ip_reass.c revision 84101
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/netinet/ip_input.c 84101 2001-09-29 03:23:44Z jlemon $
35 */
36
37#define	_IP_VHL
38
39#include "opt_bootp.h"
40#include "opt_ipfw.h"
41#include "opt_ipdn.h"
42#include "opt_ipdivert.h"
43#include "opt_ipfilter.h"
44#include "opt_ipstealth.h"
45#include "opt_ipsec.h"
46#include "opt_pfil_hooks.h"
47#include "opt_random_ip_id.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/domain.h>
54#include <sys/protosw.h>
55#include <sys/socket.h>
56#include <sys/time.h>
57#include <sys/kernel.h>
58#include <sys/syslog.h>
59#include <sys/sysctl.h>
60
61#include <net/pfil.h>
62#include <net/if.h>
63#include <net/if_types.h>
64#include <net/if_var.h>
65#include <net/if_dl.h>
66#include <net/route.h>
67#include <net/netisr.h>
68#include <net/intrq.h>
69
70#include <netinet/in.h>
71#include <netinet/in_systm.h>
72#include <netinet/in_var.h>
73#include <netinet/ip.h>
74#include <netinet/in_pcb.h>
75#include <netinet/ip_var.h>
76#include <netinet/ip_icmp.h>
77#include <machine/in_cksum.h>
78
79#include <sys/socketvar.h>
80
81#include <netinet/ip_fw.h>
82
83#ifdef IPSEC
84#include <netinet6/ipsec.h>
85#include <netkey/key.h>
86#endif
87
88#ifdef DUMMYNET
89#include <netinet/ip_dummynet.h>
90#endif
91
92int rsvp_on = 0;
93static int ip_rsvp_on;
94struct socket *ip_rsvpd;
95
96int	ipforwarding = 0;
97SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
98    &ipforwarding, 0, "Enable IP forwarding between interfaces");
99
100static int	ipsendredirects = 1; /* XXX */
101SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
102    &ipsendredirects, 0, "Enable sending IP redirects");
103
104int	ip_defttl = IPDEFTTL;
105SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
106    &ip_defttl, 0, "Maximum TTL on IP packets");
107
108static int	ip_dosourceroute = 0;
109SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
110    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
111
112static int	ip_acceptsourceroute = 0;
113SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
114    CTLFLAG_RW, &ip_acceptsourceroute, 0,
115    "Enable accepting source routed IP packets");
116
117static int	ip_keepfaith = 0;
118SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119	&ip_keepfaith,	0,
120	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121
122static int	ip_nfragpackets = 0;
123static int	ip_maxfragpackets;	/* initialized in ip_init() */
124SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125	&ip_maxfragpackets, 0,
126	"Maximum number of IPv4 fragment reassembly queue entries");
127
128/*
129 * XXX - Setting ip_checkinterface mostly implements the receive side of
130 * the Strong ES model described in RFC 1122, but since the routing table
131 * and transmit implementation do not implement the Strong ES model,
132 * setting this to 1 results in an odd hybrid.
133 *
134 * XXX - ip_checkinterface currently must be disabled if you use ipnat
135 * to translate the destination address to another local interface.
136 *
137 * XXX - ip_checkinterface must be disabled if you add IP aliases
138 * to the loopback interface instead of the interface where the
139 * packets for those addresses are received.
140 */
141static int	ip_checkinterface = 1;
142SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
143    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
144
145#ifdef DIAGNOSTIC
146static int	ipprintfs = 0;
147#endif
148
149extern	struct domain inetdomain;
150extern	struct protosw inetsw[];
151u_char	ip_protox[IPPROTO_MAX];
152static int	ipqmaxlen = IFQ_MAXLEN;
153struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
154SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
155    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
156SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
157    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
158
159struct ipstat ipstat;
160SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
161    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
162
163/* Packet reassembly stuff */
164#define IPREASS_NHASH_LOG2      6
165#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
166#define IPREASS_HMASK           (IPREASS_NHASH - 1)
167#define IPREASS_HASH(x,y) \
168	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
169
170static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
171static int    nipq = 0;         /* total # of reass queues */
172static int    maxnipq;
173const  int    ipintrq_present = 1;
174
175#ifdef IPCTL_DEFMTU
176SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
177    &ip_mtu, 0, "Default MTU");
178#endif
179
180#ifdef IPSTEALTH
181static int	ipstealth = 0;
182SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
183    &ipstealth, 0, "");
184#endif
185
186
187/* Firewall hooks */
188ip_fw_chk_t *ip_fw_chk_ptr;
189ip_fw_ctl_t *ip_fw_ctl_ptr;
190int fw_enable = 1 ;
191
192#ifdef DUMMYNET
193ip_dn_ctl_t *ip_dn_ctl_ptr;
194#endif
195
196
197/*
198 * We need to save the IP options in case a protocol wants to respond
199 * to an incoming packet over the same route if the packet got here
200 * using IP source routing.  This allows connection establishment and
201 * maintenance when the remote end is on a network that is not known
202 * to us.
203 */
204static int	ip_nhops = 0;
205static	struct ip_srcrt {
206	struct	in_addr dst;			/* final destination */
207	char	nop;				/* one NOP to align */
208	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
209	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
210} ip_srcrt;
211
212struct sockaddr_in *ip_fw_fwd_addr;
213
214static void	save_rte __P((u_char *, struct in_addr));
215static int	ip_dooptions __P((struct mbuf *));
216static void	ip_forward __P((struct mbuf *, int));
217static void	ip_freef __P((struct ipqhead *, struct ipq *));
218#ifdef IPDIVERT
219static struct	mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *, u_int32_t *, u_int16_t *));
220#else
221static struct	mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *));
222#endif
223static struct	in_ifaddr *ip_rtaddr __P((struct in_addr));
224static void	ipintr __P((void));
225
226/*
227 * IP initialization: fill in IP protocol switch table.
228 * All protocols not implemented in kernel go to raw IP protocol handler.
229 */
230void
231ip_init()
232{
233	register struct protosw *pr;
234	register int i;
235
236	TAILQ_INIT(&in_ifaddrhead);
237	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
238	if (pr == 0)
239		panic("ip_init");
240	for (i = 0; i < IPPROTO_MAX; i++)
241		ip_protox[i] = pr - inetsw;
242	for (pr = inetdomain.dom_protosw;
243	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
244		if (pr->pr_domain->dom_family == PF_INET &&
245		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
246			ip_protox[pr->pr_protocol] = pr - inetsw;
247
248	for (i = 0; i < IPREASS_NHASH; i++)
249	    TAILQ_INIT(&ipq[i]);
250
251	maxnipq = nmbclusters / 4;
252	ip_maxfragpackets = nmbclusters / 4;
253
254#ifndef RANDOM_IP_ID
255	ip_id = time_second & 0xffff;
256#endif
257	ipintrq.ifq_maxlen = ipqmaxlen;
258	mtx_init(&ipintrq.ifq_mtx, "ip_inq", MTX_DEF);
259
260	register_netisr(NETISR_IP, ipintr);
261}
262
263static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
264struct	route ipforward_rt;
265
266/*
267 * Ip input routine.  Checksum and byte swap header.  If fragmented
268 * try to reassemble.  Process options.  Pass to next level.
269 */
270void
271ip_input(struct mbuf *m)
272{
273	struct ip *ip;
274	struct ipq *fp;
275	struct in_ifaddr *ia = NULL;
276	int    i, hlen, checkif;
277	u_short sum;
278	u_int16_t divert_cookie;		/* firewall cookie */
279	struct in_addr pkt_dst;
280#ifdef IPDIVERT
281	u_int32_t divert_info = 0;		/* packet divert/tee info */
282#endif
283	struct ip_fw *rule = NULL;
284#ifdef PFIL_HOOKS
285	struct packet_filter_hook *pfh;
286	struct mbuf *m0;
287	int rv;
288#endif /* PFIL_HOOKS */
289
290#ifdef IPDIVERT
291	/* Get and reset firewall cookie */
292	divert_cookie = ip_divert_cookie;
293	ip_divert_cookie = 0;
294#else
295	divert_cookie = 0;
296#endif
297
298#if defined(IPFIREWALL) && defined(DUMMYNET)
299        /*
300         * dummynet packet are prepended a vestigial mbuf with
301         * m_type = MT_DUMMYNET and m_data pointing to the matching
302         * rule.
303         */
304        if (m->m_type == MT_DUMMYNET) {
305            rule = (struct ip_fw *)(m->m_data) ;
306            m = m->m_next ;
307            ip = mtod(m, struct ip *);
308            hlen = IP_VHL_HL(ip->ip_vhl) << 2;
309            goto iphack ;
310        } else
311            rule = NULL ;
312#endif
313
314#ifdef	DIAGNOSTIC
315	if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
316		panic("ip_input no HDR");
317#endif
318	ipstat.ips_total++;
319
320	if (m->m_pkthdr.len < sizeof(struct ip))
321		goto tooshort;
322
323	if (m->m_len < sizeof (struct ip) &&
324	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
325		ipstat.ips_toosmall++;
326		return;
327	}
328	ip = mtod(m, struct ip *);
329
330	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
331		ipstat.ips_badvers++;
332		goto bad;
333	}
334
335	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
336	if (hlen < sizeof(struct ip)) {	/* minimum header length */
337		ipstat.ips_badhlen++;
338		goto bad;
339	}
340	if (hlen > m->m_len) {
341		if ((m = m_pullup(m, hlen)) == 0) {
342			ipstat.ips_badhlen++;
343			return;
344		}
345		ip = mtod(m, struct ip *);
346	}
347
348	/* 127/8 must not appear on wire - RFC1122 */
349	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
350	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
351		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
352			ipstat.ips_badaddr++;
353			goto bad;
354		}
355	}
356
357	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
358		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
359	} else {
360		if (hlen == sizeof(struct ip)) {
361			sum = in_cksum_hdr(ip);
362		} else {
363			sum = in_cksum(m, hlen);
364		}
365	}
366	if (sum) {
367		ipstat.ips_badsum++;
368		goto bad;
369	}
370
371	/*
372	 * Convert fields to host representation.
373	 */
374	NTOHS(ip->ip_len);
375	if (ip->ip_len < hlen) {
376		ipstat.ips_badlen++;
377		goto bad;
378	}
379	NTOHS(ip->ip_off);
380
381	/*
382	 * Check that the amount of data in the buffers
383	 * is as at least much as the IP header would have us expect.
384	 * Trim mbufs if longer than we expect.
385	 * Drop packet if shorter than we expect.
386	 */
387	if (m->m_pkthdr.len < ip->ip_len) {
388tooshort:
389		ipstat.ips_tooshort++;
390		goto bad;
391	}
392	if (m->m_pkthdr.len > ip->ip_len) {
393		if (m->m_len == m->m_pkthdr.len) {
394			m->m_len = ip->ip_len;
395			m->m_pkthdr.len = ip->ip_len;
396		} else
397			m_adj(m, ip->ip_len - m->m_pkthdr.len);
398	}
399
400#ifdef IPSEC
401	if (ipsec_gethist(m, NULL))
402		goto pass;
403#endif
404
405	/*
406	 * IpHack's section.
407	 * Right now when no processing on packet has done
408	 * and it is still fresh out of network we do our black
409	 * deals with it.
410	 * - Firewall: deny/allow/divert
411	 * - Xlate: translate packet's addr/port (NAT).
412	 * - Pipe: pass pkt through dummynet.
413	 * - Wrap: fake packet's addr/port <unimpl.>
414	 * - Encapsulate: put it in another IP and send out. <unimp.>
415 	 */
416
417#if defined(IPFIREWALL) && defined(DUMMYNET)
418iphack:
419#endif
420
421#ifdef PFIL_HOOKS
422	/*
423	 * Run through list of hooks for input packets.  If there are any
424	 * filters which require that additional packets in the flow are
425	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
426	 * Note that filters must _never_ set this flag, as another filter
427	 * in the list may have previously cleared it.
428	 */
429	m0 = m;
430	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
431	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
432		if (pfh->pfil_func) {
433			rv = pfh->pfil_func(ip, hlen,
434					    m->m_pkthdr.rcvif, 0, &m0);
435			if (rv)
436				return;
437			m = m0;
438			if (m == NULL)
439				return;
440			ip = mtod(m, struct ip *);
441		}
442#endif /* PFIL_HOOKS */
443
444	if (fw_enable && ip_fw_chk_ptr) {
445#ifdef IPFIREWALL_FORWARD
446		/*
447		 * If we've been forwarded from the output side, then
448		 * skip the firewall a second time
449		 */
450		if (ip_fw_fwd_addr)
451			goto ours;
452#endif	/* IPFIREWALL_FORWARD */
453		/*
454		 * See the comment in ip_output for the return values
455		 * produced by the firewall.
456		 */
457		i = (*ip_fw_chk_ptr)(&ip,
458		    hlen, NULL, &divert_cookie, &m, &rule, &ip_fw_fwd_addr);
459		if (i & IP_FW_PORT_DENY_FLAG) { /* XXX new interface-denied */
460		    if (m)
461			m_freem(m);
462		    return ;
463		}
464		if (m == NULL) {	/* Packet discarded by firewall */
465		    static int __debug=10;
466		    if (__debug >0) {
467			printf("firewall returns NULL, please update!\n");
468			__debug-- ;
469		    }
470		    return;
471		}
472		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
473			goto pass;
474#ifdef DUMMYNET
475                if ((i & IP_FW_PORT_DYNT_FLAG) != 0) {
476                        /* Send packet to the appropriate pipe */
477                        dummynet_io(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
478				    0);
479			return;
480		}
481#endif
482#ifdef IPDIVERT
483		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
484			/* Divert or tee packet */
485			divert_info = i;
486			goto ours;
487		}
488#endif
489#ifdef IPFIREWALL_FORWARD
490		if (i == 0 && ip_fw_fwd_addr != NULL)
491			goto pass;
492#endif
493		/*
494		 * if we get here, the packet must be dropped
495		 */
496		m_freem(m);
497		return;
498	}
499pass:
500
501	/*
502	 * Process options and, if not destined for us,
503	 * ship it on.  ip_dooptions returns 1 when an
504	 * error was detected (causing an icmp message
505	 * to be sent and the original packet to be freed).
506	 */
507	ip_nhops = 0;		/* for source routed packets */
508	if (hlen > sizeof (struct ip) && ip_dooptions(m)) {
509#ifdef IPFIREWALL_FORWARD
510		ip_fw_fwd_addr = NULL;
511#endif
512		return;
513	}
514
515        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
516         * matter if it is destined to another node, or whether it is
517         * a multicast one, RSVP wants it! and prevents it from being forwarded
518         * anywhere else. Also checks if the rsvp daemon is running before
519	 * grabbing the packet.
520         */
521	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
522		goto ours;
523
524	/*
525	 * Check our list of addresses, to see if the packet is for us.
526	 * If we don't have any addresses, assume any unicast packet
527	 * we receive might be for us (and let the upper layers deal
528	 * with it).
529	 */
530	if (TAILQ_EMPTY(&in_ifaddrhead) &&
531	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
532		goto ours;
533
534	/*
535	 * Cache the destination address of the packet; this may be
536	 * changed by use of 'ipfw fwd'.
537	 */
538	pkt_dst = ip_fw_fwd_addr == NULL ?
539	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
540
541	/*
542	 * Enable a consistency check between the destination address
543	 * and the arrival interface for a unicast packet (the RFC 1122
544	 * strong ES model) if IP forwarding is disabled and the packet
545	 * is not locally generated and the packet is not subject to
546	 * 'ipfw fwd'.
547	 *
548         * XXX - Checking also should be disabled if the destination
549	 * address is ipnat'ed to a different interface.
550	 *
551	 * XXX - Checking is incompatible with IP aliases added
552	 * to the loopback interface instead of the interface where
553	 * the packets are received.
554	 */
555	checkif = ip_checkinterface && (ipforwarding == 0) &&
556	    m->m_pkthdr.rcvif != NULL &&
557	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
558	    (ip_fw_fwd_addr == NULL);
559
560	TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
561
562#ifdef BOOTP_COMPAT
563		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
564			goto ours;
565#endif
566		/*
567		 * If the address matches, verify that the packet
568		 * arrived via the correct interface if checking is
569		 * enabled.
570		 */
571		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
572		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
573			goto ours;
574		/*
575		 * Only accept broadcast packets that arrive via the
576		 * matching interface.  Reception of forwarded directed
577		 * broadcasts would be handled via ip_forward() and
578		 * ether_output() with the loopback into the stack for
579		 * SIMPLEX interfaces handled by ether_output().
580		 */
581		if (ia->ia_ifp == m->m_pkthdr.rcvif &&
582		    ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
583			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
584			    pkt_dst.s_addr)
585				goto ours;
586			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
587				goto ours;
588		}
589	}
590	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
591		struct in_multi *inm;
592		if (ip_mrouter) {
593			/*
594			 * If we are acting as a multicast router, all
595			 * incoming multicast packets are passed to the
596			 * kernel-level multicast forwarding function.
597			 * The packet is returned (relatively) intact; if
598			 * ip_mforward() returns a non-zero value, the packet
599			 * must be discarded, else it may be accepted below.
600			 */
601			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
602				ipstat.ips_cantforward++;
603				m_freem(m);
604				return;
605			}
606
607			/*
608			 * The process-level routing demon needs to receive
609			 * all multicast IGMP packets, whether or not this
610			 * host belongs to their destination groups.
611			 */
612			if (ip->ip_p == IPPROTO_IGMP)
613				goto ours;
614			ipstat.ips_forward++;
615		}
616		/*
617		 * See if we belong to the destination multicast group on the
618		 * arrival interface.
619		 */
620		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
621		if (inm == NULL) {
622			ipstat.ips_notmember++;
623			m_freem(m);
624			return;
625		}
626		goto ours;
627	}
628	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
629		goto ours;
630	if (ip->ip_dst.s_addr == INADDR_ANY)
631		goto ours;
632
633	/*
634	 * FAITH(Firewall Aided Internet Translator)
635	 */
636	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
637		if (ip_keepfaith) {
638			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
639				goto ours;
640		}
641		m_freem(m);
642		return;
643	}
644
645	/*
646	 * Not for us; forward if possible and desirable.
647	 */
648	if (ipforwarding == 0) {
649		ipstat.ips_cantforward++;
650		m_freem(m);
651	} else
652		ip_forward(m, 0);
653#ifdef IPFIREWALL_FORWARD
654	ip_fw_fwd_addr = NULL;
655#endif
656	return;
657
658ours:
659	/* Count the packet in the ip address stats */
660	if (ia != NULL) {
661		ia->ia_ifa.if_ipackets++;
662		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
663	}
664
665	/*
666	 * If offset or IP_MF are set, must reassemble.
667	 * Otherwise, nothing need be done.
668	 * (We could look in the reassembly queue to see
669	 * if the packet was previously fragmented,
670	 * but it's not worth the time; just let them time out.)
671	 */
672	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
673
674		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
675		/*
676		 * Look for queue of fragments
677		 * of this datagram.
678		 */
679		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
680			if (ip->ip_id == fp->ipq_id &&
681			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
682			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
683			    ip->ip_p == fp->ipq_p)
684				goto found;
685
686		fp = 0;
687
688		/* check if there's a place for the new queue */
689		if (nipq > maxnipq) {
690		    /*
691		     * drop something from the tail of the current queue
692		     * before proceeding further
693		     */
694		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
695		    if (q == NULL) {   /* gak */
696			for (i = 0; i < IPREASS_NHASH; i++) {
697			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
698			    if (r) {
699				ip_freef(&ipq[i], r);
700				break;
701			    }
702			}
703		    } else
704			ip_freef(&ipq[sum], q);
705		}
706found:
707		/*
708		 * Adjust ip_len to not reflect header,
709		 * convert offset of this to bytes.
710		 */
711		ip->ip_len -= hlen;
712		if (ip->ip_off & IP_MF) {
713		        /*
714		         * Make sure that fragments have a data length
715			 * that's a non-zero multiple of 8 bytes.
716		         */
717			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
718				ipstat.ips_toosmall++; /* XXX */
719				goto bad;
720			}
721			m->m_flags |= M_FRAG;
722		}
723		ip->ip_off <<= 3;
724
725		/*
726		 * Attempt reassembly; if it succeeds, proceed.
727		 */
728		ipstat.ips_fragments++;
729		m->m_pkthdr.header = ip;
730#ifdef IPDIVERT
731		m = ip_reass(m,
732		    &ipq[sum], fp, &divert_info, &divert_cookie);
733#else
734		m = ip_reass(m, &ipq[sum], fp);
735#endif
736		if (m == 0) {
737#ifdef IPFIREWALL_FORWARD
738			ip_fw_fwd_addr = NULL;
739#endif
740			return;
741		}
742		ipstat.ips_reassembled++;
743		ip = mtod(m, struct ip *);
744		/* Get the header length of the reassembled packet */
745		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
746#ifdef IPDIVERT
747		/* Restore original checksum before diverting packet */
748		if (divert_info != 0) {
749			ip->ip_len += hlen;
750			HTONS(ip->ip_len);
751			HTONS(ip->ip_off);
752			ip->ip_sum = 0;
753			if (hlen == sizeof(struct ip))
754				ip->ip_sum = in_cksum_hdr(ip);
755			else
756				ip->ip_sum = in_cksum(m, hlen);
757			NTOHS(ip->ip_off);
758			NTOHS(ip->ip_len);
759			ip->ip_len -= hlen;
760		}
761#endif
762	} else
763		ip->ip_len -= hlen;
764
765#ifdef IPDIVERT
766	/*
767	 * Divert or tee packet to the divert protocol if required.
768	 *
769	 * If divert_info is zero then cookie should be too, so we shouldn't
770	 * need to clear them here.  Assume divert_packet() does so also.
771	 */
772	if (divert_info != 0) {
773		struct mbuf *clone = NULL;
774
775		/* Clone packet if we're doing a 'tee' */
776		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
777			clone = m_dup(m, M_DONTWAIT);
778
779		/* Restore packet header fields to original values */
780		ip->ip_len += hlen;
781		HTONS(ip->ip_len);
782		HTONS(ip->ip_off);
783
784		/* Deliver packet to divert input routine */
785		ip_divert_cookie = divert_cookie;
786		divert_packet(m, 1, divert_info & 0xffff);
787		ipstat.ips_delivered++;
788
789		/* If 'tee', continue with original packet */
790		if (clone == NULL)
791			return;
792		m = clone;
793		ip = mtod(m, struct ip *);
794	}
795#endif
796
797#ifdef IPSEC
798	/*
799	 * enforce IPsec policy checking if we are seeing last header.
800	 * note that we do not visit this with protocols with pcb layer
801	 * code - like udp/tcp/raw ip.
802	 */
803	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
804	    ipsec4_in_reject(m, NULL)) {
805		ipsecstat.in_polvio++;
806		goto bad;
807	}
808#endif
809
810	/*
811	 * Switch out to protocol's input routine.
812	 */
813	ipstat.ips_delivered++;
814    {
815	int off = hlen;
816
817	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off);
818#ifdef	IPFIREWALL_FORWARD
819	ip_fw_fwd_addr = NULL;	/* tcp needed it */
820#endif
821	return;
822    }
823bad:
824#ifdef	IPFIREWALL_FORWARD
825	ip_fw_fwd_addr = NULL;
826#endif
827	m_freem(m);
828}
829
830/*
831 * IP software interrupt routine - to go away sometime soon
832 */
833static void
834ipintr(void)
835{
836	struct mbuf *m;
837
838	while (1) {
839		IF_DEQUEUE(&ipintrq, m);
840		if (m == 0)
841			return;
842		ip_input(m);
843	}
844}
845
846/*
847 * Take incoming datagram fragment and try to reassemble it into
848 * whole datagram.  If a chain for reassembly of this datagram already
849 * exists, then it is given as fp; otherwise have to make a chain.
850 *
851 * When IPDIVERT enabled, keep additional state with each packet that
852 * tells us if we need to divert or tee the packet we're building.
853 */
854
855static struct mbuf *
856#ifdef IPDIVERT
857ip_reass(m, head, fp, divinfo, divcookie)
858#else
859ip_reass(m, head, fp)
860#endif
861	struct mbuf *m;
862	struct ipqhead *head;
863	struct ipq *fp;
864#ifdef IPDIVERT
865	u_int32_t *divinfo;
866	u_int16_t *divcookie;
867#endif
868{
869	struct ip *ip = mtod(m, struct ip *);
870	register struct mbuf *p, *q, *nq;
871	struct mbuf *t;
872	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
873	int i, next;
874
875	/*
876	 * Presence of header sizes in mbufs
877	 * would confuse code below.
878	 */
879	m->m_data += hlen;
880	m->m_len -= hlen;
881
882	/*
883	 * If first fragment to arrive, create a reassembly queue.
884	 */
885	if (fp == 0) {
886		/*
887		 * Enforce upper bound on number of fragmented packets
888		 * for which we attempt reassembly;
889		 * If maxfrag is 0, never accept fragments.
890		 * If maxfrag is -1, accept all fragments without limitation.
891		 */
892		if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets))
893			goto dropfrag;
894		ip_nfragpackets++;
895		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
896			goto dropfrag;
897		fp = mtod(t, struct ipq *);
898		TAILQ_INSERT_HEAD(head, fp, ipq_list);
899		nipq++;
900		fp->ipq_ttl = IPFRAGTTL;
901		fp->ipq_p = ip->ip_p;
902		fp->ipq_id = ip->ip_id;
903		fp->ipq_src = ip->ip_src;
904		fp->ipq_dst = ip->ip_dst;
905		fp->ipq_frags = m;
906		m->m_nextpkt = NULL;
907#ifdef IPDIVERT
908		fp->ipq_div_info = 0;
909		fp->ipq_div_cookie = 0;
910#endif
911		goto inserted;
912	}
913
914#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
915
916	/*
917	 * Find a segment which begins after this one does.
918	 */
919	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
920		if (GETIP(q)->ip_off > ip->ip_off)
921			break;
922
923	/*
924	 * If there is a preceding segment, it may provide some of
925	 * our data already.  If so, drop the data from the incoming
926	 * segment.  If it provides all of our data, drop us, otherwise
927	 * stick new segment in the proper place.
928	 *
929	 * If some of the data is dropped from the the preceding
930	 * segment, then it's checksum is invalidated.
931	 */
932	if (p) {
933		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
934		if (i > 0) {
935			if (i >= ip->ip_len)
936				goto dropfrag;
937			m_adj(m, i);
938			m->m_pkthdr.csum_flags = 0;
939			ip->ip_off += i;
940			ip->ip_len -= i;
941		}
942		m->m_nextpkt = p->m_nextpkt;
943		p->m_nextpkt = m;
944	} else {
945		m->m_nextpkt = fp->ipq_frags;
946		fp->ipq_frags = m;
947	}
948
949	/*
950	 * While we overlap succeeding segments trim them or,
951	 * if they are completely covered, dequeue them.
952	 */
953	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
954	     q = nq) {
955		i = (ip->ip_off + ip->ip_len) -
956		    GETIP(q)->ip_off;
957		if (i < GETIP(q)->ip_len) {
958			GETIP(q)->ip_len -= i;
959			GETIP(q)->ip_off += i;
960			m_adj(q, i);
961			q->m_pkthdr.csum_flags = 0;
962			break;
963		}
964		nq = q->m_nextpkt;
965		m->m_nextpkt = nq;
966		m_freem(q);
967	}
968
969inserted:
970
971#ifdef IPDIVERT
972	/*
973	 * Transfer firewall instructions to the fragment structure.
974	 * Any fragment diverting causes the whole packet to divert.
975	 */
976	fp->ipq_div_info = *divinfo;
977	fp->ipq_div_cookie = *divcookie;
978	*divinfo = 0;
979	*divcookie = 0;
980#endif
981
982	/*
983	 * Check for complete reassembly.
984	 */
985	next = 0;
986	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
987		if (GETIP(q)->ip_off != next)
988			return (0);
989		next += GETIP(q)->ip_len;
990	}
991	/* Make sure the last packet didn't have the IP_MF flag */
992	if (p->m_flags & M_FRAG)
993		return (0);
994
995	/*
996	 * Reassembly is complete.  Make sure the packet is a sane size.
997	 */
998	q = fp->ipq_frags;
999	ip = GETIP(q);
1000	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1001		ipstat.ips_toolong++;
1002		ip_freef(head, fp);
1003		return (0);
1004	}
1005
1006	/*
1007	 * Concatenate fragments.
1008	 */
1009	m = q;
1010	t = m->m_next;
1011	m->m_next = 0;
1012	m_cat(m, t);
1013	nq = q->m_nextpkt;
1014	q->m_nextpkt = 0;
1015	for (q = nq; q != NULL; q = nq) {
1016		nq = q->m_nextpkt;
1017		q->m_nextpkt = NULL;
1018		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1019		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1020		m_cat(m, q);
1021	}
1022
1023#ifdef IPDIVERT
1024	/*
1025	 * Extract firewall instructions from the fragment structure.
1026	 */
1027	*divinfo = fp->ipq_div_info;
1028	*divcookie = fp->ipq_div_cookie;
1029#endif
1030
1031	/*
1032	 * Create header for new ip packet by
1033	 * modifying header of first packet;
1034	 * dequeue and discard fragment reassembly header.
1035	 * Make header visible.
1036	 */
1037	ip->ip_len = next;
1038	ip->ip_src = fp->ipq_src;
1039	ip->ip_dst = fp->ipq_dst;
1040	TAILQ_REMOVE(head, fp, ipq_list);
1041	nipq--;
1042	(void) m_free(dtom(fp));
1043	ip_nfragpackets--;
1044	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1045	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1046	/* some debugging cruft by sklower, below, will go away soon */
1047	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1048		register int plen = 0;
1049		for (t = m; t; t = t->m_next)
1050			plen += t->m_len;
1051		m->m_pkthdr.len = plen;
1052	}
1053	return (m);
1054
1055dropfrag:
1056#ifdef IPDIVERT
1057	*divinfo = 0;
1058	*divcookie = 0;
1059#endif
1060	ipstat.ips_fragdropped++;
1061	m_freem(m);
1062	return (0);
1063
1064#undef GETIP
1065}
1066
1067/*
1068 * Free a fragment reassembly header and all
1069 * associated datagrams.
1070 */
1071static void
1072ip_freef(fhp, fp)
1073	struct ipqhead *fhp;
1074	struct ipq *fp;
1075{
1076	register struct mbuf *q;
1077
1078	while (fp->ipq_frags) {
1079		q = fp->ipq_frags;
1080		fp->ipq_frags = q->m_nextpkt;
1081		m_freem(q);
1082	}
1083	TAILQ_REMOVE(fhp, fp, ipq_list);
1084	(void) m_free(dtom(fp));
1085	ip_nfragpackets--;
1086	nipq--;
1087}
1088
1089/*
1090 * IP timer processing;
1091 * if a timer expires on a reassembly
1092 * queue, discard it.
1093 */
1094void
1095ip_slowtimo()
1096{
1097	register struct ipq *fp;
1098	int s = splnet();
1099	int i;
1100
1101	for (i = 0; i < IPREASS_NHASH; i++) {
1102		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1103			struct ipq *fpp;
1104
1105			fpp = fp;
1106			fp = TAILQ_NEXT(fp, ipq_list);
1107			if(--fpp->ipq_ttl == 0) {
1108				ipstat.ips_fragtimeout++;
1109				ip_freef(&ipq[i], fpp);
1110			}
1111		}
1112	}
1113	/*
1114	 * If we are over the maximum number of fragments
1115	 * (due to the limit being lowered), drain off
1116	 * enough to get down to the new limit.
1117	 */
1118	for (i = 0; i < IPREASS_NHASH; i++) {
1119		if (ip_maxfragpackets >= 0) {
1120			while (ip_nfragpackets > ip_maxfragpackets &&
1121				!TAILQ_EMPTY(&ipq[i])) {
1122				ipstat.ips_fragdropped++;
1123				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1124			}
1125		}
1126	}
1127	ipflow_slowtimo();
1128	splx(s);
1129}
1130
1131/*
1132 * Drain off all datagram fragments.
1133 */
1134void
1135ip_drain()
1136{
1137	int     i;
1138
1139	for (i = 0; i < IPREASS_NHASH; i++) {
1140		while(!TAILQ_EMPTY(&ipq[i])) {
1141			ipstat.ips_fragdropped++;
1142			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1143		}
1144	}
1145	in_rtqdrain();
1146}
1147
1148/*
1149 * Do option processing on a datagram,
1150 * possibly discarding it if bad options are encountered,
1151 * or forwarding it if source-routed.
1152 * Returns 1 if packet has been forwarded/freed,
1153 * 0 if the packet should be processed further.
1154 */
1155static int
1156ip_dooptions(m)
1157	struct mbuf *m;
1158{
1159	register struct ip *ip = mtod(m, struct ip *);
1160	register u_char *cp;
1161	register struct ip_timestamp *ipt;
1162	register struct in_ifaddr *ia;
1163	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1164	struct in_addr *sin, dst;
1165	n_time ntime;
1166
1167	dst = ip->ip_dst;
1168	cp = (u_char *)(ip + 1);
1169	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1170	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1171		opt = cp[IPOPT_OPTVAL];
1172		if (opt == IPOPT_EOL)
1173			break;
1174		if (opt == IPOPT_NOP)
1175			optlen = 1;
1176		else {
1177			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1178				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1179				goto bad;
1180			}
1181			optlen = cp[IPOPT_OLEN];
1182			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1183				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1184				goto bad;
1185			}
1186		}
1187		switch (opt) {
1188
1189		default:
1190			break;
1191
1192		/*
1193		 * Source routing with record.
1194		 * Find interface with current destination address.
1195		 * If none on this machine then drop if strictly routed,
1196		 * or do nothing if loosely routed.
1197		 * Record interface address and bring up next address
1198		 * component.  If strictly routed make sure next
1199		 * address is on directly accessible net.
1200		 */
1201		case IPOPT_LSRR:
1202		case IPOPT_SSRR:
1203			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1204				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1205				goto bad;
1206			}
1207			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1208				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1209				goto bad;
1210			}
1211			ipaddr.sin_addr = ip->ip_dst;
1212			ia = (struct in_ifaddr *)
1213				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1214			if (ia == 0) {
1215				if (opt == IPOPT_SSRR) {
1216					type = ICMP_UNREACH;
1217					code = ICMP_UNREACH_SRCFAIL;
1218					goto bad;
1219				}
1220				if (!ip_dosourceroute)
1221					goto nosourcerouting;
1222				/*
1223				 * Loose routing, and not at next destination
1224				 * yet; nothing to do except forward.
1225				 */
1226				break;
1227			}
1228			off--;			/* 0 origin */
1229			if (off > optlen - (int)sizeof(struct in_addr)) {
1230				/*
1231				 * End of source route.  Should be for us.
1232				 */
1233				if (!ip_acceptsourceroute)
1234					goto nosourcerouting;
1235				save_rte(cp, ip->ip_src);
1236				break;
1237			}
1238
1239			if (!ip_dosourceroute) {
1240				if (ipforwarding) {
1241					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1242					/*
1243					 * Acting as a router, so generate ICMP
1244					 */
1245nosourcerouting:
1246					strcpy(buf, inet_ntoa(ip->ip_dst));
1247					log(LOG_WARNING,
1248					    "attempted source route from %s to %s\n",
1249					    inet_ntoa(ip->ip_src), buf);
1250					type = ICMP_UNREACH;
1251					code = ICMP_UNREACH_SRCFAIL;
1252					goto bad;
1253				} else {
1254					/*
1255					 * Not acting as a router, so silently drop.
1256					 */
1257					ipstat.ips_cantforward++;
1258					m_freem(m);
1259					return (1);
1260				}
1261			}
1262
1263			/*
1264			 * locate outgoing interface
1265			 */
1266			(void)memcpy(&ipaddr.sin_addr, cp + off,
1267			    sizeof(ipaddr.sin_addr));
1268
1269			if (opt == IPOPT_SSRR) {
1270#define	INA	struct in_ifaddr *
1271#define	SA	struct sockaddr *
1272			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1273				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1274			} else
1275				ia = ip_rtaddr(ipaddr.sin_addr);
1276			if (ia == 0) {
1277				type = ICMP_UNREACH;
1278				code = ICMP_UNREACH_SRCFAIL;
1279				goto bad;
1280			}
1281			ip->ip_dst = ipaddr.sin_addr;
1282			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1283			    sizeof(struct in_addr));
1284			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1285			/*
1286			 * Let ip_intr's mcast routing check handle mcast pkts
1287			 */
1288			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1289			break;
1290
1291		case IPOPT_RR:
1292			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1293				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1294				goto bad;
1295			}
1296			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1297				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1298				goto bad;
1299			}
1300			/*
1301			 * If no space remains, ignore.
1302			 */
1303			off--;			/* 0 origin */
1304			if (off > optlen - (int)sizeof(struct in_addr))
1305				break;
1306			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1307			    sizeof(ipaddr.sin_addr));
1308			/*
1309			 * locate outgoing interface; if we're the destination,
1310			 * use the incoming interface (should be same).
1311			 */
1312			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1313			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1314				type = ICMP_UNREACH;
1315				code = ICMP_UNREACH_HOST;
1316				goto bad;
1317			}
1318			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1319			    sizeof(struct in_addr));
1320			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1321			break;
1322
1323		case IPOPT_TS:
1324			code = cp - (u_char *)ip;
1325			ipt = (struct ip_timestamp *)cp;
1326			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1327				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1328				goto bad;
1329			}
1330			if (ipt->ipt_ptr < 5) {
1331				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1332				goto bad;
1333			}
1334			if (ipt->ipt_ptr >
1335			    ipt->ipt_len - (int)sizeof(int32_t)) {
1336				if (++ipt->ipt_oflw == 0) {
1337					code = (u_char *)&ipt->ipt_ptr -
1338					    (u_char *)ip;
1339					goto bad;
1340				}
1341				break;
1342			}
1343			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1344			switch (ipt->ipt_flg) {
1345
1346			case IPOPT_TS_TSONLY:
1347				break;
1348
1349			case IPOPT_TS_TSANDADDR:
1350				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1351				    sizeof(struct in_addr) > ipt->ipt_len) {
1352					code = (u_char *)&ipt->ipt_ptr -
1353					    (u_char *)ip;
1354					goto bad;
1355				}
1356				ipaddr.sin_addr = dst;
1357				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1358							    m->m_pkthdr.rcvif);
1359				if (ia == 0)
1360					continue;
1361				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1362				    sizeof(struct in_addr));
1363				ipt->ipt_ptr += sizeof(struct in_addr);
1364				break;
1365
1366			case IPOPT_TS_PRESPEC:
1367				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1368				    sizeof(struct in_addr) > ipt->ipt_len) {
1369					code = (u_char *)&ipt->ipt_ptr -
1370					    (u_char *)ip;
1371					goto bad;
1372				}
1373				(void)memcpy(&ipaddr.sin_addr, sin,
1374				    sizeof(struct in_addr));
1375				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1376					continue;
1377				ipt->ipt_ptr += sizeof(struct in_addr);
1378				break;
1379
1380			default:
1381				/* XXX can't take &ipt->ipt_flg */
1382				code = (u_char *)&ipt->ipt_ptr -
1383				    (u_char *)ip + 1;
1384				goto bad;
1385			}
1386			ntime = iptime();
1387			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1388			    sizeof(n_time));
1389			ipt->ipt_ptr += sizeof(n_time);
1390		}
1391	}
1392	if (forward && ipforwarding) {
1393		ip_forward(m, 1);
1394		return (1);
1395	}
1396	return (0);
1397bad:
1398	icmp_error(m, type, code, 0, 0);
1399	ipstat.ips_badoptions++;
1400	return (1);
1401}
1402
1403/*
1404 * Given address of next destination (final or next hop),
1405 * return internet address info of interface to be used to get there.
1406 */
1407static struct in_ifaddr *
1408ip_rtaddr(dst)
1409	 struct in_addr dst;
1410{
1411	register struct sockaddr_in *sin;
1412
1413	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1414
1415	if (ipforward_rt.ro_rt == 0 ||
1416	    !(ipforward_rt.ro_rt->rt_flags & RTF_UP) ||
1417	    dst.s_addr != sin->sin_addr.s_addr) {
1418		if (ipforward_rt.ro_rt) {
1419			RTFREE(ipforward_rt.ro_rt);
1420			ipforward_rt.ro_rt = 0;
1421		}
1422		sin->sin_family = AF_INET;
1423		sin->sin_len = sizeof(*sin);
1424		sin->sin_addr = dst;
1425
1426		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1427	}
1428	if (ipforward_rt.ro_rt == 0)
1429		return ((struct in_ifaddr *)0);
1430	return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
1431}
1432
1433/*
1434 * Save incoming source route for use in replies,
1435 * to be picked up later by ip_srcroute if the receiver is interested.
1436 */
1437void
1438save_rte(option, dst)
1439	u_char *option;
1440	struct in_addr dst;
1441{
1442	unsigned olen;
1443
1444	olen = option[IPOPT_OLEN];
1445#ifdef DIAGNOSTIC
1446	if (ipprintfs)
1447		printf("save_rte: olen %d\n", olen);
1448#endif
1449	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1450		return;
1451	bcopy(option, ip_srcrt.srcopt, olen);
1452	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1453	ip_srcrt.dst = dst;
1454}
1455
1456/*
1457 * Retrieve incoming source route for use in replies,
1458 * in the same form used by setsockopt.
1459 * The first hop is placed before the options, will be removed later.
1460 */
1461struct mbuf *
1462ip_srcroute()
1463{
1464	register struct in_addr *p, *q;
1465	register struct mbuf *m;
1466
1467	if (ip_nhops == 0)
1468		return ((struct mbuf *)0);
1469	m = m_get(M_DONTWAIT, MT_HEADER);
1470	if (m == 0)
1471		return ((struct mbuf *)0);
1472
1473#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1474
1475	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1476	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1477	    OPTSIZ;
1478#ifdef DIAGNOSTIC
1479	if (ipprintfs)
1480		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1481#endif
1482
1483	/*
1484	 * First save first hop for return route
1485	 */
1486	p = &ip_srcrt.route[ip_nhops - 1];
1487	*(mtod(m, struct in_addr *)) = *p--;
1488#ifdef DIAGNOSTIC
1489	if (ipprintfs)
1490		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1491#endif
1492
1493	/*
1494	 * Copy option fields and padding (nop) to mbuf.
1495	 */
1496	ip_srcrt.nop = IPOPT_NOP;
1497	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1498	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1499	    &ip_srcrt.nop, OPTSIZ);
1500	q = (struct in_addr *)(mtod(m, caddr_t) +
1501	    sizeof(struct in_addr) + OPTSIZ);
1502#undef OPTSIZ
1503	/*
1504	 * Record return path as an IP source route,
1505	 * reversing the path (pointers are now aligned).
1506	 */
1507	while (p >= ip_srcrt.route) {
1508#ifdef DIAGNOSTIC
1509		if (ipprintfs)
1510			printf(" %lx", (u_long)ntohl(q->s_addr));
1511#endif
1512		*q++ = *p--;
1513	}
1514	/*
1515	 * Last hop goes to final destination.
1516	 */
1517	*q = ip_srcrt.dst;
1518#ifdef DIAGNOSTIC
1519	if (ipprintfs)
1520		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1521#endif
1522	return (m);
1523}
1524
1525/*
1526 * Strip out IP options, at higher
1527 * level protocol in the kernel.
1528 * Second argument is buffer to which options
1529 * will be moved, and return value is their length.
1530 * XXX should be deleted; last arg currently ignored.
1531 */
1532void
1533ip_stripoptions(m, mopt)
1534	register struct mbuf *m;
1535	struct mbuf *mopt;
1536{
1537	register int i;
1538	struct ip *ip = mtod(m, struct ip *);
1539	register caddr_t opts;
1540	int olen;
1541
1542	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1543	opts = (caddr_t)(ip + 1);
1544	i = m->m_len - (sizeof (struct ip) + olen);
1545	bcopy(opts + olen, opts, (unsigned)i);
1546	m->m_len -= olen;
1547	if (m->m_flags & M_PKTHDR)
1548		m->m_pkthdr.len -= olen;
1549	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1550}
1551
1552u_char inetctlerrmap[PRC_NCMDS] = {
1553	0,		0,		0,		0,
1554	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1555	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1556	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1557	0,		0,		0,		0,
1558	ENOPROTOOPT,	ECONNREFUSED
1559};
1560
1561/*
1562 * Forward a packet.  If some error occurs return the sender
1563 * an icmp packet.  Note we can't always generate a meaningful
1564 * icmp message because icmp doesn't have a large enough repertoire
1565 * of codes and types.
1566 *
1567 * If not forwarding, just drop the packet.  This could be confusing
1568 * if ipforwarding was zero but some routing protocol was advancing
1569 * us as a gateway to somewhere.  However, we must let the routing
1570 * protocol deal with that.
1571 *
1572 * The srcrt parameter indicates whether the packet is being forwarded
1573 * via a source route.
1574 */
1575static void
1576ip_forward(m, srcrt)
1577	struct mbuf *m;
1578	int srcrt;
1579{
1580	register struct ip *ip = mtod(m, struct ip *);
1581	register struct rtentry *rt;
1582	int error, type = 0, code = 0;
1583	struct mbuf *mcopy;
1584	n_long dest;
1585	struct ifnet *destifp;
1586#ifdef IPSEC
1587	struct ifnet dummyifp;
1588#endif
1589
1590	dest = 0;
1591#ifdef DIAGNOSTIC
1592	if (ipprintfs)
1593		printf("forward: src %lx dst %lx ttl %x\n",
1594		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1595		    ip->ip_ttl);
1596#endif
1597
1598
1599	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1600		ipstat.ips_cantforward++;
1601		m_freem(m);
1602		return;
1603	}
1604#ifdef IPSTEALTH
1605	if (!ipstealth) {
1606#endif
1607		if (ip->ip_ttl <= IPTTLDEC) {
1608			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1609			    dest, 0);
1610			return;
1611		}
1612#ifdef IPSTEALTH
1613	}
1614#endif
1615
1616	if (ip_rtaddr(ip->ip_dst) == 0) {
1617		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1618		return;
1619	} else
1620		rt = ipforward_rt.ro_rt;
1621
1622	/*
1623	 * Save the IP header and at most 8 bytes of the payload,
1624	 * in case we need to generate an ICMP message to the src.
1625	 *
1626	 * We don't use m_copy() because it might return a reference
1627	 * to a shared cluster. Both this function and ip_output()
1628	 * assume exclusive access to the IP header in `m', so any
1629	 * data in a cluster may change before we reach icmp_error().
1630	 */
1631	MGET(mcopy, M_DONTWAIT, m->m_type);
1632	if (mcopy != NULL) {
1633		M_COPY_PKTHDR(mcopy, m);
1634		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1635		    (int)ip->ip_len);
1636		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1637	}
1638
1639#ifdef IPSTEALTH
1640	if (!ipstealth) {
1641#endif
1642		ip->ip_ttl -= IPTTLDEC;
1643#ifdef IPSTEALTH
1644	}
1645#endif
1646
1647	/*
1648	 * If forwarding packet using same interface that it came in on,
1649	 * perhaps should send a redirect to sender to shortcut a hop.
1650	 * Only send redirect if source is sending directly to us,
1651	 * and if packet was not source routed (or has any options).
1652	 * Also, don't send redirect if forwarding using a default route
1653	 * or a route modified by a redirect.
1654	 */
1655	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1656	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1657	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1658	    ipsendredirects && !srcrt) {
1659#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1660		u_long src = ntohl(ip->ip_src.s_addr);
1661
1662		if (RTA(rt) &&
1663		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1664		    if (rt->rt_flags & RTF_GATEWAY)
1665			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1666		    else
1667			dest = ip->ip_dst.s_addr;
1668		    /* Router requirements says to only send host redirects */
1669		    type = ICMP_REDIRECT;
1670		    code = ICMP_REDIRECT_HOST;
1671#ifdef DIAGNOSTIC
1672		    if (ipprintfs)
1673		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1674#endif
1675		}
1676	}
1677
1678	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1679			  IP_FORWARDING, 0);
1680	if (error)
1681		ipstat.ips_cantforward++;
1682	else {
1683		ipstat.ips_forward++;
1684		if (type)
1685			ipstat.ips_redirectsent++;
1686		else {
1687			if (mcopy) {
1688				ipflow_create(&ipforward_rt, mcopy);
1689				m_freem(mcopy);
1690			}
1691			return;
1692		}
1693	}
1694	if (mcopy == NULL)
1695		return;
1696	destifp = NULL;
1697
1698	switch (error) {
1699
1700	case 0:				/* forwarded, but need redirect */
1701		/* type, code set above */
1702		break;
1703
1704	case ENETUNREACH:		/* shouldn't happen, checked above */
1705	case EHOSTUNREACH:
1706	case ENETDOWN:
1707	case EHOSTDOWN:
1708	default:
1709		type = ICMP_UNREACH;
1710		code = ICMP_UNREACH_HOST;
1711		break;
1712
1713	case EMSGSIZE:
1714		type = ICMP_UNREACH;
1715		code = ICMP_UNREACH_NEEDFRAG;
1716#ifndef IPSEC
1717		if (ipforward_rt.ro_rt)
1718			destifp = ipforward_rt.ro_rt->rt_ifp;
1719#else
1720		/*
1721		 * If the packet is routed over IPsec tunnel, tell the
1722		 * originator the tunnel MTU.
1723		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1724		 * XXX quickhack!!!
1725		 */
1726		if (ipforward_rt.ro_rt) {
1727			struct secpolicy *sp = NULL;
1728			int ipsecerror;
1729			int ipsechdr;
1730			struct route *ro;
1731
1732			sp = ipsec4_getpolicybyaddr(mcopy,
1733						    IPSEC_DIR_OUTBOUND,
1734			                            IP_FORWARDING,
1735			                            &ipsecerror);
1736
1737			if (sp == NULL)
1738				destifp = ipforward_rt.ro_rt->rt_ifp;
1739			else {
1740				/* count IPsec header size */
1741				ipsechdr = ipsec4_hdrsiz(mcopy,
1742							 IPSEC_DIR_OUTBOUND,
1743							 NULL);
1744
1745				/*
1746				 * find the correct route for outer IPv4
1747				 * header, compute tunnel MTU.
1748				 *
1749				 * XXX BUG ALERT
1750				 * The "dummyifp" code relies upon the fact
1751				 * that icmp_error() touches only ifp->if_mtu.
1752				 */
1753				/*XXX*/
1754				destifp = NULL;
1755				if (sp->req != NULL
1756				 && sp->req->sav != NULL
1757				 && sp->req->sav->sah != NULL) {
1758					ro = &sp->req->sav->sah->sa_route;
1759					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1760						dummyifp.if_mtu =
1761						    ro->ro_rt->rt_ifp->if_mtu;
1762						dummyifp.if_mtu -= ipsechdr;
1763						destifp = &dummyifp;
1764					}
1765				}
1766
1767				key_freesp(sp);
1768			}
1769		}
1770#endif /*IPSEC*/
1771		ipstat.ips_cantfrag++;
1772		break;
1773
1774	case ENOBUFS:
1775		type = ICMP_SOURCEQUENCH;
1776		code = 0;
1777		break;
1778
1779	case EACCES:			/* ipfw denied packet */
1780		m_freem(mcopy);
1781		return;
1782	}
1783	icmp_error(mcopy, type, code, dest, destifp);
1784}
1785
1786void
1787ip_savecontrol(inp, mp, ip, m)
1788	register struct inpcb *inp;
1789	register struct mbuf **mp;
1790	register struct ip *ip;
1791	register struct mbuf *m;
1792{
1793	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1794		struct timeval tv;
1795
1796		microtime(&tv);
1797		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1798			SCM_TIMESTAMP, SOL_SOCKET);
1799		if (*mp)
1800			mp = &(*mp)->m_next;
1801	}
1802	if (inp->inp_flags & INP_RECVDSTADDR) {
1803		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1804		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1805		if (*mp)
1806			mp = &(*mp)->m_next;
1807	}
1808#ifdef notyet
1809	/* XXX
1810	 * Moving these out of udp_input() made them even more broken
1811	 * than they already were.
1812	 */
1813	/* options were tossed already */
1814	if (inp->inp_flags & INP_RECVOPTS) {
1815		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1816		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1817		if (*mp)
1818			mp = &(*mp)->m_next;
1819	}
1820	/* ip_srcroute doesn't do what we want here, need to fix */
1821	if (inp->inp_flags & INP_RECVRETOPTS) {
1822		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1823		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1824		if (*mp)
1825			mp = &(*mp)->m_next;
1826	}
1827#endif
1828	if (inp->inp_flags & INP_RECVIF) {
1829		struct ifnet *ifp;
1830		struct sdlbuf {
1831			struct sockaddr_dl sdl;
1832			u_char	pad[32];
1833		} sdlbuf;
1834		struct sockaddr_dl *sdp;
1835		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1836
1837		if (((ifp = m->m_pkthdr.rcvif))
1838		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1839			sdp = (struct sockaddr_dl *)
1840			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
1841			/*
1842			 * Change our mind and don't try copy.
1843			 */
1844			if ((sdp->sdl_family != AF_LINK)
1845			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1846				goto makedummy;
1847			}
1848			bcopy(sdp, sdl2, sdp->sdl_len);
1849		} else {
1850makedummy:
1851			sdl2->sdl_len
1852				= offsetof(struct sockaddr_dl, sdl_data[0]);
1853			sdl2->sdl_family = AF_LINK;
1854			sdl2->sdl_index = 0;
1855			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1856		}
1857		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1858			IP_RECVIF, IPPROTO_IP);
1859		if (*mp)
1860			mp = &(*mp)->m_next;
1861	}
1862}
1863
1864int
1865ip_rsvp_init(struct socket *so)
1866{
1867	if (so->so_type != SOCK_RAW ||
1868	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1869	  return EOPNOTSUPP;
1870
1871	if (ip_rsvpd != NULL)
1872	  return EADDRINUSE;
1873
1874	ip_rsvpd = so;
1875	/*
1876	 * This may seem silly, but we need to be sure we don't over-increment
1877	 * the RSVP counter, in case something slips up.
1878	 */
1879	if (!ip_rsvp_on) {
1880		ip_rsvp_on = 1;
1881		rsvp_on++;
1882	}
1883
1884	return 0;
1885}
1886
1887int
1888ip_rsvp_done(void)
1889{
1890	ip_rsvpd = NULL;
1891	/*
1892	 * This may seem silly, but we need to be sure we don't over-decrement
1893	 * the RSVP counter, in case something slips up.
1894	 */
1895	if (ip_rsvp_on) {
1896		ip_rsvp_on = 0;
1897		rsvp_on--;
1898	}
1899	return 0;
1900}
1901