ip_reass.c revision 250300
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 250300 2013-05-06 16:42:18Z andre $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/domain.h>
46#include <sys/protosw.h>
47#include <sys/socket.h>
48#include <sys/time.h>
49#include <sys/kernel.h>
50#include <sys/lock.h>
51#include <sys/rwlock.h>
52#include <sys/syslog.h>
53#include <sys/sysctl.h>
54
55#include <net/pfil.h>
56#include <net/if.h>
57#include <net/if_types.h>
58#include <net/if_var.h>
59#include <net/if_dl.h>
60#include <net/route.h>
61#include <net/netisr.h>
62#include <net/vnet.h>
63#include <net/flowtable.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/in_var.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_fw.h>
72#include <netinet/ip_icmp.h>
73#include <netinet/ip_options.h>
74#include <machine/in_cksum.h>
75#include <netinet/ip_carp.h>
76#ifdef IPSEC
77#include <netinet/ip_ipsec.h>
78#endif /* IPSEC */
79
80#include <sys/socketvar.h>
81
82#include <security/mac/mac_framework.h>
83
84#ifdef CTASSERT
85CTASSERT(sizeof(struct ip) == 20);
86#endif
87
88struct	rwlock in_ifaddr_lock;
89RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
90
91VNET_DEFINE(int, rsvp_on);
92
93VNET_DEFINE(int, ipforwarding);
94SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95    &VNET_NAME(ipforwarding), 0,
96    "Enable IP forwarding between interfaces");
97
98static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
99#define	V_ipsendredirects	VNET(ipsendredirects)
100SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
101    &VNET_NAME(ipsendredirects), 0,
102    "Enable sending IP redirects");
103
104static VNET_DEFINE(int, ip_keepfaith);
105#define	V_ip_keepfaith		VNET(ip_keepfaith)
106SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
107    &VNET_NAME(ip_keepfaith), 0,
108    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
109
110static VNET_DEFINE(int, ip_sendsourcequench);
111#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
112SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
113    &VNET_NAME(ip_sendsourcequench), 0,
114    "Enable the transmission of source quench packets");
115
116VNET_DEFINE(int, ip_do_randomid);
117SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
118    &VNET_NAME(ip_do_randomid), 0,
119    "Assign random ip_id values");
120
121/*
122 * XXX - Setting ip_checkinterface mostly implements the receive side of
123 * the Strong ES model described in RFC 1122, but since the routing table
124 * and transmit implementation do not implement the Strong ES model,
125 * setting this to 1 results in an odd hybrid.
126 *
127 * XXX - ip_checkinterface currently must be disabled if you use ipnat
128 * to translate the destination address to another local interface.
129 *
130 * XXX - ip_checkinterface must be disabled if you add IP aliases
131 * to the loopback interface instead of the interface where the
132 * packets for those addresses are received.
133 */
134static VNET_DEFINE(int, ip_checkinterface);
135#define	V_ip_checkinterface	VNET(ip_checkinterface)
136SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
137    &VNET_NAME(ip_checkinterface), 0,
138    "Verify packet arrives on correct interface");
139
140VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
141
142static struct netisr_handler ip_nh = {
143	.nh_name = "ip",
144	.nh_handler = ip_input,
145	.nh_proto = NETISR_IP,
146	.nh_policy = NETISR_POLICY_FLOW,
147};
148
149extern	struct domain inetdomain;
150extern	struct protosw inetsw[];
151u_char	ip_protox[IPPROTO_MAX];
152VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
153VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
154VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
155
156static VNET_DEFINE(uma_zone_t, ipq_zone);
157static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
158static struct mtx ipqlock;
159
160#define	V_ipq_zone		VNET(ipq_zone)
161#define	V_ipq			VNET(ipq)
162
163#define	IPQ_LOCK()	mtx_lock(&ipqlock)
164#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
165#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
166#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
167
168static void	maxnipq_update(void);
169static void	ipq_zone_change(void *);
170static void	ip_drain_locked(void);
171
172static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
173static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
174#define	V_maxnipq		VNET(maxnipq)
175#define	V_nipq			VNET(nipq)
176SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
177    &VNET_NAME(nipq), 0,
178    "Current number of IPv4 fragment reassembly queue entries");
179
180static VNET_DEFINE(int, maxfragsperpacket);
181#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
182SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
183    &VNET_NAME(maxfragsperpacket), 0,
184    "Maximum number of IPv4 fragments allowed per packet");
185
186#ifdef IPCTL_DEFMTU
187SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
188    &ip_mtu, 0, "Default MTU");
189#endif
190
191#ifdef IPSTEALTH
192VNET_DEFINE(int, ipstealth);
193SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
194    &VNET_NAME(ipstealth), 0,
195    "IP stealth mode, no TTL decrementation on forwarding");
196#endif
197
198#ifdef FLOWTABLE
199static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
200VNET_DEFINE(struct flowtable *, ip_ft);
201#define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
202
203SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
204    &VNET_NAME(ip_output_flowtable_size), 2048,
205    "number of entries in the per-cpu output flow caches");
206#endif
207
208static void	ip_freef(struct ipqhead *, struct ipq *);
209
210/*
211 * IP statistics are stored in struct ipstat_p, which is
212 * an "array" of counter(9)s.  Although it isn't a real
213 * array, we treat it as array to reduce code bloat.
214 */
215VNET_DEFINE(struct ipstat_p, ipstatp);
216
217static void
218vnet_ipstatp_init(const void *unused)
219{
220	counter_u64_t *c;
221	int i;
222
223	for (i = 0, c = (counter_u64_t *)&V_ipstatp;
224	    i < sizeof(V_ipstatp) / sizeof(counter_u64_t);
225	    i++, c++) {
226		*c = counter_u64_alloc(M_WAITOK);
227		counter_u64_zero(*c);
228	}
229}
230VNET_SYSINIT(vnet_ipstatp_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
231            vnet_ipstatp_init, NULL);
232
233#ifdef VIMAGE
234static void
235vnet_ipstatp_uninit(const void *unused)
236{
237	counter_u64_t *c;
238	int i;
239
240	for (i = 0, c = (counter_u64_t *)&V_ipstatp;
241	    i < sizeof(V_ipstatp) / sizeof(counter_u64_t);
242	    i++, c++)
243		counter_u64_free(*c);
244}
245VNET_SYSUNINIT(vnet_ipstatp_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
246            vnet_ipstatp_uninit, NULL);
247#endif /* VIMAGE */
248
249static int
250ipstat_sysctl(SYSCTL_HANDLER_ARGS)
251{
252	struct ipstat ipstat;
253	counter_u64_t *c;
254	uint64_t *v;
255	int i;
256
257	for (i = 0, c = (counter_u64_t *)&V_ipstatp, v = (uint64_t *)&ipstat;
258	    i < sizeof(V_ipstatp) / sizeof(counter_u64_t);
259	    i++, c++, v++) {
260		*v = counter_u64_fetch(*c);
261		/*
262		 * Old interface allowed to rewrite 'struct ipstat', and
263		 * netstat(1) used it to zero the structure. To keep
264		 * compatibility with old netstat(1) we will zero out
265		 * statistics on every write attempt, however we no longer
266		 * support writing arbitrary fake values to the statistics.
267		 */
268		if (req->newptr)
269			counter_u64_zero(*c);
270	}
271
272	return (SYSCTL_OUT(req, &ipstat, sizeof(ipstat)));
273}
274SYSCTL_VNET_PROC(_net_inet_ip, IPCTL_STATS, stats, CTLTYPE_OPAQUE | CTLFLAG_RW,
275    NULL, 0, ipstat_sysctl, "I",
276    "IP statistics (struct ipstat, netinet/ip_var.h)");
277
278/*
279 * Kernel module interface for updating ipstat.  The argument is an index
280 * into ipstat treated as an array.
281 */
282void
283kmod_ipstat_inc(int statnum)
284{
285
286	counter_u64_add((counter_u64_t )&V_ipstatp + statnum, 1);
287}
288
289void
290kmod_ipstat_dec(int statnum)
291{
292
293	counter_u64_add((counter_u64_t )&V_ipstatp + statnum, -1);
294}
295
296static int
297sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
298{
299	int error, qlimit;
300
301	netisr_getqlimit(&ip_nh, &qlimit);
302	error = sysctl_handle_int(oidp, &qlimit, 0, req);
303	if (error || !req->newptr)
304		return (error);
305	if (qlimit < 1)
306		return (EINVAL);
307	return (netisr_setqlimit(&ip_nh, qlimit));
308}
309SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
310    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
311    "Maximum size of the IP input queue");
312
313static int
314sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
315{
316	u_int64_t qdrops_long;
317	int error, qdrops;
318
319	netisr_getqdrops(&ip_nh, &qdrops_long);
320	qdrops = qdrops_long;
321	error = sysctl_handle_int(oidp, &qdrops, 0, req);
322	if (error || !req->newptr)
323		return (error);
324	if (qdrops != 0)
325		return (EINVAL);
326	netisr_clearqdrops(&ip_nh);
327	return (0);
328}
329
330SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
331    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
332    "Number of packets dropped from the IP input queue");
333
334/*
335 * IP initialization: fill in IP protocol switch table.
336 * All protocols not implemented in kernel go to raw IP protocol handler.
337 */
338void
339ip_init(void)
340{
341	struct protosw *pr;
342	int i;
343
344	V_ip_id = time_second & 0xffff;
345
346	TAILQ_INIT(&V_in_ifaddrhead);
347	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
348
349	/* Initialize IP reassembly queue. */
350	for (i = 0; i < IPREASS_NHASH; i++)
351		TAILQ_INIT(&V_ipq[i]);
352	V_maxnipq = nmbclusters / 32;
353	V_maxfragsperpacket = 16;
354	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
355	    NULL, UMA_ALIGN_PTR, 0);
356	maxnipq_update();
357
358	/* Initialize packet filter hooks. */
359	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
360	V_inet_pfil_hook.ph_af = AF_INET;
361	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
362		printf("%s: WARNING: unable to register pfil hook, "
363			"error %d\n", __func__, i);
364
365#ifdef FLOWTABLE
366	if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
367		&V_ip_output_flowtable_size)) {
368		if (V_ip_output_flowtable_size < 256)
369			V_ip_output_flowtable_size = 256;
370		if (!powerof2(V_ip_output_flowtable_size)) {
371			printf("flowtable must be power of 2 size\n");
372			V_ip_output_flowtable_size = 2048;
373		}
374	} else {
375		/*
376		 * round up to the next power of 2
377		 */
378		V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
379	}
380	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
381#endif
382
383	/* Skip initialization of globals for non-default instances. */
384	if (!IS_DEFAULT_VNET(curvnet))
385		return;
386
387	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
388	if (pr == NULL)
389		panic("ip_init: PF_INET not found");
390
391	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
392	for (i = 0; i < IPPROTO_MAX; i++)
393		ip_protox[i] = pr - inetsw;
394	/*
395	 * Cycle through IP protocols and put them into the appropriate place
396	 * in ip_protox[].
397	 */
398	for (pr = inetdomain.dom_protosw;
399	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
400		if (pr->pr_domain->dom_family == PF_INET &&
401		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
402			/* Be careful to only index valid IP protocols. */
403			if (pr->pr_protocol < IPPROTO_MAX)
404				ip_protox[pr->pr_protocol] = pr - inetsw;
405		}
406
407	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
408		NULL, EVENTHANDLER_PRI_ANY);
409
410	/* Initialize various other remaining things. */
411	IPQ_LOCK_INIT();
412	netisr_register(&ip_nh);
413}
414
415#ifdef VIMAGE
416void
417ip_destroy(void)
418{
419
420	/* Cleanup in_ifaddr hash table; should be empty. */
421	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
422
423	IPQ_LOCK();
424	ip_drain_locked();
425	IPQ_UNLOCK();
426
427	uma_zdestroy(V_ipq_zone);
428}
429#endif
430
431/*
432 * Ip input routine.  Checksum and byte swap header.  If fragmented
433 * try to reassemble.  Process options.  Pass to next level.
434 */
435void
436ip_input(struct mbuf *m)
437{
438	struct ip *ip = NULL;
439	struct in_ifaddr *ia = NULL;
440	struct ifaddr *ifa;
441	struct ifnet *ifp;
442	int    checkif, hlen = 0;
443	uint16_t sum, ip_len;
444	int dchg = 0;				/* dest changed after fw */
445	struct in_addr odst;			/* original dst address */
446
447	M_ASSERTPKTHDR(m);
448
449	if (m->m_flags & M_FASTFWD_OURS) {
450		m->m_flags &= ~M_FASTFWD_OURS;
451		/* Set up some basics that will be used later. */
452		ip = mtod(m, struct ip *);
453		hlen = ip->ip_hl << 2;
454		ip_len = ntohs(ip->ip_len);
455		goto ours;
456	}
457
458	IPSTAT_INC(ips_total);
459
460	if (m->m_pkthdr.len < sizeof(struct ip))
461		goto tooshort;
462
463	if (m->m_len < sizeof (struct ip) &&
464	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
465		IPSTAT_INC(ips_toosmall);
466		return;
467	}
468	ip = mtod(m, struct ip *);
469
470	if (ip->ip_v != IPVERSION) {
471		IPSTAT_INC(ips_badvers);
472		goto bad;
473	}
474
475	hlen = ip->ip_hl << 2;
476	if (hlen < sizeof(struct ip)) {	/* minimum header length */
477		IPSTAT_INC(ips_badhlen);
478		goto bad;
479	}
480	if (hlen > m->m_len) {
481		if ((m = m_pullup(m, hlen)) == NULL) {
482			IPSTAT_INC(ips_badhlen);
483			return;
484		}
485		ip = mtod(m, struct ip *);
486	}
487
488	/* 127/8 must not appear on wire - RFC1122 */
489	ifp = m->m_pkthdr.rcvif;
490	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
491	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
492		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
493			IPSTAT_INC(ips_badaddr);
494			goto bad;
495		}
496	}
497
498	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
499		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
500	} else {
501		if (hlen == sizeof(struct ip)) {
502			sum = in_cksum_hdr(ip);
503		} else {
504			sum = in_cksum(m, hlen);
505		}
506	}
507	if (sum) {
508		IPSTAT_INC(ips_badsum);
509		goto bad;
510	}
511
512#ifdef ALTQ
513	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
514		/* packet is dropped by traffic conditioner */
515		return;
516#endif
517
518	ip_len = ntohs(ip->ip_len);
519	if (ip_len < hlen) {
520		IPSTAT_INC(ips_badlen);
521		goto bad;
522	}
523
524	/*
525	 * Check that the amount of data in the buffers
526	 * is as at least much as the IP header would have us expect.
527	 * Trim mbufs if longer than we expect.
528	 * Drop packet if shorter than we expect.
529	 */
530	if (m->m_pkthdr.len < ip_len) {
531tooshort:
532		IPSTAT_INC(ips_tooshort);
533		goto bad;
534	}
535	if (m->m_pkthdr.len > ip_len) {
536		if (m->m_len == m->m_pkthdr.len) {
537			m->m_len = ip_len;
538			m->m_pkthdr.len = ip_len;
539		} else
540			m_adj(m, ip_len - m->m_pkthdr.len);
541	}
542#ifdef IPSEC
543	/*
544	 * Bypass packet filtering for packets previously handled by IPsec.
545	 */
546	if (ip_ipsec_filtertunnel(m))
547		goto passin;
548#endif /* IPSEC */
549
550	/*
551	 * Run through list of hooks for input packets.
552	 *
553	 * NB: Beware of the destination address changing (e.g.
554	 *     by NAT rewriting).  When this happens, tell
555	 *     ip_forward to do the right thing.
556	 */
557
558	/* Jump over all PFIL processing if hooks are not active. */
559	if (!PFIL_HOOKED(&V_inet_pfil_hook))
560		goto passin;
561
562	odst = ip->ip_dst;
563	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
564		return;
565	if (m == NULL)			/* consumed by filter */
566		return;
567
568	ip = mtod(m, struct ip *);
569	dchg = (odst.s_addr != ip->ip_dst.s_addr);
570	ifp = m->m_pkthdr.rcvif;
571
572	if (m->m_flags & M_FASTFWD_OURS) {
573		m->m_flags &= ~M_FASTFWD_OURS;
574		goto ours;
575	}
576	if (m->m_flags & M_IP_NEXTHOP) {
577		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
578		if (dchg != 0) {
579			/*
580			 * Directly ship the packet on.  This allows
581			 * forwarding packets originally destined to us
582			 * to some other directly connected host.
583			 */
584			ip_forward(m, 1);
585			return;
586		}
587	}
588passin:
589
590	/*
591	 * Process options and, if not destined for us,
592	 * ship it on.  ip_dooptions returns 1 when an
593	 * error was detected (causing an icmp message
594	 * to be sent and the original packet to be freed).
595	 */
596	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
597		return;
598
599        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
600         * matter if it is destined to another node, or whether it is
601         * a multicast one, RSVP wants it! and prevents it from being forwarded
602         * anywhere else. Also checks if the rsvp daemon is running before
603	 * grabbing the packet.
604         */
605	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
606		goto ours;
607
608	/*
609	 * Check our list of addresses, to see if the packet is for us.
610	 * If we don't have any addresses, assume any unicast packet
611	 * we receive might be for us (and let the upper layers deal
612	 * with it).
613	 */
614	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
615	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
616		goto ours;
617
618	/*
619	 * Enable a consistency check between the destination address
620	 * and the arrival interface for a unicast packet (the RFC 1122
621	 * strong ES model) if IP forwarding is disabled and the packet
622	 * is not locally generated and the packet is not subject to
623	 * 'ipfw fwd'.
624	 *
625	 * XXX - Checking also should be disabled if the destination
626	 * address is ipnat'ed to a different interface.
627	 *
628	 * XXX - Checking is incompatible with IP aliases added
629	 * to the loopback interface instead of the interface where
630	 * the packets are received.
631	 *
632	 * XXX - This is the case for carp vhost IPs as well so we
633	 * insert a workaround. If the packet got here, we already
634	 * checked with carp_iamatch() and carp_forus().
635	 */
636	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
637	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
638	    ifp->if_carp == NULL && (dchg == 0);
639
640	/*
641	 * Check for exact addresses in the hash bucket.
642	 */
643	/* IN_IFADDR_RLOCK(); */
644	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
645		/*
646		 * If the address matches, verify that the packet
647		 * arrived via the correct interface if checking is
648		 * enabled.
649		 */
650		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
651		    (!checkif || ia->ia_ifp == ifp)) {
652			ifa_ref(&ia->ia_ifa);
653			/* IN_IFADDR_RUNLOCK(); */
654			goto ours;
655		}
656	}
657	/* IN_IFADDR_RUNLOCK(); */
658
659	/*
660	 * Check for broadcast addresses.
661	 *
662	 * Only accept broadcast packets that arrive via the matching
663	 * interface.  Reception of forwarded directed broadcasts would
664	 * be handled via ip_forward() and ether_output() with the loopback
665	 * into the stack for SIMPLEX interfaces handled by ether_output().
666	 */
667	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
668		IF_ADDR_RLOCK(ifp);
669	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
670			if (ifa->ifa_addr->sa_family != AF_INET)
671				continue;
672			ia = ifatoia(ifa);
673			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
674			    ip->ip_dst.s_addr) {
675				ifa_ref(ifa);
676				IF_ADDR_RUNLOCK(ifp);
677				goto ours;
678			}
679#ifdef BOOTP_COMPAT
680			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
681				ifa_ref(ifa);
682				IF_ADDR_RUNLOCK(ifp);
683				goto ours;
684			}
685#endif
686		}
687		IF_ADDR_RUNLOCK(ifp);
688		ia = NULL;
689	}
690	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
691	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
692		IPSTAT_INC(ips_cantforward);
693		m_freem(m);
694		return;
695	}
696	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
697		if (V_ip_mrouter) {
698			/*
699			 * If we are acting as a multicast router, all
700			 * incoming multicast packets are passed to the
701			 * kernel-level multicast forwarding function.
702			 * The packet is returned (relatively) intact; if
703			 * ip_mforward() returns a non-zero value, the packet
704			 * must be discarded, else it may be accepted below.
705			 */
706			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
707				IPSTAT_INC(ips_cantforward);
708				m_freem(m);
709				return;
710			}
711
712			/*
713			 * The process-level routing daemon needs to receive
714			 * all multicast IGMP packets, whether or not this
715			 * host belongs to their destination groups.
716			 */
717			if (ip->ip_p == IPPROTO_IGMP)
718				goto ours;
719			IPSTAT_INC(ips_forward);
720		}
721		/*
722		 * Assume the packet is for us, to avoid prematurely taking
723		 * a lock on the in_multi hash. Protocols must perform
724		 * their own filtering and update statistics accordingly.
725		 */
726		goto ours;
727	}
728	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
729		goto ours;
730	if (ip->ip_dst.s_addr == INADDR_ANY)
731		goto ours;
732
733	/*
734	 * FAITH(Firewall Aided Internet Translator)
735	 */
736	if (ifp && ifp->if_type == IFT_FAITH) {
737		if (V_ip_keepfaith) {
738			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
739				goto ours;
740		}
741		m_freem(m);
742		return;
743	}
744
745	/*
746	 * Not for us; forward if possible and desirable.
747	 */
748	if (V_ipforwarding == 0) {
749		IPSTAT_INC(ips_cantforward);
750		m_freem(m);
751	} else {
752#ifdef IPSEC
753		if (ip_ipsec_fwd(m))
754			goto bad;
755#endif /* IPSEC */
756		ip_forward(m, dchg);
757	}
758	return;
759
760ours:
761#ifdef IPSTEALTH
762	/*
763	 * IPSTEALTH: Process non-routing options only
764	 * if the packet is destined for us.
765	 */
766	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
767		if (ia != NULL)
768			ifa_free(&ia->ia_ifa);
769		return;
770	}
771#endif /* IPSTEALTH */
772
773	/* Count the packet in the ip address stats */
774	if (ia != NULL) {
775		ia->ia_ifa.if_ipackets++;
776		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
777		ifa_free(&ia->ia_ifa);
778	}
779
780	/*
781	 * Attempt reassembly; if it succeeds, proceed.
782	 * ip_reass() will return a different mbuf.
783	 */
784	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
785		m = ip_reass(m);
786		if (m == NULL)
787			return;
788		ip = mtod(m, struct ip *);
789		/* Get the header length of the reassembled packet */
790		hlen = ip->ip_hl << 2;
791	}
792
793#ifdef IPSEC
794	/*
795	 * enforce IPsec policy checking if we are seeing last header.
796	 * note that we do not visit this with protocols with pcb layer
797	 * code - like udp/tcp/raw ip.
798	 */
799	if (ip_ipsec_input(m))
800		goto bad;
801#endif /* IPSEC */
802
803	/*
804	 * Switch out to protocol's input routine.
805	 */
806	IPSTAT_INC(ips_delivered);
807
808	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
809	return;
810bad:
811	m_freem(m);
812}
813
814/*
815 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
816 * max has slightly different semantics than the sysctl, for historical
817 * reasons.
818 */
819static void
820maxnipq_update(void)
821{
822
823	/*
824	 * -1 for unlimited allocation.
825	 */
826	if (V_maxnipq < 0)
827		uma_zone_set_max(V_ipq_zone, 0);
828	/*
829	 * Positive number for specific bound.
830	 */
831	if (V_maxnipq > 0)
832		uma_zone_set_max(V_ipq_zone, V_maxnipq);
833	/*
834	 * Zero specifies no further fragment queue allocation -- set the
835	 * bound very low, but rely on implementation elsewhere to actually
836	 * prevent allocation and reclaim current queues.
837	 */
838	if (V_maxnipq == 0)
839		uma_zone_set_max(V_ipq_zone, 1);
840}
841
842static void
843ipq_zone_change(void *tag)
844{
845
846	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
847		V_maxnipq = nmbclusters / 32;
848		maxnipq_update();
849	}
850}
851
852static int
853sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
854{
855	int error, i;
856
857	i = V_maxnipq;
858	error = sysctl_handle_int(oidp, &i, 0, req);
859	if (error || !req->newptr)
860		return (error);
861
862	/*
863	 * XXXRW: Might be a good idea to sanity check the argument and place
864	 * an extreme upper bound.
865	 */
866	if (i < -1)
867		return (EINVAL);
868	V_maxnipq = i;
869	maxnipq_update();
870	return (0);
871}
872
873SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
874    NULL, 0, sysctl_maxnipq, "I",
875    "Maximum number of IPv4 fragment reassembly queue entries");
876
877/*
878 * Take incoming datagram fragment and try to reassemble it into
879 * whole datagram.  If the argument is the first fragment or one
880 * in between the function will return NULL and store the mbuf
881 * in the fragment chain.  If the argument is the last fragment
882 * the packet will be reassembled and the pointer to the new
883 * mbuf returned for further processing.  Only m_tags attached
884 * to the first packet/fragment are preserved.
885 * The IP header is *NOT* adjusted out of iplen.
886 */
887struct mbuf *
888ip_reass(struct mbuf *m)
889{
890	struct ip *ip;
891	struct mbuf *p, *q, *nq, *t;
892	struct ipq *fp = NULL;
893	struct ipqhead *head;
894	int i, hlen, next;
895	u_int8_t ecn, ecn0;
896	u_short hash;
897
898	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
899	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
900		IPSTAT_INC(ips_fragments);
901		IPSTAT_INC(ips_fragdropped);
902		m_freem(m);
903		return (NULL);
904	}
905
906	ip = mtod(m, struct ip *);
907	hlen = ip->ip_hl << 2;
908
909	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
910	head = &V_ipq[hash];
911	IPQ_LOCK();
912
913	/*
914	 * Look for queue of fragments
915	 * of this datagram.
916	 */
917	TAILQ_FOREACH(fp, head, ipq_list)
918		if (ip->ip_id == fp->ipq_id &&
919		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
920		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
921#ifdef MAC
922		    mac_ipq_match(m, fp) &&
923#endif
924		    ip->ip_p == fp->ipq_p)
925			goto found;
926
927	fp = NULL;
928
929	/*
930	 * Attempt to trim the number of allocated fragment queues if it
931	 * exceeds the administrative limit.
932	 */
933	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
934		/*
935		 * drop something from the tail of the current queue
936		 * before proceeding further
937		 */
938		struct ipq *q = TAILQ_LAST(head, ipqhead);
939		if (q == NULL) {   /* gak */
940			for (i = 0; i < IPREASS_NHASH; i++) {
941				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
942				if (r) {
943					IPSTAT_ADD(ips_fragtimeout,
944					    r->ipq_nfrags);
945					ip_freef(&V_ipq[i], r);
946					break;
947				}
948			}
949		} else {
950			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
951			ip_freef(head, q);
952		}
953	}
954
955found:
956	/*
957	 * Adjust ip_len to not reflect header,
958	 * convert offset of this to bytes.
959	 */
960	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
961	if (ip->ip_off & htons(IP_MF)) {
962		/*
963		 * Make sure that fragments have a data length
964		 * that's a non-zero multiple of 8 bytes.
965		 */
966		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
967			IPSTAT_INC(ips_toosmall); /* XXX */
968			goto dropfrag;
969		}
970		m->m_flags |= M_FRAG;
971	} else
972		m->m_flags &= ~M_FRAG;
973	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
974
975	/*
976	 * Attempt reassembly; if it succeeds, proceed.
977	 * ip_reass() will return a different mbuf.
978	 */
979	IPSTAT_INC(ips_fragments);
980	m->m_pkthdr.header = ip;
981
982	/* Previous ip_reass() started here. */
983	/*
984	 * Presence of header sizes in mbufs
985	 * would confuse code below.
986	 */
987	m->m_data += hlen;
988	m->m_len -= hlen;
989
990	/*
991	 * If first fragment to arrive, create a reassembly queue.
992	 */
993	if (fp == NULL) {
994		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
995		if (fp == NULL)
996			goto dropfrag;
997#ifdef MAC
998		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
999			uma_zfree(V_ipq_zone, fp);
1000			fp = NULL;
1001			goto dropfrag;
1002		}
1003		mac_ipq_create(m, fp);
1004#endif
1005		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1006		V_nipq++;
1007		fp->ipq_nfrags = 1;
1008		fp->ipq_ttl = IPFRAGTTL;
1009		fp->ipq_p = ip->ip_p;
1010		fp->ipq_id = ip->ip_id;
1011		fp->ipq_src = ip->ip_src;
1012		fp->ipq_dst = ip->ip_dst;
1013		fp->ipq_frags = m;
1014		m->m_nextpkt = NULL;
1015		goto done;
1016	} else {
1017		fp->ipq_nfrags++;
1018#ifdef MAC
1019		mac_ipq_update(m, fp);
1020#endif
1021	}
1022
1023#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1024
1025	/*
1026	 * Handle ECN by comparing this segment with the first one;
1027	 * if CE is set, do not lose CE.
1028	 * drop if CE and not-ECT are mixed for the same packet.
1029	 */
1030	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1031	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1032	if (ecn == IPTOS_ECN_CE) {
1033		if (ecn0 == IPTOS_ECN_NOTECT)
1034			goto dropfrag;
1035		if (ecn0 != IPTOS_ECN_CE)
1036			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1037	}
1038	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1039		goto dropfrag;
1040
1041	/*
1042	 * Find a segment which begins after this one does.
1043	 */
1044	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1045		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
1046			break;
1047
1048	/*
1049	 * If there is a preceding segment, it may provide some of
1050	 * our data already.  If so, drop the data from the incoming
1051	 * segment.  If it provides all of our data, drop us, otherwise
1052	 * stick new segment in the proper place.
1053	 *
1054	 * If some of the data is dropped from the preceding
1055	 * segment, then it's checksum is invalidated.
1056	 */
1057	if (p) {
1058		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
1059		    ntohs(ip->ip_off);
1060		if (i > 0) {
1061			if (i >= ntohs(ip->ip_len))
1062				goto dropfrag;
1063			m_adj(m, i);
1064			m->m_pkthdr.csum_flags = 0;
1065			ip->ip_off = htons(ntohs(ip->ip_off) + i);
1066			ip->ip_len = htons(ntohs(ip->ip_len) - i);
1067		}
1068		m->m_nextpkt = p->m_nextpkt;
1069		p->m_nextpkt = m;
1070	} else {
1071		m->m_nextpkt = fp->ipq_frags;
1072		fp->ipq_frags = m;
1073	}
1074
1075	/*
1076	 * While we overlap succeeding segments trim them or,
1077	 * if they are completely covered, dequeue them.
1078	 */
1079	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1080	    ntohs(GETIP(q)->ip_off); q = nq) {
1081		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1082		    ntohs(GETIP(q)->ip_off);
1083		if (i < ntohs(GETIP(q)->ip_len)) {
1084			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1085			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1086			m_adj(q, i);
1087			q->m_pkthdr.csum_flags = 0;
1088			break;
1089		}
1090		nq = q->m_nextpkt;
1091		m->m_nextpkt = nq;
1092		IPSTAT_INC(ips_fragdropped);
1093		fp->ipq_nfrags--;
1094		m_freem(q);
1095	}
1096
1097	/*
1098	 * Check for complete reassembly and perform frag per packet
1099	 * limiting.
1100	 *
1101	 * Frag limiting is performed here so that the nth frag has
1102	 * a chance to complete the packet before we drop the packet.
1103	 * As a result, n+1 frags are actually allowed per packet, but
1104	 * only n will ever be stored. (n = maxfragsperpacket.)
1105	 *
1106	 */
1107	next = 0;
1108	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1109		if (ntohs(GETIP(q)->ip_off) != next) {
1110			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1111				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1112				ip_freef(head, fp);
1113			}
1114			goto done;
1115		}
1116		next += ntohs(GETIP(q)->ip_len);
1117	}
1118	/* Make sure the last packet didn't have the IP_MF flag */
1119	if (p->m_flags & M_FRAG) {
1120		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1121			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1122			ip_freef(head, fp);
1123		}
1124		goto done;
1125	}
1126
1127	/*
1128	 * Reassembly is complete.  Make sure the packet is a sane size.
1129	 */
1130	q = fp->ipq_frags;
1131	ip = GETIP(q);
1132	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1133		IPSTAT_INC(ips_toolong);
1134		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1135		ip_freef(head, fp);
1136		goto done;
1137	}
1138
1139	/*
1140	 * Concatenate fragments.
1141	 */
1142	m = q;
1143	t = m->m_next;
1144	m->m_next = NULL;
1145	m_cat(m, t);
1146	nq = q->m_nextpkt;
1147	q->m_nextpkt = NULL;
1148	for (q = nq; q != NULL; q = nq) {
1149		nq = q->m_nextpkt;
1150		q->m_nextpkt = NULL;
1151		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1152		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1153		m_cat(m, q);
1154	}
1155	/*
1156	 * In order to do checksumming faster we do 'end-around carry' here
1157	 * (and not in for{} loop), though it implies we are not going to
1158	 * reassemble more than 64k fragments.
1159	 */
1160	m->m_pkthdr.csum_data =
1161	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1162#ifdef MAC
1163	mac_ipq_reassemble(fp, m);
1164	mac_ipq_destroy(fp);
1165#endif
1166
1167	/*
1168	 * Create header for new ip packet by modifying header of first
1169	 * packet;  dequeue and discard fragment reassembly header.
1170	 * Make header visible.
1171	 */
1172	ip->ip_len = htons((ip->ip_hl << 2) + next);
1173	ip->ip_src = fp->ipq_src;
1174	ip->ip_dst = fp->ipq_dst;
1175	TAILQ_REMOVE(head, fp, ipq_list);
1176	V_nipq--;
1177	uma_zfree(V_ipq_zone, fp);
1178	m->m_len += (ip->ip_hl << 2);
1179	m->m_data -= (ip->ip_hl << 2);
1180	/* some debugging cruft by sklower, below, will go away soon */
1181	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1182		m_fixhdr(m);
1183	IPSTAT_INC(ips_reassembled);
1184	IPQ_UNLOCK();
1185	return (m);
1186
1187dropfrag:
1188	IPSTAT_INC(ips_fragdropped);
1189	if (fp != NULL)
1190		fp->ipq_nfrags--;
1191	m_freem(m);
1192done:
1193	IPQ_UNLOCK();
1194	return (NULL);
1195
1196#undef GETIP
1197}
1198
1199/*
1200 * Free a fragment reassembly header and all
1201 * associated datagrams.
1202 */
1203static void
1204ip_freef(struct ipqhead *fhp, struct ipq *fp)
1205{
1206	struct mbuf *q;
1207
1208	IPQ_LOCK_ASSERT();
1209
1210	while (fp->ipq_frags) {
1211		q = fp->ipq_frags;
1212		fp->ipq_frags = q->m_nextpkt;
1213		m_freem(q);
1214	}
1215	TAILQ_REMOVE(fhp, fp, ipq_list);
1216	uma_zfree(V_ipq_zone, fp);
1217	V_nipq--;
1218}
1219
1220/*
1221 * IP timer processing;
1222 * if a timer expires on a reassembly
1223 * queue, discard it.
1224 */
1225void
1226ip_slowtimo(void)
1227{
1228	VNET_ITERATOR_DECL(vnet_iter);
1229	struct ipq *fp;
1230	int i;
1231
1232	VNET_LIST_RLOCK_NOSLEEP();
1233	IPQ_LOCK();
1234	VNET_FOREACH(vnet_iter) {
1235		CURVNET_SET(vnet_iter);
1236		for (i = 0; i < IPREASS_NHASH; i++) {
1237			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1238				struct ipq *fpp;
1239
1240				fpp = fp;
1241				fp = TAILQ_NEXT(fp, ipq_list);
1242				if(--fpp->ipq_ttl == 0) {
1243					IPSTAT_ADD(ips_fragtimeout,
1244					    fpp->ipq_nfrags);
1245					ip_freef(&V_ipq[i], fpp);
1246				}
1247			}
1248		}
1249		/*
1250		 * If we are over the maximum number of fragments
1251		 * (due to the limit being lowered), drain off
1252		 * enough to get down to the new limit.
1253		 */
1254		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1255			for (i = 0; i < IPREASS_NHASH; i++) {
1256				while (V_nipq > V_maxnipq &&
1257				    !TAILQ_EMPTY(&V_ipq[i])) {
1258					IPSTAT_ADD(ips_fragdropped,
1259					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1260					ip_freef(&V_ipq[i],
1261					    TAILQ_FIRST(&V_ipq[i]));
1262				}
1263			}
1264		}
1265		CURVNET_RESTORE();
1266	}
1267	IPQ_UNLOCK();
1268	VNET_LIST_RUNLOCK_NOSLEEP();
1269}
1270
1271/*
1272 * Drain off all datagram fragments.
1273 */
1274static void
1275ip_drain_locked(void)
1276{
1277	int     i;
1278
1279	IPQ_LOCK_ASSERT();
1280
1281	for (i = 0; i < IPREASS_NHASH; i++) {
1282		while(!TAILQ_EMPTY(&V_ipq[i])) {
1283			IPSTAT_ADD(ips_fragdropped,
1284			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1285			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1286		}
1287	}
1288}
1289
1290void
1291ip_drain(void)
1292{
1293	VNET_ITERATOR_DECL(vnet_iter);
1294
1295	VNET_LIST_RLOCK_NOSLEEP();
1296	IPQ_LOCK();
1297	VNET_FOREACH(vnet_iter) {
1298		CURVNET_SET(vnet_iter);
1299		ip_drain_locked();
1300		CURVNET_RESTORE();
1301	}
1302	IPQ_UNLOCK();
1303	VNET_LIST_RUNLOCK_NOSLEEP();
1304	in_rtqdrain();
1305}
1306
1307/*
1308 * The protocol to be inserted into ip_protox[] must be already registered
1309 * in inetsw[], either statically or through pf_proto_register().
1310 */
1311int
1312ipproto_register(short ipproto)
1313{
1314	struct protosw *pr;
1315
1316	/* Sanity checks. */
1317	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1318		return (EPROTONOSUPPORT);
1319
1320	/*
1321	 * The protocol slot must not be occupied by another protocol
1322	 * already.  An index pointing to IPPROTO_RAW is unused.
1323	 */
1324	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1325	if (pr == NULL)
1326		return (EPFNOSUPPORT);
1327	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1328		return (EEXIST);
1329
1330	/* Find the protocol position in inetsw[] and set the index. */
1331	for (pr = inetdomain.dom_protosw;
1332	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1333		if (pr->pr_domain->dom_family == PF_INET &&
1334		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1335			ip_protox[pr->pr_protocol] = pr - inetsw;
1336			return (0);
1337		}
1338	}
1339	return (EPROTONOSUPPORT);
1340}
1341
1342int
1343ipproto_unregister(short ipproto)
1344{
1345	struct protosw *pr;
1346
1347	/* Sanity checks. */
1348	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1349		return (EPROTONOSUPPORT);
1350
1351	/* Check if the protocol was indeed registered. */
1352	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1353	if (pr == NULL)
1354		return (EPFNOSUPPORT);
1355	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1356		return (ENOENT);
1357
1358	/* Reset the protocol slot to IPPROTO_RAW. */
1359	ip_protox[ipproto] = pr - inetsw;
1360	return (0);
1361}
1362
1363/*
1364 * Given address of next destination (final or next hop), return (referenced)
1365 * internet address info of interface to be used to get there.
1366 */
1367struct in_ifaddr *
1368ip_rtaddr(struct in_addr dst, u_int fibnum)
1369{
1370	struct route sro;
1371	struct sockaddr_in *sin;
1372	struct in_ifaddr *ia;
1373
1374	bzero(&sro, sizeof(sro));
1375	sin = (struct sockaddr_in *)&sro.ro_dst;
1376	sin->sin_family = AF_INET;
1377	sin->sin_len = sizeof(*sin);
1378	sin->sin_addr = dst;
1379	in_rtalloc_ign(&sro, 0, fibnum);
1380
1381	if (sro.ro_rt == NULL)
1382		return (NULL);
1383
1384	ia = ifatoia(sro.ro_rt->rt_ifa);
1385	ifa_ref(&ia->ia_ifa);
1386	RTFREE(sro.ro_rt);
1387	return (ia);
1388}
1389
1390u_char inetctlerrmap[PRC_NCMDS] = {
1391	0,		0,		0,		0,
1392	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1393	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1394	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1395	0,		0,		EHOSTUNREACH,	0,
1396	ENOPROTOOPT,	ECONNREFUSED
1397};
1398
1399/*
1400 * Forward a packet.  If some error occurs return the sender
1401 * an icmp packet.  Note we can't always generate a meaningful
1402 * icmp message because icmp doesn't have a large enough repertoire
1403 * of codes and types.
1404 *
1405 * If not forwarding, just drop the packet.  This could be confusing
1406 * if ipforwarding was zero but some routing protocol was advancing
1407 * us as a gateway to somewhere.  However, we must let the routing
1408 * protocol deal with that.
1409 *
1410 * The srcrt parameter indicates whether the packet is being forwarded
1411 * via a source route.
1412 */
1413void
1414ip_forward(struct mbuf *m, int srcrt)
1415{
1416	struct ip *ip = mtod(m, struct ip *);
1417	struct in_ifaddr *ia;
1418	struct mbuf *mcopy;
1419	struct in_addr dest;
1420	struct route ro;
1421	int error, type = 0, code = 0, mtu = 0;
1422
1423	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1424		IPSTAT_INC(ips_cantforward);
1425		m_freem(m);
1426		return;
1427	}
1428#ifdef IPSTEALTH
1429	if (!V_ipstealth) {
1430#endif
1431		if (ip->ip_ttl <= IPTTLDEC) {
1432			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1433			    0, 0);
1434			return;
1435		}
1436#ifdef IPSTEALTH
1437	}
1438#endif
1439
1440	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1441#ifndef IPSEC
1442	/*
1443	 * 'ia' may be NULL if there is no route for this destination.
1444	 * In case of IPsec, Don't discard it just yet, but pass it to
1445	 * ip_output in case of outgoing IPsec policy.
1446	 */
1447	if (!srcrt && ia == NULL) {
1448		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1449		return;
1450	}
1451#endif
1452
1453	/*
1454	 * Save the IP header and at most 8 bytes of the payload,
1455	 * in case we need to generate an ICMP message to the src.
1456	 *
1457	 * XXX this can be optimized a lot by saving the data in a local
1458	 * buffer on the stack (72 bytes at most), and only allocating the
1459	 * mbuf if really necessary. The vast majority of the packets
1460	 * are forwarded without having to send an ICMP back (either
1461	 * because unnecessary, or because rate limited), so we are
1462	 * really we are wasting a lot of work here.
1463	 *
1464	 * We don't use m_copy() because it might return a reference
1465	 * to a shared cluster. Both this function and ip_output()
1466	 * assume exclusive access to the IP header in `m', so any
1467	 * data in a cluster may change before we reach icmp_error().
1468	 */
1469	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1470	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1471		/*
1472		 * It's probably ok if the pkthdr dup fails (because
1473		 * the deep copy of the tag chain failed), but for now
1474		 * be conservative and just discard the copy since
1475		 * code below may some day want the tags.
1476		 */
1477		m_free(mcopy);
1478		mcopy = NULL;
1479	}
1480	if (mcopy != NULL) {
1481		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1482		mcopy->m_pkthdr.len = mcopy->m_len;
1483		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1484	}
1485
1486#ifdef IPSTEALTH
1487	if (!V_ipstealth) {
1488#endif
1489		ip->ip_ttl -= IPTTLDEC;
1490#ifdef IPSTEALTH
1491	}
1492#endif
1493
1494	/*
1495	 * If forwarding packet using same interface that it came in on,
1496	 * perhaps should send a redirect to sender to shortcut a hop.
1497	 * Only send redirect if source is sending directly to us,
1498	 * and if packet was not source routed (or has any options).
1499	 * Also, don't send redirect if forwarding using a default route
1500	 * or a route modified by a redirect.
1501	 */
1502	dest.s_addr = 0;
1503	if (!srcrt && V_ipsendredirects &&
1504	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1505		struct sockaddr_in *sin;
1506		struct rtentry *rt;
1507
1508		bzero(&ro, sizeof(ro));
1509		sin = (struct sockaddr_in *)&ro.ro_dst;
1510		sin->sin_family = AF_INET;
1511		sin->sin_len = sizeof(*sin);
1512		sin->sin_addr = ip->ip_dst;
1513		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1514
1515		rt = ro.ro_rt;
1516
1517		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1518		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1519#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1520			u_long src = ntohl(ip->ip_src.s_addr);
1521
1522			if (RTA(rt) &&
1523			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1524				if (rt->rt_flags & RTF_GATEWAY)
1525					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1526				else
1527					dest.s_addr = ip->ip_dst.s_addr;
1528				/* Router requirements says to only send host redirects */
1529				type = ICMP_REDIRECT;
1530				code = ICMP_REDIRECT_HOST;
1531			}
1532		}
1533		if (rt)
1534			RTFREE(rt);
1535	}
1536
1537	/*
1538	 * Try to cache the route MTU from ip_output so we can consider it for
1539	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1540	 */
1541	bzero(&ro, sizeof(ro));
1542
1543	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1544
1545	if (error == EMSGSIZE && ro.ro_rt)
1546		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1547	RO_RTFREE(&ro);
1548
1549	if (error)
1550		IPSTAT_INC(ips_cantforward);
1551	else {
1552		IPSTAT_INC(ips_forward);
1553		if (type)
1554			IPSTAT_INC(ips_redirectsent);
1555		else {
1556			if (mcopy)
1557				m_freem(mcopy);
1558			if (ia != NULL)
1559				ifa_free(&ia->ia_ifa);
1560			return;
1561		}
1562	}
1563	if (mcopy == NULL) {
1564		if (ia != NULL)
1565			ifa_free(&ia->ia_ifa);
1566		return;
1567	}
1568
1569	switch (error) {
1570
1571	case 0:				/* forwarded, but need redirect */
1572		/* type, code set above */
1573		break;
1574
1575	case ENETUNREACH:
1576	case EHOSTUNREACH:
1577	case ENETDOWN:
1578	case EHOSTDOWN:
1579	default:
1580		type = ICMP_UNREACH;
1581		code = ICMP_UNREACH_HOST;
1582		break;
1583
1584	case EMSGSIZE:
1585		type = ICMP_UNREACH;
1586		code = ICMP_UNREACH_NEEDFRAG;
1587
1588#ifdef IPSEC
1589		/*
1590		 * If IPsec is configured for this path,
1591		 * override any possibly mtu value set by ip_output.
1592		 */
1593		mtu = ip_ipsec_mtu(mcopy, mtu);
1594#endif /* IPSEC */
1595		/*
1596		 * If the MTU was set before make sure we are below the
1597		 * interface MTU.
1598		 * If the MTU wasn't set before use the interface mtu or
1599		 * fall back to the next smaller mtu step compared to the
1600		 * current packet size.
1601		 */
1602		if (mtu != 0) {
1603			if (ia != NULL)
1604				mtu = min(mtu, ia->ia_ifp->if_mtu);
1605		} else {
1606			if (ia != NULL)
1607				mtu = ia->ia_ifp->if_mtu;
1608			else
1609				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1610		}
1611		IPSTAT_INC(ips_cantfrag);
1612		break;
1613
1614	case ENOBUFS:
1615		/*
1616		 * A router should not generate ICMP_SOURCEQUENCH as
1617		 * required in RFC1812 Requirements for IP Version 4 Routers.
1618		 * Source quench could be a big problem under DoS attacks,
1619		 * or if the underlying interface is rate-limited.
1620		 * Those who need source quench packets may re-enable them
1621		 * via the net.inet.ip.sendsourcequench sysctl.
1622		 */
1623		if (V_ip_sendsourcequench == 0) {
1624			m_freem(mcopy);
1625			if (ia != NULL)
1626				ifa_free(&ia->ia_ifa);
1627			return;
1628		} else {
1629			type = ICMP_SOURCEQUENCH;
1630			code = 0;
1631		}
1632		break;
1633
1634	case EACCES:			/* ipfw denied packet */
1635		m_freem(mcopy);
1636		if (ia != NULL)
1637			ifa_free(&ia->ia_ifa);
1638		return;
1639	}
1640	if (ia != NULL)
1641		ifa_free(&ia->ia_ifa);
1642	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1643}
1644
1645void
1646ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1647    struct mbuf *m)
1648{
1649
1650	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1651		struct bintime bt;
1652
1653		bintime(&bt);
1654		if (inp->inp_socket->so_options & SO_BINTIME) {
1655			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1656			    SCM_BINTIME, SOL_SOCKET);
1657			if (*mp)
1658				mp = &(*mp)->m_next;
1659		}
1660		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1661			struct timeval tv;
1662
1663			bintime2timeval(&bt, &tv);
1664			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1665			    SCM_TIMESTAMP, SOL_SOCKET);
1666			if (*mp)
1667				mp = &(*mp)->m_next;
1668		}
1669	}
1670	if (inp->inp_flags & INP_RECVDSTADDR) {
1671		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1672		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1673		if (*mp)
1674			mp = &(*mp)->m_next;
1675	}
1676	if (inp->inp_flags & INP_RECVTTL) {
1677		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1678		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1679		if (*mp)
1680			mp = &(*mp)->m_next;
1681	}
1682#ifdef notyet
1683	/* XXX
1684	 * Moving these out of udp_input() made them even more broken
1685	 * than they already were.
1686	 */
1687	/* options were tossed already */
1688	if (inp->inp_flags & INP_RECVOPTS) {
1689		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1690		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1691		if (*mp)
1692			mp = &(*mp)->m_next;
1693	}
1694	/* ip_srcroute doesn't do what we want here, need to fix */
1695	if (inp->inp_flags & INP_RECVRETOPTS) {
1696		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1697		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1698		if (*mp)
1699			mp = &(*mp)->m_next;
1700	}
1701#endif
1702	if (inp->inp_flags & INP_RECVIF) {
1703		struct ifnet *ifp;
1704		struct sdlbuf {
1705			struct sockaddr_dl sdl;
1706			u_char	pad[32];
1707		} sdlbuf;
1708		struct sockaddr_dl *sdp;
1709		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1710
1711		if ((ifp = m->m_pkthdr.rcvif) &&
1712		    ifp->if_index && ifp->if_index <= V_if_index) {
1713			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1714			/*
1715			 * Change our mind and don't try copy.
1716			 */
1717			if (sdp->sdl_family != AF_LINK ||
1718			    sdp->sdl_len > sizeof(sdlbuf)) {
1719				goto makedummy;
1720			}
1721			bcopy(sdp, sdl2, sdp->sdl_len);
1722		} else {
1723makedummy:
1724			sdl2->sdl_len =
1725			    offsetof(struct sockaddr_dl, sdl_data[0]);
1726			sdl2->sdl_family = AF_LINK;
1727			sdl2->sdl_index = 0;
1728			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1729		}
1730		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1731		    IP_RECVIF, IPPROTO_IP);
1732		if (*mp)
1733			mp = &(*mp)->m_next;
1734	}
1735	if (inp->inp_flags & INP_RECVTOS) {
1736		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1737		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1738		if (*mp)
1739			mp = &(*mp)->m_next;
1740	}
1741}
1742
1743/*
1744 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1745 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1746 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1747 * compiled.
1748 */
1749static VNET_DEFINE(int, ip_rsvp_on);
1750VNET_DEFINE(struct socket *, ip_rsvpd);
1751
1752#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1753
1754int
1755ip_rsvp_init(struct socket *so)
1756{
1757
1758	if (so->so_type != SOCK_RAW ||
1759	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1760		return EOPNOTSUPP;
1761
1762	if (V_ip_rsvpd != NULL)
1763		return EADDRINUSE;
1764
1765	V_ip_rsvpd = so;
1766	/*
1767	 * This may seem silly, but we need to be sure we don't over-increment
1768	 * the RSVP counter, in case something slips up.
1769	 */
1770	if (!V_ip_rsvp_on) {
1771		V_ip_rsvp_on = 1;
1772		V_rsvp_on++;
1773	}
1774
1775	return 0;
1776}
1777
1778int
1779ip_rsvp_done(void)
1780{
1781
1782	V_ip_rsvpd = NULL;
1783	/*
1784	 * This may seem silly, but we need to be sure we don't over-decrement
1785	 * the RSVP counter, in case something slips up.
1786	 */
1787	if (V_ip_rsvp_on) {
1788		V_ip_rsvp_on = 0;
1789		V_rsvp_on--;
1790	}
1791	return 0;
1792}
1793
1794void
1795rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1796{
1797
1798	if (rsvp_input_p) { /* call the real one if loaded */
1799		rsvp_input_p(m, off);
1800		return;
1801	}
1802
1803	/* Can still get packets with rsvp_on = 0 if there is a local member
1804	 * of the group to which the RSVP packet is addressed.  But in this
1805	 * case we want to throw the packet away.
1806	 */
1807
1808	if (!V_rsvp_on) {
1809		m_freem(m);
1810		return;
1811	}
1812
1813	if (V_ip_rsvpd != NULL) {
1814		rip_input(m, off);
1815		return;
1816	}
1817	/* Drop the packet */
1818	m_freem(m);
1819}
1820