ip_reass.c revision 77969
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/netinet/ip_input.c 77969 2001-06-10 11:04:10Z jesper $
35 */
36
37#define	_IP_VHL
38
39#include "opt_bootp.h"
40#include "opt_ipfw.h"
41#include "opt_ipdn.h"
42#include "opt_ipdivert.h"
43#include "opt_ipfilter.h"
44#include "opt_ipstealth.h"
45#include "opt_ipsec.h"
46#include "opt_pfil_hooks.h"
47#include "opt_random_ip_id.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/domain.h>
54#include <sys/protosw.h>
55#include <sys/socket.h>
56#include <sys/time.h>
57#include <sys/kernel.h>
58#include <sys/syslog.h>
59#include <sys/sysctl.h>
60
61#include <net/pfil.h>
62#include <net/if.h>
63#include <net/if_var.h>
64#include <net/if_dl.h>
65#include <net/route.h>
66#include <net/netisr.h>
67#include <net/intrq.h>
68
69#include <netinet/in.h>
70#include <netinet/in_systm.h>
71#include <netinet/in_var.h>
72#include <netinet/ip.h>
73#include <netinet/in_pcb.h>
74#include <netinet/ip_var.h>
75#include <netinet/ip_icmp.h>
76#include <machine/in_cksum.h>
77
78#include <netinet/ipprotosw.h>
79
80#include <sys/socketvar.h>
81
82#include <netinet/ip_fw.h>
83
84#ifdef IPSEC
85#include <netinet6/ipsec.h>
86#include <netkey/key.h>
87#endif
88
89#include "faith.h"
90#if defined(NFAITH) && NFAITH > 0
91#include <net/if_types.h>
92#endif
93
94#ifdef DUMMYNET
95#include <netinet/ip_dummynet.h>
96#endif
97
98int rsvp_on = 0;
99static int ip_rsvp_on;
100struct socket *ip_rsvpd;
101
102int	ipforwarding = 0;
103SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
104    &ipforwarding, 0, "Enable IP forwarding between interfaces");
105
106static int	ipsendredirects = 1; /* XXX */
107SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
108    &ipsendredirects, 0, "Enable sending IP redirects");
109
110int	ip_defttl = IPDEFTTL;
111SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
112    &ip_defttl, 0, "Maximum TTL on IP packets");
113
114static int	ip_dosourceroute = 0;
115SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
116    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
117
118static int	ip_acceptsourceroute = 0;
119SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
120    CTLFLAG_RW, &ip_acceptsourceroute, 0,
121    "Enable accepting source routed IP packets");
122
123static int	ip_keepfaith = 0;
124SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
125	&ip_keepfaith,	0,
126	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
127
128static int	ip_nfragpackets = 0;
129static int	ip_maxfragpackets;	/* initialized in ip_init() */
130SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
131	&ip_maxfragpackets, 0,
132	"Maximum number of IPv4 fragment reassembly queue entries");
133
134/*
135 * XXX - Setting ip_checkinterface mostly implements the receive side of
136 * the Strong ES model described in RFC 1122, but since the routing table
137 * and transmit implementation do not implement the Strong ES model,
138 * setting this to 1 results in an odd hybrid.
139 *
140 * XXX - ip_checkinterface currently must be disabled if you use ipnat
141 * to translate the destination address to another local interface.
142 *
143 * XXX - ip_checkinterface must be disabled if you add IP aliases
144 * to the loopback interface instead of the interface where the
145 * packets for those addresses are received.
146 */
147static int	ip_checkinterface = 1;
148SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
149    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
150
151#ifdef DIAGNOSTIC
152static int	ipprintfs = 0;
153#endif
154
155extern	struct domain inetdomain;
156extern	struct ipprotosw inetsw[];
157u_char	ip_protox[IPPROTO_MAX];
158static int	ipqmaxlen = IFQ_MAXLEN;
159struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
160SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
161    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
162SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
163    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
164
165struct ipstat ipstat;
166SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD,
167    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
168
169/* Packet reassembly stuff */
170#define IPREASS_NHASH_LOG2      6
171#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
172#define IPREASS_HMASK           (IPREASS_NHASH - 1)
173#define IPREASS_HASH(x,y) \
174	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
175
176static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
177static int    nipq = 0;         /* total # of reass queues */
178static int    maxnipq;
179const  int    ipintrq_present = 1;
180
181#ifdef IPCTL_DEFMTU
182SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
183    &ip_mtu, 0, "Default MTU");
184#endif
185
186#ifdef IPSTEALTH
187static int	ipstealth = 0;
188SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
189    &ipstealth, 0, "");
190#endif
191
192
193/* Firewall hooks */
194ip_fw_chk_t *ip_fw_chk_ptr;
195ip_fw_ctl_t *ip_fw_ctl_ptr;
196int fw_enable = 1 ;
197
198#ifdef DUMMYNET
199ip_dn_ctl_t *ip_dn_ctl_ptr;
200#endif
201
202
203/*
204 * We need to save the IP options in case a protocol wants to respond
205 * to an incoming packet over the same route if the packet got here
206 * using IP source routing.  This allows connection establishment and
207 * maintenance when the remote end is on a network that is not known
208 * to us.
209 */
210static int	ip_nhops = 0;
211static	struct ip_srcrt {
212	struct	in_addr dst;			/* final destination */
213	char	nop;				/* one NOP to align */
214	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
215	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
216} ip_srcrt;
217
218struct sockaddr_in *ip_fw_fwd_addr;
219
220static void	save_rte __P((u_char *, struct in_addr));
221static int	ip_dooptions __P((struct mbuf *));
222static void	ip_forward __P((struct mbuf *, int));
223static void	ip_freef __P((struct ipqhead *, struct ipq *));
224#ifdef IPDIVERT
225static struct	mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *, u_int32_t *, u_int16_t *));
226#else
227static struct	mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *));
228#endif
229static struct	in_ifaddr *ip_rtaddr __P((struct in_addr));
230static void	ipintr __P((void));
231
232/*
233 * IP initialization: fill in IP protocol switch table.
234 * All protocols not implemented in kernel go to raw IP protocol handler.
235 */
236void
237ip_init()
238{
239	register struct ipprotosw *pr;
240	register int i;
241
242	TAILQ_INIT(&in_ifaddrhead);
243	pr = (struct ipprotosw *)pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
244	if (pr == 0)
245		panic("ip_init");
246	for (i = 0; i < IPPROTO_MAX; i++)
247		ip_protox[i] = pr - inetsw;
248	for (pr = (struct ipprotosw *)inetdomain.dom_protosw;
249	    pr < (struct ipprotosw *)inetdomain.dom_protoswNPROTOSW; pr++)
250		if (pr->pr_domain->dom_family == PF_INET &&
251		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
252			ip_protox[pr->pr_protocol] = pr - inetsw;
253
254	for (i = 0; i < IPREASS_NHASH; i++)
255	    TAILQ_INIT(&ipq[i]);
256
257	maxnipq = nmbclusters / 4;
258	ip_maxfragpackets = nmbclusters / 4;
259
260#ifndef RANDOM_IP_ID
261	ip_id = time_second & 0xffff;
262#endif
263	ipintrq.ifq_maxlen = ipqmaxlen;
264	mtx_init(&ipintrq.ifq_mtx, "ip_inq", MTX_DEF);
265
266	register_netisr(NETISR_IP, ipintr);
267}
268
269static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
270struct	route ipforward_rt;
271
272/*
273 * Ip input routine.  Checksum and byte swap header.  If fragmented
274 * try to reassemble.  Process options.  Pass to next level.
275 */
276void
277ip_input(struct mbuf *m)
278{
279	struct ip *ip;
280	struct ipq *fp;
281	struct in_ifaddr *ia = NULL;
282	int    i, hlen, checkif;
283	u_short sum;
284	u_int16_t divert_cookie;		/* firewall cookie */
285	struct in_addr pkt_dst;
286#ifdef IPDIVERT
287	u_int32_t divert_info = 0;		/* packet divert/tee info */
288#endif
289	struct ip_fw_chain *rule = NULL;
290#ifdef PFIL_HOOKS
291	struct packet_filter_hook *pfh;
292	struct mbuf *m0;
293	int rv;
294#endif /* PFIL_HOOKS */
295
296#ifdef IPDIVERT
297	/* Get and reset firewall cookie */
298	divert_cookie = ip_divert_cookie;
299	ip_divert_cookie = 0;
300#else
301	divert_cookie = 0;
302#endif
303
304#if defined(IPFIREWALL) && defined(DUMMYNET)
305        /*
306         * dummynet packet are prepended a vestigial mbuf with
307         * m_type = MT_DUMMYNET and m_data pointing to the matching
308         * rule.
309         */
310        if (m->m_type == MT_DUMMYNET) {
311            rule = (struct ip_fw_chain *)(m->m_data) ;
312            m = m->m_next ;
313            ip = mtod(m, struct ip *);
314            hlen = IP_VHL_HL(ip->ip_vhl) << 2;
315            goto iphack ;
316        } else
317            rule = NULL ;
318#endif
319
320#ifdef	DIAGNOSTIC
321	if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
322		panic("ip_input no HDR");
323#endif
324	ipstat.ips_total++;
325
326	if (m->m_pkthdr.len < sizeof(struct ip))
327		goto tooshort;
328
329	if (m->m_len < sizeof (struct ip) &&
330	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
331		ipstat.ips_toosmall++;
332		return;
333	}
334	ip = mtod(m, struct ip *);
335
336	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
337		ipstat.ips_badvers++;
338		goto bad;
339	}
340
341	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
342	if (hlen < sizeof(struct ip)) {	/* minimum header length */
343		ipstat.ips_badhlen++;
344		goto bad;
345	}
346	if (hlen > m->m_len) {
347		if ((m = m_pullup(m, hlen)) == 0) {
348			ipstat.ips_badhlen++;
349			return;
350		}
351		ip = mtod(m, struct ip *);
352	}
353	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
354		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
355	} else {
356		if (hlen == sizeof(struct ip)) {
357			sum = in_cksum_hdr(ip);
358		} else {
359			sum = in_cksum(m, hlen);
360		}
361	}
362	if (sum) {
363		ipstat.ips_badsum++;
364		goto bad;
365	}
366
367	/*
368	 * Convert fields to host representation.
369	 */
370	NTOHS(ip->ip_len);
371	if (ip->ip_len < hlen) {
372		ipstat.ips_badlen++;
373		goto bad;
374	}
375	NTOHS(ip->ip_off);
376
377	/*
378	 * Check that the amount of data in the buffers
379	 * is as at least much as the IP header would have us expect.
380	 * Trim mbufs if longer than we expect.
381	 * Drop packet if shorter than we expect.
382	 */
383	if (m->m_pkthdr.len < ip->ip_len) {
384tooshort:
385		ipstat.ips_tooshort++;
386		goto bad;
387	}
388	if (m->m_pkthdr.len > ip->ip_len) {
389		if (m->m_len == m->m_pkthdr.len) {
390			m->m_len = ip->ip_len;
391			m->m_pkthdr.len = ip->ip_len;
392		} else
393			m_adj(m, ip->ip_len - m->m_pkthdr.len);
394	}
395
396	/*
397	 * Don't accept packets with a loopback destination address
398	 * unless they arrived via the loopback interface.
399	 */
400	if ((ntohl(ip->ip_dst.s_addr) & IN_CLASSA_NET) ==
401	    (IN_LOOPBACKNET << IN_CLASSA_NSHIFT) &&
402	    (m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
403		goto bad;
404	}
405
406	/*
407	 * IpHack's section.
408	 * Right now when no processing on packet has done
409	 * and it is still fresh out of network we do our black
410	 * deals with it.
411	 * - Firewall: deny/allow/divert
412	 * - Xlate: translate packet's addr/port (NAT).
413	 * - Pipe: pass pkt through dummynet.
414	 * - Wrap: fake packet's addr/port <unimpl.>
415	 * - Encapsulate: put it in another IP and send out. <unimp.>
416 	 */
417
418#if defined(IPFIREWALL) && defined(DUMMYNET)
419iphack:
420#endif
421
422#ifdef PFIL_HOOKS
423	/*
424	 * Run through list of hooks for input packets.  If there are any
425	 * filters which require that additional packets in the flow are
426	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
427	 * Note that filters must _never_ set this flag, as another filter
428	 * in the list may have previously cleared it.
429	 */
430	m0 = m;
431	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
432	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
433		if (pfh->pfil_func) {
434			rv = pfh->pfil_func(ip, hlen,
435					    m->m_pkthdr.rcvif, 0, &m0);
436			if (rv)
437				return;
438			m = m0;
439			if (m == NULL)
440				return;
441			ip = mtod(m, struct ip *);
442		}
443#endif /* PFIL_HOOKS */
444
445	if (fw_enable && ip_fw_chk_ptr) {
446#ifdef IPFIREWALL_FORWARD
447		/*
448		 * If we've been forwarded from the output side, then
449		 * skip the firewall a second time
450		 */
451		if (ip_fw_fwd_addr)
452			goto ours;
453#endif	/* IPFIREWALL_FORWARD */
454		/*
455		 * See the comment in ip_output for the return values
456		 * produced by the firewall.
457		 */
458		i = (*ip_fw_chk_ptr)(&ip,
459		    hlen, NULL, &divert_cookie, &m, &rule, &ip_fw_fwd_addr);
460		if (i & IP_FW_PORT_DENY_FLAG) { /* XXX new interface-denied */
461		    if (m)
462			m_freem(m);
463		    return ;
464		}
465		if (m == NULL) {	/* Packet discarded by firewall */
466		    static int __debug=10;
467		    if (__debug >0) {
468			printf("firewall returns NULL, please update!\n");
469			__debug-- ;
470		    }
471		    return;
472		}
473		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
474			goto pass;
475#ifdef DUMMYNET
476                if ((i & IP_FW_PORT_DYNT_FLAG) != 0) {
477                        /* Send packet to the appropriate pipe */
478                        dummynet_io(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
479				    0);
480			return;
481		}
482#endif
483#ifdef IPDIVERT
484		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
485			/* Divert or tee packet */
486			divert_info = i;
487			goto ours;
488		}
489#endif
490#ifdef IPFIREWALL_FORWARD
491		if (i == 0 && ip_fw_fwd_addr != NULL)
492			goto pass;
493#endif
494		/*
495		 * if we get here, the packet must be dropped
496		 */
497		m_freem(m);
498		return;
499	}
500pass:
501
502	/*
503	 * Process options and, if not destined for us,
504	 * ship it on.  ip_dooptions returns 1 when an
505	 * error was detected (causing an icmp message
506	 * to be sent and the original packet to be freed).
507	 */
508	ip_nhops = 0;		/* for source routed packets */
509	if (hlen > sizeof (struct ip) && ip_dooptions(m)) {
510#ifdef IPFIREWALL_FORWARD
511		ip_fw_fwd_addr = NULL;
512#endif
513		return;
514	}
515
516        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
517         * matter if it is destined to another node, or whether it is
518         * a multicast one, RSVP wants it! and prevents it from being forwarded
519         * anywhere else. Also checks if the rsvp daemon is running before
520	 * grabbing the packet.
521         */
522	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
523		goto ours;
524
525	/*
526	 * Check our list of addresses, to see if the packet is for us.
527	 * If we don't have any addresses, assume any unicast packet
528	 * we receive might be for us (and let the upper layers deal
529	 * with it).
530	 */
531	if (TAILQ_EMPTY(&in_ifaddrhead) &&
532	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
533		goto ours;
534
535	/*
536	 * Cache the destination address of the packet; this may be
537	 * changed by use of 'ipfw fwd'.
538	 */
539	pkt_dst = ip_fw_fwd_addr == NULL ?
540	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
541
542	/*
543	 * Enable a consistency check between the destination address
544	 * and the arrival interface for a unicast packet (the RFC 1122
545	 * strong ES model) if IP forwarding is disabled and the packet
546	 * is not locally generated and the packet is not subject to
547	 * 'ipfw fwd'.
548	 *
549         * XXX - Checking also should be disabled if the destination
550	 * address is ipnat'ed to a different interface.
551	 *
552	 * XXX - Checking is incompatible with IP aliases added
553	 * to the loopback interface instead of the interface where
554	 * the packets are received.
555	 */
556	checkif = ip_checkinterface && (ipforwarding == 0) &&
557	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
558	    (ip_fw_fwd_addr == NULL);
559
560	TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
561#define	satosin(sa)	((struct sockaddr_in *)(sa))
562
563#ifdef BOOTP_COMPAT
564		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
565			goto ours;
566#endif
567		/*
568		 * If the address matches, verify that the packet
569		 * arrived via the correct interface if checking is
570		 * enabled.
571		 */
572		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
573		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
574			goto ours;
575		/*
576		 * Only accept broadcast packets that arrive via the
577		 * matching interface.  Reception of forwarded directed
578		 * broadcasts would be handled via ip_forward() and
579		 * ether_output() with the loopback into the stack for
580		 * SIMPLEX interfaces handled by ether_output().
581		 */
582		if (ia->ia_ifp == m->m_pkthdr.rcvif &&
583		    ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
584			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
585			    pkt_dst.s_addr)
586				goto ours;
587			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
588				goto ours;
589		}
590	}
591	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
592		struct in_multi *inm;
593		if (ip_mrouter) {
594			/*
595			 * If we are acting as a multicast router, all
596			 * incoming multicast packets are passed to the
597			 * kernel-level multicast forwarding function.
598			 * The packet is returned (relatively) intact; if
599			 * ip_mforward() returns a non-zero value, the packet
600			 * must be discarded, else it may be accepted below.
601			 */
602			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
603				ipstat.ips_cantforward++;
604				m_freem(m);
605				return;
606			}
607
608			/*
609			 * The process-level routing demon needs to receive
610			 * all multicast IGMP packets, whether or not this
611			 * host belongs to their destination groups.
612			 */
613			if (ip->ip_p == IPPROTO_IGMP)
614				goto ours;
615			ipstat.ips_forward++;
616		}
617		/*
618		 * See if we belong to the destination multicast group on the
619		 * arrival interface.
620		 */
621		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
622		if (inm == NULL) {
623			ipstat.ips_notmember++;
624			m_freem(m);
625			return;
626		}
627		goto ours;
628	}
629	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
630		goto ours;
631	if (ip->ip_dst.s_addr == INADDR_ANY)
632		goto ours;
633
634#if defined(NFAITH) && 0 < NFAITH
635	/*
636	 * FAITH(Firewall Aided Internet Translator)
637	 */
638	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
639		if (ip_keepfaith) {
640			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
641				goto ours;
642		}
643		m_freem(m);
644		return;
645	}
646#endif
647	/*
648	 * Not for us; forward if possible and desirable.
649	 */
650	if (ipforwarding == 0) {
651		ipstat.ips_cantforward++;
652		m_freem(m);
653	} else
654		ip_forward(m, 0);
655#ifdef IPFIREWALL_FORWARD
656	ip_fw_fwd_addr = NULL;
657#endif
658	return;
659
660ours:
661	/* Count the packet in the ip address stats */
662	if (ia != NULL) {
663		ia->ia_ifa.if_ipackets++;
664		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
665	}
666
667	/*
668	 * If offset or IP_MF are set, must reassemble.
669	 * Otherwise, nothing need be done.
670	 * (We could look in the reassembly queue to see
671	 * if the packet was previously fragmented,
672	 * but it's not worth the time; just let them time out.)
673	 */
674	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
675
676		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
677		/*
678		 * Look for queue of fragments
679		 * of this datagram.
680		 */
681		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
682			if (ip->ip_id == fp->ipq_id &&
683			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
684			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
685			    ip->ip_p == fp->ipq_p)
686				goto found;
687
688		fp = 0;
689
690		/* check if there's a place for the new queue */
691		if (nipq > maxnipq) {
692		    /*
693		     * drop something from the tail of the current queue
694		     * before proceeding further
695		     */
696		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
697		    if (q == NULL) {   /* gak */
698			for (i = 0; i < IPREASS_NHASH; i++) {
699			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
700			    if (r) {
701				ip_freef(&ipq[i], r);
702				break;
703			    }
704			}
705		    } else
706			ip_freef(&ipq[sum], q);
707		}
708found:
709		/*
710		 * Adjust ip_len to not reflect header,
711		 * convert offset of this to bytes.
712		 */
713		ip->ip_len -= hlen;
714		if (ip->ip_off & IP_MF) {
715		        /*
716		         * Make sure that fragments have a data length
717			 * that's a non-zero multiple of 8 bytes.
718		         */
719			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
720				ipstat.ips_toosmall++; /* XXX */
721				goto bad;
722			}
723			m->m_flags |= M_FRAG;
724		}
725		ip->ip_off <<= 3;
726
727		/*
728		 * Attempt reassembly; if it succeeds, proceed.
729		 */
730		ipstat.ips_fragments++;
731		m->m_pkthdr.header = ip;
732#ifdef IPDIVERT
733		m = ip_reass(m,
734		    &ipq[sum], fp, &divert_info, &divert_cookie);
735#else
736		m = ip_reass(m, &ipq[sum], fp);
737#endif
738		if (m == 0) {
739#ifdef IPFIREWALL_FORWARD
740			ip_fw_fwd_addr = NULL;
741#endif
742			return;
743		}
744		ipstat.ips_reassembled++;
745		ip = mtod(m, struct ip *);
746		/* Get the header length of the reassembled packet */
747		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
748#ifdef IPDIVERT
749		/* Restore original checksum before diverting packet */
750		if (divert_info != 0) {
751			ip->ip_len += hlen;
752			HTONS(ip->ip_len);
753			HTONS(ip->ip_off);
754			ip->ip_sum = 0;
755			if (hlen == sizeof(struct ip))
756				ip->ip_sum = in_cksum_hdr(ip);
757			else
758				ip->ip_sum = in_cksum(m, hlen);
759			NTOHS(ip->ip_off);
760			NTOHS(ip->ip_len);
761			ip->ip_len -= hlen;
762		}
763#endif
764	} else
765		ip->ip_len -= hlen;
766
767#ifdef IPDIVERT
768	/*
769	 * Divert or tee packet to the divert protocol if required.
770	 *
771	 * If divert_info is zero then cookie should be too, so we shouldn't
772	 * need to clear them here.  Assume divert_packet() does so also.
773	 */
774	if (divert_info != 0) {
775		struct mbuf *clone = NULL;
776
777		/* Clone packet if we're doing a 'tee' */
778		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
779			clone = m_dup(m, M_DONTWAIT);
780
781		/* Restore packet header fields to original values */
782		ip->ip_len += hlen;
783		HTONS(ip->ip_len);
784		HTONS(ip->ip_off);
785
786		/* Deliver packet to divert input routine */
787		ip_divert_cookie = divert_cookie;
788		divert_packet(m, 1, divert_info & 0xffff);
789		ipstat.ips_delivered++;
790
791		/* If 'tee', continue with original packet */
792		if (clone == NULL)
793			return;
794		m = clone;
795		ip = mtod(m, struct ip *);
796	}
797#endif
798
799	/*
800	 * Switch out to protocol's input routine.
801	 */
802	ipstat.ips_delivered++;
803    {
804	int off = hlen, nh = ip->ip_p;
805
806	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off, nh);
807#ifdef	IPFIREWALL_FORWARD
808	ip_fw_fwd_addr = NULL;	/* tcp needed it */
809#endif
810	return;
811    }
812bad:
813#ifdef	IPFIREWALL_FORWARD
814	ip_fw_fwd_addr = NULL;
815#endif
816	m_freem(m);
817}
818
819/*
820 * IP software interrupt routine - to go away sometime soon
821 */
822static void
823ipintr(void)
824{
825	struct mbuf *m;
826
827	while (1) {
828		IF_DEQUEUE(&ipintrq, m);
829		if (m == 0)
830			return;
831		ip_input(m);
832	}
833}
834
835/*
836 * Take incoming datagram fragment and try to reassemble it into
837 * whole datagram.  If a chain for reassembly of this datagram already
838 * exists, then it is given as fp; otherwise have to make a chain.
839 *
840 * When IPDIVERT enabled, keep additional state with each packet that
841 * tells us if we need to divert or tee the packet we're building.
842 */
843
844static struct mbuf *
845#ifdef IPDIVERT
846ip_reass(m, head, fp, divinfo, divcookie)
847#else
848ip_reass(m, head, fp)
849#endif
850	struct mbuf *m;
851	struct ipqhead *head;
852	struct ipq *fp;
853#ifdef IPDIVERT
854	u_int32_t *divinfo;
855	u_int16_t *divcookie;
856#endif
857{
858	struct ip *ip = mtod(m, struct ip *);
859	register struct mbuf *p, *q, *nq;
860	struct mbuf *t;
861	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
862	int i, next;
863
864	/*
865	 * Presence of header sizes in mbufs
866	 * would confuse code below.
867	 */
868	m->m_data += hlen;
869	m->m_len -= hlen;
870
871	/*
872	 * If first fragment to arrive, create a reassembly queue.
873	 */
874	if (fp == 0) {
875		/*
876		 * Enforce upper bound on number of fragmented packets
877		 * for which we attempt reassembly;
878		 * If maxfrag is 0, never accept fragments.
879		 * If maxfrag is -1, accept all fragments without limitation.
880		 */
881		if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets))
882			goto dropfrag;
883		ip_nfragpackets++;
884		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
885			goto dropfrag;
886		fp = mtod(t, struct ipq *);
887		TAILQ_INSERT_HEAD(head, fp, ipq_list);
888		nipq++;
889		fp->ipq_ttl = IPFRAGTTL;
890		fp->ipq_p = ip->ip_p;
891		fp->ipq_id = ip->ip_id;
892		fp->ipq_src = ip->ip_src;
893		fp->ipq_dst = ip->ip_dst;
894		fp->ipq_frags = m;
895		m->m_nextpkt = NULL;
896#ifdef IPDIVERT
897		fp->ipq_div_info = 0;
898		fp->ipq_div_cookie = 0;
899#endif
900		goto inserted;
901	}
902
903#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
904
905	/*
906	 * Find a segment which begins after this one does.
907	 */
908	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
909		if (GETIP(q)->ip_off > ip->ip_off)
910			break;
911
912	/*
913	 * If there is a preceding segment, it may provide some of
914	 * our data already.  If so, drop the data from the incoming
915	 * segment.  If it provides all of our data, drop us, otherwise
916	 * stick new segment in the proper place.
917	 *
918	 * If some of the data is dropped from the the preceding
919	 * segment, then it's checksum is invalidated.
920	 */
921	if (p) {
922		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
923		if (i > 0) {
924			if (i >= ip->ip_len)
925				goto dropfrag;
926			m_adj(m, i);
927			m->m_pkthdr.csum_flags = 0;
928			ip->ip_off += i;
929			ip->ip_len -= i;
930		}
931		m->m_nextpkt = p->m_nextpkt;
932		p->m_nextpkt = m;
933	} else {
934		m->m_nextpkt = fp->ipq_frags;
935		fp->ipq_frags = m;
936	}
937
938	/*
939	 * While we overlap succeeding segments trim them or,
940	 * if they are completely covered, dequeue them.
941	 */
942	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
943	     q = nq) {
944		i = (ip->ip_off + ip->ip_len) -
945		    GETIP(q)->ip_off;
946		if (i < GETIP(q)->ip_len) {
947			GETIP(q)->ip_len -= i;
948			GETIP(q)->ip_off += i;
949			m_adj(q, i);
950			q->m_pkthdr.csum_flags = 0;
951			break;
952		}
953		nq = q->m_nextpkt;
954		m->m_nextpkt = nq;
955		m_freem(q);
956	}
957
958inserted:
959
960#ifdef IPDIVERT
961	/*
962	 * Transfer firewall instructions to the fragment structure.
963	 * Any fragment diverting causes the whole packet to divert.
964	 */
965	fp->ipq_div_info = *divinfo;
966	fp->ipq_div_cookie = *divcookie;
967	*divinfo = 0;
968	*divcookie = 0;
969#endif
970
971	/*
972	 * Check for complete reassembly.
973	 */
974	next = 0;
975	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
976		if (GETIP(q)->ip_off != next)
977			return (0);
978		next += GETIP(q)->ip_len;
979	}
980	/* Make sure the last packet didn't have the IP_MF flag */
981	if (p->m_flags & M_FRAG)
982		return (0);
983
984	/*
985	 * Reassembly is complete.  Make sure the packet is a sane size.
986	 */
987	q = fp->ipq_frags;
988	ip = GETIP(q);
989	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
990		ipstat.ips_toolong++;
991		ip_freef(head, fp);
992		return (0);
993	}
994
995	/*
996	 * Concatenate fragments.
997	 */
998	m = q;
999	t = m->m_next;
1000	m->m_next = 0;
1001	m_cat(m, t);
1002	nq = q->m_nextpkt;
1003	q->m_nextpkt = 0;
1004	for (q = nq; q != NULL; q = nq) {
1005		nq = q->m_nextpkt;
1006		q->m_nextpkt = NULL;
1007		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1008		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1009		m_cat(m, q);
1010	}
1011
1012#ifdef IPDIVERT
1013	/*
1014	 * Extract firewall instructions from the fragment structure.
1015	 */
1016	*divinfo = fp->ipq_div_info;
1017	*divcookie = fp->ipq_div_cookie;
1018#endif
1019
1020	/*
1021	 * Create header for new ip packet by
1022	 * modifying header of first packet;
1023	 * dequeue and discard fragment reassembly header.
1024	 * Make header visible.
1025	 */
1026	ip->ip_len = next;
1027	ip->ip_src = fp->ipq_src;
1028	ip->ip_dst = fp->ipq_dst;
1029	TAILQ_REMOVE(head, fp, ipq_list);
1030	nipq--;
1031	(void) m_free(dtom(fp));
1032	ip_nfragpackets--;
1033	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1034	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1035	/* some debugging cruft by sklower, below, will go away soon */
1036	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1037		register int plen = 0;
1038		for (t = m; t; t = t->m_next)
1039			plen += t->m_len;
1040		m->m_pkthdr.len = plen;
1041	}
1042	return (m);
1043
1044dropfrag:
1045#ifdef IPDIVERT
1046	*divinfo = 0;
1047	*divcookie = 0;
1048#endif
1049	ipstat.ips_fragdropped++;
1050	m_freem(m);
1051	return (0);
1052
1053#undef GETIP
1054}
1055
1056/*
1057 * Free a fragment reassembly header and all
1058 * associated datagrams.
1059 */
1060static void
1061ip_freef(fhp, fp)
1062	struct ipqhead *fhp;
1063	struct ipq *fp;
1064{
1065	register struct mbuf *q;
1066
1067	while (fp->ipq_frags) {
1068		q = fp->ipq_frags;
1069		fp->ipq_frags = q->m_nextpkt;
1070		m_freem(q);
1071	}
1072	TAILQ_REMOVE(fhp, fp, ipq_list);
1073	(void) m_free(dtom(fp));
1074	ip_nfragpackets--;
1075	nipq--;
1076}
1077
1078/*
1079 * IP timer processing;
1080 * if a timer expires on a reassembly
1081 * queue, discard it.
1082 */
1083void
1084ip_slowtimo()
1085{
1086	register struct ipq *fp;
1087	int s = splnet();
1088	int i;
1089
1090	for (i = 0; i < IPREASS_NHASH; i++) {
1091		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1092			struct ipq *fpp;
1093
1094			fpp = fp;
1095			fp = TAILQ_NEXT(fp, ipq_list);
1096			if(--fpp->ipq_ttl == 0) {
1097				ipstat.ips_fragtimeout++;
1098				ip_freef(&ipq[i], fpp);
1099			}
1100		}
1101	}
1102	/*
1103	 * If we are over the maximum number of fragments
1104	 * (due to the limit being lowered), drain off
1105	 * enough to get down to the new limit.
1106	 */
1107	for (i = 0; i < IPREASS_NHASH; i++) {
1108		if (ip_maxfragpackets >= 0) {
1109			while (ip_nfragpackets > ip_maxfragpackets &&
1110				!TAILQ_EMPTY(&ipq[i])) {
1111				ipstat.ips_fragdropped++;
1112				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1113			}
1114		}
1115	}
1116	ipflow_slowtimo();
1117	splx(s);
1118}
1119
1120/*
1121 * Drain off all datagram fragments.
1122 */
1123void
1124ip_drain()
1125{
1126	int     i;
1127
1128	for (i = 0; i < IPREASS_NHASH; i++) {
1129		while(!TAILQ_EMPTY(&ipq[i])) {
1130			ipstat.ips_fragdropped++;
1131			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1132		}
1133	}
1134	in_rtqdrain();
1135}
1136
1137/*
1138 * Do option processing on a datagram,
1139 * possibly discarding it if bad options are encountered,
1140 * or forwarding it if source-routed.
1141 * Returns 1 if packet has been forwarded/freed,
1142 * 0 if the packet should be processed further.
1143 */
1144static int
1145ip_dooptions(m)
1146	struct mbuf *m;
1147{
1148	register struct ip *ip = mtod(m, struct ip *);
1149	register u_char *cp;
1150	register struct ip_timestamp *ipt;
1151	register struct in_ifaddr *ia;
1152	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1153	struct in_addr *sin, dst;
1154	n_time ntime;
1155
1156	dst = ip->ip_dst;
1157	cp = (u_char *)(ip + 1);
1158	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1159	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1160		opt = cp[IPOPT_OPTVAL];
1161		if (opt == IPOPT_EOL)
1162			break;
1163		if (opt == IPOPT_NOP)
1164			optlen = 1;
1165		else {
1166			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1167				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1168				goto bad;
1169			}
1170			optlen = cp[IPOPT_OLEN];
1171			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1172				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1173				goto bad;
1174			}
1175		}
1176		switch (opt) {
1177
1178		default:
1179			break;
1180
1181		/*
1182		 * Source routing with record.
1183		 * Find interface with current destination address.
1184		 * If none on this machine then drop if strictly routed,
1185		 * or do nothing if loosely routed.
1186		 * Record interface address and bring up next address
1187		 * component.  If strictly routed make sure next
1188		 * address is on directly accessible net.
1189		 */
1190		case IPOPT_LSRR:
1191		case IPOPT_SSRR:
1192			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1193				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1194				goto bad;
1195			}
1196			ipaddr.sin_addr = ip->ip_dst;
1197			ia = (struct in_ifaddr *)
1198				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1199			if (ia == 0) {
1200				if (opt == IPOPT_SSRR) {
1201					type = ICMP_UNREACH;
1202					code = ICMP_UNREACH_SRCFAIL;
1203					goto bad;
1204				}
1205				if (!ip_dosourceroute)
1206					goto nosourcerouting;
1207				/*
1208				 * Loose routing, and not at next destination
1209				 * yet; nothing to do except forward.
1210				 */
1211				break;
1212			}
1213			off--;			/* 0 origin */
1214			if (off > optlen - (int)sizeof(struct in_addr)) {
1215				/*
1216				 * End of source route.  Should be for us.
1217				 */
1218				if (!ip_acceptsourceroute)
1219					goto nosourcerouting;
1220				save_rte(cp, ip->ip_src);
1221				break;
1222			}
1223
1224			if (!ip_dosourceroute) {
1225				if (ipforwarding) {
1226					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1227					/*
1228					 * Acting as a router, so generate ICMP
1229					 */
1230nosourcerouting:
1231					strcpy(buf, inet_ntoa(ip->ip_dst));
1232					log(LOG_WARNING,
1233					    "attempted source route from %s to %s\n",
1234					    inet_ntoa(ip->ip_src), buf);
1235					type = ICMP_UNREACH;
1236					code = ICMP_UNREACH_SRCFAIL;
1237					goto bad;
1238				} else {
1239					/*
1240					 * Not acting as a router, so silently drop.
1241					 */
1242					ipstat.ips_cantforward++;
1243					m_freem(m);
1244					return (1);
1245				}
1246			}
1247
1248			/*
1249			 * locate outgoing interface
1250			 */
1251			(void)memcpy(&ipaddr.sin_addr, cp + off,
1252			    sizeof(ipaddr.sin_addr));
1253
1254			if (opt == IPOPT_SSRR) {
1255#define	INA	struct in_ifaddr *
1256#define	SA	struct sockaddr *
1257			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1258				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1259			} else
1260				ia = ip_rtaddr(ipaddr.sin_addr);
1261			if (ia == 0) {
1262				type = ICMP_UNREACH;
1263				code = ICMP_UNREACH_SRCFAIL;
1264				goto bad;
1265			}
1266			ip->ip_dst = ipaddr.sin_addr;
1267			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1268			    sizeof(struct in_addr));
1269			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1270			/*
1271			 * Let ip_intr's mcast routing check handle mcast pkts
1272			 */
1273			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1274			break;
1275
1276		case IPOPT_RR:
1277			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1278				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1279				goto bad;
1280			}
1281			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1282				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1283				goto bad;
1284			}
1285			/*
1286			 * If no space remains, ignore.
1287			 */
1288			off--;			/* 0 origin */
1289			if (off > optlen - (int)sizeof(struct in_addr))
1290				break;
1291			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1292			    sizeof(ipaddr.sin_addr));
1293			/*
1294			 * locate outgoing interface; if we're the destination,
1295			 * use the incoming interface (should be same).
1296			 */
1297			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1298			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1299				type = ICMP_UNREACH;
1300				code = ICMP_UNREACH_HOST;
1301				goto bad;
1302			}
1303			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1304			    sizeof(struct in_addr));
1305			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1306			break;
1307
1308		case IPOPT_TS:
1309			code = cp - (u_char *)ip;
1310			ipt = (struct ip_timestamp *)cp;
1311			if (ipt->ipt_len < 5)
1312				goto bad;
1313			if (ipt->ipt_ptr >
1314			    ipt->ipt_len - (int)sizeof(int32_t)) {
1315				if (++ipt->ipt_oflw == 0)
1316					goto bad;
1317				break;
1318			}
1319			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1320			switch (ipt->ipt_flg) {
1321
1322			case IPOPT_TS_TSONLY:
1323				break;
1324
1325			case IPOPT_TS_TSANDADDR:
1326				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1327				    sizeof(struct in_addr) > ipt->ipt_len)
1328					goto bad;
1329				ipaddr.sin_addr = dst;
1330				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1331							    m->m_pkthdr.rcvif);
1332				if (ia == 0)
1333					continue;
1334				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1335				    sizeof(struct in_addr));
1336				ipt->ipt_ptr += sizeof(struct in_addr);
1337				break;
1338
1339			case IPOPT_TS_PRESPEC:
1340				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1341				    sizeof(struct in_addr) > ipt->ipt_len)
1342					goto bad;
1343				(void)memcpy(&ipaddr.sin_addr, sin,
1344				    sizeof(struct in_addr));
1345				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1346					continue;
1347				ipt->ipt_ptr += sizeof(struct in_addr);
1348				break;
1349
1350			default:
1351				goto bad;
1352			}
1353			ntime = iptime();
1354			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1355			    sizeof(n_time));
1356			ipt->ipt_ptr += sizeof(n_time);
1357		}
1358	}
1359	if (forward && ipforwarding) {
1360		ip_forward(m, 1);
1361		return (1);
1362	}
1363	return (0);
1364bad:
1365	icmp_error(m, type, code, 0, 0);
1366	ipstat.ips_badoptions++;
1367	return (1);
1368}
1369
1370/*
1371 * Given address of next destination (final or next hop),
1372 * return internet address info of interface to be used to get there.
1373 */
1374static struct in_ifaddr *
1375ip_rtaddr(dst)
1376	 struct in_addr dst;
1377{
1378	register struct sockaddr_in *sin;
1379
1380	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1381
1382	if (ipforward_rt.ro_rt == 0 ||
1383	    !(ipforward_rt.ro_rt->rt_flags & RTF_UP) ||
1384	    dst.s_addr != sin->sin_addr.s_addr) {
1385		if (ipforward_rt.ro_rt) {
1386			RTFREE(ipforward_rt.ro_rt);
1387			ipforward_rt.ro_rt = 0;
1388		}
1389		sin->sin_family = AF_INET;
1390		sin->sin_len = sizeof(*sin);
1391		sin->sin_addr = dst;
1392
1393		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1394	}
1395	if (ipforward_rt.ro_rt == 0)
1396		return ((struct in_ifaddr *)0);
1397	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1398}
1399
1400/*
1401 * Save incoming source route for use in replies,
1402 * to be picked up later by ip_srcroute if the receiver is interested.
1403 */
1404void
1405save_rte(option, dst)
1406	u_char *option;
1407	struct in_addr dst;
1408{
1409	unsigned olen;
1410
1411	olen = option[IPOPT_OLEN];
1412#ifdef DIAGNOSTIC
1413	if (ipprintfs)
1414		printf("save_rte: olen %d\n", olen);
1415#endif
1416	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1417		return;
1418	bcopy(option, ip_srcrt.srcopt, olen);
1419	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1420	ip_srcrt.dst = dst;
1421}
1422
1423/*
1424 * Retrieve incoming source route for use in replies,
1425 * in the same form used by setsockopt.
1426 * The first hop is placed before the options, will be removed later.
1427 */
1428struct mbuf *
1429ip_srcroute()
1430{
1431	register struct in_addr *p, *q;
1432	register struct mbuf *m;
1433
1434	if (ip_nhops == 0)
1435		return ((struct mbuf *)0);
1436	m = m_get(M_DONTWAIT, MT_HEADER);
1437	if (m == 0)
1438		return ((struct mbuf *)0);
1439
1440#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1441
1442	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1443	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1444	    OPTSIZ;
1445#ifdef DIAGNOSTIC
1446	if (ipprintfs)
1447		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1448#endif
1449
1450	/*
1451	 * First save first hop for return route
1452	 */
1453	p = &ip_srcrt.route[ip_nhops - 1];
1454	*(mtod(m, struct in_addr *)) = *p--;
1455#ifdef DIAGNOSTIC
1456	if (ipprintfs)
1457		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1458#endif
1459
1460	/*
1461	 * Copy option fields and padding (nop) to mbuf.
1462	 */
1463	ip_srcrt.nop = IPOPT_NOP;
1464	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1465	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1466	    &ip_srcrt.nop, OPTSIZ);
1467	q = (struct in_addr *)(mtod(m, caddr_t) +
1468	    sizeof(struct in_addr) + OPTSIZ);
1469#undef OPTSIZ
1470	/*
1471	 * Record return path as an IP source route,
1472	 * reversing the path (pointers are now aligned).
1473	 */
1474	while (p >= ip_srcrt.route) {
1475#ifdef DIAGNOSTIC
1476		if (ipprintfs)
1477			printf(" %lx", (u_long)ntohl(q->s_addr));
1478#endif
1479		*q++ = *p--;
1480	}
1481	/*
1482	 * Last hop goes to final destination.
1483	 */
1484	*q = ip_srcrt.dst;
1485#ifdef DIAGNOSTIC
1486	if (ipprintfs)
1487		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1488#endif
1489	return (m);
1490}
1491
1492/*
1493 * Strip out IP options, at higher
1494 * level protocol in the kernel.
1495 * Second argument is buffer to which options
1496 * will be moved, and return value is their length.
1497 * XXX should be deleted; last arg currently ignored.
1498 */
1499void
1500ip_stripoptions(m, mopt)
1501	register struct mbuf *m;
1502	struct mbuf *mopt;
1503{
1504	register int i;
1505	struct ip *ip = mtod(m, struct ip *);
1506	register caddr_t opts;
1507	int olen;
1508
1509	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1510	opts = (caddr_t)(ip + 1);
1511	i = m->m_len - (sizeof (struct ip) + olen);
1512	bcopy(opts + olen, opts, (unsigned)i);
1513	m->m_len -= olen;
1514	if (m->m_flags & M_PKTHDR)
1515		m->m_pkthdr.len -= olen;
1516	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1517}
1518
1519u_char inetctlerrmap[PRC_NCMDS] = {
1520	0,		0,		0,		0,
1521	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1522	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1523	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1524	0,		0,		0,		0,
1525	ENOPROTOOPT,	ENETRESET
1526};
1527
1528/*
1529 * Forward a packet.  If some error occurs return the sender
1530 * an icmp packet.  Note we can't always generate a meaningful
1531 * icmp message because icmp doesn't have a large enough repertoire
1532 * of codes and types.
1533 *
1534 * If not forwarding, just drop the packet.  This could be confusing
1535 * if ipforwarding was zero but some routing protocol was advancing
1536 * us as a gateway to somewhere.  However, we must let the routing
1537 * protocol deal with that.
1538 *
1539 * The srcrt parameter indicates whether the packet is being forwarded
1540 * via a source route.
1541 */
1542static void
1543ip_forward(m, srcrt)
1544	struct mbuf *m;
1545	int srcrt;
1546{
1547	register struct ip *ip = mtod(m, struct ip *);
1548	register struct rtentry *rt;
1549	int error, type = 0, code = 0;
1550	struct mbuf *mcopy;
1551	n_long dest;
1552	struct ifnet *destifp;
1553#ifdef IPSEC
1554	struct ifnet dummyifp;
1555#endif
1556
1557	dest = 0;
1558#ifdef DIAGNOSTIC
1559	if (ipprintfs)
1560		printf("forward: src %lx dst %lx ttl %x\n",
1561		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1562		    ip->ip_ttl);
1563#endif
1564
1565
1566	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1567		ipstat.ips_cantforward++;
1568		m_freem(m);
1569		return;
1570	}
1571#ifdef IPSTEALTH
1572	if (!ipstealth) {
1573#endif
1574		if (ip->ip_ttl <= IPTTLDEC) {
1575			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1576			    dest, 0);
1577			return;
1578		}
1579#ifdef IPSTEALTH
1580	}
1581#endif
1582
1583	if (ip_rtaddr(ip->ip_dst) == 0) {
1584		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1585		return;
1586	} else
1587		rt = ipforward_rt.ro_rt;
1588
1589	/*
1590	 * Save the IP header and at most 8 bytes of the payload,
1591	 * in case we need to generate an ICMP message to the src.
1592	 *
1593	 * We don't use m_copy() because it might return a reference
1594	 * to a shared cluster. Both this function and ip_output()
1595	 * assume exclusive access to the IP header in `m', so any
1596	 * data in a cluster may change before we reach icmp_error().
1597	 */
1598	MGET(mcopy, M_DONTWAIT, m->m_type);
1599	if (mcopy != NULL) {
1600		M_COPY_PKTHDR(mcopy, m);
1601		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1602		    (int)ip->ip_len);
1603		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1604	}
1605
1606#ifdef IPSTEALTH
1607	if (!ipstealth) {
1608#endif
1609		ip->ip_ttl -= IPTTLDEC;
1610#ifdef IPSTEALTH
1611	}
1612#endif
1613
1614	/*
1615	 * If forwarding packet using same interface that it came in on,
1616	 * perhaps should send a redirect to sender to shortcut a hop.
1617	 * Only send redirect if source is sending directly to us,
1618	 * and if packet was not source routed (or has any options).
1619	 * Also, don't send redirect if forwarding using a default route
1620	 * or a route modified by a redirect.
1621	 */
1622#define	satosin(sa)	((struct sockaddr_in *)(sa))
1623	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1624	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1625	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1626	    ipsendredirects && !srcrt) {
1627#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1628		u_long src = ntohl(ip->ip_src.s_addr);
1629
1630		if (RTA(rt) &&
1631		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1632		    if (rt->rt_flags & RTF_GATEWAY)
1633			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1634		    else
1635			dest = ip->ip_dst.s_addr;
1636		    /* Router requirements says to only send host redirects */
1637		    type = ICMP_REDIRECT;
1638		    code = ICMP_REDIRECT_HOST;
1639#ifdef DIAGNOSTIC
1640		    if (ipprintfs)
1641		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1642#endif
1643		}
1644	}
1645
1646	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1647			  IP_FORWARDING, 0);
1648	if (error)
1649		ipstat.ips_cantforward++;
1650	else {
1651		ipstat.ips_forward++;
1652		if (type)
1653			ipstat.ips_redirectsent++;
1654		else {
1655			if (mcopy) {
1656				ipflow_create(&ipforward_rt, mcopy);
1657				m_freem(mcopy);
1658			}
1659			return;
1660		}
1661	}
1662	if (mcopy == NULL)
1663		return;
1664	destifp = NULL;
1665
1666	switch (error) {
1667
1668	case 0:				/* forwarded, but need redirect */
1669		/* type, code set above */
1670		break;
1671
1672	case ENETUNREACH:		/* shouldn't happen, checked above */
1673	case EHOSTUNREACH:
1674	case ENETDOWN:
1675	case EHOSTDOWN:
1676	default:
1677		type = ICMP_UNREACH;
1678		code = ICMP_UNREACH_HOST;
1679		break;
1680
1681	case EMSGSIZE:
1682		type = ICMP_UNREACH;
1683		code = ICMP_UNREACH_NEEDFRAG;
1684#ifndef IPSEC
1685		if (ipforward_rt.ro_rt)
1686			destifp = ipforward_rt.ro_rt->rt_ifp;
1687#else
1688		/*
1689		 * If the packet is routed over IPsec tunnel, tell the
1690		 * originator the tunnel MTU.
1691		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1692		 * XXX quickhack!!!
1693		 */
1694		if (ipforward_rt.ro_rt) {
1695			struct secpolicy *sp = NULL;
1696			int ipsecerror;
1697			int ipsechdr;
1698			struct route *ro;
1699
1700			sp = ipsec4_getpolicybyaddr(mcopy,
1701						    IPSEC_DIR_OUTBOUND,
1702			                            IP_FORWARDING,
1703			                            &ipsecerror);
1704
1705			if (sp == NULL)
1706				destifp = ipforward_rt.ro_rt->rt_ifp;
1707			else {
1708				/* count IPsec header size */
1709				ipsechdr = ipsec4_hdrsiz(mcopy,
1710							 IPSEC_DIR_OUTBOUND,
1711							 NULL);
1712
1713				/*
1714				 * find the correct route for outer IPv4
1715				 * header, compute tunnel MTU.
1716				 *
1717				 * XXX BUG ALERT
1718				 * The "dummyifp" code relies upon the fact
1719				 * that icmp_error() touches only ifp->if_mtu.
1720				 */
1721				/*XXX*/
1722				destifp = NULL;
1723				if (sp->req != NULL
1724				 && sp->req->sav != NULL
1725				 && sp->req->sav->sah != NULL) {
1726					ro = &sp->req->sav->sah->sa_route;
1727					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1728						dummyifp.if_mtu =
1729						    ro->ro_rt->rt_ifp->if_mtu;
1730						dummyifp.if_mtu -= ipsechdr;
1731						destifp = &dummyifp;
1732					}
1733				}
1734
1735				key_freesp(sp);
1736			}
1737		}
1738#endif /*IPSEC*/
1739		ipstat.ips_cantfrag++;
1740		break;
1741
1742	case ENOBUFS:
1743		type = ICMP_SOURCEQUENCH;
1744		code = 0;
1745		break;
1746
1747	case EACCES:			/* ipfw denied packet */
1748		m_freem(mcopy);
1749		return;
1750	}
1751	icmp_error(mcopy, type, code, dest, destifp);
1752}
1753
1754void
1755ip_savecontrol(inp, mp, ip, m)
1756	register struct inpcb *inp;
1757	register struct mbuf **mp;
1758	register struct ip *ip;
1759	register struct mbuf *m;
1760{
1761	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1762		struct timeval tv;
1763
1764		microtime(&tv);
1765		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1766			SCM_TIMESTAMP, SOL_SOCKET);
1767		if (*mp)
1768			mp = &(*mp)->m_next;
1769	}
1770	if (inp->inp_flags & INP_RECVDSTADDR) {
1771		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1772		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1773		if (*mp)
1774			mp = &(*mp)->m_next;
1775	}
1776#ifdef notyet
1777	/* XXX
1778	 * Moving these out of udp_input() made them even more broken
1779	 * than they already were.
1780	 */
1781	/* options were tossed already */
1782	if (inp->inp_flags & INP_RECVOPTS) {
1783		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1784		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1785		if (*mp)
1786			mp = &(*mp)->m_next;
1787	}
1788	/* ip_srcroute doesn't do what we want here, need to fix */
1789	if (inp->inp_flags & INP_RECVRETOPTS) {
1790		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1791		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1792		if (*mp)
1793			mp = &(*mp)->m_next;
1794	}
1795#endif
1796	if (inp->inp_flags & INP_RECVIF) {
1797		struct ifnet *ifp;
1798		struct sdlbuf {
1799			struct sockaddr_dl sdl;
1800			u_char	pad[32];
1801		} sdlbuf;
1802		struct sockaddr_dl *sdp;
1803		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1804
1805		if (((ifp = m->m_pkthdr.rcvif))
1806		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1807			sdp = (struct sockaddr_dl *)(ifnet_addrs
1808					[ifp->if_index - 1]->ifa_addr);
1809			/*
1810			 * Change our mind and don't try copy.
1811			 */
1812			if ((sdp->sdl_family != AF_LINK)
1813			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1814				goto makedummy;
1815			}
1816			bcopy(sdp, sdl2, sdp->sdl_len);
1817		} else {
1818makedummy:
1819			sdl2->sdl_len
1820				= offsetof(struct sockaddr_dl, sdl_data[0]);
1821			sdl2->sdl_family = AF_LINK;
1822			sdl2->sdl_index = 0;
1823			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1824		}
1825		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1826			IP_RECVIF, IPPROTO_IP);
1827		if (*mp)
1828			mp = &(*mp)->m_next;
1829	}
1830}
1831
1832int
1833ip_rsvp_init(struct socket *so)
1834{
1835	if (so->so_type != SOCK_RAW ||
1836	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1837	  return EOPNOTSUPP;
1838
1839	if (ip_rsvpd != NULL)
1840	  return EADDRINUSE;
1841
1842	ip_rsvpd = so;
1843	/*
1844	 * This may seem silly, but we need to be sure we don't over-increment
1845	 * the RSVP counter, in case something slips up.
1846	 */
1847	if (!ip_rsvp_on) {
1848		ip_rsvp_on = 1;
1849		rsvp_on++;
1850	}
1851
1852	return 0;
1853}
1854
1855int
1856ip_rsvp_done(void)
1857{
1858	ip_rsvpd = NULL;
1859	/*
1860	 * This may seem silly, but we need to be sure we don't over-decrement
1861	 * the RSVP counter, in case something slips up.
1862	 */
1863	if (ip_rsvp_on) {
1864		ip_rsvp_on = 0;
1865		rsvp_on--;
1866	}
1867	return 0;
1868}
1869