ip_reass.c revision 30966
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $Id: ip_input.c,v 1.70 1997/11/05 02:51:32 julian Exp $
35 *	$ANA: ip_input.c,v 1.5 1996/09/18 14:34:59 wollman Exp $
36 */
37
38#define	_IP_VHL
39
40#include "opt_ipfw.h"
41#include "opt_ipdivert.h"
42
43#include <stddef.h>
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/mbuf.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/time.h>
52#include <sys/kernel.h>
53#include <sys/syslog.h>
54#include <sys/sysctl.h>
55
56#include <net/if.h>
57#include <net/if_var.h>
58#include <net/if_dl.h>
59#include <net/route.h>
60#include <net/netisr.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/in_var.h>
65#include <netinet/ip.h>
66#include <netinet/in_pcb.h>
67#include <netinet/ip_var.h>
68#include <netinet/ip_icmp.h>
69#include <machine/in_cksum.h>
70
71#include <sys/socketvar.h>
72
73#ifdef IPFIREWALL
74#include <netinet/ip_fw.h>
75#endif
76
77int rsvp_on = 0;
78static int ip_rsvp_on;
79struct socket *ip_rsvpd;
80
81static int	ipforwarding = 0;
82SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
83	&ipforwarding, 0, "");
84
85static int	ipsendredirects = 1; /* XXX */
86SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
87	&ipsendredirects, 0, "");
88
89int	ip_defttl = IPDEFTTL;
90SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
91	&ip_defttl, 0, "");
92
93static int	ip_dosourceroute = 0;
94SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
95	&ip_dosourceroute, 0, "");
96#ifdef DIAGNOSTIC
97static int	ipprintfs = 0;
98#endif
99
100extern	struct domain inetdomain;
101extern	struct protosw inetsw[];
102u_char	ip_protox[IPPROTO_MAX];
103static int	ipqmaxlen = IFQ_MAXLEN;
104struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
105struct	ifqueue ipintrq;
106SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RD,
107	&ipintrq.ifq_maxlen, 0, "");
108SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
109	&ipintrq.ifq_drops, 0, "");
110
111struct ipstat ipstat;
112SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD,
113	&ipstat, ipstat, "");
114
115/* Packet reassembly stuff */
116#define IPREASS_NHASH_LOG2      6
117#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
118#define IPREASS_HMASK           (IPREASS_NHASH - 1)
119#define IPREASS_HASH(x,y) \
120	((((x) & 0xF | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
121
122static struct ipq ipq[IPREASS_NHASH];
123static int    nipq = 0;         /* total # of reass queues */
124static int    maxnipq;
125
126#ifdef IPCTL_DEFMTU
127SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
128	&ip_mtu, 0, "");
129#endif
130
131#if !defined(COMPAT_IPFW) || COMPAT_IPFW == 1
132#undef COMPAT_IPFW
133#define COMPAT_IPFW 1
134#else
135#undef COMPAT_IPFW
136#endif
137
138#ifdef COMPAT_IPFW
139/* Firewall hooks */
140ip_fw_chk_t *ip_fw_chk_ptr;
141ip_fw_ctl_t *ip_fw_ctl_ptr;
142
143/* IP Network Address Translation (NAT) hooks */
144ip_nat_t *ip_nat_ptr;
145ip_nat_ctl_t *ip_nat_ctl_ptr;
146#endif
147
148#if defined(IPFILTER_LKM) || defined(IPFILTER)
149int fr_check __P((struct ip *, int, struct ifnet *, int, struct mbuf **));
150int (*fr_checkp) __P((struct ip *, int, struct ifnet *, int, struct mbuf **)) = NULL;
151#endif
152
153
154/*
155 * We need to save the IP options in case a protocol wants to respond
156 * to an incoming packet over the same route if the packet got here
157 * using IP source routing.  This allows connection establishment and
158 * maintenance when the remote end is on a network that is not known
159 * to us.
160 */
161static int	ip_nhops = 0;
162static	struct ip_srcrt {
163	struct	in_addr dst;			/* final destination */
164	char	nop;				/* one NOP to align */
165	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
166	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
167} ip_srcrt;
168
169#ifdef IPDIVERT
170/*
171 * Shared variable between ip_input() and ip_reass() to communicate
172 * about which packets, once assembled from fragments, get diverted,
173 * and to which port.
174 */
175static u_short	frag_divert_port;
176#endif
177
178static void save_rte __P((u_char *, struct in_addr));
179static void	 ip_deq __P((struct ipasfrag *));
180static int	 ip_dooptions __P((struct mbuf *));
181static void	 ip_enq __P((struct ipasfrag *, struct ipasfrag *));
182static void	 ip_forward __P((struct mbuf *, int));
183static void	 ip_freef __P((struct ipq *));
184static struct ip *
185	 ip_reass __P((struct ipasfrag *, struct ipq *, struct ipq *));
186static struct in_ifaddr *
187	 ip_rtaddr __P((struct in_addr));
188static void	ipintr __P((void));
189/*
190 * IP initialization: fill in IP protocol switch table.
191 * All protocols not implemented in kernel go to raw IP protocol handler.
192 */
193void
194ip_init()
195{
196	register struct protosw *pr;
197	register int i;
198
199	TAILQ_INIT(&in_ifaddrhead);
200	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
201	if (pr == 0)
202		panic("ip_init");
203	for (i = 0; i < IPPROTO_MAX; i++)
204		ip_protox[i] = pr - inetsw;
205	for (pr = inetdomain.dom_protosw;
206	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
207		if (pr->pr_domain->dom_family == PF_INET &&
208		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
209			ip_protox[pr->pr_protocol] = pr - inetsw;
210
211	for (i = 0; i < IPREASS_NHASH; i++)
212	    ipq[i].next = ipq[i].prev = &ipq[i];
213
214	maxnipq = nmbclusters/4;
215
216	ip_id = time.tv_sec & 0xffff;
217	ipintrq.ifq_maxlen = ipqmaxlen;
218#ifdef IPFIREWALL
219	ip_fw_init();
220#endif
221#ifdef IPNAT
222        ip_nat_init();
223#endif
224
225}
226
227static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
228static struct	route ipforward_rt;
229
230/*
231 * Ip input routine.  Checksum and byte swap header.  If fragmented
232 * try to reassemble.  Process options.  Pass to next level.
233 */
234void
235ip_input(struct mbuf *m)
236{
237	struct ip *ip;
238	struct ipq *fp;
239	struct in_ifaddr *ia;
240	int    i, hlen;
241	u_short sum;
242
243#ifdef	DIAGNOSTIC
244	if ((m->m_flags & M_PKTHDR) == 0)
245		panic("ip_input no HDR");
246#endif
247	/*
248	 * If no IP addresses have been set yet but the interfaces
249	 * are receiving, can't do anything with incoming packets yet.
250	 * XXX This is broken! We should be able to receive broadcasts
251	 * and multicasts even without any local addresses configured.
252	 */
253	if (TAILQ_EMPTY(&in_ifaddrhead))
254		goto bad;
255	ipstat.ips_total++;
256
257	if (m->m_pkthdr.len < sizeof(struct ip))
258		goto tooshort;
259
260#ifdef	DIAGNOSTIC
261	if (m->m_len < sizeof(struct ip))
262		panic("ipintr mbuf too short");
263#endif
264
265	if (m->m_len < sizeof (struct ip) &&
266	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
267		ipstat.ips_toosmall++;
268		return;
269	}
270	ip = mtod(m, struct ip *);
271
272	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
273		ipstat.ips_badvers++;
274		goto bad;
275	}
276
277	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
278	if (hlen < sizeof(struct ip)) {	/* minimum header length */
279		ipstat.ips_badhlen++;
280		goto bad;
281	}
282	if (hlen > m->m_len) {
283		if ((m = m_pullup(m, hlen)) == 0) {
284			ipstat.ips_badhlen++;
285			return;
286		}
287		ip = mtod(m, struct ip *);
288	}
289	if (hlen == sizeof(struct ip)) {
290		sum = in_cksum_hdr(ip);
291	} else {
292		sum = in_cksum(m, hlen);
293	}
294	if (sum) {
295		ipstat.ips_badsum++;
296		goto bad;
297	}
298
299	/*
300	 * Convert fields to host representation.
301	 */
302	NTOHS(ip->ip_len);
303	if (ip->ip_len < hlen) {
304		ipstat.ips_badlen++;
305		goto bad;
306	}
307	NTOHS(ip->ip_id);
308	NTOHS(ip->ip_off);
309
310	/*
311	 * Check that the amount of data in the buffers
312	 * is as at least much as the IP header would have us expect.
313	 * Trim mbufs if longer than we expect.
314	 * Drop packet if shorter than we expect.
315	 */
316	if (m->m_pkthdr.len < ip->ip_len) {
317tooshort:
318		ipstat.ips_tooshort++;
319		goto bad;
320	}
321	if (m->m_pkthdr.len > ip->ip_len) {
322		if (m->m_len == m->m_pkthdr.len) {
323			m->m_len = ip->ip_len;
324			m->m_pkthdr.len = ip->ip_len;
325		} else
326			m_adj(m, ip->ip_len - m->m_pkthdr.len);
327	}
328	/*
329	 * IpHack's section.
330	 * Right now when no processing on packet has done
331	 * and it is still fresh out of network we do our black
332	 * deals with it.
333	 * - Firewall: deny/allow/divert
334	 * - Xlate: translate packet's addr/port (NAT).
335	 * - Wrap: fake packet's addr/port <unimpl.>
336	 * - Encapsulate: put it in another IP and send out. <unimp.>
337 	 */
338#if defined(IPFILTER) || defined(IPFILTER_LKM)
339	/*
340	 * Check if we want to allow this packet to be processed.
341	 * Consider it to be bad if not.
342	 */
343	if (fr_check) {
344		struct	mbuf	*m1 = m;
345
346		if ((*fr_checkp)(ip, hlen, m->m_pkthdr.rcvif, 0, &m1) || !m1)
347			return;
348		ip = mtod(m = m1, struct ip *);
349	}
350#endif
351#ifdef COMPAT_IPFW
352	if (ip_fw_chk_ptr) {
353#ifdef IPDIVERT
354		u_short port;
355
356		port = (*ip_fw_chk_ptr)(&ip, hlen, NULL, ip_divert_ignore, &m);
357		ip_divert_ignore = 0;
358		if (port) {			/* Divert packet */
359			frag_divert_port = port;
360			goto ours;
361		}
362#else
363		/* If ipfw says divert, we have to just drop packet */
364		if ((*ip_fw_chk_ptr)(&ip, hlen, NULL, 0, &m)) {
365			m_freem(m);
366			m = NULL;
367		}
368#endif
369		if (!m)
370			return;
371	}
372
373        if (ip_nat_ptr && !(*ip_nat_ptr)(&ip, &m, m->m_pkthdr.rcvif, IP_NAT_IN))
374		return;
375#endif
376
377	/*
378	 * Process options and, if not destined for us,
379	 * ship it on.  ip_dooptions returns 1 when an
380	 * error was detected (causing an icmp message
381	 * to be sent and the original packet to be freed).
382	 */
383	ip_nhops = 0;		/* for source routed packets */
384	if (hlen > sizeof (struct ip) && ip_dooptions(m))
385		return;
386
387        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
388         * matter if it is destined to another node, or whether it is
389         * a multicast one, RSVP wants it! and prevents it from being forwarded
390         * anywhere else. Also checks if the rsvp daemon is running before
391	 * grabbing the packet.
392         */
393	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
394		goto ours;
395
396	/*
397	 * Check our list of addresses, to see if the packet is for us.
398	 */
399	for (ia = in_ifaddrhead.tqh_first; ia; ia = ia->ia_link.tqe_next) {
400#define	satosin(sa)	((struct sockaddr_in *)(sa))
401
402		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
403			goto ours;
404#ifdef BOOTP_COMPAT
405		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
406			goto ours;
407#endif
408		if (ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
409			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
410			    ip->ip_dst.s_addr)
411				goto ours;
412			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
413				goto ours;
414		}
415	}
416	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
417		struct in_multi *inm;
418		if (ip_mrouter) {
419			/*
420			 * If we are acting as a multicast router, all
421			 * incoming multicast packets are passed to the
422			 * kernel-level multicast forwarding function.
423			 * The packet is returned (relatively) intact; if
424			 * ip_mforward() returns a non-zero value, the packet
425			 * must be discarded, else it may be accepted below.
426			 *
427			 * (The IP ident field is put in the same byte order
428			 * as expected when ip_mforward() is called from
429			 * ip_output().)
430			 */
431			ip->ip_id = htons(ip->ip_id);
432			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
433				ipstat.ips_cantforward++;
434				m_freem(m);
435				return;
436			}
437			ip->ip_id = ntohs(ip->ip_id);
438
439			/*
440			 * The process-level routing demon needs to receive
441			 * all multicast IGMP packets, whether or not this
442			 * host belongs to their destination groups.
443			 */
444			if (ip->ip_p == IPPROTO_IGMP)
445				goto ours;
446			ipstat.ips_forward++;
447		}
448		/*
449		 * See if we belong to the destination multicast group on the
450		 * arrival interface.
451		 */
452		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
453		if (inm == NULL) {
454			ipstat.ips_notmember++;
455			m_freem(m);
456			return;
457		}
458		goto ours;
459	}
460	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
461		goto ours;
462	if (ip->ip_dst.s_addr == INADDR_ANY)
463		goto ours;
464
465	/*
466	 * Not for us; forward if possible and desirable.
467	 */
468	if (ipforwarding == 0) {
469		ipstat.ips_cantforward++;
470		m_freem(m);
471	} else
472		ip_forward(m, 0);
473	return;
474
475ours:
476
477	/*
478	 * If offset or IP_MF are set, must reassemble.
479	 * Otherwise, nothing need be done.
480	 * (We could look in the reassembly queue to see
481	 * if the packet was previously fragmented,
482	 * but it's not worth the time; just let them time out.)
483	 */
484	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
485		if (m->m_flags & M_EXT) {		/* XXX */
486			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
487				ipstat.ips_toosmall++;
488#ifdef IPDIVERT
489				frag_divert_port = 0;
490#endif
491				return;
492			}
493			ip = mtod(m, struct ip *);
494		}
495		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
496		/*
497		 * Look for queue of fragments
498		 * of this datagram.
499		 */
500		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
501			if (ip->ip_id == fp->ipq_id &&
502			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
503			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
504			    ip->ip_p == fp->ipq_p)
505				goto found;
506
507		fp = 0;
508
509		/* check if there's a place for the new queue */
510		if (nipq > maxnipq) {
511		    /*
512		     * drop something from the tail of the current queue
513		     * before proceeding further
514		     */
515		    if (ipq[sum].prev == &ipq[sum]) {   /* gak */
516			for (i = 0; i < IPREASS_NHASH; i++) {
517			    if (ipq[i].prev != &ipq[i]) {
518				ip_freef(ipq[i].prev);
519				break;
520			    }
521			}
522		    } else
523			ip_freef(ipq[sum].prev);
524		}
525found:
526		/*
527		 * Adjust ip_len to not reflect header,
528		 * set ip_mff if more fragments are expected,
529		 * convert offset of this to bytes.
530		 */
531		ip->ip_len -= hlen;
532		((struct ipasfrag *)ip)->ipf_mff &= ~1;
533		if (ip->ip_off & IP_MF)
534			((struct ipasfrag *)ip)->ipf_mff |= 1;
535		ip->ip_off <<= 3;
536
537		/*
538		 * If datagram marked as having more fragments
539		 * or if this is not the first fragment,
540		 * attempt reassembly; if it succeeds, proceed.
541		 */
542		if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
543			ipstat.ips_fragments++;
544			ip = ip_reass((struct ipasfrag *)ip, fp, &ipq[sum]);
545			if (ip == 0)
546				return;
547			ipstat.ips_reassembled++;
548			m = dtom(ip);
549#ifdef IPDIVERT
550			if (frag_divert_port) {
551				ip->ip_len += hlen;
552				HTONS(ip->ip_len);
553				HTONS(ip->ip_off);
554				HTONS(ip->ip_id);
555				ip->ip_sum = 0;
556				ip->ip_sum = in_cksum_hdr(ip);
557				NTOHS(ip->ip_id);
558				NTOHS(ip->ip_off);
559				NTOHS(ip->ip_len);
560				ip->ip_len -= hlen;
561			}
562#endif
563		} else
564			if (fp)
565				ip_freef(fp);
566	} else
567		ip->ip_len -= hlen;
568
569#ifdef IPDIVERT
570	/*
571	 * Divert reassembled packets to the divert protocol if required
572	 */
573	if (frag_divert_port) {
574		ipstat.ips_delivered++;
575		ip_divert_port = frag_divert_port;
576		frag_divert_port = 0;
577		(*inetsw[ip_protox[IPPROTO_DIVERT]].pr_input)(m, hlen);
578		return;
579	}
580#endif
581
582	/*
583	 * Switch out to protocol's input routine.
584	 */
585	ipstat.ips_delivered++;
586	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
587	return;
588bad:
589	m_freem(m);
590}
591
592/*
593 * IP software interrupt routine - to go away sometime soon
594 */
595static void
596ipintr(void)
597{
598	int s;
599	struct mbuf *m;
600
601	while(1) {
602		s = splimp();
603		IF_DEQUEUE(&ipintrq, m);
604		splx(s);
605		if (m == 0)
606			return;
607		ip_input(m);
608	}
609}
610
611NETISR_SET(NETISR_IP, ipintr);
612
613/*
614 * Take incoming datagram fragment and try to
615 * reassemble it into whole datagram.  If a chain for
616 * reassembly of this datagram already exists, then it
617 * is given as fp; otherwise have to make a chain.
618 */
619static struct ip *
620ip_reass(ip, fp, where)
621	register struct ipasfrag *ip;
622	register struct ipq *fp;
623	struct   ipq    *where;
624{
625	register struct mbuf *m = dtom(ip);
626	register struct ipasfrag *q;
627	struct mbuf *t;
628	int hlen = ip->ip_hl << 2;
629	int i, next;
630
631	/*
632	 * Presence of header sizes in mbufs
633	 * would confuse code below.
634	 */
635	m->m_data += hlen;
636	m->m_len -= hlen;
637
638	/*
639	 * If first fragment to arrive, create a reassembly queue.
640	 */
641	if (fp == 0) {
642		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
643			goto dropfrag;
644		fp = mtod(t, struct ipq *);
645		insque(fp, where);
646		nipq++;
647		fp->ipq_ttl = IPFRAGTTL;
648		fp->ipq_p = ip->ip_p;
649		fp->ipq_id = ip->ip_id;
650		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
651		fp->ipq_src = ((struct ip *)ip)->ip_src;
652		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
653#ifdef IPDIVERT
654		fp->ipq_divert = 0;
655#endif
656		q = (struct ipasfrag *)fp;
657		goto insert;
658	}
659
660	/*
661	 * Find a segment which begins after this one does.
662	 */
663	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
664		if (q->ip_off > ip->ip_off)
665			break;
666
667	/*
668	 * If there is a preceding segment, it may provide some of
669	 * our data already.  If so, drop the data from the incoming
670	 * segment.  If it provides all of our data, drop us.
671	 */
672	if (q->ipf_prev != (struct ipasfrag *)fp) {
673		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
674		if (i > 0) {
675			if (i >= ip->ip_len)
676				goto dropfrag;
677			m_adj(dtom(ip), i);
678			ip->ip_off += i;
679			ip->ip_len -= i;
680		}
681	}
682
683	/*
684	 * While we overlap succeeding segments trim them or,
685	 * if they are completely covered, dequeue them.
686	 */
687	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
688		struct mbuf *m0;
689
690		i = (ip->ip_off + ip->ip_len) - q->ip_off;
691		if (i < q->ip_len) {
692			q->ip_len -= i;
693			q->ip_off += i;
694			m_adj(dtom(q), i);
695			break;
696		}
697		m0 = dtom(q);
698		q = q->ipf_next;
699		ip_deq(q->ipf_prev);
700		m_freem(m0);
701	}
702
703insert:
704
705#ifdef IPDIVERT
706	/*
707	 * Any fragment diverting causes the whole packet to divert
708	 */
709	if (frag_divert_port != 0)
710		fp->ipq_divert = frag_divert_port;
711	frag_divert_port = 0;
712#endif
713
714	/*
715	 * Stick new segment in its place;
716	 * check for complete reassembly.
717	 */
718	ip_enq(ip, q->ipf_prev);
719	next = 0;
720	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
721		if (q->ip_off != next)
722			return (0);
723		next += q->ip_len;
724	}
725	if (q->ipf_prev->ipf_mff & 1)
726		return (0);
727
728	/*
729	 * Reassembly is complete.  Make sure the packet is a sane size.
730	 */
731	if (next + (IP_VHL_HL(((struct ip *)fp->ipq_next)->ip_vhl) << 2)
732							> IP_MAXPACKET) {
733		ipstat.ips_toolong++;
734		ip_freef(fp);
735		return (0);
736	}
737
738	/*
739	 * Concatenate fragments.
740	 */
741	q = fp->ipq_next;
742	m = dtom(q);
743	t = m->m_next;
744	m->m_next = 0;
745	m_cat(m, t);
746	q = q->ipf_next;
747	while (q != (struct ipasfrag *)fp) {
748		t = dtom(q);
749		q = q->ipf_next;
750		m_cat(m, t);
751	}
752
753#ifdef IPDIVERT
754	/*
755	 * Record divert port for packet, if any
756	 */
757	frag_divert_port = fp->ipq_divert;
758#endif
759
760	/*
761	 * Create header for new ip packet by
762	 * modifying header of first packet;
763	 * dequeue and discard fragment reassembly header.
764	 * Make header visible.
765	 */
766	ip = fp->ipq_next;
767	ip->ip_len = next;
768	ip->ipf_mff &= ~1;
769	((struct ip *)ip)->ip_src = fp->ipq_src;
770	((struct ip *)ip)->ip_dst = fp->ipq_dst;
771	remque(fp);
772	nipq--;
773	(void) m_free(dtom(fp));
774	m = dtom(ip);
775	m->m_len += (ip->ip_hl << 2);
776	m->m_data -= (ip->ip_hl << 2);
777	/* some debugging cruft by sklower, below, will go away soon */
778	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
779		register int plen = 0;
780		for (t = m; m; m = m->m_next)
781			plen += m->m_len;
782		t->m_pkthdr.len = plen;
783	}
784	return ((struct ip *)ip);
785
786dropfrag:
787	ipstat.ips_fragdropped++;
788	m_freem(m);
789	return (0);
790}
791
792/*
793 * Free a fragment reassembly header and all
794 * associated datagrams.
795 */
796static void
797ip_freef(fp)
798	struct ipq *fp;
799{
800	register struct ipasfrag *q, *p;
801
802	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
803		p = q->ipf_next;
804		ip_deq(q);
805		m_freem(dtom(q));
806	}
807	remque(fp);
808	(void) m_free(dtom(fp));
809	nipq--;
810}
811
812/*
813 * Put an ip fragment on a reassembly chain.
814 * Like insque, but pointers in middle of structure.
815 */
816static void
817ip_enq(p, prev)
818	register struct ipasfrag *p, *prev;
819{
820
821	p->ipf_prev = prev;
822	p->ipf_next = prev->ipf_next;
823	prev->ipf_next->ipf_prev = p;
824	prev->ipf_next = p;
825}
826
827/*
828 * To ip_enq as remque is to insque.
829 */
830static void
831ip_deq(p)
832	register struct ipasfrag *p;
833{
834
835	p->ipf_prev->ipf_next = p->ipf_next;
836	p->ipf_next->ipf_prev = p->ipf_prev;
837}
838
839/*
840 * IP timer processing;
841 * if a timer expires on a reassembly
842 * queue, discard it.
843 */
844void
845ip_slowtimo()
846{
847	register struct ipq *fp;
848	int s = splnet();
849	int i;
850
851	for (i = 0; i < IPREASS_NHASH; i++) {
852		fp = ipq[i].next;
853		if (fp == 0)
854			continue;
855		while (fp != &ipq[i]) {
856			--fp->ipq_ttl;
857			fp = fp->next;
858			if (fp->prev->ipq_ttl == 0) {
859				ipstat.ips_fragtimeout++;
860				ip_freef(fp->prev);
861			}
862		}
863	}
864	splx(s);
865}
866
867/*
868 * Drain off all datagram fragments.
869 */
870void
871ip_drain()
872{
873	int     i;
874
875	for (i = 0; i < IPREASS_NHASH; i++) {
876		while (ipq[i].next != &ipq[i]) {
877			ipstat.ips_fragdropped++;
878			ip_freef(ipq[i].next);
879		}
880	}
881	in_rtqdrain();
882}
883
884/*
885 * Do option processing on a datagram,
886 * possibly discarding it if bad options are encountered,
887 * or forwarding it if source-routed.
888 * Returns 1 if packet has been forwarded/freed,
889 * 0 if the packet should be processed further.
890 */
891static int
892ip_dooptions(m)
893	struct mbuf *m;
894{
895	register struct ip *ip = mtod(m, struct ip *);
896	register u_char *cp;
897	register struct ip_timestamp *ipt;
898	register struct in_ifaddr *ia;
899	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
900	struct in_addr *sin, dst;
901	n_time ntime;
902
903	dst = ip->ip_dst;
904	cp = (u_char *)(ip + 1);
905	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
906	for (; cnt > 0; cnt -= optlen, cp += optlen) {
907		opt = cp[IPOPT_OPTVAL];
908		if (opt == IPOPT_EOL)
909			break;
910		if (opt == IPOPT_NOP)
911			optlen = 1;
912		else {
913			optlen = cp[IPOPT_OLEN];
914			if (optlen <= 0 || optlen > cnt) {
915				code = &cp[IPOPT_OLEN] - (u_char *)ip;
916				goto bad;
917			}
918		}
919		switch (opt) {
920
921		default:
922			break;
923
924		/*
925		 * Source routing with record.
926		 * Find interface with current destination address.
927		 * If none on this machine then drop if strictly routed,
928		 * or do nothing if loosely routed.
929		 * Record interface address and bring up next address
930		 * component.  If strictly routed make sure next
931		 * address is on directly accessible net.
932		 */
933		case IPOPT_LSRR:
934		case IPOPT_SSRR:
935			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
936				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
937				goto bad;
938			}
939			ipaddr.sin_addr = ip->ip_dst;
940			ia = (struct in_ifaddr *)
941				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
942			if (ia == 0) {
943				if (opt == IPOPT_SSRR) {
944					type = ICMP_UNREACH;
945					code = ICMP_UNREACH_SRCFAIL;
946					goto bad;
947				}
948				if (!ip_dosourceroute)
949					goto nosourcerouting;
950				/*
951				 * Loose routing, and not at next destination
952				 * yet; nothing to do except forward.
953				 */
954				break;
955			}
956			off--;			/* 0 origin */
957			if (off > optlen - sizeof(struct in_addr)) {
958				/*
959				 * End of source route.  Should be for us.
960				 */
961				save_rte(cp, ip->ip_src);
962				break;
963			}
964
965			if (!ip_dosourceroute) {
966				char buf[4*sizeof "123"];
967
968nosourcerouting:
969				strcpy(buf, inet_ntoa(ip->ip_dst));
970				log(LOG_WARNING,
971				    "attempted source route from %s to %s\n",
972				    inet_ntoa(ip->ip_src), buf);
973				type = ICMP_UNREACH;
974				code = ICMP_UNREACH_SRCFAIL;
975				goto bad;
976			}
977
978			/*
979			 * locate outgoing interface
980			 */
981			(void)memcpy(&ipaddr.sin_addr, cp + off,
982			    sizeof(ipaddr.sin_addr));
983
984			if (opt == IPOPT_SSRR) {
985#define	INA	struct in_ifaddr *
986#define	SA	struct sockaddr *
987			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
988				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
989			} else
990				ia = ip_rtaddr(ipaddr.sin_addr);
991			if (ia == 0) {
992				type = ICMP_UNREACH;
993				code = ICMP_UNREACH_SRCFAIL;
994				goto bad;
995			}
996			ip->ip_dst = ipaddr.sin_addr;
997			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
998			    sizeof(struct in_addr));
999			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1000			/*
1001			 * Let ip_intr's mcast routing check handle mcast pkts
1002			 */
1003			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1004			break;
1005
1006		case IPOPT_RR:
1007			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1008				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1009				goto bad;
1010			}
1011			/*
1012			 * If no space remains, ignore.
1013			 */
1014			off--;			/* 0 origin */
1015			if (off > optlen - sizeof(struct in_addr))
1016				break;
1017			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1018			    sizeof(ipaddr.sin_addr));
1019			/*
1020			 * locate outgoing interface; if we're the destination,
1021			 * use the incoming interface (should be same).
1022			 */
1023			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1024			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1025				type = ICMP_UNREACH;
1026				code = ICMP_UNREACH_HOST;
1027				goto bad;
1028			}
1029			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1030			    sizeof(struct in_addr));
1031			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1032			break;
1033
1034		case IPOPT_TS:
1035			code = cp - (u_char *)ip;
1036			ipt = (struct ip_timestamp *)cp;
1037			if (ipt->ipt_len < 5)
1038				goto bad;
1039			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
1040				if (++ipt->ipt_oflw == 0)
1041					goto bad;
1042				break;
1043			}
1044			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1045			switch (ipt->ipt_flg) {
1046
1047			case IPOPT_TS_TSONLY:
1048				break;
1049
1050			case IPOPT_TS_TSANDADDR:
1051				if (ipt->ipt_ptr + sizeof(n_time) +
1052				    sizeof(struct in_addr) > ipt->ipt_len)
1053					goto bad;
1054				ipaddr.sin_addr = dst;
1055				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1056							    m->m_pkthdr.rcvif);
1057				if (ia == 0)
1058					continue;
1059				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1060				    sizeof(struct in_addr));
1061				ipt->ipt_ptr += sizeof(struct in_addr);
1062				break;
1063
1064			case IPOPT_TS_PRESPEC:
1065				if (ipt->ipt_ptr + sizeof(n_time) +
1066				    sizeof(struct in_addr) > ipt->ipt_len)
1067					goto bad;
1068				(void)memcpy(&ipaddr.sin_addr, sin,
1069				    sizeof(struct in_addr));
1070				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1071					continue;
1072				ipt->ipt_ptr += sizeof(struct in_addr);
1073				break;
1074
1075			default:
1076				goto bad;
1077			}
1078			ntime = iptime();
1079			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1080			    sizeof(n_time));
1081			ipt->ipt_ptr += sizeof(n_time);
1082		}
1083	}
1084	if (forward) {
1085		ip_forward(m, 1);
1086		return (1);
1087	}
1088	return (0);
1089bad:
1090	ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2;   /* XXX icmp_error adds in hdr length */
1091	icmp_error(m, type, code, 0, 0);
1092	ipstat.ips_badoptions++;
1093	return (1);
1094}
1095
1096/*
1097 * Given address of next destination (final or next hop),
1098 * return internet address info of interface to be used to get there.
1099 */
1100static struct in_ifaddr *
1101ip_rtaddr(dst)
1102	 struct in_addr dst;
1103{
1104	register struct sockaddr_in *sin;
1105
1106	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1107
1108	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
1109		if (ipforward_rt.ro_rt) {
1110			RTFREE(ipforward_rt.ro_rt);
1111			ipforward_rt.ro_rt = 0;
1112		}
1113		sin->sin_family = AF_INET;
1114		sin->sin_len = sizeof(*sin);
1115		sin->sin_addr = dst;
1116
1117		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1118	}
1119	if (ipforward_rt.ro_rt == 0)
1120		return ((struct in_ifaddr *)0);
1121	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1122}
1123
1124/*
1125 * Save incoming source route for use in replies,
1126 * to be picked up later by ip_srcroute if the receiver is interested.
1127 */
1128void
1129save_rte(option, dst)
1130	u_char *option;
1131	struct in_addr dst;
1132{
1133	unsigned olen;
1134
1135	olen = option[IPOPT_OLEN];
1136#ifdef DIAGNOSTIC
1137	if (ipprintfs)
1138		printf("save_rte: olen %d\n", olen);
1139#endif
1140	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1141		return;
1142	bcopy(option, ip_srcrt.srcopt, olen);
1143	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1144	ip_srcrt.dst = dst;
1145}
1146
1147/*
1148 * Retrieve incoming source route for use in replies,
1149 * in the same form used by setsockopt.
1150 * The first hop is placed before the options, will be removed later.
1151 */
1152struct mbuf *
1153ip_srcroute()
1154{
1155	register struct in_addr *p, *q;
1156	register struct mbuf *m;
1157
1158	if (ip_nhops == 0)
1159		return ((struct mbuf *)0);
1160	m = m_get(M_DONTWAIT, MT_SOOPTS);
1161	if (m == 0)
1162		return ((struct mbuf *)0);
1163
1164#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1165
1166	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1167	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1168	    OPTSIZ;
1169#ifdef DIAGNOSTIC
1170	if (ipprintfs)
1171		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1172#endif
1173
1174	/*
1175	 * First save first hop for return route
1176	 */
1177	p = &ip_srcrt.route[ip_nhops - 1];
1178	*(mtod(m, struct in_addr *)) = *p--;
1179#ifdef DIAGNOSTIC
1180	if (ipprintfs)
1181		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
1182#endif
1183
1184	/*
1185	 * Copy option fields and padding (nop) to mbuf.
1186	 */
1187	ip_srcrt.nop = IPOPT_NOP;
1188	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1189	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1190	    &ip_srcrt.nop, OPTSIZ);
1191	q = (struct in_addr *)(mtod(m, caddr_t) +
1192	    sizeof(struct in_addr) + OPTSIZ);
1193#undef OPTSIZ
1194	/*
1195	 * Record return path as an IP source route,
1196	 * reversing the path (pointers are now aligned).
1197	 */
1198	while (p >= ip_srcrt.route) {
1199#ifdef DIAGNOSTIC
1200		if (ipprintfs)
1201			printf(" %lx", ntohl(q->s_addr));
1202#endif
1203		*q++ = *p--;
1204	}
1205	/*
1206	 * Last hop goes to final destination.
1207	 */
1208	*q = ip_srcrt.dst;
1209#ifdef DIAGNOSTIC
1210	if (ipprintfs)
1211		printf(" %lx\n", ntohl(q->s_addr));
1212#endif
1213	return (m);
1214}
1215
1216/*
1217 * Strip out IP options, at higher
1218 * level protocol in the kernel.
1219 * Second argument is buffer to which options
1220 * will be moved, and return value is their length.
1221 * XXX should be deleted; last arg currently ignored.
1222 */
1223void
1224ip_stripoptions(m, mopt)
1225	register struct mbuf *m;
1226	struct mbuf *mopt;
1227{
1228	register int i;
1229	struct ip *ip = mtod(m, struct ip *);
1230	register caddr_t opts;
1231	int olen;
1232
1233	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1234	opts = (caddr_t)(ip + 1);
1235	i = m->m_len - (sizeof (struct ip) + olen);
1236	bcopy(opts + olen, opts, (unsigned)i);
1237	m->m_len -= olen;
1238	if (m->m_flags & M_PKTHDR)
1239		m->m_pkthdr.len -= olen;
1240	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1241}
1242
1243u_char inetctlerrmap[PRC_NCMDS] = {
1244	0,		0,		0,		0,
1245	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1246	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1247	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1248	0,		0,		0,		0,
1249	ENOPROTOOPT
1250};
1251
1252/*
1253 * Forward a packet.  If some error occurs return the sender
1254 * an icmp packet.  Note we can't always generate a meaningful
1255 * icmp message because icmp doesn't have a large enough repertoire
1256 * of codes and types.
1257 *
1258 * If not forwarding, just drop the packet.  This could be confusing
1259 * if ipforwarding was zero but some routing protocol was advancing
1260 * us as a gateway to somewhere.  However, we must let the routing
1261 * protocol deal with that.
1262 *
1263 * The srcrt parameter indicates whether the packet is being forwarded
1264 * via a source route.
1265 */
1266static void
1267ip_forward(m, srcrt)
1268	struct mbuf *m;
1269	int srcrt;
1270{
1271	register struct ip *ip = mtod(m, struct ip *);
1272	register struct sockaddr_in *sin;
1273	register struct rtentry *rt;
1274	int error, type = 0, code = 0;
1275	struct mbuf *mcopy;
1276	n_long dest;
1277	struct ifnet *destifp;
1278
1279	dest = 0;
1280#ifdef DIAGNOSTIC
1281	if (ipprintfs)
1282		printf("forward: src %lx dst %lx ttl %x\n",
1283			ip->ip_src.s_addr, ip->ip_dst.s_addr, ip->ip_ttl);
1284#endif
1285
1286
1287	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1288		ipstat.ips_cantforward++;
1289		m_freem(m);
1290		return;
1291	}
1292	HTONS(ip->ip_id);
1293	if (ip->ip_ttl <= IPTTLDEC) {
1294		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1295		return;
1296	}
1297	ip->ip_ttl -= IPTTLDEC;
1298
1299	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1300	if ((rt = ipforward_rt.ro_rt) == 0 ||
1301	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1302		if (ipforward_rt.ro_rt) {
1303			RTFREE(ipforward_rt.ro_rt);
1304			ipforward_rt.ro_rt = 0;
1305		}
1306		sin->sin_family = AF_INET;
1307		sin->sin_len = sizeof(*sin);
1308		sin->sin_addr = ip->ip_dst;
1309
1310		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1311		if (ipforward_rt.ro_rt == 0) {
1312			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1313			return;
1314		}
1315		rt = ipforward_rt.ro_rt;
1316	}
1317
1318	/*
1319	 * Save at most 64 bytes of the packet in case
1320	 * we need to generate an ICMP message to the src.
1321	 */
1322	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1323
1324	/*
1325	 * If forwarding packet using same interface that it came in on,
1326	 * perhaps should send a redirect to sender to shortcut a hop.
1327	 * Only send redirect if source is sending directly to us,
1328	 * and if packet was not source routed (or has any options).
1329	 * Also, don't send redirect if forwarding using a default route
1330	 * or a route modified by a redirect.
1331	 */
1332#define	satosin(sa)	((struct sockaddr_in *)(sa))
1333	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1334	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1335	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1336	    ipsendredirects && !srcrt) {
1337#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1338		u_long src = ntohl(ip->ip_src.s_addr);
1339
1340		if (RTA(rt) &&
1341		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1342		    if (rt->rt_flags & RTF_GATEWAY)
1343			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1344		    else
1345			dest = ip->ip_dst.s_addr;
1346		    /* Router requirements says to only send host redirects */
1347		    type = ICMP_REDIRECT;
1348		    code = ICMP_REDIRECT_HOST;
1349#ifdef DIAGNOSTIC
1350		    if (ipprintfs)
1351		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1352#endif
1353		}
1354	}
1355
1356	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1357			  IP_FORWARDING, 0);
1358	if (error)
1359		ipstat.ips_cantforward++;
1360	else {
1361		ipstat.ips_forward++;
1362		if (type)
1363			ipstat.ips_redirectsent++;
1364		else {
1365			if (mcopy)
1366				m_freem(mcopy);
1367			return;
1368		}
1369	}
1370	if (mcopy == NULL)
1371		return;
1372	destifp = NULL;
1373
1374	switch (error) {
1375
1376	case 0:				/* forwarded, but need redirect */
1377		/* type, code set above */
1378		break;
1379
1380	case ENETUNREACH:		/* shouldn't happen, checked above */
1381	case EHOSTUNREACH:
1382	case ENETDOWN:
1383	case EHOSTDOWN:
1384	default:
1385		type = ICMP_UNREACH;
1386		code = ICMP_UNREACH_HOST;
1387		break;
1388
1389	case EMSGSIZE:
1390		type = ICMP_UNREACH;
1391		code = ICMP_UNREACH_NEEDFRAG;
1392		if (ipforward_rt.ro_rt)
1393			destifp = ipforward_rt.ro_rt->rt_ifp;
1394		ipstat.ips_cantfrag++;
1395		break;
1396
1397	case ENOBUFS:
1398		type = ICMP_SOURCEQUENCH;
1399		code = 0;
1400		break;
1401	}
1402	icmp_error(mcopy, type, code, dest, destifp);
1403}
1404
1405void
1406ip_savecontrol(inp, mp, ip, m)
1407	register struct inpcb *inp;
1408	register struct mbuf **mp;
1409	register struct ip *ip;
1410	register struct mbuf *m;
1411{
1412	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1413		struct timeval tv;
1414
1415		microtime(&tv);
1416		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1417			SCM_TIMESTAMP, SOL_SOCKET);
1418		if (*mp)
1419			mp = &(*mp)->m_next;
1420	}
1421	if (inp->inp_flags & INP_RECVDSTADDR) {
1422		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1423		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1424		if (*mp)
1425			mp = &(*mp)->m_next;
1426	}
1427#ifdef notyet
1428	/* XXX
1429	 * Moving these out of udp_input() made them even more broken
1430	 * than they already were.
1431	 */
1432	/* options were tossed already */
1433	if (inp->inp_flags & INP_RECVOPTS) {
1434		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1435		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1436		if (*mp)
1437			mp = &(*mp)->m_next;
1438	}
1439	/* ip_srcroute doesn't do what we want here, need to fix */
1440	if (inp->inp_flags & INP_RECVRETOPTS) {
1441		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1442		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1443		if (*mp)
1444			mp = &(*mp)->m_next;
1445	}
1446#endif
1447	if (inp->inp_flags & INP_RECVIF) {
1448		struct ifnet *ifp;
1449		struct sdlbuf {
1450			struct sockaddr_dl sdl;
1451			u_char	pad[32];
1452		} sdlbuf;
1453		struct sockaddr_dl *sdp;
1454		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1455
1456		if (((ifp = m->m_pkthdr.rcvif))
1457		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1458			sdp = (struct sockaddr_dl *)(ifnet_addrs
1459					[ifp->if_index - 1]->ifa_addr);
1460			/*
1461			 * Change our mind and don't try copy.
1462			 */
1463			if ((sdp->sdl_family != AF_LINK)
1464			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1465				goto makedummy;
1466			}
1467			bcopy(sdp, sdl2, sdp->sdl_len);
1468		} else {
1469makedummy:
1470			sdl2->sdl_len
1471				= offsetof(struct sockaddr_dl, sdl_data[0]);
1472			sdl2->sdl_family = AF_LINK;
1473			sdl2->sdl_index = 0;
1474			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1475		}
1476		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1477			IP_RECVIF, IPPROTO_IP);
1478		if (*mp)
1479			mp = &(*mp)->m_next;
1480	}
1481}
1482
1483int
1484ip_rsvp_init(struct socket *so)
1485{
1486	if (so->so_type != SOCK_RAW ||
1487	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1488	  return EOPNOTSUPP;
1489
1490	if (ip_rsvpd != NULL)
1491	  return EADDRINUSE;
1492
1493	ip_rsvpd = so;
1494	/*
1495	 * This may seem silly, but we need to be sure we don't over-increment
1496	 * the RSVP counter, in case something slips up.
1497	 */
1498	if (!ip_rsvp_on) {
1499		ip_rsvp_on = 1;
1500		rsvp_on++;
1501	}
1502
1503	return 0;
1504}
1505
1506int
1507ip_rsvp_done(void)
1508{
1509	ip_rsvpd = NULL;
1510	/*
1511	 * This may seem silly, but we need to be sure we don't over-decrement
1512	 * the RSVP counter, in case something slips up.
1513	 */
1514	if (ip_rsvp_on) {
1515		ip_rsvp_on = 0;
1516		rsvp_on--;
1517	}
1518	return 0;
1519}
1520