296
3297drop:
3298	INP_UNLOCK(inp);
3299	m_freem(m);
3300	return (0);
3301}
3302