ip_reass.c revision 281293
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 281293 2015-04-09 08:37:16Z glebius $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40#include "opt_rss.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/domain.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/time.h>
50#include <sys/kernel.h>
51#include <sys/lock.h>
52#include <sys/rwlock.h>
53#include <sys/sdt.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56
57#include <net/pfil.h>
58#include <net/if.h>
59#include <net/if_types.h>
60#include <net/if_var.h>
61#include <net/if_dl.h>
62#include <net/route.h>
63#include <net/netisr.h>
64#include <net/rss_config.h>
65#include <net/vnet.h>
66
67#include <netinet/in.h>
68#include <netinet/in_kdtrace.h>
69#include <netinet/in_systm.h>
70#include <netinet/in_var.h>
71#include <netinet/ip.h>
72#include <netinet/in_pcb.h>
73#include <netinet/ip_var.h>
74#include <netinet/ip_fw.h>
75#include <netinet/ip_icmp.h>
76#include <netinet/ip_options.h>
77#include <machine/in_cksum.h>
78#include <netinet/ip_carp.h>
79#ifdef IPSEC
80#include <netinet/ip_ipsec.h>
81#endif /* IPSEC */
82#include <netinet/in_rss.h>
83
84#include <sys/socketvar.h>
85
86#include <security/mac/mac_framework.h>
87
88#ifdef CTASSERT
89CTASSERT(sizeof(struct ip) == 20);
90#endif
91
92struct	rwlock in_ifaddr_lock;
93RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
94
95VNET_DEFINE(int, rsvp_on);
96
97VNET_DEFINE(int, ipforwarding);
98SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW,
99    &VNET_NAME(ipforwarding), 0,
100    "Enable IP forwarding between interfaces");
101
102static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
103#define	V_ipsendredirects	VNET(ipsendredirects)
104SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW,
105    &VNET_NAME(ipsendredirects), 0,
106    "Enable sending IP redirects");
107
108/*
109 * XXX - Setting ip_checkinterface mostly implements the receive side of
110 * the Strong ES model described in RFC 1122, but since the routing table
111 * and transmit implementation do not implement the Strong ES model,
112 * setting this to 1 results in an odd hybrid.
113 *
114 * XXX - ip_checkinterface currently must be disabled if you use ipnat
115 * to translate the destination address to another local interface.
116 *
117 * XXX - ip_checkinterface must be disabled if you add IP aliases
118 * to the loopback interface instead of the interface where the
119 * packets for those addresses are received.
120 */
121static VNET_DEFINE(int, ip_checkinterface);
122#define	V_ip_checkinterface	VNET(ip_checkinterface)
123SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW,
124    &VNET_NAME(ip_checkinterface), 0,
125    "Verify packet arrives on correct interface");
126
127VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
128
129static struct netisr_handler ip_nh = {
130	.nh_name = "ip",
131	.nh_handler = ip_input,
132	.nh_proto = NETISR_IP,
133#ifdef	RSS
134	.nh_m2cpuid = rss_soft_m2cpuid,
135	.nh_policy = NETISR_POLICY_CPU,
136	.nh_dispatch = NETISR_DISPATCH_HYBRID,
137#else
138	.nh_policy = NETISR_POLICY_FLOW,
139#endif
140};
141
142#ifdef	RSS
143/*
144 * Directly dispatched frames are currently assumed
145 * to have a flowid already calculated.
146 *
147 * It should likely have something that assert it
148 * actually has valid flow details.
149 */
150static struct netisr_handler ip_direct_nh = {
151	.nh_name = "ip_direct",
152	.nh_handler = ip_direct_input,
153	.nh_proto = NETISR_IP_DIRECT,
154	.nh_m2cpuid = rss_m2cpuid,
155	.nh_policy = NETISR_POLICY_CPU,
156	.nh_dispatch = NETISR_DISPATCH_HYBRID,
157};
158#endif
159
160extern	struct domain inetdomain;
161extern	struct protosw inetsw[];
162u_char	ip_protox[IPPROTO_MAX];
163VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
164VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
165VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
166
167static VNET_DEFINE(uma_zone_t, ipq_zone);
168static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
169static struct mtx_padalign ipqlock[IPREASS_NHASH];
170
171#define	V_ipq_zone		VNET(ipq_zone)
172#define	V_ipq			VNET(ipq)
173
174/*
175 * The ipqlock array is global, /not/ per-VNET.
176 */
177#define	IPQ_LOCK(i)	mtx_lock(&ipqlock[(i)])
178#define	IPQ_UNLOCK(i)	mtx_unlock(&ipqlock[(i)])
179#define	IPQ_LOCK_INIT(i)	mtx_init(&ipqlock[(i)], "ipqlock", NULL, MTX_DEF)
180#define	IPQ_LOCK_ASSERT(i)	mtx_assert(&ipqlock[(i)], MA_OWNED)
181
182static void	maxnipq_update(void);
183static void	ipq_zone_change(void *);
184static void	ip_drain_vnet(void);
185
186static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
187static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
188#define	V_maxnipq		VNET(maxnipq)
189#define	V_nipq			VNET(nipq)
190SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET | CTLFLAG_RD,
191    &VNET_NAME(nipq), 0,
192    "Current number of IPv4 fragment reassembly queue entries");
193
194static VNET_DEFINE(int, maxfragsperpacket);
195#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
196SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
197    &VNET_NAME(maxfragsperpacket), 0,
198    "Maximum number of IPv4 fragments allowed per packet");
199
200#ifdef IPCTL_DEFMTU
201SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
202    &ip_mtu, 0, "Default MTU");
203#endif
204
205#ifdef IPSTEALTH
206VNET_DEFINE(int, ipstealth);
207SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW,
208    &VNET_NAME(ipstealth), 0,
209    "IP stealth mode, no TTL decrementation on forwarding");
210#endif
211
212static void	ip_freef(struct ipqhead *, int, struct ipq *);
213
214/*
215 * IP statistics are stored in the "array" of counter(9)s.
216 */
217VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
218VNET_PCPUSTAT_SYSINIT(ipstat);
219SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
220    "IP statistics (struct ipstat, netinet/ip_var.h)");
221
222#ifdef VIMAGE
223VNET_PCPUSTAT_SYSUNINIT(ipstat);
224#endif /* VIMAGE */
225
226/*
227 * Kernel module interface for updating ipstat.  The argument is an index
228 * into ipstat treated as an array.
229 */
230void
231kmod_ipstat_inc(int statnum)
232{
233
234	counter_u64_add(VNET(ipstat)[statnum], 1);
235}
236
237void
238kmod_ipstat_dec(int statnum)
239{
240
241	counter_u64_add(VNET(ipstat)[statnum], -1);
242}
243
244static int
245sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
246{
247	int error, qlimit;
248
249	netisr_getqlimit(&ip_nh, &qlimit);
250	error = sysctl_handle_int(oidp, &qlimit, 0, req);
251	if (error || !req->newptr)
252		return (error);
253	if (qlimit < 1)
254		return (EINVAL);
255	return (netisr_setqlimit(&ip_nh, qlimit));
256}
257SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
258    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
259    "Maximum size of the IP input queue");
260
261static int
262sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
263{
264	u_int64_t qdrops_long;
265	int error, qdrops;
266
267	netisr_getqdrops(&ip_nh, &qdrops_long);
268	qdrops = qdrops_long;
269	error = sysctl_handle_int(oidp, &qdrops, 0, req);
270	if (error || !req->newptr)
271		return (error);
272	if (qdrops != 0)
273		return (EINVAL);
274	netisr_clearqdrops(&ip_nh);
275	return (0);
276}
277
278SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
279    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
280    "Number of packets dropped from the IP input queue");
281
282#ifdef	RSS
283static int
284sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS)
285{
286	int error, qlimit;
287
288	netisr_getqlimit(&ip_direct_nh, &qlimit);
289	error = sysctl_handle_int(oidp, &qlimit, 0, req);
290	if (error || !req->newptr)
291		return (error);
292	if (qlimit < 1)
293		return (EINVAL);
294	return (netisr_setqlimit(&ip_direct_nh, qlimit));
295}
296SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_direct_queue_maxlen,
297    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_direct_queue_maxlen, "I",
298    "Maximum size of the IP direct input queue");
299
300static int
301sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS)
302{
303	u_int64_t qdrops_long;
304	int error, qdrops;
305
306	netisr_getqdrops(&ip_direct_nh, &qdrops_long);
307	qdrops = qdrops_long;
308	error = sysctl_handle_int(oidp, &qdrops, 0, req);
309	if (error || !req->newptr)
310		return (error);
311	if (qdrops != 0)
312		return (EINVAL);
313	netisr_clearqdrops(&ip_direct_nh);
314	return (0);
315}
316
317SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_direct_queue_drops,
318    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_direct_queue_drops, "I",
319    "Number of packets dropped from the IP direct input queue");
320#endif	/* RSS */
321
322/*
323 * IP initialization: fill in IP protocol switch table.
324 * All protocols not implemented in kernel go to raw IP protocol handler.
325 */
326void
327ip_init(void)
328{
329	struct protosw *pr;
330	int i;
331
332	TAILQ_INIT(&V_in_ifaddrhead);
333	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
334
335	/* Initialize IP reassembly queue. */
336	for (i = 0; i < IPREASS_NHASH; i++)
337		TAILQ_INIT(&V_ipq[i]);
338	V_maxnipq = nmbclusters / 32;
339	V_maxfragsperpacket = 16;
340	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
341	    NULL, UMA_ALIGN_PTR, 0);
342	maxnipq_update();
343
344	/* Initialize packet filter hooks. */
345	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
346	V_inet_pfil_hook.ph_af = AF_INET;
347	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
348		printf("%s: WARNING: unable to register pfil hook, "
349			"error %d\n", __func__, i);
350
351	/* Skip initialization of globals for non-default instances. */
352	if (!IS_DEFAULT_VNET(curvnet))
353		return;
354
355	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
356	if (pr == NULL)
357		panic("ip_init: PF_INET not found");
358
359	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
360	for (i = 0; i < IPPROTO_MAX; i++)
361		ip_protox[i] = pr - inetsw;
362	/*
363	 * Cycle through IP protocols and put them into the appropriate place
364	 * in ip_protox[].
365	 */
366	for (pr = inetdomain.dom_protosw;
367	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
368		if (pr->pr_domain->dom_family == PF_INET &&
369		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
370			/* Be careful to only index valid IP protocols. */
371			if (pr->pr_protocol < IPPROTO_MAX)
372				ip_protox[pr->pr_protocol] = pr - inetsw;
373		}
374
375	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
376		NULL, EVENTHANDLER_PRI_ANY);
377
378	/* Initialize various other remaining things. */
379	for (i = 0; i < IPREASS_NHASH; i++)
380		IPQ_LOCK_INIT(i);
381	netisr_register(&ip_nh);
382#ifdef	RSS
383	netisr_register(&ip_direct_nh);
384#endif
385}
386
387#ifdef VIMAGE
388void
389ip_destroy(void)
390{
391	int i;
392
393	if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
394		printf("%s: WARNING: unable to unregister pfil hook, "
395		    "error %d\n", __func__, i);
396
397	/* Cleanup in_ifaddr hash table; should be empty. */
398	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
399
400	ip_drain_vnet();
401
402	uma_zdestroy(V_ipq_zone);
403}
404#endif
405
406#ifdef	RSS
407/*
408 * IP direct input routine.
409 *
410 * This is called when reinjecting completed fragments where
411 * all of the previous checking and book-keeping has been done.
412 */
413void
414ip_direct_input(struct mbuf *m)
415{
416	struct ip *ip;
417	int hlen;
418
419	ip = mtod(m, struct ip *);
420	hlen = ip->ip_hl << 2;
421
422	IPSTAT_INC(ips_delivered);
423	(*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
424	return;
425}
426#endif
427
428/*
429 * Ip input routine.  Checksum and byte swap header.  If fragmented
430 * try to reassemble.  Process options.  Pass to next level.
431 */
432void
433ip_input(struct mbuf *m)
434{
435	struct ip *ip = NULL;
436	struct in_ifaddr *ia = NULL;
437	struct ifaddr *ifa;
438	struct ifnet *ifp;
439	int    checkif, hlen = 0;
440	uint16_t sum, ip_len;
441	int dchg = 0;				/* dest changed after fw */
442	struct in_addr odst;			/* original dst address */
443
444	M_ASSERTPKTHDR(m);
445
446	if (m->m_flags & M_FASTFWD_OURS) {
447		m->m_flags &= ~M_FASTFWD_OURS;
448		/* Set up some basics that will be used later. */
449		ip = mtod(m, struct ip *);
450		hlen = ip->ip_hl << 2;
451		ip_len = ntohs(ip->ip_len);
452		goto ours;
453	}
454
455	IPSTAT_INC(ips_total);
456
457	if (m->m_pkthdr.len < sizeof(struct ip))
458		goto tooshort;
459
460	if (m->m_len < sizeof (struct ip) &&
461	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
462		IPSTAT_INC(ips_toosmall);
463		return;
464	}
465	ip = mtod(m, struct ip *);
466
467	if (ip->ip_v != IPVERSION) {
468		IPSTAT_INC(ips_badvers);
469		goto bad;
470	}
471
472	hlen = ip->ip_hl << 2;
473	if (hlen < sizeof(struct ip)) {	/* minimum header length */
474		IPSTAT_INC(ips_badhlen);
475		goto bad;
476	}
477	if (hlen > m->m_len) {
478		if ((m = m_pullup(m, hlen)) == NULL) {
479			IPSTAT_INC(ips_badhlen);
480			return;
481		}
482		ip = mtod(m, struct ip *);
483	}
484
485	IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
486
487	/* 127/8 must not appear on wire - RFC1122 */
488	ifp = m->m_pkthdr.rcvif;
489	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
490	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
491		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
492			IPSTAT_INC(ips_badaddr);
493			goto bad;
494		}
495	}
496
497	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
498		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
499	} else {
500		if (hlen == sizeof(struct ip)) {
501			sum = in_cksum_hdr(ip);
502		} else {
503			sum = in_cksum(m, hlen);
504		}
505	}
506	if (sum) {
507		IPSTAT_INC(ips_badsum);
508		goto bad;
509	}
510
511#ifdef ALTQ
512	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
513		/* packet is dropped by traffic conditioner */
514		return;
515#endif
516
517	ip_len = ntohs(ip->ip_len);
518	if (ip_len < hlen) {
519		IPSTAT_INC(ips_badlen);
520		goto bad;
521	}
522
523	/*
524	 * Check that the amount of data in the buffers
525	 * is as at least much as the IP header would have us expect.
526	 * Trim mbufs if longer than we expect.
527	 * Drop packet if shorter than we expect.
528	 */
529	if (m->m_pkthdr.len < ip_len) {
530tooshort:
531		IPSTAT_INC(ips_tooshort);
532		goto bad;
533	}
534	if (m->m_pkthdr.len > ip_len) {
535		if (m->m_len == m->m_pkthdr.len) {
536			m->m_len = ip_len;
537			m->m_pkthdr.len = ip_len;
538		} else
539			m_adj(m, ip_len - m->m_pkthdr.len);
540	}
541
542#ifdef IPSEC
543	/*
544	 * Bypass packet filtering for packets previously handled by IPsec.
545	 */
546	if (ip_ipsec_filtertunnel(m))
547		goto passin;
548#endif /* IPSEC */
549
550	/*
551	 * Run through list of hooks for input packets.
552	 *
553	 * NB: Beware of the destination address changing (e.g.
554	 *     by NAT rewriting).  When this happens, tell
555	 *     ip_forward to do the right thing.
556	 */
557
558	/* Jump over all PFIL processing if hooks are not active. */
559	if (!PFIL_HOOKED(&V_inet_pfil_hook))
560		goto passin;
561
562	odst = ip->ip_dst;
563	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
564		return;
565	if (m == NULL)			/* consumed by filter */
566		return;
567
568	ip = mtod(m, struct ip *);
569	dchg = (odst.s_addr != ip->ip_dst.s_addr);
570	ifp = m->m_pkthdr.rcvif;
571
572	if (m->m_flags & M_FASTFWD_OURS) {
573		m->m_flags &= ~M_FASTFWD_OURS;
574		goto ours;
575	}
576	if (m->m_flags & M_IP_NEXTHOP) {
577		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
578		if (dchg != 0) {
579			/*
580			 * Directly ship the packet on.  This allows
581			 * forwarding packets originally destined to us
582			 * to some other directly connected host.
583			 */
584			ip_forward(m, 1);
585			return;
586		}
587	}
588passin:
589
590	/*
591	 * Process options and, if not destined for us,
592	 * ship it on.  ip_dooptions returns 1 when an
593	 * error was detected (causing an icmp message
594	 * to be sent and the original packet to be freed).
595	 */
596	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
597		return;
598
599        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
600         * matter if it is destined to another node, or whether it is
601         * a multicast one, RSVP wants it! and prevents it from being forwarded
602         * anywhere else. Also checks if the rsvp daemon is running before
603	 * grabbing the packet.
604         */
605	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
606		goto ours;
607
608	/*
609	 * Check our list of addresses, to see if the packet is for us.
610	 * If we don't have any addresses, assume any unicast packet
611	 * we receive might be for us (and let the upper layers deal
612	 * with it).
613	 */
614	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
615	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
616		goto ours;
617
618	/*
619	 * Enable a consistency check between the destination address
620	 * and the arrival interface for a unicast packet (the RFC 1122
621	 * strong ES model) if IP forwarding is disabled and the packet
622	 * is not locally generated and the packet is not subject to
623	 * 'ipfw fwd'.
624	 *
625	 * XXX - Checking also should be disabled if the destination
626	 * address is ipnat'ed to a different interface.
627	 *
628	 * XXX - Checking is incompatible with IP aliases added
629	 * to the loopback interface instead of the interface where
630	 * the packets are received.
631	 *
632	 * XXX - This is the case for carp vhost IPs as well so we
633	 * insert a workaround. If the packet got here, we already
634	 * checked with carp_iamatch() and carp_forus().
635	 */
636	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
637	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
638	    ifp->if_carp == NULL && (dchg == 0);
639
640	/*
641	 * Check for exact addresses in the hash bucket.
642	 */
643	/* IN_IFADDR_RLOCK(); */
644	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
645		/*
646		 * If the address matches, verify that the packet
647		 * arrived via the correct interface if checking is
648		 * enabled.
649		 */
650		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
651		    (!checkif || ia->ia_ifp == ifp)) {
652			counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
653			counter_u64_add(ia->ia_ifa.ifa_ibytes,
654			    m->m_pkthdr.len);
655			/* IN_IFADDR_RUNLOCK(); */
656			goto ours;
657		}
658	}
659	/* IN_IFADDR_RUNLOCK(); */
660
661	/*
662	 * Check for broadcast addresses.
663	 *
664	 * Only accept broadcast packets that arrive via the matching
665	 * interface.  Reception of forwarded directed broadcasts would
666	 * be handled via ip_forward() and ether_output() with the loopback
667	 * into the stack for SIMPLEX interfaces handled by ether_output().
668	 */
669	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
670		IF_ADDR_RLOCK(ifp);
671	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
672			if (ifa->ifa_addr->sa_family != AF_INET)
673				continue;
674			ia = ifatoia(ifa);
675			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
676			    ip->ip_dst.s_addr) {
677				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
678				counter_u64_add(ia->ia_ifa.ifa_ibytes,
679				    m->m_pkthdr.len);
680				IF_ADDR_RUNLOCK(ifp);
681				goto ours;
682			}
683#ifdef BOOTP_COMPAT
684			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
685				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
686				counter_u64_add(ia->ia_ifa.ifa_ibytes,
687				    m->m_pkthdr.len);
688				IF_ADDR_RUNLOCK(ifp);
689				goto ours;
690			}
691#endif
692		}
693		IF_ADDR_RUNLOCK(ifp);
694		ia = NULL;
695	}
696	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
697	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
698		IPSTAT_INC(ips_cantforward);
699		m_freem(m);
700		return;
701	}
702	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
703		if (V_ip_mrouter) {
704			/*
705			 * If we are acting as a multicast router, all
706			 * incoming multicast packets are passed to the
707			 * kernel-level multicast forwarding function.
708			 * The packet is returned (relatively) intact; if
709			 * ip_mforward() returns a non-zero value, the packet
710			 * must be discarded, else it may be accepted below.
711			 */
712			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
713				IPSTAT_INC(ips_cantforward);
714				m_freem(m);
715				return;
716			}
717
718			/*
719			 * The process-level routing daemon needs to receive
720			 * all multicast IGMP packets, whether or not this
721			 * host belongs to their destination groups.
722			 */
723			if (ip->ip_p == IPPROTO_IGMP)
724				goto ours;
725			IPSTAT_INC(ips_forward);
726		}
727		/*
728		 * Assume the packet is for us, to avoid prematurely taking
729		 * a lock on the in_multi hash. Protocols must perform
730		 * their own filtering and update statistics accordingly.
731		 */
732		goto ours;
733	}
734	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
735		goto ours;
736	if (ip->ip_dst.s_addr == INADDR_ANY)
737		goto ours;
738
739	/*
740	 * Not for us; forward if possible and desirable.
741	 */
742	if (V_ipforwarding == 0) {
743		IPSTAT_INC(ips_cantforward);
744		m_freem(m);
745	} else {
746		ip_forward(m, dchg);
747	}
748	return;
749
750ours:
751#ifdef IPSTEALTH
752	/*
753	 * IPSTEALTH: Process non-routing options only
754	 * if the packet is destined for us.
755	 */
756	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1))
757		return;
758#endif /* IPSTEALTH */
759
760	/*
761	 * Attempt reassembly; if it succeeds, proceed.
762	 * ip_reass() will return a different mbuf.
763	 */
764	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
765		/* XXXGL: shouldn't we save & set m_flags? */
766		m = ip_reass(m);
767		if (m == NULL)
768			return;
769		ip = mtod(m, struct ip *);
770		/* Get the header length of the reassembled packet */
771		hlen = ip->ip_hl << 2;
772	}
773
774#ifdef IPSEC
775	/*
776	 * enforce IPsec policy checking if we are seeing last header.
777	 * note that we do not visit this with protocols with pcb layer
778	 * code - like udp/tcp/raw ip.
779	 */
780	if (ip_ipsec_input(m, ip->ip_p) != 0)
781		goto bad;
782#endif /* IPSEC */
783
784	/*
785	 * Switch out to protocol's input routine.
786	 */
787	IPSTAT_INC(ips_delivered);
788
789	(*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
790	return;
791bad:
792	m_freem(m);
793}
794
795/*
796 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
797 * max has slightly different semantics than the sysctl, for historical
798 * reasons.
799 */
800static void
801maxnipq_update(void)
802{
803
804	/*
805	 * -1 for unlimited allocation.
806	 */
807	if (V_maxnipq < 0)
808		uma_zone_set_max(V_ipq_zone, 0);
809	/*
810	 * Positive number for specific bound.
811	 */
812	if (V_maxnipq > 0)
813		uma_zone_set_max(V_ipq_zone, V_maxnipq);
814	/*
815	 * Zero specifies no further fragment queue allocation -- set the
816	 * bound very low, but rely on implementation elsewhere to actually
817	 * prevent allocation and reclaim current queues.
818	 */
819	if (V_maxnipq == 0)
820		uma_zone_set_max(V_ipq_zone, 1);
821}
822
823static void
824ipq_zone_change(void *tag)
825{
826
827	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
828		V_maxnipq = nmbclusters / 32;
829		maxnipq_update();
830	}
831}
832
833static int
834sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
835{
836	int error, i;
837
838	i = V_maxnipq;
839	error = sysctl_handle_int(oidp, &i, 0, req);
840	if (error || !req->newptr)
841		return (error);
842
843	/*
844	 * XXXRW: Might be a good idea to sanity check the argument and place
845	 * an extreme upper bound.
846	 */
847	if (i < -1)
848		return (EINVAL);
849	V_maxnipq = i;
850	maxnipq_update();
851	return (0);
852}
853
854SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
855    NULL, 0, sysctl_maxnipq, "I",
856    "Maximum number of IPv4 fragment reassembly queue entries");
857
858#define	M_IP_FRAG	M_PROTO9
859
860/*
861 * Attempt to purge something from the reassembly queue to make
862 * room.
863 *
864 * Must be called without any IPQ locks held, as it will attempt
865 * to lock each in turn.
866 *
867 * 'skip_bucket' is the bucket with which to skip over, or -1 to
868 * not skip over anything.
869 *
870 * Returns the bucket being freed, or -1 for no action.
871 */
872static int
873ip_reass_purge_element(int skip_bucket)
874{
875	int i;
876	struct ipq *r;
877
878	for (i = 0; i < IPREASS_NHASH; i++) {
879		if (skip_bucket > -1 && i == skip_bucket)
880			continue;
881		IPQ_LOCK(i);
882		r = TAILQ_LAST(&V_ipq[i], ipqhead);
883		if (r) {
884			IPSTAT_ADD(ips_fragtimeout,
885			    r->ipq_nfrags);
886			ip_freef(&V_ipq[i], i, r);
887			IPQ_UNLOCK(i);
888			return (i);
889		}
890		IPQ_UNLOCK(i);
891	}
892	return (-1);
893}
894
895/*
896 * Take incoming datagram fragment and try to reassemble it into
897 * whole datagram.  If the argument is the first fragment or one
898 * in between the function will return NULL and store the mbuf
899 * in the fragment chain.  If the argument is the last fragment
900 * the packet will be reassembled and the pointer to the new
901 * mbuf returned for further processing.  Only m_tags attached
902 * to the first packet/fragment are preserved.
903 * The IP header is *NOT* adjusted out of iplen.
904 */
905struct mbuf *
906ip_reass(struct mbuf *m)
907{
908	struct ip *ip;
909	struct mbuf *p, *q, *nq, *t;
910	struct ipq *fp = NULL;
911	struct ipqhead *head;
912	int i, hlen, next;
913	u_int8_t ecn, ecn0;
914	u_short hash;
915#ifdef	RSS
916	uint32_t rss_hash, rss_type;
917#endif
918	int do_purge = 0;
919
920	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
921	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
922		IPSTAT_INC(ips_fragments);
923		IPSTAT_INC(ips_fragdropped);
924		m_freem(m);
925		return (NULL);
926	}
927
928	ip = mtod(m, struct ip *);
929	hlen = ip->ip_hl << 2;
930
931	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
932	head = &V_ipq[hash];
933	IPQ_LOCK(hash);
934
935	/*
936	 * Look for queue of fragments
937	 * of this datagram.
938	 */
939	TAILQ_FOREACH(fp, head, ipq_list)
940		if (ip->ip_id == fp->ipq_id &&
941		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
942		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
943#ifdef MAC
944		    mac_ipq_match(m, fp) &&
945#endif
946		    ip->ip_p == fp->ipq_p)
947			goto found;
948
949	fp = NULL;
950
951	/*
952	 * Attempt to trim the number of allocated fragment queues if it
953	 * exceeds the administrative limit.
954	 */
955	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
956		/*
957		 * drop something from the tail of the current queue
958		 * before proceeding further
959		 */
960		struct ipq *q = TAILQ_LAST(head, ipqhead);
961		if (q == NULL) {   /* gak */
962			/*
963			 * Defer doing this until later; when the
964			 * lock is no longer held.
965			 */
966			do_purge = 1;
967		} else {
968			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
969			ip_freef(head, hash, q);
970		}
971	}
972
973found:
974	/*
975	 * Adjust ip_len to not reflect header,
976	 * convert offset of this to bytes.
977	 */
978	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
979	if (ip->ip_off & htons(IP_MF)) {
980		/*
981		 * Make sure that fragments have a data length
982		 * that's a non-zero multiple of 8 bytes.
983		 */
984		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
985			IPSTAT_INC(ips_toosmall); /* XXX */
986			goto dropfrag;
987		}
988		m->m_flags |= M_IP_FRAG;
989	} else
990		m->m_flags &= ~M_IP_FRAG;
991	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
992
993	/*
994	 * Attempt reassembly; if it succeeds, proceed.
995	 * ip_reass() will return a different mbuf.
996	 */
997	IPSTAT_INC(ips_fragments);
998	m->m_pkthdr.PH_loc.ptr = ip;
999
1000	/* Previous ip_reass() started here. */
1001	/*
1002	 * Presence of header sizes in mbufs
1003	 * would confuse code below.
1004	 */
1005	m->m_data += hlen;
1006	m->m_len -= hlen;
1007
1008	/*
1009	 * If first fragment to arrive, create a reassembly queue.
1010	 */
1011	if (fp == NULL) {
1012		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
1013		if (fp == NULL)
1014			goto dropfrag;
1015#ifdef MAC
1016		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
1017			uma_zfree(V_ipq_zone, fp);
1018			fp = NULL;
1019			goto dropfrag;
1020		}
1021		mac_ipq_create(m, fp);
1022#endif
1023		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1024		V_nipq++;
1025		fp->ipq_nfrags = 1;
1026		fp->ipq_ttl = IPFRAGTTL;
1027		fp->ipq_p = ip->ip_p;
1028		fp->ipq_id = ip->ip_id;
1029		fp->ipq_src = ip->ip_src;
1030		fp->ipq_dst = ip->ip_dst;
1031		fp->ipq_frags = m;
1032		m->m_nextpkt = NULL;
1033		goto done;
1034	} else {
1035		fp->ipq_nfrags++;
1036#ifdef MAC
1037		mac_ipq_update(m, fp);
1038#endif
1039	}
1040
1041#define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
1042
1043	/*
1044	 * Handle ECN by comparing this segment with the first one;
1045	 * if CE is set, do not lose CE.
1046	 * drop if CE and not-ECT are mixed for the same packet.
1047	 */
1048	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1049	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1050	if (ecn == IPTOS_ECN_CE) {
1051		if (ecn0 == IPTOS_ECN_NOTECT)
1052			goto dropfrag;
1053		if (ecn0 != IPTOS_ECN_CE)
1054			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1055	}
1056	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1057		goto dropfrag;
1058
1059	/*
1060	 * Find a segment which begins after this one does.
1061	 */
1062	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1063		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
1064			break;
1065
1066	/*
1067	 * If there is a preceding segment, it may provide some of
1068	 * our data already.  If so, drop the data from the incoming
1069	 * segment.  If it provides all of our data, drop us, otherwise
1070	 * stick new segment in the proper place.
1071	 *
1072	 * If some of the data is dropped from the preceding
1073	 * segment, then it's checksum is invalidated.
1074	 */
1075	if (p) {
1076		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
1077		    ntohs(ip->ip_off);
1078		if (i > 0) {
1079			if (i >= ntohs(ip->ip_len))
1080				goto dropfrag;
1081			m_adj(m, i);
1082			m->m_pkthdr.csum_flags = 0;
1083			ip->ip_off = htons(ntohs(ip->ip_off) + i);
1084			ip->ip_len = htons(ntohs(ip->ip_len) - i);
1085		}
1086		m->m_nextpkt = p->m_nextpkt;
1087		p->m_nextpkt = m;
1088	} else {
1089		m->m_nextpkt = fp->ipq_frags;
1090		fp->ipq_frags = m;
1091	}
1092
1093	/*
1094	 * While we overlap succeeding segments trim them or,
1095	 * if they are completely covered, dequeue them.
1096	 */
1097	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1098	    ntohs(GETIP(q)->ip_off); q = nq) {
1099		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1100		    ntohs(GETIP(q)->ip_off);
1101		if (i < ntohs(GETIP(q)->ip_len)) {
1102			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1103			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1104			m_adj(q, i);
1105			q->m_pkthdr.csum_flags = 0;
1106			break;
1107		}
1108		nq = q->m_nextpkt;
1109		m->m_nextpkt = nq;
1110		IPSTAT_INC(ips_fragdropped);
1111		fp->ipq_nfrags--;
1112		m_freem(q);
1113	}
1114
1115	/*
1116	 * Check for complete reassembly and perform frag per packet
1117	 * limiting.
1118	 *
1119	 * Frag limiting is performed here so that the nth frag has
1120	 * a chance to complete the packet before we drop the packet.
1121	 * As a result, n+1 frags are actually allowed per packet, but
1122	 * only n will ever be stored. (n = maxfragsperpacket.)
1123	 *
1124	 */
1125	next = 0;
1126	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1127		if (ntohs(GETIP(q)->ip_off) != next) {
1128			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1129				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1130				ip_freef(head, hash, fp);
1131			}
1132			goto done;
1133		}
1134		next += ntohs(GETIP(q)->ip_len);
1135	}
1136	/* Make sure the last packet didn't have the IP_MF flag */
1137	if (p->m_flags & M_IP_FRAG) {
1138		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1139			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1140			ip_freef(head, hash, fp);
1141		}
1142		goto done;
1143	}
1144
1145	/*
1146	 * Reassembly is complete.  Make sure the packet is a sane size.
1147	 */
1148	q = fp->ipq_frags;
1149	ip = GETIP(q);
1150	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1151		IPSTAT_INC(ips_toolong);
1152		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1153		ip_freef(head, hash, fp);
1154		goto done;
1155	}
1156
1157	/*
1158	 * Concatenate fragments.
1159	 */
1160	m = q;
1161	t = m->m_next;
1162	m->m_next = NULL;
1163	m_cat(m, t);
1164	nq = q->m_nextpkt;
1165	q->m_nextpkt = NULL;
1166	for (q = nq; q != NULL; q = nq) {
1167		nq = q->m_nextpkt;
1168		q->m_nextpkt = NULL;
1169		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1170		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1171		m_cat(m, q);
1172	}
1173	/*
1174	 * In order to do checksumming faster we do 'end-around carry' here
1175	 * (and not in for{} loop), though it implies we are not going to
1176	 * reassemble more than 64k fragments.
1177	 */
1178	while (m->m_pkthdr.csum_data & 0xffff0000)
1179		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1180		    (m->m_pkthdr.csum_data >> 16);
1181#ifdef MAC
1182	mac_ipq_reassemble(fp, m);
1183	mac_ipq_destroy(fp);
1184#endif
1185
1186	/*
1187	 * Create header for new ip packet by modifying header of first
1188	 * packet;  dequeue and discard fragment reassembly header.
1189	 * Make header visible.
1190	 */
1191	ip->ip_len = htons((ip->ip_hl << 2) + next);
1192	ip->ip_src = fp->ipq_src;
1193	ip->ip_dst = fp->ipq_dst;
1194	TAILQ_REMOVE(head, fp, ipq_list);
1195	V_nipq--;
1196	uma_zfree(V_ipq_zone, fp);
1197	m->m_len += (ip->ip_hl << 2);
1198	m->m_data -= (ip->ip_hl << 2);
1199	/* some debugging cruft by sklower, below, will go away soon */
1200	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1201		m_fixhdr(m);
1202	IPSTAT_INC(ips_reassembled);
1203	IPQ_UNLOCK(hash);
1204
1205	/*
1206	 * Do the delayed purge to keep fragment counts under
1207	 * the configured maximum.
1208	 *
1209	 * This is delayed so that it's not done with another IPQ bucket
1210	 * lock held.
1211	 *
1212	 * Note that we pass in the bucket to /skip/ over, not
1213	 * the bucket to /purge/.
1214	 */
1215	if (do_purge)
1216		ip_reass_purge_element(hash);
1217
1218#ifdef	RSS
1219	/*
1220	 * Query the RSS layer for the flowid / flowtype for the
1221	 * mbuf payload.
1222	 *
1223	 * For now, just assume we have to calculate a new one.
1224	 * Later on we should check to see if the assigned flowid matches
1225	 * what RSS wants for the given IP protocol and if so, just keep it.
1226	 *
1227	 * We then queue into the relevant netisr so it can be dispatched
1228	 * to the correct CPU.
1229	 *
1230	 * Note - this may return 1, which means the flowid in the mbuf
1231	 * is correct for the configured RSS hash types and can be used.
1232	 */
1233	if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
1234		m->m_pkthdr.flowid = rss_hash;
1235		M_HASHTYPE_SET(m, rss_type);
1236	}
1237
1238	/*
1239	 * Queue/dispatch for reprocessing.
1240	 *
1241	 * Note: this is much slower than just handling the frame in the
1242	 * current receive context.  It's likely worth investigating
1243	 * why this is.
1244	 */
1245	netisr_dispatch(NETISR_IP_DIRECT, m);
1246	return (NULL);
1247#endif
1248
1249	/* Handle in-line */
1250	return (m);
1251
1252dropfrag:
1253	IPSTAT_INC(ips_fragdropped);
1254	if (fp != NULL)
1255		fp->ipq_nfrags--;
1256	m_freem(m);
1257done:
1258	IPQ_UNLOCK(hash);
1259	return (NULL);
1260
1261#undef GETIP
1262}
1263
1264/*
1265 * Free a fragment reassembly header and all
1266 * associated datagrams.
1267 */
1268static void
1269ip_freef(struct ipqhead *fhp, int i, struct ipq *fp)
1270{
1271	struct mbuf *q;
1272
1273	IPQ_LOCK_ASSERT(i);
1274
1275	while (fp->ipq_frags) {
1276		q = fp->ipq_frags;
1277		fp->ipq_frags = q->m_nextpkt;
1278		m_freem(q);
1279	}
1280	TAILQ_REMOVE(fhp, fp, ipq_list);
1281	uma_zfree(V_ipq_zone, fp);
1282	V_nipq--;
1283}
1284
1285/*
1286 * IP timer processing;
1287 * if a timer expires on a reassembly
1288 * queue, discard it.
1289 */
1290void
1291ip_slowtimo(void)
1292{
1293	VNET_ITERATOR_DECL(vnet_iter);
1294	struct ipq *fp;
1295	int i;
1296
1297	VNET_LIST_RLOCK_NOSLEEP();
1298	VNET_FOREACH(vnet_iter) {
1299		CURVNET_SET(vnet_iter);
1300		for (i = 0; i < IPREASS_NHASH; i++) {
1301			IPQ_LOCK(i);
1302			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1303				struct ipq *fpp;
1304
1305				fpp = fp;
1306				fp = TAILQ_NEXT(fp, ipq_list);
1307				if(--fpp->ipq_ttl == 0) {
1308					IPSTAT_ADD(ips_fragtimeout,
1309					    fpp->ipq_nfrags);
1310					ip_freef(&V_ipq[i], i, fpp);
1311				}
1312			}
1313			IPQ_UNLOCK(i);
1314		}
1315		/*
1316		 * If we are over the maximum number of fragments
1317		 * (due to the limit being lowered), drain off
1318		 * enough to get down to the new limit.
1319		 */
1320		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1321			for (i = 0; i < IPREASS_NHASH; i++) {
1322				IPQ_LOCK(i);
1323				while (V_nipq > V_maxnipq &&
1324				    !TAILQ_EMPTY(&V_ipq[i])) {
1325					IPSTAT_ADD(ips_fragdropped,
1326					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1327					ip_freef(&V_ipq[i],
1328					    i,
1329					    TAILQ_FIRST(&V_ipq[i]));
1330				}
1331				IPQ_UNLOCK(i);
1332			}
1333		}
1334		CURVNET_RESTORE();
1335	}
1336	VNET_LIST_RUNLOCK_NOSLEEP();
1337}
1338
1339/*
1340 * Drain off all datagram fragments.
1341 */
1342static void
1343ip_drain_vnet(void)
1344{
1345	int     i;
1346
1347	for (i = 0; i < IPREASS_NHASH; i++) {
1348		IPQ_LOCK(i);
1349		while(!TAILQ_EMPTY(&V_ipq[i])) {
1350			IPSTAT_ADD(ips_fragdropped,
1351			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1352			ip_freef(&V_ipq[i], i, TAILQ_FIRST(&V_ipq[i]));
1353		}
1354		IPQ_UNLOCK(i);
1355	}
1356}
1357
1358void
1359ip_drain(void)
1360{
1361	VNET_ITERATOR_DECL(vnet_iter);
1362
1363	VNET_LIST_RLOCK_NOSLEEP();
1364	VNET_FOREACH(vnet_iter) {
1365		CURVNET_SET(vnet_iter);
1366		ip_drain_vnet();
1367		CURVNET_RESTORE();
1368	}
1369	VNET_LIST_RUNLOCK_NOSLEEP();
1370}
1371
1372/*
1373 * The protocol to be inserted into ip_protox[] must be already registered
1374 * in inetsw[], either statically or through pf_proto_register().
1375 */
1376int
1377ipproto_register(short ipproto)
1378{
1379	struct protosw *pr;
1380
1381	/* Sanity checks. */
1382	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1383		return (EPROTONOSUPPORT);
1384
1385	/*
1386	 * The protocol slot must not be occupied by another protocol
1387	 * already.  An index pointing to IPPROTO_RAW is unused.
1388	 */
1389	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1390	if (pr == NULL)
1391		return (EPFNOSUPPORT);
1392	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1393		return (EEXIST);
1394
1395	/* Find the protocol position in inetsw[] and set the index. */
1396	for (pr = inetdomain.dom_protosw;
1397	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1398		if (pr->pr_domain->dom_family == PF_INET &&
1399		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1400			ip_protox[pr->pr_protocol] = pr - inetsw;
1401			return (0);
1402		}
1403	}
1404	return (EPROTONOSUPPORT);
1405}
1406
1407int
1408ipproto_unregister(short ipproto)
1409{
1410	struct protosw *pr;
1411
1412	/* Sanity checks. */
1413	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1414		return (EPROTONOSUPPORT);
1415
1416	/* Check if the protocol was indeed registered. */
1417	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1418	if (pr == NULL)
1419		return (EPFNOSUPPORT);
1420	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1421		return (ENOENT);
1422
1423	/* Reset the protocol slot to IPPROTO_RAW. */
1424	ip_protox[ipproto] = pr - inetsw;
1425	return (0);
1426}
1427
1428/*
1429 * Given address of next destination (final or next hop), return (referenced)
1430 * internet address info of interface to be used to get there.
1431 */
1432struct in_ifaddr *
1433ip_rtaddr(struct in_addr dst, u_int fibnum)
1434{
1435	struct route sro;
1436	struct sockaddr_in *sin;
1437	struct in_ifaddr *ia;
1438
1439	bzero(&sro, sizeof(sro));
1440	sin = (struct sockaddr_in *)&sro.ro_dst;
1441	sin->sin_family = AF_INET;
1442	sin->sin_len = sizeof(*sin);
1443	sin->sin_addr = dst;
1444	in_rtalloc_ign(&sro, 0, fibnum);
1445
1446	if (sro.ro_rt == NULL)
1447		return (NULL);
1448
1449	ia = ifatoia(sro.ro_rt->rt_ifa);
1450	ifa_ref(&ia->ia_ifa);
1451	RTFREE(sro.ro_rt);
1452	return (ia);
1453}
1454
1455u_char inetctlerrmap[PRC_NCMDS] = {
1456	0,		0,		0,		0,
1457	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1458	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1459	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1460	0,		0,		EHOSTUNREACH,	0,
1461	ENOPROTOOPT,	ECONNREFUSED
1462};
1463
1464/*
1465 * Forward a packet.  If some error occurs return the sender
1466 * an icmp packet.  Note we can't always generate a meaningful
1467 * icmp message because icmp doesn't have a large enough repertoire
1468 * of codes and types.
1469 *
1470 * If not forwarding, just drop the packet.  This could be confusing
1471 * if ipforwarding was zero but some routing protocol was advancing
1472 * us as a gateway to somewhere.  However, we must let the routing
1473 * protocol deal with that.
1474 *
1475 * The srcrt parameter indicates whether the packet is being forwarded
1476 * via a source route.
1477 */
1478void
1479ip_forward(struct mbuf *m, int srcrt)
1480{
1481	struct ip *ip = mtod(m, struct ip *);
1482	struct in_ifaddr *ia;
1483	struct mbuf *mcopy;
1484	struct in_addr dest;
1485	struct route ro;
1486	int error, type = 0, code = 0, mtu = 0;
1487
1488	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1489		IPSTAT_INC(ips_cantforward);
1490		m_freem(m);
1491		return;
1492	}
1493#ifdef IPSEC
1494	if (ip_ipsec_fwd(m) != 0) {
1495		IPSTAT_INC(ips_cantforward);
1496		m_freem(m);
1497		return;
1498	}
1499#endif /* IPSEC */
1500#ifdef IPSTEALTH
1501	if (!V_ipstealth) {
1502#endif
1503		if (ip->ip_ttl <= IPTTLDEC) {
1504			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1505			    0, 0);
1506			return;
1507		}
1508#ifdef IPSTEALTH
1509	}
1510#endif
1511
1512	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1513#ifndef IPSEC
1514	/*
1515	 * 'ia' may be NULL if there is no route for this destination.
1516	 * In case of IPsec, Don't discard it just yet, but pass it to
1517	 * ip_output in case of outgoing IPsec policy.
1518	 */
1519	if (!srcrt && ia == NULL) {
1520		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1521		return;
1522	}
1523#endif
1524
1525	/*
1526	 * Save the IP header and at most 8 bytes of the payload,
1527	 * in case we need to generate an ICMP message to the src.
1528	 *
1529	 * XXX this can be optimized a lot by saving the data in a local
1530	 * buffer on the stack (72 bytes at most), and only allocating the
1531	 * mbuf if really necessary. The vast majority of the packets
1532	 * are forwarded without having to send an ICMP back (either
1533	 * because unnecessary, or because rate limited), so we are
1534	 * really we are wasting a lot of work here.
1535	 *
1536	 * We don't use m_copy() because it might return a reference
1537	 * to a shared cluster. Both this function and ip_output()
1538	 * assume exclusive access to the IP header in `m', so any
1539	 * data in a cluster may change before we reach icmp_error().
1540	 */
1541	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1542	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1543		/*
1544		 * It's probably ok if the pkthdr dup fails (because
1545		 * the deep copy of the tag chain failed), but for now
1546		 * be conservative and just discard the copy since
1547		 * code below may some day want the tags.
1548		 */
1549		m_free(mcopy);
1550		mcopy = NULL;
1551	}
1552	if (mcopy != NULL) {
1553		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1554		mcopy->m_pkthdr.len = mcopy->m_len;
1555		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1556	}
1557
1558#ifdef IPSTEALTH
1559	if (!V_ipstealth) {
1560#endif
1561		ip->ip_ttl -= IPTTLDEC;
1562#ifdef IPSTEALTH
1563	}
1564#endif
1565
1566	/*
1567	 * If forwarding packet using same interface that it came in on,
1568	 * perhaps should send a redirect to sender to shortcut a hop.
1569	 * Only send redirect if source is sending directly to us,
1570	 * and if packet was not source routed (or has any options).
1571	 * Also, don't send redirect if forwarding using a default route
1572	 * or a route modified by a redirect.
1573	 */
1574	dest.s_addr = 0;
1575	if (!srcrt && V_ipsendredirects &&
1576	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1577		struct sockaddr_in *sin;
1578		struct rtentry *rt;
1579
1580		bzero(&ro, sizeof(ro));
1581		sin = (struct sockaddr_in *)&ro.ro_dst;
1582		sin->sin_family = AF_INET;
1583		sin->sin_len = sizeof(*sin);
1584		sin->sin_addr = ip->ip_dst;
1585		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1586
1587		rt = ro.ro_rt;
1588
1589		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1590		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1591#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1592			u_long src = ntohl(ip->ip_src.s_addr);
1593
1594			if (RTA(rt) &&
1595			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1596				if (rt->rt_flags & RTF_GATEWAY)
1597					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1598				else
1599					dest.s_addr = ip->ip_dst.s_addr;
1600				/* Router requirements says to only send host redirects */
1601				type = ICMP_REDIRECT;
1602				code = ICMP_REDIRECT_HOST;
1603			}
1604		}
1605		if (rt)
1606			RTFREE(rt);
1607	}
1608
1609	/*
1610	 * Try to cache the route MTU from ip_output so we can consider it for
1611	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1612	 */
1613	bzero(&ro, sizeof(ro));
1614
1615	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1616
1617	if (error == EMSGSIZE && ro.ro_rt)
1618		mtu = ro.ro_rt->rt_mtu;
1619	RO_RTFREE(&ro);
1620
1621	if (error)
1622		IPSTAT_INC(ips_cantforward);
1623	else {
1624		IPSTAT_INC(ips_forward);
1625		if (type)
1626			IPSTAT_INC(ips_redirectsent);
1627		else {
1628			if (mcopy)
1629				m_freem(mcopy);
1630			if (ia != NULL)
1631				ifa_free(&ia->ia_ifa);
1632			return;
1633		}
1634	}
1635	if (mcopy == NULL) {
1636		if (ia != NULL)
1637			ifa_free(&ia->ia_ifa);
1638		return;
1639	}
1640
1641	switch (error) {
1642
1643	case 0:				/* forwarded, but need redirect */
1644		/* type, code set above */
1645		break;
1646
1647	case ENETUNREACH:
1648	case EHOSTUNREACH:
1649	case ENETDOWN:
1650	case EHOSTDOWN:
1651	default:
1652		type = ICMP_UNREACH;
1653		code = ICMP_UNREACH_HOST;
1654		break;
1655
1656	case EMSGSIZE:
1657		type = ICMP_UNREACH;
1658		code = ICMP_UNREACH_NEEDFRAG;
1659
1660#ifdef IPSEC
1661		/*
1662		 * If IPsec is configured for this path,
1663		 * override any possibly mtu value set by ip_output.
1664		 */
1665		mtu = ip_ipsec_mtu(mcopy, mtu);
1666#endif /* IPSEC */
1667		/*
1668		 * If the MTU was set before make sure we are below the
1669		 * interface MTU.
1670		 * If the MTU wasn't set before use the interface mtu or
1671		 * fall back to the next smaller mtu step compared to the
1672		 * current packet size.
1673		 */
1674		if (mtu != 0) {
1675			if (ia != NULL)
1676				mtu = min(mtu, ia->ia_ifp->if_mtu);
1677		} else {
1678			if (ia != NULL)
1679				mtu = ia->ia_ifp->if_mtu;
1680			else
1681				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1682		}
1683		IPSTAT_INC(ips_cantfrag);
1684		break;
1685
1686	case ENOBUFS:
1687	case EACCES:			/* ipfw denied packet */
1688		m_freem(mcopy);
1689		if (ia != NULL)
1690			ifa_free(&ia->ia_ifa);
1691		return;
1692	}
1693	if (ia != NULL)
1694		ifa_free(&ia->ia_ifa);
1695	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1696}
1697
1698void
1699ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1700    struct mbuf *m)
1701{
1702
1703	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1704		struct bintime bt;
1705
1706		bintime(&bt);
1707		if (inp->inp_socket->so_options & SO_BINTIME) {
1708			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1709			    SCM_BINTIME, SOL_SOCKET);
1710			if (*mp)
1711				mp = &(*mp)->m_next;
1712		}
1713		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1714			struct timeval tv;
1715
1716			bintime2timeval(&bt, &tv);
1717			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1718			    SCM_TIMESTAMP, SOL_SOCKET);
1719			if (*mp)
1720				mp = &(*mp)->m_next;
1721		}
1722	}
1723	if (inp->inp_flags & INP_RECVDSTADDR) {
1724		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1725		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1726		if (*mp)
1727			mp = &(*mp)->m_next;
1728	}
1729	if (inp->inp_flags & INP_RECVTTL) {
1730		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1731		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1732		if (*mp)
1733			mp = &(*mp)->m_next;
1734	}
1735#ifdef notyet
1736	/* XXX
1737	 * Moving these out of udp_input() made them even more broken
1738	 * than they already were.
1739	 */
1740	/* options were tossed already */
1741	if (inp->inp_flags & INP_RECVOPTS) {
1742		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1743		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1744		if (*mp)
1745			mp = &(*mp)->m_next;
1746	}
1747	/* ip_srcroute doesn't do what we want here, need to fix */
1748	if (inp->inp_flags & INP_RECVRETOPTS) {
1749		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1750		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1751		if (*mp)
1752			mp = &(*mp)->m_next;
1753	}
1754#endif
1755	if (inp->inp_flags & INP_RECVIF) {
1756		struct ifnet *ifp;
1757		struct sdlbuf {
1758			struct sockaddr_dl sdl;
1759			u_char	pad[32];
1760		} sdlbuf;
1761		struct sockaddr_dl *sdp;
1762		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1763
1764		if ((ifp = m->m_pkthdr.rcvif) &&
1765		    ifp->if_index && ifp->if_index <= V_if_index) {
1766			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1767			/*
1768			 * Change our mind and don't try copy.
1769			 */
1770			if (sdp->sdl_family != AF_LINK ||
1771			    sdp->sdl_len > sizeof(sdlbuf)) {
1772				goto makedummy;
1773			}
1774			bcopy(sdp, sdl2, sdp->sdl_len);
1775		} else {
1776makedummy:
1777			sdl2->sdl_len =
1778			    offsetof(struct sockaddr_dl, sdl_data[0]);
1779			sdl2->sdl_family = AF_LINK;
1780			sdl2->sdl_index = 0;
1781			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1782		}
1783		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1784		    IP_RECVIF, IPPROTO_IP);
1785		if (*mp)
1786			mp = &(*mp)->m_next;
1787	}
1788	if (inp->inp_flags & INP_RECVTOS) {
1789		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1790		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1791		if (*mp)
1792			mp = &(*mp)->m_next;
1793	}
1794
1795	if (inp->inp_flags2 & INP_RECVFLOWID) {
1796		uint32_t flowid, flow_type;
1797
1798		flowid = m->m_pkthdr.flowid;
1799		flow_type = M_HASHTYPE_GET(m);
1800
1801		/*
1802		 * XXX should handle the failure of one or the
1803		 * other - don't populate both?
1804		 */
1805		*mp = sbcreatecontrol((caddr_t) &flowid,
1806		    sizeof(uint32_t), IP_FLOWID, IPPROTO_IP);
1807		if (*mp)
1808			mp = &(*mp)->m_next;
1809		*mp = sbcreatecontrol((caddr_t) &flow_type,
1810		    sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP);
1811		if (*mp)
1812			mp = &(*mp)->m_next;
1813	}
1814
1815#ifdef	RSS
1816	if (inp->inp_flags2 & INP_RECVRSSBUCKETID) {
1817		uint32_t flowid, flow_type;
1818		uint32_t rss_bucketid;
1819
1820		flowid = m->m_pkthdr.flowid;
1821		flow_type = M_HASHTYPE_GET(m);
1822
1823		if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) {
1824			*mp = sbcreatecontrol((caddr_t) &rss_bucketid,
1825			   sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP);
1826			if (*mp)
1827				mp = &(*mp)->m_next;
1828		}
1829	}
1830#endif
1831}
1832
1833/*
1834 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1835 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1836 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1837 * compiled.
1838 */
1839static VNET_DEFINE(int, ip_rsvp_on);
1840VNET_DEFINE(struct socket *, ip_rsvpd);
1841
1842#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1843
1844int
1845ip_rsvp_init(struct socket *so)
1846{
1847
1848	if (so->so_type != SOCK_RAW ||
1849	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1850		return EOPNOTSUPP;
1851
1852	if (V_ip_rsvpd != NULL)
1853		return EADDRINUSE;
1854
1855	V_ip_rsvpd = so;
1856	/*
1857	 * This may seem silly, but we need to be sure we don't over-increment
1858	 * the RSVP counter, in case something slips up.
1859	 */
1860	if (!V_ip_rsvp_on) {
1861		V_ip_rsvp_on = 1;
1862		V_rsvp_on++;
1863	}
1864
1865	return 0;
1866}
1867
1868int
1869ip_rsvp_done(void)
1870{
1871
1872	V_ip_rsvpd = NULL;
1873	/*
1874	 * This may seem silly, but we need to be sure we don't over-decrement
1875	 * the RSVP counter, in case something slips up.
1876	 */
1877	if (V_ip_rsvp_on) {
1878		V_ip_rsvp_on = 0;
1879		V_rsvp_on--;
1880	}
1881	return 0;
1882}
1883
1884int
1885rsvp_input(struct mbuf **mp, int *offp, int proto)
1886{
1887	struct mbuf *m;
1888
1889	m = *mp;
1890	*mp = NULL;
1891
1892	if (rsvp_input_p) { /* call the real one if loaded */
1893		*mp = m;
1894		rsvp_input_p(mp, offp, proto);
1895		return (IPPROTO_DONE);
1896	}
1897
1898	/* Can still get packets with rsvp_on = 0 if there is a local member
1899	 * of the group to which the RSVP packet is addressed.  But in this
1900	 * case we want to throw the packet away.
1901	 */
1902
1903	if (!V_rsvp_on) {
1904		m_freem(m);
1905		return (IPPROTO_DONE);
1906	}
1907
1908	if (V_ip_rsvpd != NULL) {
1909		*mp = m;
1910		rip_input(mp, offp, proto);
1911		return (IPPROTO_DONE);
1912	}
1913	/* Drop the packet */
1914	m_freem(m);
1915	return (IPPROTO_DONE);
1916}
1917