ip_reass.c revision 256525
160107Sobrien/*-
216877Ssos * Copyright (c) 1982, 1986, 1988, 1993
316877Ssos *	The Regents of the University of California.  All rights reserved.
416877Ssos *
516877Ssos * Redistribution and use in source and binary forms, with or without
616877Ssos * modification, are permitted provided that the following conditions
716877Ssos * are met:
816877Ssos * 1. Redistributions of source code must retain the above copyright
916877Ssos *    notice, this list of conditions and the following disclaimer.
10270114Sse * 2. Redistributions in binary form must reproduce the above copyright
11270229Sse *    notice, this list of conditions and the following disclaimer in the
1216877Ssos *    documentation and/or other materials provided with the distribution.
1316877Ssos * 4. Neither the name of the University nor the names of its contributors
1416877Ssos *    may be used to endorse or promote products derived from this software
1516877Ssos *    without specific prior written permission.
1616877Ssos *
1716877Ssos * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
1816877Ssos * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19117271Sache * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2016877Ssos * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
2116877Ssos * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2216877Ssos * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2316877Ssos * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24270114Sse * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25270114Sse * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26270114Sse * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27270114Sse * SUCH DAMAGE.
28270114Sse *
29270114Sse *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30270114Sse */
31270114Sse
32270114Sse#include <sys/cdefs.h>
33270114Sse__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 256525 2013-10-15 11:37:57Z glebius $");
3416877Ssos
3516877Ssos#include "opt_bootp.h"
36270114Sse#include "opt_ipfw.h"
37270114Sse#include "opt_ipstealth.h"
38270114Sse#include "opt_ipsec.h"
39270114Sse#include "opt_kdtrace.h"
4016877Ssos#include "opt_route.h"
4116877Ssos
4216877Ssos#include <sys/param.h>
4316877Ssos#include <sys/systm.h>
4416877Ssos#include <sys/mbuf.h>
45270114Sse#include <sys/malloc.h>
46270114Sse#include <sys/domain.h>
47270229Sse#include <sys/protosw.h>
4816877Ssos#include <sys/socket.h>
49270114Sse#include <sys/time.h>
5016877Ssos#include <sys/kernel.h>
51270114Sse#include <sys/lock.h>
52270114Sse#include <sys/rwlock.h>
5316877Ssos#include <sys/sdt.h>
5416877Ssos#include <sys/syslog.h>
55270114Sse#include <sys/sysctl.h>
56270114Sse
57270229Sse#include <net/pfil.h>
58270114Sse#include <net/if.h>
59270114Sse#include <net/if_types.h>
6016877Ssos#include <net/if_var.h>
6116877Ssos#include <net/if_dl.h>
6216877Ssos#include <net/route.h>
6332822Syokota#include <net/netisr.h>
6416877Ssos#include <net/vnet.h>
6516877Ssos#include <net/flowtable.h>
6616877Ssos
6716877Ssos#include <netinet/in.h>
6816877Ssos#include <netinet/in_kdtrace.h>
6916877Ssos#include <netinet/in_systm.h>
7016877Ssos#include <netinet/in_var.h>
7116877Ssos#include <netinet/ip.h>
7216877Ssos#include <netinet/in_pcb.h>
7316877Ssos#include <netinet/ip_var.h>
7416877Ssos#include <netinet/ip_fw.h>
7516877Ssos#include <netinet/ip_icmp.h>
7616877Ssos#include <netinet/ip_options.h>
7716877Ssos#include <machine/in_cksum.h>
7816877Ssos#include <netinet/ip_carp.h>
7916877Ssos#ifdef IPSEC
8016877Ssos#include <netinet/ip_ipsec.h>
8116877Ssos#endif /* IPSEC */
8216877Ssos
8316877Ssos#include <sys/socketvar.h>
8416877Ssos
8516877Ssos#include <security/mac/mac_framework.h>
8616877Ssos
8716877Ssos#ifdef CTASSERT
8816877SsosCTASSERT(sizeof(struct ip) == 20);
8916877Ssos#endif
9016877Ssos
9116877Ssosstruct	rwlock in_ifaddr_lock;
92270114SseRW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
9316877Ssos
9416877SsosVNET_DEFINE(int, rsvp_on);
9518194Ssos
9616877SsosVNET_DEFINE(int, ipforwarding);
9716877SsosSYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
9874119Sache    &VNET_NAME(ipforwarding), 0,
9916877Ssos    "Enable IP forwarding between interfaces");
10016877Ssos
10116877Ssosstatic VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
10216877Ssos#define	V_ipsendredirects	VNET(ipsendredirects)
10316877SsosSYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
10416877Ssos    &VNET_NAME(ipsendredirects), 0,
10516877Ssos    "Enable sending IP redirects");
10616877Ssos
10716877Ssosstatic VNET_DEFINE(int, ip_keepfaith);
10874119Sache#define	V_ip_keepfaith		VNET(ip_keepfaith)
109270114SseSYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
11043334Syokota    &VNET_NAME(ip_keepfaith), 0,
11143334Syokota    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
11243334Syokota
11343334Syokotastatic VNET_DEFINE(int, ip_sendsourcequench);
11443334Syokota#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
115SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
116    &VNET_NAME(ip_sendsourcequench), 0,
117    "Enable the transmission of source quench packets");
118
119VNET_DEFINE(int, ip_do_randomid);
120SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
121    &VNET_NAME(ip_do_randomid), 0,
122    "Assign random ip_id values");
123
124/*
125 * XXX - Setting ip_checkinterface mostly implements the receive side of
126 * the Strong ES model described in RFC 1122, but since the routing table
127 * and transmit implementation do not implement the Strong ES model,
128 * setting this to 1 results in an odd hybrid.
129 *
130 * XXX - ip_checkinterface currently must be disabled if you use ipnat
131 * to translate the destination address to another local interface.
132 *
133 * XXX - ip_checkinterface must be disabled if you add IP aliases
134 * to the loopback interface instead of the interface where the
135 * packets for those addresses are received.
136 */
137static VNET_DEFINE(int, ip_checkinterface);
138#define	V_ip_checkinterface	VNET(ip_checkinterface)
139SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
140    &VNET_NAME(ip_checkinterface), 0,
141    "Verify packet arrives on correct interface");
142
143VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
144
145static struct netisr_handler ip_nh = {
146	.nh_name = "ip",
147	.nh_handler = ip_input,
148	.nh_proto = NETISR_IP,
149	.nh_policy = NETISR_POLICY_FLOW,
150};
151
152extern	struct domain inetdomain;
153extern	struct protosw inetsw[];
154u_char	ip_protox[IPPROTO_MAX];
155VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
156VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
157VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
158
159static VNET_DEFINE(uma_zone_t, ipq_zone);
160static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
161static struct mtx ipqlock;
162
163#define	V_ipq_zone		VNET(ipq_zone)
164#define	V_ipq			VNET(ipq)
165
166#define	IPQ_LOCK()	mtx_lock(&ipqlock)
167#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
168#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
169#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
170
171static void	maxnipq_update(void);
172static void	ipq_zone_change(void *);
173static void	ip_drain_locked(void);
174
175static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
176static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
177#define	V_maxnipq		VNET(maxnipq)
178#define	V_nipq			VNET(nipq)
179SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
180    &VNET_NAME(nipq), 0,
181    "Current number of IPv4 fragment reassembly queue entries");
182
183static VNET_DEFINE(int, maxfragsperpacket);
184#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
185SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
186    &VNET_NAME(maxfragsperpacket), 0,
187    "Maximum number of IPv4 fragments allowed per packet");
188
189#ifdef IPCTL_DEFMTU
190SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
191    &ip_mtu, 0, "Default MTU");
192#endif
193
194#ifdef IPSTEALTH
195VNET_DEFINE(int, ipstealth);
196SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
197    &VNET_NAME(ipstealth), 0,
198    "IP stealth mode, no TTL decrementation on forwarding");
199#endif
200
201#ifdef FLOWTABLE
202static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
203VNET_DEFINE(struct flowtable *, ip_ft);
204#define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
205
206SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
207    &VNET_NAME(ip_output_flowtable_size), 2048,
208    "number of entries in the per-cpu output flow caches");
209#endif
210
211static void	ip_freef(struct ipqhead *, struct ipq *);
212
213/*
214 * IP statistics are stored in the "array" of counter(9)s.
215 */
216VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
217VNET_PCPUSTAT_SYSINIT(ipstat);
218SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
219    "IP statistics (struct ipstat, netinet/ip_var.h)");
220
221#ifdef VIMAGE
222VNET_PCPUSTAT_SYSUNINIT(ipstat);
223#endif /* VIMAGE */
224
225/*
226 * Kernel module interface for updating ipstat.  The argument is an index
227 * into ipstat treated as an array.
228 */
229void
230kmod_ipstat_inc(int statnum)
231{
232
233	counter_u64_add(VNET(ipstat)[statnum], 1);
234}
235
236void
237kmod_ipstat_dec(int statnum)
238{
239
240	counter_u64_add(VNET(ipstat)[statnum], -1);
241}
242
243static int
244sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
245{
246	int error, qlimit;
247
248	netisr_getqlimit(&ip_nh, &qlimit);
249	error = sysctl_handle_int(oidp, &qlimit, 0, req);
250	if (error || !req->newptr)
251		return (error);
252	if (qlimit < 1)
253		return (EINVAL);
254	return (netisr_setqlimit(&ip_nh, qlimit));
255}
256SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
257    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
258    "Maximum size of the IP input queue");
259
260static int
261sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
262{
263	u_int64_t qdrops_long;
264	int error, qdrops;
265
266	netisr_getqdrops(&ip_nh, &qdrops_long);
267	qdrops = qdrops_long;
268	error = sysctl_handle_int(oidp, &qdrops, 0, req);
269	if (error || !req->newptr)
270		return (error);
271	if (qdrops != 0)
272		return (EINVAL);
273	netisr_clearqdrops(&ip_nh);
274	return (0);
275}
276
277SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
278    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
279    "Number of packets dropped from the IP input queue");
280
281/*
282 * IP initialization: fill in IP protocol switch table.
283 * All protocols not implemented in kernel go to raw IP protocol handler.
284 */
285void
286ip_init(void)
287{
288	struct protosw *pr;
289	int i;
290
291	V_ip_id = time_second & 0xffff;
292
293	TAILQ_INIT(&V_in_ifaddrhead);
294	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
295
296	/* Initialize IP reassembly queue. */
297	for (i = 0; i < IPREASS_NHASH; i++)
298		TAILQ_INIT(&V_ipq[i]);
299	V_maxnipq = nmbclusters / 32;
300	V_maxfragsperpacket = 16;
301	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
302	    NULL, UMA_ALIGN_PTR, 0);
303	maxnipq_update();
304
305	/* Initialize packet filter hooks. */
306	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
307	V_inet_pfil_hook.ph_af = AF_INET;
308	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
309		printf("%s: WARNING: unable to register pfil hook, "
310			"error %d\n", __func__, i);
311
312#ifdef FLOWTABLE
313	if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
314		&V_ip_output_flowtable_size)) {
315		if (V_ip_output_flowtable_size < 256)
316			V_ip_output_flowtable_size = 256;
317		if (!powerof2(V_ip_output_flowtable_size)) {
318			printf("flowtable must be power of 2 size\n");
319			V_ip_output_flowtable_size = 2048;
320		}
321	} else {
322		/*
323		 * round up to the next power of 2
324		 */
325		V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
326	}
327	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
328#endif
329
330	/* Skip initialization of globals for non-default instances. */
331	if (!IS_DEFAULT_VNET(curvnet))
332		return;
333
334	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
335	if (pr == NULL)
336		panic("ip_init: PF_INET not found");
337
338	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
339	for (i = 0; i < IPPROTO_MAX; i++)
340		ip_protox[i] = pr - inetsw;
341	/*
342	 * Cycle through IP protocols and put them into the appropriate place
343	 * in ip_protox[].
344	 */
345	for (pr = inetdomain.dom_protosw;
346	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
347		if (pr->pr_domain->dom_family == PF_INET &&
348		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
349			/* Be careful to only index valid IP protocols. */
350			if (pr->pr_protocol < IPPROTO_MAX)
351				ip_protox[pr->pr_protocol] = pr - inetsw;
352		}
353
354	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
355		NULL, EVENTHANDLER_PRI_ANY);
356
357	/* Initialize various other remaining things. */
358	IPQ_LOCK_INIT();
359	netisr_register(&ip_nh);
360}
361
362#ifdef VIMAGE
363void
364ip_destroy(void)
365{
366	int i;
367
368	if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
369		printf("%s: WARNING: unable to unregister pfil hook, "
370		    "error %d\n", __func__, i);
371
372	/* Cleanup in_ifaddr hash table; should be empty. */
373	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
374
375	IPQ_LOCK();
376	ip_drain_locked();
377	IPQ_UNLOCK();
378
379	uma_zdestroy(V_ipq_zone);
380}
381#endif
382
383/*
384 * Ip input routine.  Checksum and byte swap header.  If fragmented
385 * try to reassemble.  Process options.  Pass to next level.
386 */
387void
388ip_input(struct mbuf *m)
389{
390	struct ip *ip = NULL;
391	struct in_ifaddr *ia = NULL;
392	struct ifaddr *ifa;
393	struct ifnet *ifp;
394	int    checkif, hlen = 0;
395	uint16_t sum, ip_len;
396	int dchg = 0;				/* dest changed after fw */
397	struct in_addr odst;			/* original dst address */
398
399	M_ASSERTPKTHDR(m);
400
401	if (m->m_flags & M_FASTFWD_OURS) {
402		m->m_flags &= ~M_FASTFWD_OURS;
403		/* Set up some basics that will be used later. */
404		ip = mtod(m, struct ip *);
405		hlen = ip->ip_hl << 2;
406		ip_len = ntohs(ip->ip_len);
407		goto ours;
408	}
409
410	IPSTAT_INC(ips_total);
411
412	if (m->m_pkthdr.len < sizeof(struct ip))
413		goto tooshort;
414
415	if (m->m_len < sizeof (struct ip) &&
416	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
417		IPSTAT_INC(ips_toosmall);
418		return;
419	}
420	ip = mtod(m, struct ip *);
421
422	if (ip->ip_v != IPVERSION) {
423		IPSTAT_INC(ips_badvers);
424		goto bad;
425	}
426
427	hlen = ip->ip_hl << 2;
428	if (hlen < sizeof(struct ip)) {	/* minimum header length */
429		IPSTAT_INC(ips_badhlen);
430		goto bad;
431	}
432	if (hlen > m->m_len) {
433		if ((m = m_pullup(m, hlen)) == NULL) {
434			IPSTAT_INC(ips_badhlen);
435			return;
436		}
437		ip = mtod(m, struct ip *);
438	}
439
440	IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
441
442	/* 127/8 must not appear on wire - RFC1122 */
443	ifp = m->m_pkthdr.rcvif;
444	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
445	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
446		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
447			IPSTAT_INC(ips_badaddr);
448			goto bad;
449		}
450	}
451
452	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
453		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
454	} else {
455		if (hlen == sizeof(struct ip)) {
456			sum = in_cksum_hdr(ip);
457		} else {
458			sum = in_cksum(m, hlen);
459		}
460	}
461	if (sum) {
462		IPSTAT_INC(ips_badsum);
463		goto bad;
464	}
465
466#ifdef ALTQ
467	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
468		/* packet is dropped by traffic conditioner */
469		return;
470#endif
471
472	ip_len = ntohs(ip->ip_len);
473	if (ip_len < hlen) {
474		IPSTAT_INC(ips_badlen);
475		goto bad;
476	}
477
478	/*
479	 * Check that the amount of data in the buffers
480	 * is as at least much as the IP header would have us expect.
481	 * Trim mbufs if longer than we expect.
482	 * Drop packet if shorter than we expect.
483	 */
484	if (m->m_pkthdr.len < ip_len) {
485tooshort:
486		IPSTAT_INC(ips_tooshort);
487		goto bad;
488	}
489	if (m->m_pkthdr.len > ip_len) {
490		if (m->m_len == m->m_pkthdr.len) {
491			m->m_len = ip_len;
492			m->m_pkthdr.len = ip_len;
493		} else
494			m_adj(m, ip_len - m->m_pkthdr.len);
495	}
496#ifdef IPSEC
497	/*
498	 * Bypass packet filtering for packets previously handled by IPsec.
499	 */
500	if (ip_ipsec_filtertunnel(m))
501		goto passin;
502#endif /* IPSEC */
503
504	/*
505	 * Run through list of hooks for input packets.
506	 *
507	 * NB: Beware of the destination address changing (e.g.
508	 *     by NAT rewriting).  When this happens, tell
509	 *     ip_forward to do the right thing.
510	 */
511
512	/* Jump over all PFIL processing if hooks are not active. */
513	if (!PFIL_HOOKED(&V_inet_pfil_hook))
514		goto passin;
515
516	odst = ip->ip_dst;
517	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
518		return;
519	if (m == NULL)			/* consumed by filter */
520		return;
521
522	ip = mtod(m, struct ip *);
523	dchg = (odst.s_addr != ip->ip_dst.s_addr);
524	ifp = m->m_pkthdr.rcvif;
525
526	if (m->m_flags & M_FASTFWD_OURS) {
527		m->m_flags &= ~M_FASTFWD_OURS;
528		goto ours;
529	}
530	if (m->m_flags & M_IP_NEXTHOP) {
531		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
532		if (dchg != 0) {
533			/*
534			 * Directly ship the packet on.  This allows
535			 * forwarding packets originally destined to us
536			 * to some other directly connected host.
537			 */
538			ip_forward(m, 1);
539			return;
540		}
541	}
542passin:
543
544	/*
545	 * Process options and, if not destined for us,
546	 * ship it on.  ip_dooptions returns 1 when an
547	 * error was detected (causing an icmp message
548	 * to be sent and the original packet to be freed).
549	 */
550	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
551		return;
552
553        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
554         * matter if it is destined to another node, or whether it is
555         * a multicast one, RSVP wants it! and prevents it from being forwarded
556         * anywhere else. Also checks if the rsvp daemon is running before
557	 * grabbing the packet.
558         */
559	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
560		goto ours;
561
562	/*
563	 * Check our list of addresses, to see if the packet is for us.
564	 * If we don't have any addresses, assume any unicast packet
565	 * we receive might be for us (and let the upper layers deal
566	 * with it).
567	 */
568	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
569	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
570		goto ours;
571
572	/*
573	 * Enable a consistency check between the destination address
574	 * and the arrival interface for a unicast packet (the RFC 1122
575	 * strong ES model) if IP forwarding is disabled and the packet
576	 * is not locally generated and the packet is not subject to
577	 * 'ipfw fwd'.
578	 *
579	 * XXX - Checking also should be disabled if the destination
580	 * address is ipnat'ed to a different interface.
581	 *
582	 * XXX - Checking is incompatible with IP aliases added
583	 * to the loopback interface instead of the interface where
584	 * the packets are received.
585	 *
586	 * XXX - This is the case for carp vhost IPs as well so we
587	 * insert a workaround. If the packet got here, we already
588	 * checked with carp_iamatch() and carp_forus().
589	 */
590	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
591	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
592	    ifp->if_carp == NULL && (dchg == 0);
593
594	/*
595	 * Check for exact addresses in the hash bucket.
596	 */
597	/* IN_IFADDR_RLOCK(); */
598	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
599		/*
600		 * If the address matches, verify that the packet
601		 * arrived via the correct interface if checking is
602		 * enabled.
603		 */
604		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
605		    (!checkif || ia->ia_ifp == ifp)) {
606			counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
607			counter_u64_add(ia->ia_ifa.ifa_ibytes,
608			    m->m_pkthdr.len);
609			/* IN_IFADDR_RUNLOCK(); */
610			goto ours;
611		}
612	}
613	/* IN_IFADDR_RUNLOCK(); */
614
615	/*
616	 * Check for broadcast addresses.
617	 *
618	 * Only accept broadcast packets that arrive via the matching
619	 * interface.  Reception of forwarded directed broadcasts would
620	 * be handled via ip_forward() and ether_output() with the loopback
621	 * into the stack for SIMPLEX interfaces handled by ether_output().
622	 */
623	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
624		IF_ADDR_RLOCK(ifp);
625	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
626			if (ifa->ifa_addr->sa_family != AF_INET)
627				continue;
628			ia = ifatoia(ifa);
629			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
630			    ip->ip_dst.s_addr) {
631				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
632				counter_u64_add(ia->ia_ifa.ifa_ibytes,
633				    m->m_pkthdr.len);
634				IF_ADDR_RUNLOCK(ifp);
635				goto ours;
636			}
637#ifdef BOOTP_COMPAT
638			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
639				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
640				counter_u64_add(ia->ia_ifa.ifa_ibytes,
641				    m->m_pkthdr.len);
642				IF_ADDR_RUNLOCK(ifp);
643				goto ours;
644			}
645#endif
646		}
647		IF_ADDR_RUNLOCK(ifp);
648		ia = NULL;
649	}
650	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
651	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
652		IPSTAT_INC(ips_cantforward);
653		m_freem(m);
654		return;
655	}
656	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
657		if (V_ip_mrouter) {
658			/*
659			 * If we are acting as a multicast router, all
660			 * incoming multicast packets are passed to the
661			 * kernel-level multicast forwarding function.
662			 * The packet is returned (relatively) intact; if
663			 * ip_mforward() returns a non-zero value, the packet
664			 * must be discarded, else it may be accepted below.
665			 */
666			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
667				IPSTAT_INC(ips_cantforward);
668				m_freem(m);
669				return;
670			}
671
672			/*
673			 * The process-level routing daemon needs to receive
674			 * all multicast IGMP packets, whether or not this
675			 * host belongs to their destination groups.
676			 */
677			if (ip->ip_p == IPPROTO_IGMP)
678				goto ours;
679			IPSTAT_INC(ips_forward);
680		}
681		/*
682		 * Assume the packet is for us, to avoid prematurely taking
683		 * a lock on the in_multi hash. Protocols must perform
684		 * their own filtering and update statistics accordingly.
685		 */
686		goto ours;
687	}
688	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
689		goto ours;
690	if (ip->ip_dst.s_addr == INADDR_ANY)
691		goto ours;
692
693	/*
694	 * FAITH(Firewall Aided Internet Translator)
695	 */
696	if (ifp && ifp->if_type == IFT_FAITH) {
697		if (V_ip_keepfaith) {
698			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
699				goto ours;
700		}
701		m_freem(m);
702		return;
703	}
704
705	/*
706	 * Not for us; forward if possible and desirable.
707	 */
708	if (V_ipforwarding == 0) {
709		IPSTAT_INC(ips_cantforward);
710		m_freem(m);
711	} else {
712#ifdef IPSEC
713		if (ip_ipsec_fwd(m))
714			goto bad;
715#endif /* IPSEC */
716		ip_forward(m, dchg);
717	}
718	return;
719
720ours:
721#ifdef IPSTEALTH
722	/*
723	 * IPSTEALTH: Process non-routing options only
724	 * if the packet is destined for us.
725	 */
726	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1))
727		return;
728#endif /* IPSTEALTH */
729
730	/*
731	 * Attempt reassembly; if it succeeds, proceed.
732	 * ip_reass() will return a different mbuf.
733	 */
734	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
735		m = ip_reass(m);
736		if (m == NULL)
737			return;
738		ip = mtod(m, struct ip *);
739		/* Get the header length of the reassembled packet */
740		hlen = ip->ip_hl << 2;
741	}
742
743#ifdef IPSEC
744	/*
745	 * enforce IPsec policy checking if we are seeing last header.
746	 * note that we do not visit this with protocols with pcb layer
747	 * code - like udp/tcp/raw ip.
748	 */
749	if (ip_ipsec_input(m))
750		goto bad;
751#endif /* IPSEC */
752
753	/*
754	 * Switch out to protocol's input routine.
755	 */
756	IPSTAT_INC(ips_delivered);
757
758	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
759	return;
760bad:
761	m_freem(m);
762}
763
764/*
765 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
766 * max has slightly different semantics than the sysctl, for historical
767 * reasons.
768 */
769static void
770maxnipq_update(void)
771{
772
773	/*
774	 * -1 for unlimited allocation.
775	 */
776	if (V_maxnipq < 0)
777		uma_zone_set_max(V_ipq_zone, 0);
778	/*
779	 * Positive number for specific bound.
780	 */
781	if (V_maxnipq > 0)
782		uma_zone_set_max(V_ipq_zone, V_maxnipq);
783	/*
784	 * Zero specifies no further fragment queue allocation -- set the
785	 * bound very low, but rely on implementation elsewhere to actually
786	 * prevent allocation and reclaim current queues.
787	 */
788	if (V_maxnipq == 0)
789		uma_zone_set_max(V_ipq_zone, 1);
790}
791
792static void
793ipq_zone_change(void *tag)
794{
795
796	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
797		V_maxnipq = nmbclusters / 32;
798		maxnipq_update();
799	}
800}
801
802static int
803sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
804{
805	int error, i;
806
807	i = V_maxnipq;
808	error = sysctl_handle_int(oidp, &i, 0, req);
809	if (error || !req->newptr)
810		return (error);
811
812	/*
813	 * XXXRW: Might be a good idea to sanity check the argument and place
814	 * an extreme upper bound.
815	 */
816	if (i < -1)
817		return (EINVAL);
818	V_maxnipq = i;
819	maxnipq_update();
820	return (0);
821}
822
823SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
824    NULL, 0, sysctl_maxnipq, "I",
825    "Maximum number of IPv4 fragment reassembly queue entries");
826
827/*
828 * Take incoming datagram fragment and try to reassemble it into
829 * whole datagram.  If the argument is the first fragment or one
830 * in between the function will return NULL and store the mbuf
831 * in the fragment chain.  If the argument is the last fragment
832 * the packet will be reassembled and the pointer to the new
833 * mbuf returned for further processing.  Only m_tags attached
834 * to the first packet/fragment are preserved.
835 * The IP header is *NOT* adjusted out of iplen.
836 */
837struct mbuf *
838ip_reass(struct mbuf *m)
839{
840	struct ip *ip;
841	struct mbuf *p, *q, *nq, *t;
842	struct ipq *fp = NULL;
843	struct ipqhead *head;
844	int i, hlen, next;
845	u_int8_t ecn, ecn0;
846	u_short hash;
847
848	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
849	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
850		IPSTAT_INC(ips_fragments);
851		IPSTAT_INC(ips_fragdropped);
852		m_freem(m);
853		return (NULL);
854	}
855
856	ip = mtod(m, struct ip *);
857	hlen = ip->ip_hl << 2;
858
859	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
860	head = &V_ipq[hash];
861	IPQ_LOCK();
862
863	/*
864	 * Look for queue of fragments
865	 * of this datagram.
866	 */
867	TAILQ_FOREACH(fp, head, ipq_list)
868		if (ip->ip_id == fp->ipq_id &&
869		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
870		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
871#ifdef MAC
872		    mac_ipq_match(m, fp) &&
873#endif
874		    ip->ip_p == fp->ipq_p)
875			goto found;
876
877	fp = NULL;
878
879	/*
880	 * Attempt to trim the number of allocated fragment queues if it
881	 * exceeds the administrative limit.
882	 */
883	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
884		/*
885		 * drop something from the tail of the current queue
886		 * before proceeding further
887		 */
888		struct ipq *q = TAILQ_LAST(head, ipqhead);
889		if (q == NULL) {   /* gak */
890			for (i = 0; i < IPREASS_NHASH; i++) {
891				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
892				if (r) {
893					IPSTAT_ADD(ips_fragtimeout,
894					    r->ipq_nfrags);
895					ip_freef(&V_ipq[i], r);
896					break;
897				}
898			}
899		} else {
900			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
901			ip_freef(head, q);
902		}
903	}
904
905found:
906	/*
907	 * Adjust ip_len to not reflect header,
908	 * convert offset of this to bytes.
909	 */
910	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
911	if (ip->ip_off & htons(IP_MF)) {
912		/*
913		 * Make sure that fragments have a data length
914		 * that's a non-zero multiple of 8 bytes.
915		 */
916		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
917			IPSTAT_INC(ips_toosmall); /* XXX */
918			goto dropfrag;
919		}
920		m->m_flags |= M_IP_FRAG;
921	} else
922		m->m_flags &= ~M_IP_FRAG;
923	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
924
925	/*
926	 * Attempt reassembly; if it succeeds, proceed.
927	 * ip_reass() will return a different mbuf.
928	 */
929	IPSTAT_INC(ips_fragments);
930	m->m_pkthdr.PH_loc.ptr = ip;
931
932	/* Previous ip_reass() started here. */
933	/*
934	 * Presence of header sizes in mbufs
935	 * would confuse code below.
936	 */
937	m->m_data += hlen;
938	m->m_len -= hlen;
939
940	/*
941	 * If first fragment to arrive, create a reassembly queue.
942	 */
943	if (fp == NULL) {
944		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
945		if (fp == NULL)
946			goto dropfrag;
947#ifdef MAC
948		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
949			uma_zfree(V_ipq_zone, fp);
950			fp = NULL;
951			goto dropfrag;
952		}
953		mac_ipq_create(m, fp);
954#endif
955		TAILQ_INSERT_HEAD(head, fp, ipq_list);
956		V_nipq++;
957		fp->ipq_nfrags = 1;
958		fp->ipq_ttl = IPFRAGTTL;
959		fp->ipq_p = ip->ip_p;
960		fp->ipq_id = ip->ip_id;
961		fp->ipq_src = ip->ip_src;
962		fp->ipq_dst = ip->ip_dst;
963		fp->ipq_frags = m;
964		m->m_nextpkt = NULL;
965		goto done;
966	} else {
967		fp->ipq_nfrags++;
968#ifdef MAC
969		mac_ipq_update(m, fp);
970#endif
971	}
972
973#define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
974
975	/*
976	 * Handle ECN by comparing this segment with the first one;
977	 * if CE is set, do not lose CE.
978	 * drop if CE and not-ECT are mixed for the same packet.
979	 */
980	ecn = ip->ip_tos & IPTOS_ECN_MASK;
981	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
982	if (ecn == IPTOS_ECN_CE) {
983		if (ecn0 == IPTOS_ECN_NOTECT)
984			goto dropfrag;
985		if (ecn0 != IPTOS_ECN_CE)
986			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
987	}
988	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
989		goto dropfrag;
990
991	/*
992	 * Find a segment which begins after this one does.
993	 */
994	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
995		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
996			break;
997
998	/*
999	 * If there is a preceding segment, it may provide some of
1000	 * our data already.  If so, drop the data from the incoming
1001	 * segment.  If it provides all of our data, drop us, otherwise
1002	 * stick new segment in the proper place.
1003	 *
1004	 * If some of the data is dropped from the preceding
1005	 * segment, then it's checksum is invalidated.
1006	 */
1007	if (p) {
1008		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
1009		    ntohs(ip->ip_off);
1010		if (i > 0) {
1011			if (i >= ntohs(ip->ip_len))
1012				goto dropfrag;
1013			m_adj(m, i);
1014			m->m_pkthdr.csum_flags = 0;
1015			ip->ip_off = htons(ntohs(ip->ip_off) + i);
1016			ip->ip_len = htons(ntohs(ip->ip_len) - i);
1017		}
1018		m->m_nextpkt = p->m_nextpkt;
1019		p->m_nextpkt = m;
1020	} else {
1021		m->m_nextpkt = fp->ipq_frags;
1022		fp->ipq_frags = m;
1023	}
1024
1025	/*
1026	 * While we overlap succeeding segments trim them or,
1027	 * if they are completely covered, dequeue them.
1028	 */
1029	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1030	    ntohs(GETIP(q)->ip_off); q = nq) {
1031		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1032		    ntohs(GETIP(q)->ip_off);
1033		if (i < ntohs(GETIP(q)->ip_len)) {
1034			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1035			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1036			m_adj(q, i);
1037			q->m_pkthdr.csum_flags = 0;
1038			break;
1039		}
1040		nq = q->m_nextpkt;
1041		m->m_nextpkt = nq;
1042		IPSTAT_INC(ips_fragdropped);
1043		fp->ipq_nfrags--;
1044		m_freem(q);
1045	}
1046
1047	/*
1048	 * Check for complete reassembly and perform frag per packet
1049	 * limiting.
1050	 *
1051	 * Frag limiting is performed here so that the nth frag has
1052	 * a chance to complete the packet before we drop the packet.
1053	 * As a result, n+1 frags are actually allowed per packet, but
1054	 * only n will ever be stored. (n = maxfragsperpacket.)
1055	 *
1056	 */
1057	next = 0;
1058	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1059		if (ntohs(GETIP(q)->ip_off) != next) {
1060			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1061				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1062				ip_freef(head, fp);
1063			}
1064			goto done;
1065		}
1066		next += ntohs(GETIP(q)->ip_len);
1067	}
1068	/* Make sure the last packet didn't have the IP_MF flag */
1069	if (p->m_flags & M_IP_FRAG) {
1070		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1071			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1072			ip_freef(head, fp);
1073		}
1074		goto done;
1075	}
1076
1077	/*
1078	 * Reassembly is complete.  Make sure the packet is a sane size.
1079	 */
1080	q = fp->ipq_frags;
1081	ip = GETIP(q);
1082	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1083		IPSTAT_INC(ips_toolong);
1084		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1085		ip_freef(head, fp);
1086		goto done;
1087	}
1088
1089	/*
1090	 * Concatenate fragments.
1091	 */
1092	m = q;
1093	t = m->m_next;
1094	m->m_next = NULL;
1095	m_cat(m, t);
1096	nq = q->m_nextpkt;
1097	q->m_nextpkt = NULL;
1098	for (q = nq; q != NULL; q = nq) {
1099		nq = q->m_nextpkt;
1100		q->m_nextpkt = NULL;
1101		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1102		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1103		m_cat(m, q);
1104	}
1105	/*
1106	 * In order to do checksumming faster we do 'end-around carry' here
1107	 * (and not in for{} loop), though it implies we are not going to
1108	 * reassemble more than 64k fragments.
1109	 */
1110	m->m_pkthdr.csum_data =
1111	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1112#ifdef MAC
1113	mac_ipq_reassemble(fp, m);
1114	mac_ipq_destroy(fp);
1115#endif
1116
1117	/*
1118	 * Create header for new ip packet by modifying header of first
1119	 * packet;  dequeue and discard fragment reassembly header.
1120	 * Make header visible.
1121	 */
1122	ip->ip_len = htons((ip->ip_hl << 2) + next);
1123	ip->ip_src = fp->ipq_src;
1124	ip->ip_dst = fp->ipq_dst;
1125	TAILQ_REMOVE(head, fp, ipq_list);
1126	V_nipq--;
1127	uma_zfree(V_ipq_zone, fp);
1128	m->m_len += (ip->ip_hl << 2);
1129	m->m_data -= (ip->ip_hl << 2);
1130	/* some debugging cruft by sklower, below, will go away soon */
1131	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1132		m_fixhdr(m);
1133	IPSTAT_INC(ips_reassembled);
1134	IPQ_UNLOCK();
1135	return (m);
1136
1137dropfrag:
1138	IPSTAT_INC(ips_fragdropped);
1139	if (fp != NULL)
1140		fp->ipq_nfrags--;
1141	m_freem(m);
1142done:
1143	IPQ_UNLOCK();
1144	return (NULL);
1145
1146#undef GETIP
1147}
1148
1149/*
1150 * Free a fragment reassembly header and all
1151 * associated datagrams.
1152 */
1153static void
1154ip_freef(struct ipqhead *fhp, struct ipq *fp)
1155{
1156	struct mbuf *q;
1157
1158	IPQ_LOCK_ASSERT();
1159
1160	while (fp->ipq_frags) {
1161		q = fp->ipq_frags;
1162		fp->ipq_frags = q->m_nextpkt;
1163		m_freem(q);
1164	}
1165	TAILQ_REMOVE(fhp, fp, ipq_list);
1166	uma_zfree(V_ipq_zone, fp);
1167	V_nipq--;
1168}
1169
1170/*
1171 * IP timer processing;
1172 * if a timer expires on a reassembly
1173 * queue, discard it.
1174 */
1175void
1176ip_slowtimo(void)
1177{
1178	VNET_ITERATOR_DECL(vnet_iter);
1179	struct ipq *fp;
1180	int i;
1181
1182	VNET_LIST_RLOCK_NOSLEEP();
1183	IPQ_LOCK();
1184	VNET_FOREACH(vnet_iter) {
1185		CURVNET_SET(vnet_iter);
1186		for (i = 0; i < IPREASS_NHASH; i++) {
1187			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1188				struct ipq *fpp;
1189
1190				fpp = fp;
1191				fp = TAILQ_NEXT(fp, ipq_list);
1192				if(--fpp->ipq_ttl == 0) {
1193					IPSTAT_ADD(ips_fragtimeout,
1194					    fpp->ipq_nfrags);
1195					ip_freef(&V_ipq[i], fpp);
1196				}
1197			}
1198		}
1199		/*
1200		 * If we are over the maximum number of fragments
1201		 * (due to the limit being lowered), drain off
1202		 * enough to get down to the new limit.
1203		 */
1204		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1205			for (i = 0; i < IPREASS_NHASH; i++) {
1206				while (V_nipq > V_maxnipq &&
1207				    !TAILQ_EMPTY(&V_ipq[i])) {
1208					IPSTAT_ADD(ips_fragdropped,
1209					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1210					ip_freef(&V_ipq[i],
1211					    TAILQ_FIRST(&V_ipq[i]));
1212				}
1213			}
1214		}
1215		CURVNET_RESTORE();
1216	}
1217	IPQ_UNLOCK();
1218	VNET_LIST_RUNLOCK_NOSLEEP();
1219}
1220
1221/*
1222 * Drain off all datagram fragments.
1223 */
1224static void
1225ip_drain_locked(void)
1226{
1227	int     i;
1228
1229	IPQ_LOCK_ASSERT();
1230
1231	for (i = 0; i < IPREASS_NHASH; i++) {
1232		while(!TAILQ_EMPTY(&V_ipq[i])) {
1233			IPSTAT_ADD(ips_fragdropped,
1234			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1235			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1236		}
1237	}
1238}
1239
1240void
1241ip_drain(void)
1242{
1243	VNET_ITERATOR_DECL(vnet_iter);
1244
1245	VNET_LIST_RLOCK_NOSLEEP();
1246	IPQ_LOCK();
1247	VNET_FOREACH(vnet_iter) {
1248		CURVNET_SET(vnet_iter);
1249		ip_drain_locked();
1250		CURVNET_RESTORE();
1251	}
1252	IPQ_UNLOCK();
1253	VNET_LIST_RUNLOCK_NOSLEEP();
1254	in_rtqdrain();
1255}
1256
1257/*
1258 * The protocol to be inserted into ip_protox[] must be already registered
1259 * in inetsw[], either statically or through pf_proto_register().
1260 */
1261int
1262ipproto_register(short ipproto)
1263{
1264	struct protosw *pr;
1265
1266	/* Sanity checks. */
1267	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1268		return (EPROTONOSUPPORT);
1269
1270	/*
1271	 * The protocol slot must not be occupied by another protocol
1272	 * already.  An index pointing to IPPROTO_RAW is unused.
1273	 */
1274	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1275	if (pr == NULL)
1276		return (EPFNOSUPPORT);
1277	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1278		return (EEXIST);
1279
1280	/* Find the protocol position in inetsw[] and set the index. */
1281	for (pr = inetdomain.dom_protosw;
1282	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1283		if (pr->pr_domain->dom_family == PF_INET &&
1284		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1285			ip_protox[pr->pr_protocol] = pr - inetsw;
1286			return (0);
1287		}
1288	}
1289	return (EPROTONOSUPPORT);
1290}
1291
1292int
1293ipproto_unregister(short ipproto)
1294{
1295	struct protosw *pr;
1296
1297	/* Sanity checks. */
1298	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1299		return (EPROTONOSUPPORT);
1300
1301	/* Check if the protocol was indeed registered. */
1302	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1303	if (pr == NULL)
1304		return (EPFNOSUPPORT);
1305	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1306		return (ENOENT);
1307
1308	/* Reset the protocol slot to IPPROTO_RAW. */
1309	ip_protox[ipproto] = pr - inetsw;
1310	return (0);
1311}
1312
1313/*
1314 * Given address of next destination (final or next hop), return (referenced)
1315 * internet address info of interface to be used to get there.
1316 */
1317struct in_ifaddr *
1318ip_rtaddr(struct in_addr dst, u_int fibnum)
1319{
1320	struct route sro;
1321	struct sockaddr_in *sin;
1322	struct in_ifaddr *ia;
1323
1324	bzero(&sro, sizeof(sro));
1325	sin = (struct sockaddr_in *)&sro.ro_dst;
1326	sin->sin_family = AF_INET;
1327	sin->sin_len = sizeof(*sin);
1328	sin->sin_addr = dst;
1329	in_rtalloc_ign(&sro, 0, fibnum);
1330
1331	if (sro.ro_rt == NULL)
1332		return (NULL);
1333
1334	ia = ifatoia(sro.ro_rt->rt_ifa);
1335	ifa_ref(&ia->ia_ifa);
1336	RTFREE(sro.ro_rt);
1337	return (ia);
1338}
1339
1340u_char inetctlerrmap[PRC_NCMDS] = {
1341	0,		0,		0,		0,
1342	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1343	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1344	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1345	0,		0,		EHOSTUNREACH,	0,
1346	ENOPROTOOPT,	ECONNREFUSED
1347};
1348
1349/*
1350 * Forward a packet.  If some error occurs return the sender
1351 * an icmp packet.  Note we can't always generate a meaningful
1352 * icmp message because icmp doesn't have a large enough repertoire
1353 * of codes and types.
1354 *
1355 * If not forwarding, just drop the packet.  This could be confusing
1356 * if ipforwarding was zero but some routing protocol was advancing
1357 * us as a gateway to somewhere.  However, we must let the routing
1358 * protocol deal with that.
1359 *
1360 * The srcrt parameter indicates whether the packet is being forwarded
1361 * via a source route.
1362 */
1363void
1364ip_forward(struct mbuf *m, int srcrt)
1365{
1366	struct ip *ip = mtod(m, struct ip *);
1367	struct in_ifaddr *ia;
1368	struct mbuf *mcopy;
1369	struct in_addr dest;
1370	struct route ro;
1371	int error, type = 0, code = 0, mtu = 0;
1372
1373	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1374		IPSTAT_INC(ips_cantforward);
1375		m_freem(m);
1376		return;
1377	}
1378#ifdef IPSTEALTH
1379	if (!V_ipstealth) {
1380#endif
1381		if (ip->ip_ttl <= IPTTLDEC) {
1382			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1383			    0, 0);
1384			return;
1385		}
1386#ifdef IPSTEALTH
1387	}
1388#endif
1389
1390	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1391#ifndef IPSEC
1392	/*
1393	 * 'ia' may be NULL if there is no route for this destination.
1394	 * In case of IPsec, Don't discard it just yet, but pass it to
1395	 * ip_output in case of outgoing IPsec policy.
1396	 */
1397	if (!srcrt && ia == NULL) {
1398		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1399		return;
1400	}
1401#endif
1402
1403	/*
1404	 * Save the IP header and at most 8 bytes of the payload,
1405	 * in case we need to generate an ICMP message to the src.
1406	 *
1407	 * XXX this can be optimized a lot by saving the data in a local
1408	 * buffer on the stack (72 bytes at most), and only allocating the
1409	 * mbuf if really necessary. The vast majority of the packets
1410	 * are forwarded without having to send an ICMP back (either
1411	 * because unnecessary, or because rate limited), so we are
1412	 * really we are wasting a lot of work here.
1413	 *
1414	 * We don't use m_copy() because it might return a reference
1415	 * to a shared cluster. Both this function and ip_output()
1416	 * assume exclusive access to the IP header in `m', so any
1417	 * data in a cluster may change before we reach icmp_error().
1418	 */
1419	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1420	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1421		/*
1422		 * It's probably ok if the pkthdr dup fails (because
1423		 * the deep copy of the tag chain failed), but for now
1424		 * be conservative and just discard the copy since
1425		 * code below may some day want the tags.
1426		 */
1427		m_free(mcopy);
1428		mcopy = NULL;
1429	}
1430	if (mcopy != NULL) {
1431		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1432		mcopy->m_pkthdr.len = mcopy->m_len;
1433		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1434	}
1435
1436#ifdef IPSTEALTH
1437	if (!V_ipstealth) {
1438#endif
1439		ip->ip_ttl -= IPTTLDEC;
1440#ifdef IPSTEALTH
1441	}
1442#endif
1443
1444	/*
1445	 * If forwarding packet using same interface that it came in on,
1446	 * perhaps should send a redirect to sender to shortcut a hop.
1447	 * Only send redirect if source is sending directly to us,
1448	 * and if packet was not source routed (or has any options).
1449	 * Also, don't send redirect if forwarding using a default route
1450	 * or a route modified by a redirect.
1451	 */
1452	dest.s_addr = 0;
1453	if (!srcrt && V_ipsendredirects &&
1454	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1455		struct sockaddr_in *sin;
1456		struct rtentry *rt;
1457
1458		bzero(&ro, sizeof(ro));
1459		sin = (struct sockaddr_in *)&ro.ro_dst;
1460		sin->sin_family = AF_INET;
1461		sin->sin_len = sizeof(*sin);
1462		sin->sin_addr = ip->ip_dst;
1463		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1464
1465		rt = ro.ro_rt;
1466
1467		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1468		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1469#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1470			u_long src = ntohl(ip->ip_src.s_addr);
1471
1472			if (RTA(rt) &&
1473			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1474				if (rt->rt_flags & RTF_GATEWAY)
1475					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1476				else
1477					dest.s_addr = ip->ip_dst.s_addr;
1478				/* Router requirements says to only send host redirects */
1479				type = ICMP_REDIRECT;
1480				code = ICMP_REDIRECT_HOST;
1481			}
1482		}
1483		if (rt)
1484			RTFREE(rt);
1485	}
1486
1487	/*
1488	 * Try to cache the route MTU from ip_output so we can consider it for
1489	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1490	 */
1491	bzero(&ro, sizeof(ro));
1492
1493	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1494
1495	if (error == EMSGSIZE && ro.ro_rt)
1496		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1497	RO_RTFREE(&ro);
1498
1499	if (error)
1500		IPSTAT_INC(ips_cantforward);
1501	else {
1502		IPSTAT_INC(ips_forward);
1503		if (type)
1504			IPSTAT_INC(ips_redirectsent);
1505		else {
1506			if (mcopy)
1507				m_freem(mcopy);
1508			if (ia != NULL)
1509				ifa_free(&ia->ia_ifa);
1510			return;
1511		}
1512	}
1513	if (mcopy == NULL) {
1514		if (ia != NULL)
1515			ifa_free(&ia->ia_ifa);
1516		return;
1517	}
1518
1519	switch (error) {
1520
1521	case 0:				/* forwarded, but need redirect */
1522		/* type, code set above */
1523		break;
1524
1525	case ENETUNREACH:
1526	case EHOSTUNREACH:
1527	case ENETDOWN:
1528	case EHOSTDOWN:
1529	default:
1530		type = ICMP_UNREACH;
1531		code = ICMP_UNREACH_HOST;
1532		break;
1533
1534	case EMSGSIZE:
1535		type = ICMP_UNREACH;
1536		code = ICMP_UNREACH_NEEDFRAG;
1537
1538#ifdef IPSEC
1539		/*
1540		 * If IPsec is configured for this path,
1541		 * override any possibly mtu value set by ip_output.
1542		 */
1543		mtu = ip_ipsec_mtu(mcopy, mtu);
1544#endif /* IPSEC */
1545		/*
1546		 * If the MTU was set before make sure we are below the
1547		 * interface MTU.
1548		 * If the MTU wasn't set before use the interface mtu or
1549		 * fall back to the next smaller mtu step compared to the
1550		 * current packet size.
1551		 */
1552		if (mtu != 0) {
1553			if (ia != NULL)
1554				mtu = min(mtu, ia->ia_ifp->if_mtu);
1555		} else {
1556			if (ia != NULL)
1557				mtu = ia->ia_ifp->if_mtu;
1558			else
1559				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1560		}
1561		IPSTAT_INC(ips_cantfrag);
1562		break;
1563
1564	case ENOBUFS:
1565		/*
1566		 * A router should not generate ICMP_SOURCEQUENCH as
1567		 * required in RFC1812 Requirements for IP Version 4 Routers.
1568		 * Source quench could be a big problem under DoS attacks,
1569		 * or if the underlying interface is rate-limited.
1570		 * Those who need source quench packets may re-enable them
1571		 * via the net.inet.ip.sendsourcequench sysctl.
1572		 */
1573		if (V_ip_sendsourcequench == 0) {
1574			m_freem(mcopy);
1575			if (ia != NULL)
1576				ifa_free(&ia->ia_ifa);
1577			return;
1578		} else {
1579			type = ICMP_SOURCEQUENCH;
1580			code = 0;
1581		}
1582		break;
1583
1584	case EACCES:			/* ipfw denied packet */
1585		m_freem(mcopy);
1586		if (ia != NULL)
1587			ifa_free(&ia->ia_ifa);
1588		return;
1589	}
1590	if (ia != NULL)
1591		ifa_free(&ia->ia_ifa);
1592	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1593}
1594
1595void
1596ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1597    struct mbuf *m)
1598{
1599
1600	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1601		struct bintime bt;
1602
1603		bintime(&bt);
1604		if (inp->inp_socket->so_options & SO_BINTIME) {
1605			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1606			    SCM_BINTIME, SOL_SOCKET);
1607			if (*mp)
1608				mp = &(*mp)->m_next;
1609		}
1610		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1611			struct timeval tv;
1612
1613			bintime2timeval(&bt, &tv);
1614			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1615			    SCM_TIMESTAMP, SOL_SOCKET);
1616			if (*mp)
1617				mp = &(*mp)->m_next;
1618		}
1619	}
1620	if (inp->inp_flags & INP_RECVDSTADDR) {
1621		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1622		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1623		if (*mp)
1624			mp = &(*mp)->m_next;
1625	}
1626	if (inp->inp_flags & INP_RECVTTL) {
1627		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1628		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1629		if (*mp)
1630			mp = &(*mp)->m_next;
1631	}
1632#ifdef notyet
1633	/* XXX
1634	 * Moving these out of udp_input() made them even more broken
1635	 * than they already were.
1636	 */
1637	/* options were tossed already */
1638	if (inp->inp_flags & INP_RECVOPTS) {
1639		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1640		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1641		if (*mp)
1642			mp = &(*mp)->m_next;
1643	}
1644	/* ip_srcroute doesn't do what we want here, need to fix */
1645	if (inp->inp_flags & INP_RECVRETOPTS) {
1646		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1647		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1648		if (*mp)
1649			mp = &(*mp)->m_next;
1650	}
1651#endif
1652	if (inp->inp_flags & INP_RECVIF) {
1653		struct ifnet *ifp;
1654		struct sdlbuf {
1655			struct sockaddr_dl sdl;
1656			u_char	pad[32];
1657		} sdlbuf;
1658		struct sockaddr_dl *sdp;
1659		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1660
1661		if ((ifp = m->m_pkthdr.rcvif) &&
1662		    ifp->if_index && ifp->if_index <= V_if_index) {
1663			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1664			/*
1665			 * Change our mind and don't try copy.
1666			 */
1667			if (sdp->sdl_family != AF_LINK ||
1668			    sdp->sdl_len > sizeof(sdlbuf)) {
1669				goto makedummy;
1670			}
1671			bcopy(sdp, sdl2, sdp->sdl_len);
1672		} else {
1673makedummy:
1674			sdl2->sdl_len =
1675			    offsetof(struct sockaddr_dl, sdl_data[0]);
1676			sdl2->sdl_family = AF_LINK;
1677			sdl2->sdl_index = 0;
1678			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1679		}
1680		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1681		    IP_RECVIF, IPPROTO_IP);
1682		if (*mp)
1683			mp = &(*mp)->m_next;
1684	}
1685	if (inp->inp_flags & INP_RECVTOS) {
1686		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1687		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1688		if (*mp)
1689			mp = &(*mp)->m_next;
1690	}
1691}
1692
1693/*
1694 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1695 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1696 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1697 * compiled.
1698 */
1699static VNET_DEFINE(int, ip_rsvp_on);
1700VNET_DEFINE(struct socket *, ip_rsvpd);
1701
1702#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1703
1704int
1705ip_rsvp_init(struct socket *so)
1706{
1707
1708	if (so->so_type != SOCK_RAW ||
1709	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1710		return EOPNOTSUPP;
1711
1712	if (V_ip_rsvpd != NULL)
1713		return EADDRINUSE;
1714
1715	V_ip_rsvpd = so;
1716	/*
1717	 * This may seem silly, but we need to be sure we don't over-increment
1718	 * the RSVP counter, in case something slips up.
1719	 */
1720	if (!V_ip_rsvp_on) {
1721		V_ip_rsvp_on = 1;
1722		V_rsvp_on++;
1723	}
1724
1725	return 0;
1726}
1727
1728int
1729ip_rsvp_done(void)
1730{
1731
1732	V_ip_rsvpd = NULL;
1733	/*
1734	 * This may seem silly, but we need to be sure we don't over-decrement
1735	 * the RSVP counter, in case something slips up.
1736	 */
1737	if (V_ip_rsvp_on) {
1738		V_ip_rsvp_on = 0;
1739		V_rsvp_on--;
1740	}
1741	return 0;
1742}
1743
1744void
1745rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1746{
1747
1748	if (rsvp_input_p) { /* call the real one if loaded */
1749		rsvp_input_p(m, off);
1750		return;
1751	}
1752
1753	/* Can still get packets with rsvp_on = 0 if there is a local member
1754	 * of the group to which the RSVP packet is addressed.  But in this
1755	 * case we want to throw the packet away.
1756	 */
1757
1758	if (!V_rsvp_on) {
1759		m_freem(m);
1760		return;
1761	}
1762
1763	if (V_ip_rsvpd != NULL) {
1764		rip_input(m, off);
1765		return;
1766	}
1767	/* Drop the packet */
1768	m_freem(m);
1769}
1770