ip_reass.c revision 272199
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 272199 2014-09-27 05:14:02Z adrian $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40#include "opt_rss.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/domain.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/time.h>
50#include <sys/kernel.h>
51#include <sys/lock.h>
52#include <sys/rwlock.h>
53#include <sys/sdt.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56
57#include <net/pfil.h>
58#include <net/if.h>
59#include <net/if_types.h>
60#include <net/if_var.h>
61#include <net/if_dl.h>
62#include <net/route.h>
63#include <net/netisr.h>
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_kdtrace.h>
68#include <netinet/in_systm.h>
69#include <netinet/in_var.h>
70#include <netinet/ip.h>
71#include <netinet/in_pcb.h>
72#include <netinet/ip_var.h>
73#include <netinet/ip_fw.h>
74#include <netinet/ip_icmp.h>
75#include <netinet/ip_options.h>
76#include <machine/in_cksum.h>
77#include <netinet/ip_carp.h>
78#ifdef IPSEC
79#include <netinet/ip_ipsec.h>
80#endif /* IPSEC */
81#include <netinet/in_rss.h>
82
83#include <sys/socketvar.h>
84
85#include <security/mac/mac_framework.h>
86
87#ifdef CTASSERT
88CTASSERT(sizeof(struct ip) == 20);
89#endif
90
91struct	rwlock in_ifaddr_lock;
92RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
93
94VNET_DEFINE(int, rsvp_on);
95
96VNET_DEFINE(int, ipforwarding);
97SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
98    &VNET_NAME(ipforwarding), 0,
99    "Enable IP forwarding between interfaces");
100
101static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
102#define	V_ipsendredirects	VNET(ipsendredirects)
103SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
104    &VNET_NAME(ipsendredirects), 0,
105    "Enable sending IP redirects");
106
107static VNET_DEFINE(int, ip_keepfaith);
108#define	V_ip_keepfaith		VNET(ip_keepfaith)
109SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
110    &VNET_NAME(ip_keepfaith), 0,
111    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
112
113static VNET_DEFINE(int, ip_sendsourcequench);
114#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
115SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
116    &VNET_NAME(ip_sendsourcequench), 0,
117    "Enable the transmission of source quench packets");
118
119VNET_DEFINE(int, ip_do_randomid);
120SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
121    &VNET_NAME(ip_do_randomid), 0,
122    "Assign random ip_id values");
123
124/*
125 * XXX - Setting ip_checkinterface mostly implements the receive side of
126 * the Strong ES model described in RFC 1122, but since the routing table
127 * and transmit implementation do not implement the Strong ES model,
128 * setting this to 1 results in an odd hybrid.
129 *
130 * XXX - ip_checkinterface currently must be disabled if you use ipnat
131 * to translate the destination address to another local interface.
132 *
133 * XXX - ip_checkinterface must be disabled if you add IP aliases
134 * to the loopback interface instead of the interface where the
135 * packets for those addresses are received.
136 */
137static VNET_DEFINE(int, ip_checkinterface);
138#define	V_ip_checkinterface	VNET(ip_checkinterface)
139SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
140    &VNET_NAME(ip_checkinterface), 0,
141    "Verify packet arrives on correct interface");
142
143VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
144
145static struct netisr_handler ip_nh = {
146	.nh_name = "ip",
147	.nh_handler = ip_input,
148	.nh_proto = NETISR_IP,
149#ifdef	RSS
150	.nh_m2cpuid = rss_soft_m2cpuid,
151	.nh_policy = NETISR_POLICY_CPU,
152	.nh_dispatch = NETISR_DISPATCH_HYBRID,
153#else
154	.nh_policy = NETISR_POLICY_FLOW,
155#endif
156};
157
158#ifdef	RSS
159/*
160 * Directly dispatched frames are currently assumed
161 * to have a flowid already calculated.
162 *
163 * It should likely have something that assert it
164 * actually has valid flow details.
165 */
166static struct netisr_handler ip_direct_nh = {
167	.nh_name = "ip_direct",
168	.nh_handler = ip_direct_input,
169	.nh_proto = NETISR_IP_DIRECT,
170	.nh_m2cpuid = rss_m2cpuid,
171	.nh_policy = NETISR_POLICY_CPU,
172	.nh_dispatch = NETISR_DISPATCH_HYBRID,
173};
174#endif
175
176extern	struct domain inetdomain;
177extern	struct protosw inetsw[];
178u_char	ip_protox[IPPROTO_MAX];
179VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
180VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
181VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
182
183static VNET_DEFINE(uma_zone_t, ipq_zone);
184static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
185static struct mtx ipqlock;
186
187#define	V_ipq_zone		VNET(ipq_zone)
188#define	V_ipq			VNET(ipq)
189
190#define	IPQ_LOCK()	mtx_lock(&ipqlock)
191#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
192#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
193#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
194
195static void	maxnipq_update(void);
196static void	ipq_zone_change(void *);
197static void	ip_drain_locked(void);
198
199static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
200static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
201#define	V_maxnipq		VNET(maxnipq)
202#define	V_nipq			VNET(nipq)
203SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
204    &VNET_NAME(nipq), 0,
205    "Current number of IPv4 fragment reassembly queue entries");
206
207static VNET_DEFINE(int, maxfragsperpacket);
208#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
209SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
210    &VNET_NAME(maxfragsperpacket), 0,
211    "Maximum number of IPv4 fragments allowed per packet");
212
213#ifdef IPCTL_DEFMTU
214SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
215    &ip_mtu, 0, "Default MTU");
216#endif
217
218#ifdef IPSTEALTH
219VNET_DEFINE(int, ipstealth);
220SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
221    &VNET_NAME(ipstealth), 0,
222    "IP stealth mode, no TTL decrementation on forwarding");
223#endif
224
225static void	ip_freef(struct ipqhead *, struct ipq *);
226
227/*
228 * IP statistics are stored in the "array" of counter(9)s.
229 */
230VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
231VNET_PCPUSTAT_SYSINIT(ipstat);
232SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
233    "IP statistics (struct ipstat, netinet/ip_var.h)");
234
235#ifdef VIMAGE
236VNET_PCPUSTAT_SYSUNINIT(ipstat);
237#endif /* VIMAGE */
238
239/*
240 * Kernel module interface for updating ipstat.  The argument is an index
241 * into ipstat treated as an array.
242 */
243void
244kmod_ipstat_inc(int statnum)
245{
246
247	counter_u64_add(VNET(ipstat)[statnum], 1);
248}
249
250void
251kmod_ipstat_dec(int statnum)
252{
253
254	counter_u64_add(VNET(ipstat)[statnum], -1);
255}
256
257static int
258sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
259{
260	int error, qlimit;
261
262	netisr_getqlimit(&ip_nh, &qlimit);
263	error = sysctl_handle_int(oidp, &qlimit, 0, req);
264	if (error || !req->newptr)
265		return (error);
266	if (qlimit < 1)
267		return (EINVAL);
268	return (netisr_setqlimit(&ip_nh, qlimit));
269}
270SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
271    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
272    "Maximum size of the IP input queue");
273
274static int
275sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
276{
277	u_int64_t qdrops_long;
278	int error, qdrops;
279
280	netisr_getqdrops(&ip_nh, &qdrops_long);
281	qdrops = qdrops_long;
282	error = sysctl_handle_int(oidp, &qdrops, 0, req);
283	if (error || !req->newptr)
284		return (error);
285	if (qdrops != 0)
286		return (EINVAL);
287	netisr_clearqdrops(&ip_nh);
288	return (0);
289}
290
291SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
292    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
293    "Number of packets dropped from the IP input queue");
294
295#ifdef	RSS
296static int
297sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS)
298{
299	int error, qlimit;
300
301	netisr_getqlimit(&ip_direct_nh, &qlimit);
302	error = sysctl_handle_int(oidp, &qlimit, 0, req);
303	if (error || !req->newptr)
304		return (error);
305	if (qlimit < 1)
306		return (EINVAL);
307	return (netisr_setqlimit(&ip_direct_nh, qlimit));
308}
309SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_direct_queue_maxlen,
310    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_direct_queue_maxlen, "I",
311    "Maximum size of the IP direct input queue");
312
313static int
314sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS)
315{
316	u_int64_t qdrops_long;
317	int error, qdrops;
318
319	netisr_getqdrops(&ip_direct_nh, &qdrops_long);
320	qdrops = qdrops_long;
321	error = sysctl_handle_int(oidp, &qdrops, 0, req);
322	if (error || !req->newptr)
323		return (error);
324	if (qdrops != 0)
325		return (EINVAL);
326	netisr_clearqdrops(&ip_direct_nh);
327	return (0);
328}
329
330SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_direct_queue_drops,
331    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_direct_queue_drops, "I",
332    "Number of packets dropped from the IP direct input queue");
333#endif	/* RSS */
334
335/*
336 * IP initialization: fill in IP protocol switch table.
337 * All protocols not implemented in kernel go to raw IP protocol handler.
338 */
339void
340ip_init(void)
341{
342	struct protosw *pr;
343	int i;
344
345	V_ip_id = time_second & 0xffff;
346
347	TAILQ_INIT(&V_in_ifaddrhead);
348	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
349
350	/* Initialize IP reassembly queue. */
351	for (i = 0; i < IPREASS_NHASH; i++)
352		TAILQ_INIT(&V_ipq[i]);
353	V_maxnipq = nmbclusters / 32;
354	V_maxfragsperpacket = 16;
355	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
356	    NULL, UMA_ALIGN_PTR, 0);
357	maxnipq_update();
358
359	/* Initialize packet filter hooks. */
360	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
361	V_inet_pfil_hook.ph_af = AF_INET;
362	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
363		printf("%s: WARNING: unable to register pfil hook, "
364			"error %d\n", __func__, i);
365
366	/* Skip initialization of globals for non-default instances. */
367	if (!IS_DEFAULT_VNET(curvnet))
368		return;
369
370	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
371	if (pr == NULL)
372		panic("ip_init: PF_INET not found");
373
374	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
375	for (i = 0; i < IPPROTO_MAX; i++)
376		ip_protox[i] = pr - inetsw;
377	/*
378	 * Cycle through IP protocols and put them into the appropriate place
379	 * in ip_protox[].
380	 */
381	for (pr = inetdomain.dom_protosw;
382	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
383		if (pr->pr_domain->dom_family == PF_INET &&
384		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
385			/* Be careful to only index valid IP protocols. */
386			if (pr->pr_protocol < IPPROTO_MAX)
387				ip_protox[pr->pr_protocol] = pr - inetsw;
388		}
389
390	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
391		NULL, EVENTHANDLER_PRI_ANY);
392
393	/* Initialize various other remaining things. */
394	IPQ_LOCK_INIT();
395	netisr_register(&ip_nh);
396#ifdef	RSS
397	netisr_register(&ip_direct_nh);
398#endif
399}
400
401#ifdef VIMAGE
402void
403ip_destroy(void)
404{
405	int i;
406
407	if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
408		printf("%s: WARNING: unable to unregister pfil hook, "
409		    "error %d\n", __func__, i);
410
411	/* Cleanup in_ifaddr hash table; should be empty. */
412	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
413
414	IPQ_LOCK();
415	ip_drain_locked();
416	IPQ_UNLOCK();
417
418	uma_zdestroy(V_ipq_zone);
419}
420#endif
421
422#ifdef	RSS
423/*
424 * IP direct input routine.
425 *
426 * This is called when reinjecting completed fragments where
427 * all of the previous checking and book-keeping has been done.
428 */
429void
430ip_direct_input(struct mbuf *m)
431{
432	struct ip *ip;
433	int hlen;
434
435	ip = mtod(m, struct ip *);
436	hlen = ip->ip_hl << 2;
437
438	IPSTAT_INC(ips_delivered);
439	(*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
440	return;
441}
442#endif
443
444/*
445 * Ip input routine.  Checksum and byte swap header.  If fragmented
446 * try to reassemble.  Process options.  Pass to next level.
447 */
448void
449ip_input(struct mbuf *m)
450{
451	struct ip *ip = NULL;
452	struct in_ifaddr *ia = NULL;
453	struct ifaddr *ifa;
454	struct ifnet *ifp;
455	int    checkif, hlen = 0;
456	uint16_t sum, ip_len;
457	int dchg = 0;				/* dest changed after fw */
458	struct in_addr odst;			/* original dst address */
459
460	M_ASSERTPKTHDR(m);
461
462	if (m->m_flags & M_FASTFWD_OURS) {
463		m->m_flags &= ~M_FASTFWD_OURS;
464		/* Set up some basics that will be used later. */
465		ip = mtod(m, struct ip *);
466		hlen = ip->ip_hl << 2;
467		ip_len = ntohs(ip->ip_len);
468		goto ours;
469	}
470
471	IPSTAT_INC(ips_total);
472
473	if (m->m_pkthdr.len < sizeof(struct ip))
474		goto tooshort;
475
476	if (m->m_len < sizeof (struct ip) &&
477	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
478		IPSTAT_INC(ips_toosmall);
479		return;
480	}
481	ip = mtod(m, struct ip *);
482
483	if (ip->ip_v != IPVERSION) {
484		IPSTAT_INC(ips_badvers);
485		goto bad;
486	}
487
488	hlen = ip->ip_hl << 2;
489	if (hlen < sizeof(struct ip)) {	/* minimum header length */
490		IPSTAT_INC(ips_badhlen);
491		goto bad;
492	}
493	if (hlen > m->m_len) {
494		if ((m = m_pullup(m, hlen)) == NULL) {
495			IPSTAT_INC(ips_badhlen);
496			return;
497		}
498		ip = mtod(m, struct ip *);
499	}
500
501	IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
502
503	/* 127/8 must not appear on wire - RFC1122 */
504	ifp = m->m_pkthdr.rcvif;
505	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
506	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
507		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
508			IPSTAT_INC(ips_badaddr);
509			goto bad;
510		}
511	}
512
513	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
514		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
515	} else {
516		if (hlen == sizeof(struct ip)) {
517			sum = in_cksum_hdr(ip);
518		} else {
519			sum = in_cksum(m, hlen);
520		}
521	}
522	if (sum) {
523		IPSTAT_INC(ips_badsum);
524		goto bad;
525	}
526
527#ifdef ALTQ
528	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
529		/* packet is dropped by traffic conditioner */
530		return;
531#endif
532
533	ip_len = ntohs(ip->ip_len);
534	if (ip_len < hlen) {
535		IPSTAT_INC(ips_badlen);
536		goto bad;
537	}
538
539	/*
540	 * Check that the amount of data in the buffers
541	 * is as at least much as the IP header would have us expect.
542	 * Trim mbufs if longer than we expect.
543	 * Drop packet if shorter than we expect.
544	 */
545	if (m->m_pkthdr.len < ip_len) {
546tooshort:
547		IPSTAT_INC(ips_tooshort);
548		goto bad;
549	}
550	if (m->m_pkthdr.len > ip_len) {
551		if (m->m_len == m->m_pkthdr.len) {
552			m->m_len = ip_len;
553			m->m_pkthdr.len = ip_len;
554		} else
555			m_adj(m, ip_len - m->m_pkthdr.len);
556	}
557
558#ifdef IPSEC
559	/*
560	 * Bypass packet filtering for packets previously handled by IPsec.
561	 */
562	if (ip_ipsec_filtertunnel(m))
563		goto passin;
564#endif /* IPSEC */
565
566	/*
567	 * Run through list of hooks for input packets.
568	 *
569	 * NB: Beware of the destination address changing (e.g.
570	 *     by NAT rewriting).  When this happens, tell
571	 *     ip_forward to do the right thing.
572	 */
573
574	/* Jump over all PFIL processing if hooks are not active. */
575	if (!PFIL_HOOKED(&V_inet_pfil_hook))
576		goto passin;
577
578	odst = ip->ip_dst;
579	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
580		return;
581	if (m == NULL)			/* consumed by filter */
582		return;
583
584	ip = mtod(m, struct ip *);
585	dchg = (odst.s_addr != ip->ip_dst.s_addr);
586	ifp = m->m_pkthdr.rcvif;
587
588	if (m->m_flags & M_FASTFWD_OURS) {
589		m->m_flags &= ~M_FASTFWD_OURS;
590		goto ours;
591	}
592	if (m->m_flags & M_IP_NEXTHOP) {
593		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
594		if (dchg != 0) {
595			/*
596			 * Directly ship the packet on.  This allows
597			 * forwarding packets originally destined to us
598			 * to some other directly connected host.
599			 */
600			ip_forward(m, 1);
601			return;
602		}
603	}
604passin:
605
606	/*
607	 * Process options and, if not destined for us,
608	 * ship it on.  ip_dooptions returns 1 when an
609	 * error was detected (causing an icmp message
610	 * to be sent and the original packet to be freed).
611	 */
612	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
613		return;
614
615        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
616         * matter if it is destined to another node, or whether it is
617         * a multicast one, RSVP wants it! and prevents it from being forwarded
618         * anywhere else. Also checks if the rsvp daemon is running before
619	 * grabbing the packet.
620         */
621	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
622		goto ours;
623
624	/*
625	 * Check our list of addresses, to see if the packet is for us.
626	 * If we don't have any addresses, assume any unicast packet
627	 * we receive might be for us (and let the upper layers deal
628	 * with it).
629	 */
630	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
631	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
632		goto ours;
633
634	/*
635	 * Enable a consistency check between the destination address
636	 * and the arrival interface for a unicast packet (the RFC 1122
637	 * strong ES model) if IP forwarding is disabled and the packet
638	 * is not locally generated and the packet is not subject to
639	 * 'ipfw fwd'.
640	 *
641	 * XXX - Checking also should be disabled if the destination
642	 * address is ipnat'ed to a different interface.
643	 *
644	 * XXX - Checking is incompatible with IP aliases added
645	 * to the loopback interface instead of the interface where
646	 * the packets are received.
647	 *
648	 * XXX - This is the case for carp vhost IPs as well so we
649	 * insert a workaround. If the packet got here, we already
650	 * checked with carp_iamatch() and carp_forus().
651	 */
652	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
653	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
654	    ifp->if_carp == NULL && (dchg == 0);
655
656	/*
657	 * Check for exact addresses in the hash bucket.
658	 */
659	/* IN_IFADDR_RLOCK(); */
660	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
661		/*
662		 * If the address matches, verify that the packet
663		 * arrived via the correct interface if checking is
664		 * enabled.
665		 */
666		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
667		    (!checkif || ia->ia_ifp == ifp)) {
668			counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
669			counter_u64_add(ia->ia_ifa.ifa_ibytes,
670			    m->m_pkthdr.len);
671			/* IN_IFADDR_RUNLOCK(); */
672			goto ours;
673		}
674	}
675	/* IN_IFADDR_RUNLOCK(); */
676
677	/*
678	 * Check for broadcast addresses.
679	 *
680	 * Only accept broadcast packets that arrive via the matching
681	 * interface.  Reception of forwarded directed broadcasts would
682	 * be handled via ip_forward() and ether_output() with the loopback
683	 * into the stack for SIMPLEX interfaces handled by ether_output().
684	 */
685	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
686		IF_ADDR_RLOCK(ifp);
687	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
688			if (ifa->ifa_addr->sa_family != AF_INET)
689				continue;
690			ia = ifatoia(ifa);
691			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
692			    ip->ip_dst.s_addr) {
693				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
694				counter_u64_add(ia->ia_ifa.ifa_ibytes,
695				    m->m_pkthdr.len);
696				IF_ADDR_RUNLOCK(ifp);
697				goto ours;
698			}
699#ifdef BOOTP_COMPAT
700			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
701				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
702				counter_u64_add(ia->ia_ifa.ifa_ibytes,
703				    m->m_pkthdr.len);
704				IF_ADDR_RUNLOCK(ifp);
705				goto ours;
706			}
707#endif
708		}
709		IF_ADDR_RUNLOCK(ifp);
710		ia = NULL;
711	}
712	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
713	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
714		IPSTAT_INC(ips_cantforward);
715		m_freem(m);
716		return;
717	}
718	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
719		if (V_ip_mrouter) {
720			/*
721			 * If we are acting as a multicast router, all
722			 * incoming multicast packets are passed to the
723			 * kernel-level multicast forwarding function.
724			 * The packet is returned (relatively) intact; if
725			 * ip_mforward() returns a non-zero value, the packet
726			 * must be discarded, else it may be accepted below.
727			 */
728			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
729				IPSTAT_INC(ips_cantforward);
730				m_freem(m);
731				return;
732			}
733
734			/*
735			 * The process-level routing daemon needs to receive
736			 * all multicast IGMP packets, whether or not this
737			 * host belongs to their destination groups.
738			 */
739			if (ip->ip_p == IPPROTO_IGMP)
740				goto ours;
741			IPSTAT_INC(ips_forward);
742		}
743		/*
744		 * Assume the packet is for us, to avoid prematurely taking
745		 * a lock on the in_multi hash. Protocols must perform
746		 * their own filtering and update statistics accordingly.
747		 */
748		goto ours;
749	}
750	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
751		goto ours;
752	if (ip->ip_dst.s_addr == INADDR_ANY)
753		goto ours;
754
755	/*
756	 * FAITH(Firewall Aided Internet Translator)
757	 */
758	if (ifp && ifp->if_type == IFT_FAITH) {
759		if (V_ip_keepfaith) {
760			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
761				goto ours;
762		}
763		m_freem(m);
764		return;
765	}
766
767	/*
768	 * Not for us; forward if possible and desirable.
769	 */
770	if (V_ipforwarding == 0) {
771		IPSTAT_INC(ips_cantforward);
772		m_freem(m);
773	} else {
774#ifdef IPSEC
775		if (ip_ipsec_fwd(m))
776			goto bad;
777#endif /* IPSEC */
778		ip_forward(m, dchg);
779	}
780	return;
781
782ours:
783#ifdef IPSTEALTH
784	/*
785	 * IPSTEALTH: Process non-routing options only
786	 * if the packet is destined for us.
787	 */
788	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1))
789		return;
790#endif /* IPSTEALTH */
791
792	/*
793	 * Attempt reassembly; if it succeeds, proceed.
794	 * ip_reass() will return a different mbuf.
795	 */
796	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
797		/* XXXGL: shouldn't we save & set m_flags? */
798		m = ip_reass(m);
799		if (m == NULL)
800			return;
801		ip = mtod(m, struct ip *);
802		/* Get the header length of the reassembled packet */
803		hlen = ip->ip_hl << 2;
804	}
805
806#ifdef IPSEC
807	/*
808	 * enforce IPsec policy checking if we are seeing last header.
809	 * note that we do not visit this with protocols with pcb layer
810	 * code - like udp/tcp/raw ip.
811	 */
812	if (ip_ipsec_input(m))
813		goto bad;
814#endif /* IPSEC */
815
816	/*
817	 * Switch out to protocol's input routine.
818	 */
819	IPSTAT_INC(ips_delivered);
820
821	(*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
822	return;
823bad:
824	m_freem(m);
825}
826
827/*
828 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
829 * max has slightly different semantics than the sysctl, for historical
830 * reasons.
831 */
832static void
833maxnipq_update(void)
834{
835
836	/*
837	 * -1 for unlimited allocation.
838	 */
839	if (V_maxnipq < 0)
840		uma_zone_set_max(V_ipq_zone, 0);
841	/*
842	 * Positive number for specific bound.
843	 */
844	if (V_maxnipq > 0)
845		uma_zone_set_max(V_ipq_zone, V_maxnipq);
846	/*
847	 * Zero specifies no further fragment queue allocation -- set the
848	 * bound very low, but rely on implementation elsewhere to actually
849	 * prevent allocation and reclaim current queues.
850	 */
851	if (V_maxnipq == 0)
852		uma_zone_set_max(V_ipq_zone, 1);
853}
854
855static void
856ipq_zone_change(void *tag)
857{
858
859	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
860		V_maxnipq = nmbclusters / 32;
861		maxnipq_update();
862	}
863}
864
865static int
866sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
867{
868	int error, i;
869
870	i = V_maxnipq;
871	error = sysctl_handle_int(oidp, &i, 0, req);
872	if (error || !req->newptr)
873		return (error);
874
875	/*
876	 * XXXRW: Might be a good idea to sanity check the argument and place
877	 * an extreme upper bound.
878	 */
879	if (i < -1)
880		return (EINVAL);
881	V_maxnipq = i;
882	maxnipq_update();
883	return (0);
884}
885
886SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
887    NULL, 0, sysctl_maxnipq, "I",
888    "Maximum number of IPv4 fragment reassembly queue entries");
889
890#define	M_IP_FRAG	M_PROTO9
891
892/*
893 * Take incoming datagram fragment and try to reassemble it into
894 * whole datagram.  If the argument is the first fragment or one
895 * in between the function will return NULL and store the mbuf
896 * in the fragment chain.  If the argument is the last fragment
897 * the packet will be reassembled and the pointer to the new
898 * mbuf returned for further processing.  Only m_tags attached
899 * to the first packet/fragment are preserved.
900 * The IP header is *NOT* adjusted out of iplen.
901 */
902struct mbuf *
903ip_reass(struct mbuf *m)
904{
905	struct ip *ip;
906	struct mbuf *p, *q, *nq, *t;
907	struct ipq *fp = NULL;
908	struct ipqhead *head;
909	int i, hlen, next;
910	u_int8_t ecn, ecn0;
911	u_short hash;
912#ifdef	RSS
913	uint32_t rss_hash, rss_type;
914#endif
915
916	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
917	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
918		IPSTAT_INC(ips_fragments);
919		IPSTAT_INC(ips_fragdropped);
920		m_freem(m);
921		return (NULL);
922	}
923
924	ip = mtod(m, struct ip *);
925	hlen = ip->ip_hl << 2;
926
927	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
928	head = &V_ipq[hash];
929	IPQ_LOCK();
930
931	/*
932	 * Look for queue of fragments
933	 * of this datagram.
934	 */
935	TAILQ_FOREACH(fp, head, ipq_list)
936		if (ip->ip_id == fp->ipq_id &&
937		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
938		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
939#ifdef MAC
940		    mac_ipq_match(m, fp) &&
941#endif
942		    ip->ip_p == fp->ipq_p)
943			goto found;
944
945	fp = NULL;
946
947	/*
948	 * Attempt to trim the number of allocated fragment queues if it
949	 * exceeds the administrative limit.
950	 */
951	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
952		/*
953		 * drop something from the tail of the current queue
954		 * before proceeding further
955		 */
956		struct ipq *q = TAILQ_LAST(head, ipqhead);
957		if (q == NULL) {   /* gak */
958			for (i = 0; i < IPREASS_NHASH; i++) {
959				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
960				if (r) {
961					IPSTAT_ADD(ips_fragtimeout,
962					    r->ipq_nfrags);
963					ip_freef(&V_ipq[i], r);
964					break;
965				}
966			}
967		} else {
968			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
969			ip_freef(head, q);
970		}
971	}
972
973found:
974	/*
975	 * Adjust ip_len to not reflect header,
976	 * convert offset of this to bytes.
977	 */
978	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
979	if (ip->ip_off & htons(IP_MF)) {
980		/*
981		 * Make sure that fragments have a data length
982		 * that's a non-zero multiple of 8 bytes.
983		 */
984		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
985			IPSTAT_INC(ips_toosmall); /* XXX */
986			goto dropfrag;
987		}
988		m->m_flags |= M_IP_FRAG;
989	} else
990		m->m_flags &= ~M_IP_FRAG;
991	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
992
993	/*
994	 * Attempt reassembly; if it succeeds, proceed.
995	 * ip_reass() will return a different mbuf.
996	 */
997	IPSTAT_INC(ips_fragments);
998	m->m_pkthdr.PH_loc.ptr = ip;
999
1000	/* Previous ip_reass() started here. */
1001	/*
1002	 * Presence of header sizes in mbufs
1003	 * would confuse code below.
1004	 */
1005	m->m_data += hlen;
1006	m->m_len -= hlen;
1007
1008	/*
1009	 * If first fragment to arrive, create a reassembly queue.
1010	 */
1011	if (fp == NULL) {
1012		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
1013		if (fp == NULL)
1014			goto dropfrag;
1015#ifdef MAC
1016		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
1017			uma_zfree(V_ipq_zone, fp);
1018			fp = NULL;
1019			goto dropfrag;
1020		}
1021		mac_ipq_create(m, fp);
1022#endif
1023		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1024		V_nipq++;
1025		fp->ipq_nfrags = 1;
1026		fp->ipq_ttl = IPFRAGTTL;
1027		fp->ipq_p = ip->ip_p;
1028		fp->ipq_id = ip->ip_id;
1029		fp->ipq_src = ip->ip_src;
1030		fp->ipq_dst = ip->ip_dst;
1031		fp->ipq_frags = m;
1032		m->m_nextpkt = NULL;
1033		goto done;
1034	} else {
1035		fp->ipq_nfrags++;
1036#ifdef MAC
1037		mac_ipq_update(m, fp);
1038#endif
1039	}
1040
1041#define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
1042
1043	/*
1044	 * Handle ECN by comparing this segment with the first one;
1045	 * if CE is set, do not lose CE.
1046	 * drop if CE and not-ECT are mixed for the same packet.
1047	 */
1048	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1049	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1050	if (ecn == IPTOS_ECN_CE) {
1051		if (ecn0 == IPTOS_ECN_NOTECT)
1052			goto dropfrag;
1053		if (ecn0 != IPTOS_ECN_CE)
1054			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1055	}
1056	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1057		goto dropfrag;
1058
1059	/*
1060	 * Find a segment which begins after this one does.
1061	 */
1062	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1063		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
1064			break;
1065
1066	/*
1067	 * If there is a preceding segment, it may provide some of
1068	 * our data already.  If so, drop the data from the incoming
1069	 * segment.  If it provides all of our data, drop us, otherwise
1070	 * stick new segment in the proper place.
1071	 *
1072	 * If some of the data is dropped from the preceding
1073	 * segment, then it's checksum is invalidated.
1074	 */
1075	if (p) {
1076		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
1077		    ntohs(ip->ip_off);
1078		if (i > 0) {
1079			if (i >= ntohs(ip->ip_len))
1080				goto dropfrag;
1081			m_adj(m, i);
1082			m->m_pkthdr.csum_flags = 0;
1083			ip->ip_off = htons(ntohs(ip->ip_off) + i);
1084			ip->ip_len = htons(ntohs(ip->ip_len) - i);
1085		}
1086		m->m_nextpkt = p->m_nextpkt;
1087		p->m_nextpkt = m;
1088	} else {
1089		m->m_nextpkt = fp->ipq_frags;
1090		fp->ipq_frags = m;
1091	}
1092
1093	/*
1094	 * While we overlap succeeding segments trim them or,
1095	 * if they are completely covered, dequeue them.
1096	 */
1097	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1098	    ntohs(GETIP(q)->ip_off); q = nq) {
1099		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1100		    ntohs(GETIP(q)->ip_off);
1101		if (i < ntohs(GETIP(q)->ip_len)) {
1102			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1103			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1104			m_adj(q, i);
1105			q->m_pkthdr.csum_flags = 0;
1106			break;
1107		}
1108		nq = q->m_nextpkt;
1109		m->m_nextpkt = nq;
1110		IPSTAT_INC(ips_fragdropped);
1111		fp->ipq_nfrags--;
1112		m_freem(q);
1113	}
1114
1115	/*
1116	 * Check for complete reassembly and perform frag per packet
1117	 * limiting.
1118	 *
1119	 * Frag limiting is performed here so that the nth frag has
1120	 * a chance to complete the packet before we drop the packet.
1121	 * As a result, n+1 frags are actually allowed per packet, but
1122	 * only n will ever be stored. (n = maxfragsperpacket.)
1123	 *
1124	 */
1125	next = 0;
1126	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1127		if (ntohs(GETIP(q)->ip_off) != next) {
1128			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1129				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1130				ip_freef(head, fp);
1131			}
1132			goto done;
1133		}
1134		next += ntohs(GETIP(q)->ip_len);
1135	}
1136	/* Make sure the last packet didn't have the IP_MF flag */
1137	if (p->m_flags & M_IP_FRAG) {
1138		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1139			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1140			ip_freef(head, fp);
1141		}
1142		goto done;
1143	}
1144
1145	/*
1146	 * Reassembly is complete.  Make sure the packet is a sane size.
1147	 */
1148	q = fp->ipq_frags;
1149	ip = GETIP(q);
1150	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1151		IPSTAT_INC(ips_toolong);
1152		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1153		ip_freef(head, fp);
1154		goto done;
1155	}
1156
1157	/*
1158	 * Concatenate fragments.
1159	 */
1160	m = q;
1161	t = m->m_next;
1162	m->m_next = NULL;
1163	m_cat(m, t);
1164	nq = q->m_nextpkt;
1165	q->m_nextpkt = NULL;
1166	for (q = nq; q != NULL; q = nq) {
1167		nq = q->m_nextpkt;
1168		q->m_nextpkt = NULL;
1169		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1170		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1171		m_cat(m, q);
1172	}
1173	/*
1174	 * In order to do checksumming faster we do 'end-around carry' here
1175	 * (and not in for{} loop), though it implies we are not going to
1176	 * reassemble more than 64k fragments.
1177	 */
1178	while (m->m_pkthdr.csum_data & 0xffff0000)
1179		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1180		    (m->m_pkthdr.csum_data >> 16);
1181#ifdef MAC
1182	mac_ipq_reassemble(fp, m);
1183	mac_ipq_destroy(fp);
1184#endif
1185
1186	/*
1187	 * Create header for new ip packet by modifying header of first
1188	 * packet;  dequeue and discard fragment reassembly header.
1189	 * Make header visible.
1190	 */
1191	ip->ip_len = htons((ip->ip_hl << 2) + next);
1192	ip->ip_src = fp->ipq_src;
1193	ip->ip_dst = fp->ipq_dst;
1194	TAILQ_REMOVE(head, fp, ipq_list);
1195	V_nipq--;
1196	uma_zfree(V_ipq_zone, fp);
1197	m->m_len += (ip->ip_hl << 2);
1198	m->m_data -= (ip->ip_hl << 2);
1199	/* some debugging cruft by sklower, below, will go away soon */
1200	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1201		m_fixhdr(m);
1202	IPSTAT_INC(ips_reassembled);
1203	IPQ_UNLOCK();
1204
1205#ifdef	RSS
1206	/*
1207	 * Query the RSS layer for the flowid / flowtype for the
1208	 * mbuf payload.
1209	 *
1210	 * For now, just assume we have to calculate a new one.
1211	 * Later on we should check to see if the assigned flowid matches
1212	 * what RSS wants for the given IP protocol and if so, just keep it.
1213	 *
1214	 * We then queue into the relevant netisr so it can be dispatched
1215	 * to the correct CPU.
1216	 *
1217	 * Note - this may return 1, which means the flowid in the mbuf
1218	 * is correct for the configured RSS hash types and can be used.
1219	 */
1220	if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
1221		m->m_pkthdr.flowid = rss_hash;
1222		M_HASHTYPE_SET(m, rss_type);
1223		m->m_flags |= M_FLOWID;
1224	}
1225
1226	/*
1227	 * Queue/dispatch for reprocessing.
1228	 *
1229	 * Note: this is much slower than just handling the frame in the
1230	 * current receive context.  It's likely worth investigating
1231	 * why this is.
1232	 */
1233	netisr_dispatch(NETISR_IP_DIRECT, m);
1234	return (NULL);
1235#endif
1236
1237	/* Handle in-line */
1238	return (m);
1239
1240dropfrag:
1241	IPSTAT_INC(ips_fragdropped);
1242	if (fp != NULL)
1243		fp->ipq_nfrags--;
1244	m_freem(m);
1245done:
1246	IPQ_UNLOCK();
1247	return (NULL);
1248
1249#undef GETIP
1250}
1251
1252/*
1253 * Free a fragment reassembly header and all
1254 * associated datagrams.
1255 */
1256static void
1257ip_freef(struct ipqhead *fhp, struct ipq *fp)
1258{
1259	struct mbuf *q;
1260
1261	IPQ_LOCK_ASSERT();
1262
1263	while (fp->ipq_frags) {
1264		q = fp->ipq_frags;
1265		fp->ipq_frags = q->m_nextpkt;
1266		m_freem(q);
1267	}
1268	TAILQ_REMOVE(fhp, fp, ipq_list);
1269	uma_zfree(V_ipq_zone, fp);
1270	V_nipq--;
1271}
1272
1273/*
1274 * IP timer processing;
1275 * if a timer expires on a reassembly
1276 * queue, discard it.
1277 */
1278void
1279ip_slowtimo(void)
1280{
1281	VNET_ITERATOR_DECL(vnet_iter);
1282	struct ipq *fp;
1283	int i;
1284
1285	VNET_LIST_RLOCK_NOSLEEP();
1286	IPQ_LOCK();
1287	VNET_FOREACH(vnet_iter) {
1288		CURVNET_SET(vnet_iter);
1289		for (i = 0; i < IPREASS_NHASH; i++) {
1290			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1291				struct ipq *fpp;
1292
1293				fpp = fp;
1294				fp = TAILQ_NEXT(fp, ipq_list);
1295				if(--fpp->ipq_ttl == 0) {
1296					IPSTAT_ADD(ips_fragtimeout,
1297					    fpp->ipq_nfrags);
1298					ip_freef(&V_ipq[i], fpp);
1299				}
1300			}
1301		}
1302		/*
1303		 * If we are over the maximum number of fragments
1304		 * (due to the limit being lowered), drain off
1305		 * enough to get down to the new limit.
1306		 */
1307		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1308			for (i = 0; i < IPREASS_NHASH; i++) {
1309				while (V_nipq > V_maxnipq &&
1310				    !TAILQ_EMPTY(&V_ipq[i])) {
1311					IPSTAT_ADD(ips_fragdropped,
1312					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1313					ip_freef(&V_ipq[i],
1314					    TAILQ_FIRST(&V_ipq[i]));
1315				}
1316			}
1317		}
1318		CURVNET_RESTORE();
1319	}
1320	IPQ_UNLOCK();
1321	VNET_LIST_RUNLOCK_NOSLEEP();
1322}
1323
1324/*
1325 * Drain off all datagram fragments.
1326 */
1327static void
1328ip_drain_locked(void)
1329{
1330	int     i;
1331
1332	IPQ_LOCK_ASSERT();
1333
1334	for (i = 0; i < IPREASS_NHASH; i++) {
1335		while(!TAILQ_EMPTY(&V_ipq[i])) {
1336			IPSTAT_ADD(ips_fragdropped,
1337			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1338			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1339		}
1340	}
1341}
1342
1343void
1344ip_drain(void)
1345{
1346	VNET_ITERATOR_DECL(vnet_iter);
1347
1348	VNET_LIST_RLOCK_NOSLEEP();
1349	IPQ_LOCK();
1350	VNET_FOREACH(vnet_iter) {
1351		CURVNET_SET(vnet_iter);
1352		ip_drain_locked();
1353		CURVNET_RESTORE();
1354	}
1355	IPQ_UNLOCK();
1356	VNET_LIST_RUNLOCK_NOSLEEP();
1357	in_rtqdrain();
1358}
1359
1360/*
1361 * The protocol to be inserted into ip_protox[] must be already registered
1362 * in inetsw[], either statically or through pf_proto_register().
1363 */
1364int
1365ipproto_register(short ipproto)
1366{
1367	struct protosw *pr;
1368
1369	/* Sanity checks. */
1370	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1371		return (EPROTONOSUPPORT);
1372
1373	/*
1374	 * The protocol slot must not be occupied by another protocol
1375	 * already.  An index pointing to IPPROTO_RAW is unused.
1376	 */
1377	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1378	if (pr == NULL)
1379		return (EPFNOSUPPORT);
1380	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1381		return (EEXIST);
1382
1383	/* Find the protocol position in inetsw[] and set the index. */
1384	for (pr = inetdomain.dom_protosw;
1385	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1386		if (pr->pr_domain->dom_family == PF_INET &&
1387		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1388			ip_protox[pr->pr_protocol] = pr - inetsw;
1389			return (0);
1390		}
1391	}
1392	return (EPROTONOSUPPORT);
1393}
1394
1395int
1396ipproto_unregister(short ipproto)
1397{
1398	struct protosw *pr;
1399
1400	/* Sanity checks. */
1401	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1402		return (EPROTONOSUPPORT);
1403
1404	/* Check if the protocol was indeed registered. */
1405	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1406	if (pr == NULL)
1407		return (EPFNOSUPPORT);
1408	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1409		return (ENOENT);
1410
1411	/* Reset the protocol slot to IPPROTO_RAW. */
1412	ip_protox[ipproto] = pr - inetsw;
1413	return (0);
1414}
1415
1416/*
1417 * Given address of next destination (final or next hop), return (referenced)
1418 * internet address info of interface to be used to get there.
1419 */
1420struct in_ifaddr *
1421ip_rtaddr(struct in_addr dst, u_int fibnum)
1422{
1423	struct route sro;
1424	struct sockaddr_in *sin;
1425	struct in_ifaddr *ia;
1426
1427	bzero(&sro, sizeof(sro));
1428	sin = (struct sockaddr_in *)&sro.ro_dst;
1429	sin->sin_family = AF_INET;
1430	sin->sin_len = sizeof(*sin);
1431	sin->sin_addr = dst;
1432	in_rtalloc_ign(&sro, 0, fibnum);
1433
1434	if (sro.ro_rt == NULL)
1435		return (NULL);
1436
1437	ia = ifatoia(sro.ro_rt->rt_ifa);
1438	ifa_ref(&ia->ia_ifa);
1439	RTFREE(sro.ro_rt);
1440	return (ia);
1441}
1442
1443u_char inetctlerrmap[PRC_NCMDS] = {
1444	0,		0,		0,		0,
1445	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1446	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1447	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1448	0,		0,		EHOSTUNREACH,	0,
1449	ENOPROTOOPT,	ECONNREFUSED
1450};
1451
1452/*
1453 * Forward a packet.  If some error occurs return the sender
1454 * an icmp packet.  Note we can't always generate a meaningful
1455 * icmp message because icmp doesn't have a large enough repertoire
1456 * of codes and types.
1457 *
1458 * If not forwarding, just drop the packet.  This could be confusing
1459 * if ipforwarding was zero but some routing protocol was advancing
1460 * us as a gateway to somewhere.  However, we must let the routing
1461 * protocol deal with that.
1462 *
1463 * The srcrt parameter indicates whether the packet is being forwarded
1464 * via a source route.
1465 */
1466void
1467ip_forward(struct mbuf *m, int srcrt)
1468{
1469	struct ip *ip = mtod(m, struct ip *);
1470	struct in_ifaddr *ia;
1471	struct mbuf *mcopy;
1472	struct in_addr dest;
1473	struct route ro;
1474	int error, type = 0, code = 0, mtu = 0;
1475
1476	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1477		IPSTAT_INC(ips_cantforward);
1478		m_freem(m);
1479		return;
1480	}
1481#ifdef IPSTEALTH
1482	if (!V_ipstealth) {
1483#endif
1484		if (ip->ip_ttl <= IPTTLDEC) {
1485			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1486			    0, 0);
1487			return;
1488		}
1489#ifdef IPSTEALTH
1490	}
1491#endif
1492
1493	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1494#ifndef IPSEC
1495	/*
1496	 * 'ia' may be NULL if there is no route for this destination.
1497	 * In case of IPsec, Don't discard it just yet, but pass it to
1498	 * ip_output in case of outgoing IPsec policy.
1499	 */
1500	if (!srcrt && ia == NULL) {
1501		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1502		return;
1503	}
1504#endif
1505
1506	/*
1507	 * Save the IP header and at most 8 bytes of the payload,
1508	 * in case we need to generate an ICMP message to the src.
1509	 *
1510	 * XXX this can be optimized a lot by saving the data in a local
1511	 * buffer on the stack (72 bytes at most), and only allocating the
1512	 * mbuf if really necessary. The vast majority of the packets
1513	 * are forwarded without having to send an ICMP back (either
1514	 * because unnecessary, or because rate limited), so we are
1515	 * really we are wasting a lot of work here.
1516	 *
1517	 * We don't use m_copy() because it might return a reference
1518	 * to a shared cluster. Both this function and ip_output()
1519	 * assume exclusive access to the IP header in `m', so any
1520	 * data in a cluster may change before we reach icmp_error().
1521	 */
1522	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1523	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1524		/*
1525		 * It's probably ok if the pkthdr dup fails (because
1526		 * the deep copy of the tag chain failed), but for now
1527		 * be conservative and just discard the copy since
1528		 * code below may some day want the tags.
1529		 */
1530		m_free(mcopy);
1531		mcopy = NULL;
1532	}
1533	if (mcopy != NULL) {
1534		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1535		mcopy->m_pkthdr.len = mcopy->m_len;
1536		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1537	}
1538
1539#ifdef IPSTEALTH
1540	if (!V_ipstealth) {
1541#endif
1542		ip->ip_ttl -= IPTTLDEC;
1543#ifdef IPSTEALTH
1544	}
1545#endif
1546
1547	/*
1548	 * If forwarding packet using same interface that it came in on,
1549	 * perhaps should send a redirect to sender to shortcut a hop.
1550	 * Only send redirect if source is sending directly to us,
1551	 * and if packet was not source routed (or has any options).
1552	 * Also, don't send redirect if forwarding using a default route
1553	 * or a route modified by a redirect.
1554	 */
1555	dest.s_addr = 0;
1556	if (!srcrt && V_ipsendredirects &&
1557	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1558		struct sockaddr_in *sin;
1559		struct rtentry *rt;
1560
1561		bzero(&ro, sizeof(ro));
1562		sin = (struct sockaddr_in *)&ro.ro_dst;
1563		sin->sin_family = AF_INET;
1564		sin->sin_len = sizeof(*sin);
1565		sin->sin_addr = ip->ip_dst;
1566		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1567
1568		rt = ro.ro_rt;
1569
1570		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1571		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1572#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1573			u_long src = ntohl(ip->ip_src.s_addr);
1574
1575			if (RTA(rt) &&
1576			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1577				if (rt->rt_flags & RTF_GATEWAY)
1578					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1579				else
1580					dest.s_addr = ip->ip_dst.s_addr;
1581				/* Router requirements says to only send host redirects */
1582				type = ICMP_REDIRECT;
1583				code = ICMP_REDIRECT_HOST;
1584			}
1585		}
1586		if (rt)
1587			RTFREE(rt);
1588	}
1589
1590	/*
1591	 * Try to cache the route MTU from ip_output so we can consider it for
1592	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1593	 */
1594	bzero(&ro, sizeof(ro));
1595
1596	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1597
1598	if (error == EMSGSIZE && ro.ro_rt)
1599		mtu = ro.ro_rt->rt_mtu;
1600	RO_RTFREE(&ro);
1601
1602	if (error)
1603		IPSTAT_INC(ips_cantforward);
1604	else {
1605		IPSTAT_INC(ips_forward);
1606		if (type)
1607			IPSTAT_INC(ips_redirectsent);
1608		else {
1609			if (mcopy)
1610				m_freem(mcopy);
1611			if (ia != NULL)
1612				ifa_free(&ia->ia_ifa);
1613			return;
1614		}
1615	}
1616	if (mcopy == NULL) {
1617		if (ia != NULL)
1618			ifa_free(&ia->ia_ifa);
1619		return;
1620	}
1621
1622	switch (error) {
1623
1624	case 0:				/* forwarded, but need redirect */
1625		/* type, code set above */
1626		break;
1627
1628	case ENETUNREACH:
1629	case EHOSTUNREACH:
1630	case ENETDOWN:
1631	case EHOSTDOWN:
1632	default:
1633		type = ICMP_UNREACH;
1634		code = ICMP_UNREACH_HOST;
1635		break;
1636
1637	case EMSGSIZE:
1638		type = ICMP_UNREACH;
1639		code = ICMP_UNREACH_NEEDFRAG;
1640
1641#ifdef IPSEC
1642		/*
1643		 * If IPsec is configured for this path,
1644		 * override any possibly mtu value set by ip_output.
1645		 */
1646		mtu = ip_ipsec_mtu(mcopy, mtu);
1647#endif /* IPSEC */
1648		/*
1649		 * If the MTU was set before make sure we are below the
1650		 * interface MTU.
1651		 * If the MTU wasn't set before use the interface mtu or
1652		 * fall back to the next smaller mtu step compared to the
1653		 * current packet size.
1654		 */
1655		if (mtu != 0) {
1656			if (ia != NULL)
1657				mtu = min(mtu, ia->ia_ifp->if_mtu);
1658		} else {
1659			if (ia != NULL)
1660				mtu = ia->ia_ifp->if_mtu;
1661			else
1662				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1663		}
1664		IPSTAT_INC(ips_cantfrag);
1665		break;
1666
1667	case ENOBUFS:
1668		/*
1669		 * A router should not generate ICMP_SOURCEQUENCH as
1670		 * required in RFC1812 Requirements for IP Version 4 Routers.
1671		 * Source quench could be a big problem under DoS attacks,
1672		 * or if the underlying interface is rate-limited.
1673		 * Those who need source quench packets may re-enable them
1674		 * via the net.inet.ip.sendsourcequench sysctl.
1675		 */
1676		if (V_ip_sendsourcequench == 0) {
1677			m_freem(mcopy);
1678			if (ia != NULL)
1679				ifa_free(&ia->ia_ifa);
1680			return;
1681		} else {
1682			type = ICMP_SOURCEQUENCH;
1683			code = 0;
1684		}
1685		break;
1686
1687	case EACCES:			/* ipfw denied packet */
1688		m_freem(mcopy);
1689		if (ia != NULL)
1690			ifa_free(&ia->ia_ifa);
1691		return;
1692	}
1693	if (ia != NULL)
1694		ifa_free(&ia->ia_ifa);
1695	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1696}
1697
1698void
1699ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1700    struct mbuf *m)
1701{
1702
1703	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1704		struct bintime bt;
1705
1706		bintime(&bt);
1707		if (inp->inp_socket->so_options & SO_BINTIME) {
1708			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1709			    SCM_BINTIME, SOL_SOCKET);
1710			if (*mp)
1711				mp = &(*mp)->m_next;
1712		}
1713		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1714			struct timeval tv;
1715
1716			bintime2timeval(&bt, &tv);
1717			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1718			    SCM_TIMESTAMP, SOL_SOCKET);
1719			if (*mp)
1720				mp = &(*mp)->m_next;
1721		}
1722	}
1723	if (inp->inp_flags & INP_RECVDSTADDR) {
1724		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1725		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1726		if (*mp)
1727			mp = &(*mp)->m_next;
1728	}
1729	if (inp->inp_flags & INP_RECVTTL) {
1730		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1731		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1732		if (*mp)
1733			mp = &(*mp)->m_next;
1734	}
1735#ifdef notyet
1736	/* XXX
1737	 * Moving these out of udp_input() made them even more broken
1738	 * than they already were.
1739	 */
1740	/* options were tossed already */
1741	if (inp->inp_flags & INP_RECVOPTS) {
1742		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1743		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1744		if (*mp)
1745			mp = &(*mp)->m_next;
1746	}
1747	/* ip_srcroute doesn't do what we want here, need to fix */
1748	if (inp->inp_flags & INP_RECVRETOPTS) {
1749		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1750		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1751		if (*mp)
1752			mp = &(*mp)->m_next;
1753	}
1754#endif
1755	if (inp->inp_flags & INP_RECVIF) {
1756		struct ifnet *ifp;
1757		struct sdlbuf {
1758			struct sockaddr_dl sdl;
1759			u_char	pad[32];
1760		} sdlbuf;
1761		struct sockaddr_dl *sdp;
1762		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1763
1764		if ((ifp = m->m_pkthdr.rcvif) &&
1765		    ifp->if_index && ifp->if_index <= V_if_index) {
1766			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1767			/*
1768			 * Change our mind and don't try copy.
1769			 */
1770			if (sdp->sdl_family != AF_LINK ||
1771			    sdp->sdl_len > sizeof(sdlbuf)) {
1772				goto makedummy;
1773			}
1774			bcopy(sdp, sdl2, sdp->sdl_len);
1775		} else {
1776makedummy:
1777			sdl2->sdl_len =
1778			    offsetof(struct sockaddr_dl, sdl_data[0]);
1779			sdl2->sdl_family = AF_LINK;
1780			sdl2->sdl_index = 0;
1781			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1782		}
1783		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1784		    IP_RECVIF, IPPROTO_IP);
1785		if (*mp)
1786			mp = &(*mp)->m_next;
1787	}
1788	if (inp->inp_flags & INP_RECVTOS) {
1789		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1790		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1791		if (*mp)
1792			mp = &(*mp)->m_next;
1793	}
1794
1795	if (inp->inp_flags2 & INP_RECVFLOWID) {
1796		uint32_t flowid, flow_type;
1797
1798		flowid = m->m_pkthdr.flowid;
1799		flow_type = M_HASHTYPE_GET(m);
1800
1801		/*
1802		 * XXX should handle the failure of one or the
1803		 * other - don't populate both?
1804		 */
1805		*mp = sbcreatecontrol((caddr_t) &flowid,
1806		    sizeof(uint32_t), IP_FLOWID, IPPROTO_IP);
1807		if (*mp)
1808			mp = &(*mp)->m_next;
1809		*mp = sbcreatecontrol((caddr_t) &flow_type,
1810		    sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP);
1811		if (*mp)
1812			mp = &(*mp)->m_next;
1813	}
1814
1815#ifdef	RSS
1816	if (inp->inp_flags2 & INP_RECVRSSBUCKETID) {
1817		uint32_t flowid, flow_type;
1818		uint32_t rss_bucketid;
1819
1820		flowid = m->m_pkthdr.flowid;
1821		flow_type = M_HASHTYPE_GET(m);
1822
1823		if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) {
1824			*mp = sbcreatecontrol((caddr_t) &rss_bucketid,
1825			   sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP);
1826			if (*mp)
1827				mp = &(*mp)->m_next;
1828		}
1829	}
1830#endif
1831}
1832
1833/*
1834 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1835 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1836 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1837 * compiled.
1838 */
1839static VNET_DEFINE(int, ip_rsvp_on);
1840VNET_DEFINE(struct socket *, ip_rsvpd);
1841
1842#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1843
1844int
1845ip_rsvp_init(struct socket *so)
1846{
1847
1848	if (so->so_type != SOCK_RAW ||
1849	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1850		return EOPNOTSUPP;
1851
1852	if (V_ip_rsvpd != NULL)
1853		return EADDRINUSE;
1854
1855	V_ip_rsvpd = so;
1856	/*
1857	 * This may seem silly, but we need to be sure we don't over-increment
1858	 * the RSVP counter, in case something slips up.
1859	 */
1860	if (!V_ip_rsvp_on) {
1861		V_ip_rsvp_on = 1;
1862		V_rsvp_on++;
1863	}
1864
1865	return 0;
1866}
1867
1868int
1869ip_rsvp_done(void)
1870{
1871
1872	V_ip_rsvpd = NULL;
1873	/*
1874	 * This may seem silly, but we need to be sure we don't over-decrement
1875	 * the RSVP counter, in case something slips up.
1876	 */
1877	if (V_ip_rsvp_on) {
1878		V_ip_rsvp_on = 0;
1879		V_rsvp_on--;
1880	}
1881	return 0;
1882}
1883
1884int
1885rsvp_input(struct mbuf **mp, int *offp, int proto)
1886{
1887	struct mbuf *m;
1888
1889	m = *mp;
1890	*mp = NULL;
1891
1892	if (rsvp_input_p) { /* call the real one if loaded */
1893		*mp = m;
1894		rsvp_input_p(mp, offp, proto);
1895		return (IPPROTO_DONE);
1896	}
1897
1898	/* Can still get packets with rsvp_on = 0 if there is a local member
1899	 * of the group to which the RSVP packet is addressed.  But in this
1900	 * case we want to throw the packet away.
1901	 */
1902
1903	if (!V_rsvp_on) {
1904		m_freem(m);
1905		return (IPPROTO_DONE);
1906	}
1907
1908	if (V_ip_rsvpd != NULL) {
1909		*mp = m;
1910		rip_input(mp, offp, proto);
1911		return (IPPROTO_DONE);
1912	}
1913	/* Drop the packet */
1914	m_freem(m);
1915	return (IPPROTO_DONE);
1916}
1917