ip_reass.c revision 5105
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $Id: ip_input.c,v 1.12 1994/12/12 17:20:53 ugen Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/domain.h>
42#include <sys/protosw.h>
43#include <sys/socket.h>
44#include <sys/errno.h>
45#include <sys/time.h>
46#include <sys/kernel.h>
47
48#include <net/if.h>
49#include <net/route.h>
50
51#include <netinet/in.h>
52#include <netinet/in_systm.h>
53#include <netinet/ip.h>
54#include <netinet/in_pcb.h>
55#include <netinet/in_var.h>
56#include <netinet/ip_var.h>
57#include <netinet/ip_icmp.h>
58
59#ifdef IPFIREWALL
60#include <netinet/ip_fw.h>
61#endif
62#ifdef IPACCT
63#include <netinet/ip_fw.h>
64#endif
65
66#include <sys/socketvar.h>
67struct socket *ip_rsvpd;
68
69#ifndef	IPFORWARDING
70#ifdef GATEWAY
71#define	IPFORWARDING	1	/* forward IP packets not for us */
72#else /* GATEWAY */
73#define	IPFORWARDING	0	/* don't forward IP packets not for us */
74#endif /* GATEWAY */
75#endif /* IPFORWARDING */
76#ifndef	IPSENDREDIRECTS
77#define	IPSENDREDIRECTS	1
78#endif
79int	ipforwarding = IPFORWARDING;
80int	ipsendredirects = IPSENDREDIRECTS;
81int	ip_defttl = IPDEFTTL;
82#ifdef DIAGNOSTIC
83int	ipprintfs = 0;
84#endif
85
86extern	struct domain inetdomain;
87extern	struct protosw inetsw[];
88u_char	ip_protox[IPPROTO_MAX];
89int	ipqmaxlen = IFQ_MAXLEN;
90struct	in_ifaddr *in_ifaddr;			/* first inet address */
91struct	ifqueue ipintrq;
92
93struct ipstat ipstat;
94struct ipq ipq;
95
96/*
97 * We need to save the IP options in case a protocol wants to respond
98 * to an incoming packet over the same route if the packet got here
99 * using IP source routing.  This allows connection establishment and
100 * maintenance when the remote end is on a network that is not known
101 * to us.
102 */
103int	ip_nhops = 0;
104static	struct ip_srcrt {
105	struct	in_addr dst;			/* final destination */
106	char	nop;				/* one NOP to align */
107	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
108	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
109} ip_srcrt;
110
111#ifdef GATEWAY
112extern	int if_index;
113u_long	*ip_ifmatrix;
114#endif
115
116static void save_rte __P((u_char *, struct in_addr));
117/*
118 * IP initialization: fill in IP protocol switch table.
119 * All protocols not implemented in kernel go to raw IP protocol handler.
120 */
121void
122ip_init()
123{
124	register struct protosw *pr;
125	register int i;
126
127	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
128	if (pr == 0)
129		panic("ip_init");
130	for (i = 0; i < IPPROTO_MAX; i++)
131		ip_protox[i] = pr - inetsw;
132	for (pr = inetdomain.dom_protosw;
133	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
134		if (pr->pr_domain->dom_family == PF_INET &&
135		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
136			ip_protox[pr->pr_protocol] = pr - inetsw;
137	ipq.next = ipq.prev = &ipq;
138	ip_id = time.tv_sec & 0xffff;
139	ipintrq.ifq_maxlen = ipqmaxlen;
140#ifdef GATEWAY
141	i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
142	ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK);
143	bzero((char *)ip_ifmatrix, i);
144#endif
145}
146
147struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
148struct	route ipforward_rt;
149
150/*
151 * Ip input routine.  Checksum and byte swap header.  If fragmented
152 * try to reassemble.  Process options.  Pass to next level.
153 */
154void
155ipintr()
156{
157	register struct ip *ip;
158	register struct mbuf *m;
159	register struct ipq *fp;
160	register struct in_ifaddr *ia;
161	int hlen, s;
162
163next:
164	/*
165	 * Get next datagram off input queue and get IP header
166	 * in first mbuf.
167	 */
168	s = splimp();
169	IF_DEQUEUE(&ipintrq, m);
170	splx(s);
171	if (m == 0)
172		return;
173#ifdef	DIAGNOSTIC
174	if ((m->m_flags & M_PKTHDR) == 0)
175		panic("ipintr no HDR");
176#endif
177	/*
178	 * If no IP addresses have been set yet but the interfaces
179	 * are receiving, can't do anything with incoming packets yet.
180	 */
181	if (in_ifaddr == NULL)
182		goto bad;
183	ipstat.ips_total++;
184	if (m->m_len < sizeof (struct ip) &&
185	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
186		ipstat.ips_toosmall++;
187		goto next;
188	}
189	ip = mtod(m, struct ip *);
190	if (ip->ip_v != IPVERSION) {
191		ipstat.ips_badvers++;
192		goto bad;
193	}
194	hlen = ip->ip_hl << 2;
195	if (hlen < sizeof(struct ip)) {	/* minimum header length */
196		ipstat.ips_badhlen++;
197		goto bad;
198	}
199	if (hlen > m->m_len) {
200		if ((m = m_pullup(m, hlen)) == 0) {
201			ipstat.ips_badhlen++;
202			goto next;
203		}
204		ip = mtod(m, struct ip *);
205	}
206	ip->ip_sum = in_cksum(m, hlen);
207	if (ip->ip_sum) {
208		ipstat.ips_badsum++;
209		goto bad;
210	}
211
212	/*
213	 * Convert fields to host representation.
214	 */
215	NTOHS(ip->ip_len);
216	if (ip->ip_len < hlen) {
217		ipstat.ips_badlen++;
218		goto bad;
219	}
220	NTOHS(ip->ip_id);
221	NTOHS(ip->ip_off);
222
223	/*
224	 * Check that the amount of data in the buffers
225	 * is as at least much as the IP header would have us expect.
226	 * Trim mbufs if longer than we expect.
227	 * Drop packet if shorter than we expect.
228	 */
229	if (m->m_pkthdr.len < ip->ip_len) {
230		ipstat.ips_tooshort++;
231		goto bad;
232	}
233	if (m->m_pkthdr.len > ip->ip_len) {
234		if (m->m_len == m->m_pkthdr.len) {
235			m->m_len = ip->ip_len;
236			m->m_pkthdr.len = ip->ip_len;
237		} else
238			m_adj(m, ip->ip_len - m->m_pkthdr.len);
239	}
240
241#ifdef IPFIREWALL
242        if ( ((char *)&(ip->ip_dst.s_addr))[0] != 127
243        && !ip_fw_chk(ip,m->m_pkthdr.rcvif,ip_fw_blk_chain) ) {
244                goto bad;
245        }
246#endif
247
248	/*
249	 * Process options and, if not destined for us,
250	 * ship it on.  ip_dooptions returns 1 when an
251	 * error was detected (causing an icmp message
252	 * to be sent and the original packet to be freed).
253	 */
254	ip_nhops = 0;		/* for source routed packets */
255	if (hlen > sizeof (struct ip) && ip_dooptions(m))
256		goto next;
257
258        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
259         * matter if it is destined to another node, or whether it is
260         * a multicast one, RSVP wants it! and prevents it from being forwarded
261         * anywhere else. Also checks if the rsvp daemon is running before
262	 * grabbing the packet.
263         */
264	if (ip_rsvpd != NULL && ip->ip_p==IPPROTO_RSVP)
265		goto ours;
266
267	/*
268	 * Check our list of addresses, to see if the packet is for us.
269	 */
270	for (ia = in_ifaddr; ia; ia = ia->ia_next) {
271#define	satosin(sa)	((struct sockaddr_in *)(sa))
272
273		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
274			goto ours;
275		if (
276#ifdef	DIRECTED_BROADCAST
277		    ia->ia_ifp == m->m_pkthdr.rcvif &&
278#endif
279		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
280			u_long t;
281
282			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
283			    ip->ip_dst.s_addr)
284				goto ours;
285			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
286				goto ours;
287			/*
288			 * Look for all-0's host part (old broadcast addr),
289			 * either for subnet or net.
290			 */
291			t = ntohl(ip->ip_dst.s_addr);
292			if (t == ia->ia_subnet)
293				goto ours;
294			if (t == ia->ia_net)
295				goto ours;
296		}
297	}
298	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
299		struct in_multi *inm;
300		if (ip_mrouter) {
301			/*
302			 * If we are acting as a multicast router, all
303			 * incoming multicast packets are passed to the
304			 * kernel-level multicast forwarding function.
305			 * The packet is returned (relatively) intact; if
306			 * ip_mforward() returns a non-zero value, the packet
307			 * must be discarded, else it may be accepted below.
308			 *
309			 * (The IP ident field is put in the same byte order
310			 * as expected when ip_mforward() is called from
311			 * ip_output().)
312			 */
313			ip->ip_id = htons(ip->ip_id);
314			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
315				ipstat.ips_cantforward++;
316				m_freem(m);
317				goto next;
318			}
319			ip->ip_id = ntohs(ip->ip_id);
320
321			/*
322			 * The process-level routing demon needs to receive
323			 * all multicast IGMP packets, whether or not this
324			 * host belongs to their destination groups.
325			 */
326			if (ip->ip_p == IPPROTO_IGMP)
327				goto ours;
328			ipstat.ips_forward++;
329		}
330		/*
331		 * See if we belong to the destination multicast group on the
332		 * arrival interface.
333		 */
334		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
335		if (inm == NULL) {
336			ipstat.ips_cantforward++;
337			m_freem(m);
338			goto next;
339		}
340		goto ours;
341	}
342	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
343		goto ours;
344	if (ip->ip_dst.s_addr == INADDR_ANY)
345		goto ours;
346
347	/*
348	 * Not for us; forward if possible and desirable.
349	 */
350	if (ipforwarding == 0) {
351		ipstat.ips_cantforward++;
352		m_freem(m);
353	} else
354		ip_forward(m, 0);
355	goto next;
356
357ours:
358
359#ifdef IPACCT
360		/*
361		 * If packet came to us we count it...
362		 * This way we count all incoming packets which has
363		 * not been forwarded...
364		 * Do not convert ip_len to host byte order when
365		 * counting,ppl already made it for us before..
366		 */
367		ip_acct_cnt(ip,m->m_pkthdr.rcvif,ip_acct_chain,0);
368#endif
369
370	/*
371	 * If offset or IP_MF are set, must reassemble.
372	 * Otherwise, nothing need be done.
373	 * (We could look in the reassembly queue to see
374	 * if the packet was previously fragmented,
375	 * but it's not worth the time; just let them time out.)
376	 */
377	if (ip->ip_off &~ IP_DF) {
378		if (m->m_flags & M_EXT) {		/* XXX */
379			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
380				ipstat.ips_toosmall++;
381				goto next;
382			}
383			ip = mtod(m, struct ip *);
384		}
385		/*
386		 * Look for queue of fragments
387		 * of this datagram.
388		 */
389		for (fp = ipq.next; fp != &ipq; fp = fp->next)
390			if (ip->ip_id == fp->ipq_id &&
391			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
392			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
393			    ip->ip_p == fp->ipq_p)
394				goto found;
395		fp = 0;
396found:
397
398		/*
399		 * Adjust ip_len to not reflect header,
400		 * set ip_mff if more fragments are expected,
401		 * convert offset of this to bytes.
402		 */
403		ip->ip_len -= hlen;
404		((struct ipasfrag *)ip)->ipf_mff &= ~1;
405		if (ip->ip_off & IP_MF)
406			((struct ipasfrag *)ip)->ipf_mff |= 1;
407		ip->ip_off <<= 3;
408
409		/*
410		 * If datagram marked as having more fragments
411		 * or if this is not the first fragment,
412		 * attempt reassembly; if it succeeds, proceed.
413		 */
414		if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
415			ipstat.ips_fragments++;
416			ip = ip_reass((struct ipasfrag *)ip, fp);
417			if (ip == 0)
418				goto next;
419			ipstat.ips_reassembled++;
420			m = dtom(ip);
421		} else
422			if (fp)
423				ip_freef(fp);
424	} else
425		ip->ip_len -= hlen;
426
427	/*
428	 * Switch out to protocol's input routine.
429	 */
430	ipstat.ips_delivered++;
431	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
432	goto next;
433bad:
434	m_freem(m);
435	goto next;
436}
437
438/*
439 * Take incoming datagram fragment and try to
440 * reassemble it into whole datagram.  If a chain for
441 * reassembly of this datagram already exists, then it
442 * is given as fp; otherwise have to make a chain.
443 */
444struct ip *
445ip_reass(ip, fp)
446	register struct ipasfrag *ip;
447	register struct ipq *fp;
448{
449	register struct mbuf *m = dtom(ip);
450	register struct ipasfrag *q;
451	struct mbuf *t;
452	int hlen = ip->ip_hl << 2;
453	int i, next;
454
455	/*
456	 * Presence of header sizes in mbufs
457	 * would confuse code below.
458	 */
459	m->m_data += hlen;
460	m->m_len -= hlen;
461
462	/*
463	 * If first fragment to arrive, create a reassembly queue.
464	 */
465	if (fp == 0) {
466		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
467			goto dropfrag;
468		fp = mtod(t, struct ipq *);
469		insque(fp, &ipq);
470		fp->ipq_ttl = IPFRAGTTL;
471		fp->ipq_p = ip->ip_p;
472		fp->ipq_id = ip->ip_id;
473		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
474		fp->ipq_src = ((struct ip *)ip)->ip_src;
475		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
476		q = (struct ipasfrag *)fp;
477		goto insert;
478	}
479
480	/*
481	 * Find a segment which begins after this one does.
482	 */
483	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
484		if (q->ip_off > ip->ip_off)
485			break;
486
487	/*
488	 * If there is a preceding segment, it may provide some of
489	 * our data already.  If so, drop the data from the incoming
490	 * segment.  If it provides all of our data, drop us.
491	 */
492	if (q->ipf_prev != (struct ipasfrag *)fp) {
493		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
494		if (i > 0) {
495			if (i >= ip->ip_len)
496				goto dropfrag;
497			m_adj(dtom(ip), i);
498			ip->ip_off += i;
499			ip->ip_len -= i;
500		}
501	}
502
503	/*
504	 * While we overlap succeeding segments trim them or,
505	 * if they are completely covered, dequeue them.
506	 */
507	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
508		i = (ip->ip_off + ip->ip_len) - q->ip_off;
509		if (i < q->ip_len) {
510			q->ip_len -= i;
511			q->ip_off += i;
512			m_adj(dtom(q), i);
513			break;
514		}
515		q = q->ipf_next;
516		m_freem(dtom(q->ipf_prev));
517		ip_deq(q->ipf_prev);
518	}
519
520insert:
521	/*
522	 * Stick new segment in its place;
523	 * check for complete reassembly.
524	 */
525	ip_enq(ip, q->ipf_prev);
526	next = 0;
527	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
528		if (q->ip_off != next)
529			return (0);
530		next += q->ip_len;
531	}
532	if (q->ipf_prev->ipf_mff & 1)
533		return (0);
534
535	/*
536	 * Reassembly is complete; concatenate fragments.
537	 */
538	q = fp->ipq_next;
539	m = dtom(q);
540	t = m->m_next;
541	m->m_next = 0;
542	m_cat(m, t);
543	q = q->ipf_next;
544	while (q != (struct ipasfrag *)fp) {
545		t = dtom(q);
546		q = q->ipf_next;
547		m_cat(m, t);
548	}
549
550	/*
551	 * Create header for new ip packet by
552	 * modifying header of first packet;
553	 * dequeue and discard fragment reassembly header.
554	 * Make header visible.
555	 */
556	ip = fp->ipq_next;
557	ip->ip_len = next;
558	ip->ipf_mff &= ~1;
559	((struct ip *)ip)->ip_src = fp->ipq_src;
560	((struct ip *)ip)->ip_dst = fp->ipq_dst;
561	remque(fp);
562	(void) m_free(dtom(fp));
563	m = dtom(ip);
564	m->m_len += (ip->ip_hl << 2);
565	m->m_data -= (ip->ip_hl << 2);
566	/* some debugging cruft by sklower, below, will go away soon */
567	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
568		register int plen = 0;
569		for (t = m; m; m = m->m_next)
570			plen += m->m_len;
571		t->m_pkthdr.len = plen;
572	}
573	return ((struct ip *)ip);
574
575dropfrag:
576	ipstat.ips_fragdropped++;
577	m_freem(m);
578	return (0);
579}
580
581/*
582 * Free a fragment reassembly header and all
583 * associated datagrams.
584 */
585void
586ip_freef(fp)
587	struct ipq *fp;
588{
589	register struct ipasfrag *q, *p;
590
591	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
592		p = q->ipf_next;
593		ip_deq(q);
594		m_freem(dtom(q));
595	}
596	remque(fp);
597	(void) m_free(dtom(fp));
598}
599
600/*
601 * Put an ip fragment on a reassembly chain.
602 * Like insque, but pointers in middle of structure.
603 */
604void
605ip_enq(p, prev)
606	register struct ipasfrag *p, *prev;
607{
608
609	p->ipf_prev = prev;
610	p->ipf_next = prev->ipf_next;
611	prev->ipf_next->ipf_prev = p;
612	prev->ipf_next = p;
613}
614
615/*
616 * To ip_enq as remque is to insque.
617 */
618void
619ip_deq(p)
620	register struct ipasfrag *p;
621{
622
623	p->ipf_prev->ipf_next = p->ipf_next;
624	p->ipf_next->ipf_prev = p->ipf_prev;
625}
626
627/*
628 * IP timer processing;
629 * if a timer expires on a reassembly
630 * queue, discard it.
631 */
632void
633ip_slowtimo()
634{
635	register struct ipq *fp;
636	int s = splnet();
637
638	fp = ipq.next;
639	if (fp == 0) {
640		splx(s);
641		return;
642	}
643	while (fp != &ipq) {
644		--fp->ipq_ttl;
645		fp = fp->next;
646		if (fp->prev->ipq_ttl == 0) {
647			ipstat.ips_fragtimeout++;
648			ip_freef(fp->prev);
649		}
650	}
651	splx(s);
652}
653
654/*
655 * Drain off all datagram fragments.
656 */
657void
658ip_drain()
659{
660
661	while (ipq.next != &ipq) {
662		ipstat.ips_fragdropped++;
663		ip_freef(ipq.next);
664	}
665}
666
667/*
668 * Do option processing on a datagram,
669 * possibly discarding it if bad options are encountered,
670 * or forwarding it if source-routed.
671 * Returns 1 if packet has been forwarded/freed,
672 * 0 if the packet should be processed further.
673 */
674int
675ip_dooptions(m)
676	struct mbuf *m;
677{
678	register struct ip *ip = mtod(m, struct ip *);
679	register u_char *cp;
680	register struct ip_timestamp *ipt;
681	register struct in_ifaddr *ia;
682	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
683	struct in_addr *sin, dst;
684	n_time ntime;
685
686	dst = ip->ip_dst;
687	cp = (u_char *)(ip + 1);
688	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
689	for (; cnt > 0; cnt -= optlen, cp += optlen) {
690		opt = cp[IPOPT_OPTVAL];
691		if (opt == IPOPT_EOL)
692			break;
693		if (opt == IPOPT_NOP)
694			optlen = 1;
695		else {
696			optlen = cp[IPOPT_OLEN];
697			if (optlen <= 0 || optlen > cnt) {
698				code = &cp[IPOPT_OLEN] - (u_char *)ip;
699				goto bad;
700			}
701		}
702		switch (opt) {
703
704		default:
705			break;
706
707		/*
708		 * Source routing with record.
709		 * Find interface with current destination address.
710		 * If none on this machine then drop if strictly routed,
711		 * or do nothing if loosely routed.
712		 * Record interface address and bring up next address
713		 * component.  If strictly routed make sure next
714		 * address is on directly accessible net.
715		 */
716		case IPOPT_LSRR:
717		case IPOPT_SSRR:
718			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
719				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
720				goto bad;
721			}
722			ipaddr.sin_addr = ip->ip_dst;
723			ia = (struct in_ifaddr *)
724				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
725			if (ia == 0) {
726				if (opt == IPOPT_SSRR) {
727					type = ICMP_UNREACH;
728					code = ICMP_UNREACH_SRCFAIL;
729					goto bad;
730				}
731				/*
732				 * Loose routing, and not at next destination
733				 * yet; nothing to do except forward.
734				 */
735				break;
736			}
737			off--;			/* 0 origin */
738			if (off > optlen - sizeof(struct in_addr)) {
739				/*
740				 * End of source route.  Should be for us.
741				 */
742				save_rte(cp, ip->ip_src);
743				break;
744			}
745			/*
746			 * locate outgoing interface
747			 */
748			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
749			    sizeof(ipaddr.sin_addr));
750			if (opt == IPOPT_SSRR) {
751#define	INA	struct in_ifaddr *
752#define	SA	struct sockaddr *
753			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
754				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
755			} else
756				ia = ip_rtaddr(ipaddr.sin_addr);
757			if (ia == 0) {
758				type = ICMP_UNREACH;
759				code = ICMP_UNREACH_SRCFAIL;
760				goto bad;
761			}
762			ip->ip_dst = ipaddr.sin_addr;
763			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
764			    (caddr_t)(cp + off), sizeof(struct in_addr));
765			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
766			/*
767			 * Let ip_intr's mcast routing check handle mcast pkts
768			 */
769			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
770			break;
771
772		case IPOPT_RR:
773			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
774				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
775				goto bad;
776			}
777			/*
778			 * If no space remains, ignore.
779			 */
780			off--;			/* 0 origin */
781			if (off > optlen - sizeof(struct in_addr))
782				break;
783			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
784			    sizeof(ipaddr.sin_addr));
785			/*
786			 * locate outgoing interface; if we're the destination,
787			 * use the incoming interface (should be same).
788			 */
789			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
790			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
791				type = ICMP_UNREACH;
792				code = ICMP_UNREACH_HOST;
793				goto bad;
794			}
795			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
796			    (caddr_t)(cp + off), sizeof(struct in_addr));
797			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
798			break;
799
800		case IPOPT_TS:
801			code = cp - (u_char *)ip;
802			ipt = (struct ip_timestamp *)cp;
803			if (ipt->ipt_len < 5)
804				goto bad;
805			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
806				if (++ipt->ipt_oflw == 0)
807					goto bad;
808				break;
809			}
810			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
811			switch (ipt->ipt_flg) {
812
813			case IPOPT_TS_TSONLY:
814				break;
815
816			case IPOPT_TS_TSANDADDR:
817				if (ipt->ipt_ptr + sizeof(n_time) +
818				    sizeof(struct in_addr) > ipt->ipt_len)
819					goto bad;
820				ipaddr.sin_addr = dst;
821				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
822							    m->m_pkthdr.rcvif);
823				if (ia == 0)
824					continue;
825				bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
826				    (caddr_t)sin, sizeof(struct in_addr));
827				ipt->ipt_ptr += sizeof(struct in_addr);
828				break;
829
830			case IPOPT_TS_PRESPEC:
831				if (ipt->ipt_ptr + sizeof(n_time) +
832				    sizeof(struct in_addr) > ipt->ipt_len)
833					goto bad;
834				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
835				    sizeof(struct in_addr));
836				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
837					continue;
838				ipt->ipt_ptr += sizeof(struct in_addr);
839				break;
840
841			default:
842				goto bad;
843			}
844			ntime = iptime();
845			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
846			    sizeof(n_time));
847			ipt->ipt_ptr += sizeof(n_time);
848		}
849	}
850	if (forward) {
851		ip_forward(m, 1);
852		return (1);
853	}
854	return (0);
855bad:
856	ip->ip_len -= ip->ip_hl << 2;   /* XXX icmp_error adds in hdr length */
857	icmp_error(m, type, code, 0, 0);
858	ipstat.ips_badoptions++;
859	return (1);
860}
861
862/*
863 * Given address of next destination (final or next hop),
864 * return internet address info of interface to be used to get there.
865 */
866struct in_ifaddr *
867ip_rtaddr(dst)
868	 struct in_addr dst;
869{
870	register struct sockaddr_in *sin;
871
872	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
873
874	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
875		if (ipforward_rt.ro_rt) {
876			RTFREE(ipforward_rt.ro_rt);
877			ipforward_rt.ro_rt = 0;
878		}
879		sin->sin_family = AF_INET;
880		sin->sin_len = sizeof(*sin);
881		sin->sin_addr = dst;
882
883		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
884	}
885	if (ipforward_rt.ro_rt == 0)
886		return ((struct in_ifaddr *)0);
887	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
888}
889
890/*
891 * Save incoming source route for use in replies,
892 * to be picked up later by ip_srcroute if the receiver is interested.
893 */
894void
895save_rte(option, dst)
896	u_char *option;
897	struct in_addr dst;
898{
899	unsigned olen;
900
901	olen = option[IPOPT_OLEN];
902#ifdef DIAGNOSTIC
903	if (ipprintfs)
904		printf("save_rte: olen %d\n", olen);
905#endif
906	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
907		return;
908	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
909	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
910	ip_srcrt.dst = dst;
911}
912
913/*
914 * Retrieve incoming source route for use in replies,
915 * in the same form used by setsockopt.
916 * The first hop is placed before the options, will be removed later.
917 */
918struct mbuf *
919ip_srcroute()
920{
921	register struct in_addr *p, *q;
922	register struct mbuf *m;
923
924	if (ip_nhops == 0)
925		return ((struct mbuf *)0);
926	m = m_get(M_DONTWAIT, MT_SOOPTS);
927	if (m == 0)
928		return ((struct mbuf *)0);
929
930#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
931
932	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
933	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
934	    OPTSIZ;
935#ifdef DIAGNOSTIC
936	if (ipprintfs)
937		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
938#endif
939
940	/*
941	 * First save first hop for return route
942	 */
943	p = &ip_srcrt.route[ip_nhops - 1];
944	*(mtod(m, struct in_addr *)) = *p--;
945#ifdef DIAGNOSTIC
946	if (ipprintfs)
947		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
948#endif
949
950	/*
951	 * Copy option fields and padding (nop) to mbuf.
952	 */
953	ip_srcrt.nop = IPOPT_NOP;
954	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
955	bcopy((caddr_t)&ip_srcrt.nop,
956	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
957	q = (struct in_addr *)(mtod(m, caddr_t) +
958	    sizeof(struct in_addr) + OPTSIZ);
959#undef OPTSIZ
960	/*
961	 * Record return path as an IP source route,
962	 * reversing the path (pointers are now aligned).
963	 */
964	while (p >= ip_srcrt.route) {
965#ifdef DIAGNOSTIC
966		if (ipprintfs)
967			printf(" %lx", ntohl(q->s_addr));
968#endif
969		*q++ = *p--;
970	}
971	/*
972	 * Last hop goes to final destination.
973	 */
974	*q = ip_srcrt.dst;
975#ifdef DIAGNOSTIC
976	if (ipprintfs)
977		printf(" %lx\n", ntohl(q->s_addr));
978#endif
979	return (m);
980}
981
982/*
983 * Strip out IP options, at higher
984 * level protocol in the kernel.
985 * Second argument is buffer to which options
986 * will be moved, and return value is their length.
987 * XXX should be deleted; last arg currently ignored.
988 */
989void
990ip_stripoptions(m, mopt)
991	register struct mbuf *m;
992	struct mbuf *mopt;
993{
994	register int i;
995	struct ip *ip = mtod(m, struct ip *);
996	register caddr_t opts;
997	int olen;
998
999	olen = (ip->ip_hl<<2) - sizeof (struct ip);
1000	opts = (caddr_t)(ip + 1);
1001	i = m->m_len - (sizeof (struct ip) + olen);
1002	bcopy(opts  + olen, opts, (unsigned)i);
1003	m->m_len -= olen;
1004	if (m->m_flags & M_PKTHDR)
1005		m->m_pkthdr.len -= olen;
1006	ip->ip_hl = sizeof(struct ip) >> 2;
1007}
1008
1009u_char inetctlerrmap[PRC_NCMDS] = {
1010	0,		0,		0,		0,
1011	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1012	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1013	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1014	0,		0,		0,		0,
1015	ENOPROTOOPT
1016};
1017
1018/*
1019 * Forward a packet.  If some error occurs return the sender
1020 * an icmp packet.  Note we can't always generate a meaningful
1021 * icmp message because icmp doesn't have a large enough repertoire
1022 * of codes and types.
1023 *
1024 * If not forwarding, just drop the packet.  This could be confusing
1025 * if ipforwarding was zero but some routing protocol was advancing
1026 * us as a gateway to somewhere.  However, we must let the routing
1027 * protocol deal with that.
1028 *
1029 * The srcrt parameter indicates whether the packet is being forwarded
1030 * via a source route.
1031 */
1032void
1033ip_forward(m, srcrt)
1034	struct mbuf *m;
1035	int srcrt;
1036{
1037	register struct ip *ip = mtod(m, struct ip *);
1038	register struct sockaddr_in *sin;
1039	register struct rtentry *rt;
1040	int error, type = 0, code = 0;
1041	struct mbuf *mcopy;
1042	n_long dest;
1043	struct ifnet *destifp;
1044
1045	dest = 0;
1046#ifdef DIAGNOSTIC
1047	if (ipprintfs)
1048		printf("forward: src %lx dst %lx ttl %x\n",
1049			ip->ip_src.s_addr, ip->ip_dst.s_addr, ip->ip_ttl);
1050#endif
1051
1052#ifdef IPFIREWALL
1053	if ( ((char *)&(ip->ip_dst.s_addr))[0] != 127
1054	    && !ip_fw_chk(ip, m->m_pkthdr.rcvif, ip_fw_fwd_chain) ) {
1055		ipstat.ips_cantforward++;
1056		m_freem(m);
1057		return;
1058	}
1059#endif
1060
1061	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1062		ipstat.ips_cantforward++;
1063		m_freem(m);
1064		return;
1065	}
1066	HTONS(ip->ip_id);
1067	if (ip->ip_ttl <= IPTTLDEC) {
1068		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1069		return;
1070	}
1071	ip->ip_ttl -= IPTTLDEC;
1072
1073	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1074	if ((rt = ipforward_rt.ro_rt) == 0 ||
1075	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1076		if (ipforward_rt.ro_rt) {
1077			RTFREE(ipforward_rt.ro_rt);
1078			ipforward_rt.ro_rt = 0;
1079		}
1080		sin->sin_family = AF_INET;
1081		sin->sin_len = sizeof(*sin);
1082		sin->sin_addr = ip->ip_dst;
1083
1084		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1085		if (ipforward_rt.ro_rt == 0) {
1086			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1087			return;
1088		}
1089		rt = ipforward_rt.ro_rt;
1090	}
1091
1092	/*
1093	 * Save at most 64 bytes of the packet in case
1094	 * we need to generate an ICMP message to the src.
1095	 */
1096	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1097
1098#ifdef bogus
1099#ifdef GATEWAY
1100	ip_ifmatrix[rt->rt_ifp->if_index +
1101	     if_index * m->m_pkthdr.rcvif->if_index]++;
1102#endif
1103#endif
1104	/*
1105	 * If forwarding packet using same interface that it came in on,
1106	 * perhaps should send a redirect to sender to shortcut a hop.
1107	 * Only send redirect if source is sending directly to us,
1108	 * and if packet was not source routed (or has any options).
1109	 * Also, don't send redirect if forwarding using a default route
1110	 * or a route modified by a redirect.
1111	 */
1112#define	satosin(sa)	((struct sockaddr_in *)(sa))
1113	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1114	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1115	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1116	    ipsendredirects && !srcrt) {
1117#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1118		u_long src = ntohl(ip->ip_src.s_addr);
1119
1120		if (RTA(rt) &&
1121		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1122		    if (rt->rt_flags & RTF_GATEWAY)
1123			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1124		    else
1125			dest = ip->ip_dst.s_addr;
1126		    /* Router requirements says to only send host redirects */
1127		    type = ICMP_REDIRECT;
1128		    code = ICMP_REDIRECT_HOST;
1129#ifdef DIAGNOSTIC
1130		    if (ipprintfs)
1131		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1132#endif
1133		}
1134	}
1135
1136	error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING
1137#ifdef DIRECTED_BROADCAST
1138			    | IP_ALLOWBROADCAST
1139#endif
1140						, 0);
1141	if (error)
1142		ipstat.ips_cantforward++;
1143	else {
1144		ipstat.ips_forward++;
1145		if (type)
1146			ipstat.ips_redirectsent++;
1147		else {
1148			if (mcopy)
1149				m_freem(mcopy);
1150			return;
1151		}
1152	}
1153	if (mcopy == NULL)
1154		return;
1155	destifp = NULL;
1156
1157	switch (error) {
1158
1159	case 0:				/* forwarded, but need redirect */
1160		/* type, code set above */
1161		break;
1162
1163	case ENETUNREACH:		/* shouldn't happen, checked above */
1164	case EHOSTUNREACH:
1165	case ENETDOWN:
1166	case EHOSTDOWN:
1167	default:
1168		type = ICMP_UNREACH;
1169		code = ICMP_UNREACH_HOST;
1170		break;
1171
1172	case EMSGSIZE:
1173		type = ICMP_UNREACH;
1174		code = ICMP_UNREACH_NEEDFRAG;
1175		if (ipforward_rt.ro_rt)
1176			destifp = ipforward_rt.ro_rt->rt_ifp;
1177		ipstat.ips_cantfrag++;
1178		break;
1179
1180	case ENOBUFS:
1181		type = ICMP_SOURCEQUENCH;
1182		code = 0;
1183		break;
1184	}
1185	icmp_error(mcopy, type, code, dest, destifp);
1186}
1187
1188int
1189ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1190	int *name;
1191	u_int namelen;
1192	void *oldp;
1193	size_t *oldlenp;
1194	void *newp;
1195	size_t newlen;
1196{
1197	/* All sysctl names at this level are terminal. */
1198	if (namelen != 1)
1199		return (ENOTDIR);
1200
1201	switch (name[0]) {
1202	case IPCTL_FORWARDING:
1203		return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1204	case IPCTL_SENDREDIRECTS:
1205		return (sysctl_int(oldp, oldlenp, newp, newlen,
1206			&ipsendredirects));
1207	case IPCTL_DEFTTL:
1208		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1209#ifdef notyet
1210	case IPCTL_DEFMTU:
1211		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1212#endif
1213	default:
1214		return (EOPNOTSUPP);
1215	}
1216	/* NOTREACHED */
1217}
1218
1219int
1220ip_rsvp_init(struct socket *so)
1221{
1222	if (so->so_type != SOCK_RAW ||
1223	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1224	  return EOPNOTSUPP;
1225
1226	if (ip_rsvpd != NULL)
1227	  return EADDRINUSE;
1228
1229	ip_rsvpd = so;
1230
1231	return 0;
1232}
1233
1234int
1235ip_rsvp_done(void)
1236{
1237	ip_rsvpd = NULL;
1238	return 0;
1239}
1240