ip_reass.c revision 211157
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 211157 2010-08-11 00:51:50Z will $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/domain.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/time.h>
50#include <sys/kernel.h>
51#include <sys/lock.h>
52#include <sys/rwlock.h>
53#include <sys/syslog.h>
54#include <sys/sysctl.h>
55
56#include <net/pfil.h>
57#include <net/if.h>
58#include <net/if_types.h>
59#include <net/if_var.h>
60#include <net/if_dl.h>
61#include <net/route.h>
62#include <net/netisr.h>
63#include <net/vnet.h>
64#include <net/flowtable.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/in_var.h>
69#include <netinet/ip.h>
70#include <netinet/in_pcb.h>
71#include <netinet/ip_var.h>
72#include <netinet/ip_fw.h>
73#include <netinet/ip_icmp.h>
74#include <netinet/ip_options.h>
75#include <machine/in_cksum.h>
76#include <netinet/ip_carp.h>
77#ifdef IPSEC
78#include <netinet/ip_ipsec.h>
79#endif /* IPSEC */
80
81#include <sys/socketvar.h>
82
83#include <security/mac/mac_framework.h>
84
85#ifdef CTASSERT
86CTASSERT(sizeof(struct ip) == 20);
87#endif
88
89struct	rwlock in_ifaddr_lock;
90RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
91
92VNET_DEFINE(int, rsvp_on);
93
94VNET_DEFINE(int, ipforwarding);
95SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
96    &VNET_NAME(ipforwarding), 0,
97    "Enable IP forwarding between interfaces");
98
99static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
100#define	V_ipsendredirects	VNET(ipsendredirects)
101SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
102    &VNET_NAME(ipsendredirects), 0,
103    "Enable sending IP redirects");
104
105VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
106SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
107    &VNET_NAME(ip_defttl), 0,
108    "Maximum TTL on IP packets");
109
110static VNET_DEFINE(int, ip_keepfaith);
111#define	V_ip_keepfaith		VNET(ip_keepfaith)
112SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
113    &VNET_NAME(ip_keepfaith), 0,
114    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
115
116static VNET_DEFINE(int, ip_sendsourcequench);
117#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
118SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
119    &VNET_NAME(ip_sendsourcequench), 0,
120    "Enable the transmission of source quench packets");
121
122VNET_DEFINE(int, ip_do_randomid);
123SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
124    &VNET_NAME(ip_do_randomid), 0,
125    "Assign random ip_id values");
126
127/*
128 * XXX - Setting ip_checkinterface mostly implements the receive side of
129 * the Strong ES model described in RFC 1122, but since the routing table
130 * and transmit implementation do not implement the Strong ES model,
131 * setting this to 1 results in an odd hybrid.
132 *
133 * XXX - ip_checkinterface currently must be disabled if you use ipnat
134 * to translate the destination address to another local interface.
135 *
136 * XXX - ip_checkinterface must be disabled if you add IP aliases
137 * to the loopback interface instead of the interface where the
138 * packets for those addresses are received.
139 */
140static VNET_DEFINE(int, ip_checkinterface);
141#define	V_ip_checkinterface	VNET(ip_checkinterface)
142SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
143    &VNET_NAME(ip_checkinterface), 0,
144    "Verify packet arrives on correct interface");
145
146VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
147
148static struct netisr_handler ip_nh = {
149	.nh_name = "ip",
150	.nh_handler = ip_input,
151	.nh_proto = NETISR_IP,
152	.nh_policy = NETISR_POLICY_FLOW,
153};
154
155extern	struct domain inetdomain;
156extern	struct protosw inetsw[];
157u_char	ip_protox[IPPROTO_MAX];
158VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
159VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
160VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
161
162VNET_DEFINE(struct ipstat, ipstat);
163SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
164    &VNET_NAME(ipstat), ipstat,
165    "IP statistics (struct ipstat, netinet/ip_var.h)");
166
167static VNET_DEFINE(uma_zone_t, ipq_zone);
168static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
169static struct mtx ipqlock;
170
171#define	V_ipq_zone		VNET(ipq_zone)
172#define	V_ipq			VNET(ipq)
173
174#define	IPQ_LOCK()	mtx_lock(&ipqlock)
175#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
176#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
177#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
178
179static void	maxnipq_update(void);
180static void	ipq_zone_change(void *);
181static void	ip_drain_locked(void);
182
183static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
184static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
185#define	V_maxnipq		VNET(maxnipq)
186#define	V_nipq			VNET(nipq)
187SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
188    &VNET_NAME(nipq), 0,
189    "Current number of IPv4 fragment reassembly queue entries");
190
191static VNET_DEFINE(int, maxfragsperpacket);
192#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
193SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
194    &VNET_NAME(maxfragsperpacket), 0,
195    "Maximum number of IPv4 fragments allowed per packet");
196
197struct callout	ipport_tick_callout;
198
199#ifdef IPCTL_DEFMTU
200SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
201    &ip_mtu, 0, "Default MTU");
202#endif
203
204#ifdef IPSTEALTH
205VNET_DEFINE(int, ipstealth);
206SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
207    &VNET_NAME(ipstealth), 0,
208    "IP stealth mode, no TTL decrementation on forwarding");
209#endif
210
211#ifdef FLOWTABLE
212static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
213VNET_DEFINE(struct flowtable *, ip_ft);
214#define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
215
216SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
217    &VNET_NAME(ip_output_flowtable_size), 2048,
218    "number of entries in the per-cpu output flow caches");
219#endif
220
221VNET_DEFINE(int, fw_one_pass) = 1;
222
223static void	ip_freef(struct ipqhead *, struct ipq *);
224
225/*
226 * Kernel module interface for updating ipstat.  The argument is an index
227 * into ipstat treated as an array of u_long.  While this encodes the general
228 * layout of ipstat into the caller, it doesn't encode its location, so that
229 * future changes to add, for example, per-CPU stats support won't cause
230 * binary compatibility problems for kernel modules.
231 */
232void
233kmod_ipstat_inc(int statnum)
234{
235
236	(*((u_long *)&V_ipstat + statnum))++;
237}
238
239void
240kmod_ipstat_dec(int statnum)
241{
242
243	(*((u_long *)&V_ipstat + statnum))--;
244}
245
246static int
247sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
248{
249	int error, qlimit;
250
251	netisr_getqlimit(&ip_nh, &qlimit);
252	error = sysctl_handle_int(oidp, &qlimit, 0, req);
253	if (error || !req->newptr)
254		return (error);
255	if (qlimit < 1)
256		return (EINVAL);
257	return (netisr_setqlimit(&ip_nh, qlimit));
258}
259SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
260    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
261    "Maximum size of the IP input queue");
262
263static int
264sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
265{
266	u_int64_t qdrops_long;
267	int error, qdrops;
268
269	netisr_getqdrops(&ip_nh, &qdrops_long);
270	qdrops = qdrops_long;
271	error = sysctl_handle_int(oidp, &qdrops, 0, req);
272	if (error || !req->newptr)
273		return (error);
274	if (qdrops != 0)
275		return (EINVAL);
276	netisr_clearqdrops(&ip_nh);
277	return (0);
278}
279
280SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
281    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
282    "Number of packets dropped from the IP input queue");
283
284/*
285 * IP initialization: fill in IP protocol switch table.
286 * All protocols not implemented in kernel go to raw IP protocol handler.
287 */
288void
289ip_init(void)
290{
291	struct protosw *pr;
292	int i;
293
294	V_ip_id = time_second & 0xffff;
295
296	TAILQ_INIT(&V_in_ifaddrhead);
297	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
298
299	/* Initialize IP reassembly queue. */
300	for (i = 0; i < IPREASS_NHASH; i++)
301		TAILQ_INIT(&V_ipq[i]);
302	V_maxnipq = nmbclusters / 32;
303	V_maxfragsperpacket = 16;
304	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
305	    NULL, UMA_ALIGN_PTR, 0);
306	maxnipq_update();
307
308	/* Initialize packet filter hooks. */
309	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
310	V_inet_pfil_hook.ph_af = AF_INET;
311	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
312		printf("%s: WARNING: unable to register pfil hook, "
313			"error %d\n", __func__, i);
314
315#ifdef FLOWTABLE
316	if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
317		&V_ip_output_flowtable_size)) {
318		if (V_ip_output_flowtable_size < 256)
319			V_ip_output_flowtable_size = 256;
320		if (!powerof2(V_ip_output_flowtable_size)) {
321			printf("flowtable must be power of 2 size\n");
322			V_ip_output_flowtable_size = 2048;
323		}
324	} else {
325		/*
326		 * round up to the next power of 2
327		 */
328		V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
329	}
330	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
331#endif
332
333	/* Skip initialization of globals for non-default instances. */
334	if (!IS_DEFAULT_VNET(curvnet))
335		return;
336
337	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
338	if (pr == NULL)
339		panic("ip_init: PF_INET not found");
340
341	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
342	for (i = 0; i < IPPROTO_MAX; i++)
343		ip_protox[i] = pr - inetsw;
344	/*
345	 * Cycle through IP protocols and put them into the appropriate place
346	 * in ip_protox[].
347	 */
348	for (pr = inetdomain.dom_protosw;
349	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
350		if (pr->pr_domain->dom_family == PF_INET &&
351		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
352			/* Be careful to only index valid IP protocols. */
353			if (pr->pr_protocol < IPPROTO_MAX)
354				ip_protox[pr->pr_protocol] = pr - inetsw;
355		}
356
357	/* Start ipport_tick. */
358	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
359	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
360	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
361		SHUTDOWN_PRI_DEFAULT);
362	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
363		NULL, EVENTHANDLER_PRI_ANY);
364
365	/* Initialize various other remaining things. */
366	IPQ_LOCK_INIT();
367	netisr_register(&ip_nh);
368}
369
370#ifdef VIMAGE
371void
372ip_destroy(void)
373{
374
375	/* Cleanup in_ifaddr hash table; should be empty. */
376	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
377
378	IPQ_LOCK();
379	ip_drain_locked();
380	IPQ_UNLOCK();
381
382	uma_zdestroy(V_ipq_zone);
383}
384#endif
385
386void
387ip_fini(void *xtp)
388{
389
390	callout_stop(&ipport_tick_callout);
391}
392
393/*
394 * Ip input routine.  Checksum and byte swap header.  If fragmented
395 * try to reassemble.  Process options.  Pass to next level.
396 */
397void
398ip_input(struct mbuf *m)
399{
400	struct ip *ip = NULL;
401	struct in_ifaddr *ia = NULL;
402	struct ifaddr *ifa;
403	struct ifnet *ifp;
404	int    checkif, hlen = 0;
405	u_short sum;
406	int dchg = 0;				/* dest changed after fw */
407	struct in_addr odst;			/* original dst address */
408
409	M_ASSERTPKTHDR(m);
410
411	if (m->m_flags & M_FASTFWD_OURS) {
412		/*
413		 * Firewall or NAT changed destination to local.
414		 * We expect ip_len and ip_off to be in host byte order.
415		 */
416		m->m_flags &= ~M_FASTFWD_OURS;
417		/* Set up some basics that will be used later. */
418		ip = mtod(m, struct ip *);
419		hlen = ip->ip_hl << 2;
420		goto ours;
421	}
422
423	IPSTAT_INC(ips_total);
424
425	if (m->m_pkthdr.len < sizeof(struct ip))
426		goto tooshort;
427
428	if (m->m_len < sizeof (struct ip) &&
429	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
430		IPSTAT_INC(ips_toosmall);
431		return;
432	}
433	ip = mtod(m, struct ip *);
434
435	if (ip->ip_v != IPVERSION) {
436		IPSTAT_INC(ips_badvers);
437		goto bad;
438	}
439
440	hlen = ip->ip_hl << 2;
441	if (hlen < sizeof(struct ip)) {	/* minimum header length */
442		IPSTAT_INC(ips_badhlen);
443		goto bad;
444	}
445	if (hlen > m->m_len) {
446		if ((m = m_pullup(m, hlen)) == NULL) {
447			IPSTAT_INC(ips_badhlen);
448			return;
449		}
450		ip = mtod(m, struct ip *);
451	}
452
453	/* 127/8 must not appear on wire - RFC1122 */
454	ifp = m->m_pkthdr.rcvif;
455	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
456	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
457		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
458			IPSTAT_INC(ips_badaddr);
459			goto bad;
460		}
461	}
462
463	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
464		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
465	} else {
466		if (hlen == sizeof(struct ip)) {
467			sum = in_cksum_hdr(ip);
468		} else {
469			sum = in_cksum(m, hlen);
470		}
471	}
472	if (sum) {
473		IPSTAT_INC(ips_badsum);
474		goto bad;
475	}
476
477#ifdef ALTQ
478	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
479		/* packet is dropped by traffic conditioner */
480		return;
481#endif
482
483	/*
484	 * Convert fields to host representation.
485	 */
486	ip->ip_len = ntohs(ip->ip_len);
487	if (ip->ip_len < hlen) {
488		IPSTAT_INC(ips_badlen);
489		goto bad;
490	}
491	ip->ip_off = ntohs(ip->ip_off);
492
493	/*
494	 * Check that the amount of data in the buffers
495	 * is as at least much as the IP header would have us expect.
496	 * Trim mbufs if longer than we expect.
497	 * Drop packet if shorter than we expect.
498	 */
499	if (m->m_pkthdr.len < ip->ip_len) {
500tooshort:
501		IPSTAT_INC(ips_tooshort);
502		goto bad;
503	}
504	if (m->m_pkthdr.len > ip->ip_len) {
505		if (m->m_len == m->m_pkthdr.len) {
506			m->m_len = ip->ip_len;
507			m->m_pkthdr.len = ip->ip_len;
508		} else
509			m_adj(m, ip->ip_len - m->m_pkthdr.len);
510	}
511#ifdef IPSEC
512	/*
513	 * Bypass packet filtering for packets from a tunnel (gif).
514	 */
515	if (ip_ipsec_filtertunnel(m))
516		goto passin;
517#endif /* IPSEC */
518
519	/*
520	 * Run through list of hooks for input packets.
521	 *
522	 * NB: Beware of the destination address changing (e.g.
523	 *     by NAT rewriting).  When this happens, tell
524	 *     ip_forward to do the right thing.
525	 */
526
527	/* Jump over all PFIL processing if hooks are not active. */
528	if (!PFIL_HOOKED(&V_inet_pfil_hook))
529		goto passin;
530
531	odst = ip->ip_dst;
532	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
533		return;
534	if (m == NULL)			/* consumed by filter */
535		return;
536
537	ip = mtod(m, struct ip *);
538	dchg = (odst.s_addr != ip->ip_dst.s_addr);
539	ifp = m->m_pkthdr.rcvif;
540
541#ifdef IPFIREWALL_FORWARD
542	if (m->m_flags & M_FASTFWD_OURS) {
543		m->m_flags &= ~M_FASTFWD_OURS;
544		goto ours;
545	}
546	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
547		/*
548		 * Directly ship the packet on.  This allows forwarding
549		 * packets originally destined to us to some other directly
550		 * connected host.
551		 */
552		ip_forward(m, dchg);
553		return;
554	}
555#endif /* IPFIREWALL_FORWARD */
556
557passin:
558	/*
559	 * Process options and, if not destined for us,
560	 * ship it on.  ip_dooptions returns 1 when an
561	 * error was detected (causing an icmp message
562	 * to be sent and the original packet to be freed).
563	 */
564	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
565		return;
566
567        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
568         * matter if it is destined to another node, or whether it is
569         * a multicast one, RSVP wants it! and prevents it from being forwarded
570         * anywhere else. Also checks if the rsvp daemon is running before
571	 * grabbing the packet.
572         */
573	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
574		goto ours;
575
576	/*
577	 * Check our list of addresses, to see if the packet is for us.
578	 * If we don't have any addresses, assume any unicast packet
579	 * we receive might be for us (and let the upper layers deal
580	 * with it).
581	 */
582	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
583	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
584		goto ours;
585
586	/*
587	 * Enable a consistency check between the destination address
588	 * and the arrival interface for a unicast packet (the RFC 1122
589	 * strong ES model) if IP forwarding is disabled and the packet
590	 * is not locally generated and the packet is not subject to
591	 * 'ipfw fwd'.
592	 *
593	 * XXX - Checking also should be disabled if the destination
594	 * address is ipnat'ed to a different interface.
595	 *
596	 * XXX - Checking is incompatible with IP aliases added
597	 * to the loopback interface instead of the interface where
598	 * the packets are received.
599	 *
600	 * XXX - This is the case for carp vhost IPs as well so we
601	 * insert a workaround. If the packet got here, we already
602	 * checked with carp_iamatch() and carp_forus().
603	 */
604	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
605	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
606	    ifp->if_carp == NULL && (dchg == 0);
607
608	/*
609	 * Check for exact addresses in the hash bucket.
610	 */
611	/* IN_IFADDR_RLOCK(); */
612	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
613		/*
614		 * If the address matches, verify that the packet
615		 * arrived via the correct interface if checking is
616		 * enabled.
617		 */
618		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
619		    (!checkif || ia->ia_ifp == ifp)) {
620			ifa_ref(&ia->ia_ifa);
621			/* IN_IFADDR_RUNLOCK(); */
622			goto ours;
623		}
624	}
625	/* IN_IFADDR_RUNLOCK(); */
626
627	/*
628	 * Check for broadcast addresses.
629	 *
630	 * Only accept broadcast packets that arrive via the matching
631	 * interface.  Reception of forwarded directed broadcasts would
632	 * be handled via ip_forward() and ether_output() with the loopback
633	 * into the stack for SIMPLEX interfaces handled by ether_output().
634	 */
635	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
636		IF_ADDR_LOCK(ifp);
637	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
638			if (ifa->ifa_addr->sa_family != AF_INET)
639				continue;
640			ia = ifatoia(ifa);
641			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
642			    ip->ip_dst.s_addr) {
643				ifa_ref(ifa);
644				IF_ADDR_UNLOCK(ifp);
645				goto ours;
646			}
647			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
648				ifa_ref(ifa);
649				IF_ADDR_UNLOCK(ifp);
650				goto ours;
651			}
652#ifdef BOOTP_COMPAT
653			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
654				ifa_ref(ifa);
655				IF_ADDR_UNLOCK(ifp);
656				goto ours;
657			}
658#endif
659		}
660		IF_ADDR_UNLOCK(ifp);
661		ia = NULL;
662	}
663	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
664	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
665		IPSTAT_INC(ips_cantforward);
666		m_freem(m);
667		return;
668	}
669	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
670		if (V_ip_mrouter) {
671			/*
672			 * If we are acting as a multicast router, all
673			 * incoming multicast packets are passed to the
674			 * kernel-level multicast forwarding function.
675			 * The packet is returned (relatively) intact; if
676			 * ip_mforward() returns a non-zero value, the packet
677			 * must be discarded, else it may be accepted below.
678			 */
679			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
680				IPSTAT_INC(ips_cantforward);
681				m_freem(m);
682				return;
683			}
684
685			/*
686			 * The process-level routing daemon needs to receive
687			 * all multicast IGMP packets, whether or not this
688			 * host belongs to their destination groups.
689			 */
690			if (ip->ip_p == IPPROTO_IGMP)
691				goto ours;
692			IPSTAT_INC(ips_forward);
693		}
694		/*
695		 * Assume the packet is for us, to avoid prematurely taking
696		 * a lock on the in_multi hash. Protocols must perform
697		 * their own filtering and update statistics accordingly.
698		 */
699		goto ours;
700	}
701	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
702		goto ours;
703	if (ip->ip_dst.s_addr == INADDR_ANY)
704		goto ours;
705
706	/*
707	 * FAITH(Firewall Aided Internet Translator)
708	 */
709	if (ifp && ifp->if_type == IFT_FAITH) {
710		if (V_ip_keepfaith) {
711			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
712				goto ours;
713		}
714		m_freem(m);
715		return;
716	}
717
718	/*
719	 * Not for us; forward if possible and desirable.
720	 */
721	if (V_ipforwarding == 0) {
722		IPSTAT_INC(ips_cantforward);
723		m_freem(m);
724	} else {
725#ifdef IPSEC
726		if (ip_ipsec_fwd(m))
727			goto bad;
728#endif /* IPSEC */
729		ip_forward(m, dchg);
730	}
731	return;
732
733ours:
734#ifdef IPSTEALTH
735	/*
736	 * IPSTEALTH: Process non-routing options only
737	 * if the packet is destined for us.
738	 */
739	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
740		if (ia != NULL)
741			ifa_free(&ia->ia_ifa);
742		return;
743	}
744#endif /* IPSTEALTH */
745
746	/* Count the packet in the ip address stats */
747	if (ia != NULL) {
748		ia->ia_ifa.if_ipackets++;
749		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
750		ifa_free(&ia->ia_ifa);
751	}
752
753	/*
754	 * Attempt reassembly; if it succeeds, proceed.
755	 * ip_reass() will return a different mbuf.
756	 */
757	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
758		m = ip_reass(m);
759		if (m == NULL)
760			return;
761		ip = mtod(m, struct ip *);
762		/* Get the header length of the reassembled packet */
763		hlen = ip->ip_hl << 2;
764	}
765
766	/*
767	 * Further protocols expect the packet length to be w/o the
768	 * IP header.
769	 */
770	ip->ip_len -= hlen;
771
772#ifdef IPSEC
773	/*
774	 * enforce IPsec policy checking if we are seeing last header.
775	 * note that we do not visit this with protocols with pcb layer
776	 * code - like udp/tcp/raw ip.
777	 */
778	if (ip_ipsec_input(m))
779		goto bad;
780#endif /* IPSEC */
781
782	/*
783	 * Switch out to protocol's input routine.
784	 */
785	IPSTAT_INC(ips_delivered);
786
787	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
788	return;
789bad:
790	m_freem(m);
791}
792
793/*
794 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
795 * max has slightly different semantics than the sysctl, for historical
796 * reasons.
797 */
798static void
799maxnipq_update(void)
800{
801
802	/*
803	 * -1 for unlimited allocation.
804	 */
805	if (V_maxnipq < 0)
806		uma_zone_set_max(V_ipq_zone, 0);
807	/*
808	 * Positive number for specific bound.
809	 */
810	if (V_maxnipq > 0)
811		uma_zone_set_max(V_ipq_zone, V_maxnipq);
812	/*
813	 * Zero specifies no further fragment queue allocation -- set the
814	 * bound very low, but rely on implementation elsewhere to actually
815	 * prevent allocation and reclaim current queues.
816	 */
817	if (V_maxnipq == 0)
818		uma_zone_set_max(V_ipq_zone, 1);
819}
820
821static void
822ipq_zone_change(void *tag)
823{
824
825	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
826		V_maxnipq = nmbclusters / 32;
827		maxnipq_update();
828	}
829}
830
831static int
832sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
833{
834	int error, i;
835
836	i = V_maxnipq;
837	error = sysctl_handle_int(oidp, &i, 0, req);
838	if (error || !req->newptr)
839		return (error);
840
841	/*
842	 * XXXRW: Might be a good idea to sanity check the argument and place
843	 * an extreme upper bound.
844	 */
845	if (i < -1)
846		return (EINVAL);
847	V_maxnipq = i;
848	maxnipq_update();
849	return (0);
850}
851
852SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
853    NULL, 0, sysctl_maxnipq, "I",
854    "Maximum number of IPv4 fragment reassembly queue entries");
855
856/*
857 * Take incoming datagram fragment and try to reassemble it into
858 * whole datagram.  If the argument is the first fragment or one
859 * in between the function will return NULL and store the mbuf
860 * in the fragment chain.  If the argument is the last fragment
861 * the packet will be reassembled and the pointer to the new
862 * mbuf returned for further processing.  Only m_tags attached
863 * to the first packet/fragment are preserved.
864 * The IP header is *NOT* adjusted out of iplen.
865 */
866struct mbuf *
867ip_reass(struct mbuf *m)
868{
869	struct ip *ip;
870	struct mbuf *p, *q, *nq, *t;
871	struct ipq *fp = NULL;
872	struct ipqhead *head;
873	int i, hlen, next;
874	u_int8_t ecn, ecn0;
875	u_short hash;
876
877	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
878	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
879		IPSTAT_INC(ips_fragments);
880		IPSTAT_INC(ips_fragdropped);
881		m_freem(m);
882		return (NULL);
883	}
884
885	ip = mtod(m, struct ip *);
886	hlen = ip->ip_hl << 2;
887
888	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
889	head = &V_ipq[hash];
890	IPQ_LOCK();
891
892	/*
893	 * Look for queue of fragments
894	 * of this datagram.
895	 */
896	TAILQ_FOREACH(fp, head, ipq_list)
897		if (ip->ip_id == fp->ipq_id &&
898		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
899		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
900#ifdef MAC
901		    mac_ipq_match(m, fp) &&
902#endif
903		    ip->ip_p == fp->ipq_p)
904			goto found;
905
906	fp = NULL;
907
908	/*
909	 * Attempt to trim the number of allocated fragment queues if it
910	 * exceeds the administrative limit.
911	 */
912	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
913		/*
914		 * drop something from the tail of the current queue
915		 * before proceeding further
916		 */
917		struct ipq *q = TAILQ_LAST(head, ipqhead);
918		if (q == NULL) {   /* gak */
919			for (i = 0; i < IPREASS_NHASH; i++) {
920				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
921				if (r) {
922					IPSTAT_ADD(ips_fragtimeout,
923					    r->ipq_nfrags);
924					ip_freef(&V_ipq[i], r);
925					break;
926				}
927			}
928		} else {
929			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
930			ip_freef(head, q);
931		}
932	}
933
934found:
935	/*
936	 * Adjust ip_len to not reflect header,
937	 * convert offset of this to bytes.
938	 */
939	ip->ip_len -= hlen;
940	if (ip->ip_off & IP_MF) {
941		/*
942		 * Make sure that fragments have a data length
943		 * that's a non-zero multiple of 8 bytes.
944		 */
945		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
946			IPSTAT_INC(ips_toosmall); /* XXX */
947			goto dropfrag;
948		}
949		m->m_flags |= M_FRAG;
950	} else
951		m->m_flags &= ~M_FRAG;
952	ip->ip_off <<= 3;
953
954
955	/*
956	 * Attempt reassembly; if it succeeds, proceed.
957	 * ip_reass() will return a different mbuf.
958	 */
959	IPSTAT_INC(ips_fragments);
960	m->m_pkthdr.header = ip;
961
962	/* Previous ip_reass() started here. */
963	/*
964	 * Presence of header sizes in mbufs
965	 * would confuse code below.
966	 */
967	m->m_data += hlen;
968	m->m_len -= hlen;
969
970	/*
971	 * If first fragment to arrive, create a reassembly queue.
972	 */
973	if (fp == NULL) {
974		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
975		if (fp == NULL)
976			goto dropfrag;
977#ifdef MAC
978		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
979			uma_zfree(V_ipq_zone, fp);
980			fp = NULL;
981			goto dropfrag;
982		}
983		mac_ipq_create(m, fp);
984#endif
985		TAILQ_INSERT_HEAD(head, fp, ipq_list);
986		V_nipq++;
987		fp->ipq_nfrags = 1;
988		fp->ipq_ttl = IPFRAGTTL;
989		fp->ipq_p = ip->ip_p;
990		fp->ipq_id = ip->ip_id;
991		fp->ipq_src = ip->ip_src;
992		fp->ipq_dst = ip->ip_dst;
993		fp->ipq_frags = m;
994		m->m_nextpkt = NULL;
995		goto done;
996	} else {
997		fp->ipq_nfrags++;
998#ifdef MAC
999		mac_ipq_update(m, fp);
1000#endif
1001	}
1002
1003#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1004
1005	/*
1006	 * Handle ECN by comparing this segment with the first one;
1007	 * if CE is set, do not lose CE.
1008	 * drop if CE and not-ECT are mixed for the same packet.
1009	 */
1010	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1011	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1012	if (ecn == IPTOS_ECN_CE) {
1013		if (ecn0 == IPTOS_ECN_NOTECT)
1014			goto dropfrag;
1015		if (ecn0 != IPTOS_ECN_CE)
1016			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1017	}
1018	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1019		goto dropfrag;
1020
1021	/*
1022	 * Find a segment which begins after this one does.
1023	 */
1024	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1025		if (GETIP(q)->ip_off > ip->ip_off)
1026			break;
1027
1028	/*
1029	 * If there is a preceding segment, it may provide some of
1030	 * our data already.  If so, drop the data from the incoming
1031	 * segment.  If it provides all of our data, drop us, otherwise
1032	 * stick new segment in the proper place.
1033	 *
1034	 * If some of the data is dropped from the the preceding
1035	 * segment, then it's checksum is invalidated.
1036	 */
1037	if (p) {
1038		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1039		if (i > 0) {
1040			if (i >= ip->ip_len)
1041				goto dropfrag;
1042			m_adj(m, i);
1043			m->m_pkthdr.csum_flags = 0;
1044			ip->ip_off += i;
1045			ip->ip_len -= i;
1046		}
1047		m->m_nextpkt = p->m_nextpkt;
1048		p->m_nextpkt = m;
1049	} else {
1050		m->m_nextpkt = fp->ipq_frags;
1051		fp->ipq_frags = m;
1052	}
1053
1054	/*
1055	 * While we overlap succeeding segments trim them or,
1056	 * if they are completely covered, dequeue them.
1057	 */
1058	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1059	     q = nq) {
1060		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1061		if (i < GETIP(q)->ip_len) {
1062			GETIP(q)->ip_len -= i;
1063			GETIP(q)->ip_off += i;
1064			m_adj(q, i);
1065			q->m_pkthdr.csum_flags = 0;
1066			break;
1067		}
1068		nq = q->m_nextpkt;
1069		m->m_nextpkt = nq;
1070		IPSTAT_INC(ips_fragdropped);
1071		fp->ipq_nfrags--;
1072		m_freem(q);
1073	}
1074
1075	/*
1076	 * Check for complete reassembly and perform frag per packet
1077	 * limiting.
1078	 *
1079	 * Frag limiting is performed here so that the nth frag has
1080	 * a chance to complete the packet before we drop the packet.
1081	 * As a result, n+1 frags are actually allowed per packet, but
1082	 * only n will ever be stored. (n = maxfragsperpacket.)
1083	 *
1084	 */
1085	next = 0;
1086	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1087		if (GETIP(q)->ip_off != next) {
1088			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1089				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1090				ip_freef(head, fp);
1091			}
1092			goto done;
1093		}
1094		next += GETIP(q)->ip_len;
1095	}
1096	/* Make sure the last packet didn't have the IP_MF flag */
1097	if (p->m_flags & M_FRAG) {
1098		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1099			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1100			ip_freef(head, fp);
1101		}
1102		goto done;
1103	}
1104
1105	/*
1106	 * Reassembly is complete.  Make sure the packet is a sane size.
1107	 */
1108	q = fp->ipq_frags;
1109	ip = GETIP(q);
1110	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1111		IPSTAT_INC(ips_toolong);
1112		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1113		ip_freef(head, fp);
1114		goto done;
1115	}
1116
1117	/*
1118	 * Concatenate fragments.
1119	 */
1120	m = q;
1121	t = m->m_next;
1122	m->m_next = NULL;
1123	m_cat(m, t);
1124	nq = q->m_nextpkt;
1125	q->m_nextpkt = NULL;
1126	for (q = nq; q != NULL; q = nq) {
1127		nq = q->m_nextpkt;
1128		q->m_nextpkt = NULL;
1129		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1130		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1131		m_cat(m, q);
1132	}
1133	/*
1134	 * In order to do checksumming faster we do 'end-around carry' here
1135	 * (and not in for{} loop), though it implies we are not going to
1136	 * reassemble more than 64k fragments.
1137	 */
1138	m->m_pkthdr.csum_data =
1139	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1140#ifdef MAC
1141	mac_ipq_reassemble(fp, m);
1142	mac_ipq_destroy(fp);
1143#endif
1144
1145	/*
1146	 * Create header for new ip packet by modifying header of first
1147	 * packet;  dequeue and discard fragment reassembly header.
1148	 * Make header visible.
1149	 */
1150	ip->ip_len = (ip->ip_hl << 2) + next;
1151	ip->ip_src = fp->ipq_src;
1152	ip->ip_dst = fp->ipq_dst;
1153	TAILQ_REMOVE(head, fp, ipq_list);
1154	V_nipq--;
1155	uma_zfree(V_ipq_zone, fp);
1156	m->m_len += (ip->ip_hl << 2);
1157	m->m_data -= (ip->ip_hl << 2);
1158	/* some debugging cruft by sklower, below, will go away soon */
1159	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1160		m_fixhdr(m);
1161	IPSTAT_INC(ips_reassembled);
1162	IPQ_UNLOCK();
1163	return (m);
1164
1165dropfrag:
1166	IPSTAT_INC(ips_fragdropped);
1167	if (fp != NULL)
1168		fp->ipq_nfrags--;
1169	m_freem(m);
1170done:
1171	IPQ_UNLOCK();
1172	return (NULL);
1173
1174#undef GETIP
1175}
1176
1177/*
1178 * Free a fragment reassembly header and all
1179 * associated datagrams.
1180 */
1181static void
1182ip_freef(struct ipqhead *fhp, struct ipq *fp)
1183{
1184	struct mbuf *q;
1185
1186	IPQ_LOCK_ASSERT();
1187
1188	while (fp->ipq_frags) {
1189		q = fp->ipq_frags;
1190		fp->ipq_frags = q->m_nextpkt;
1191		m_freem(q);
1192	}
1193	TAILQ_REMOVE(fhp, fp, ipq_list);
1194	uma_zfree(V_ipq_zone, fp);
1195	V_nipq--;
1196}
1197
1198/*
1199 * IP timer processing;
1200 * if a timer expires on a reassembly
1201 * queue, discard it.
1202 */
1203void
1204ip_slowtimo(void)
1205{
1206	VNET_ITERATOR_DECL(vnet_iter);
1207	struct ipq *fp;
1208	int i;
1209
1210	VNET_LIST_RLOCK_NOSLEEP();
1211	IPQ_LOCK();
1212	VNET_FOREACH(vnet_iter) {
1213		CURVNET_SET(vnet_iter);
1214		for (i = 0; i < IPREASS_NHASH; i++) {
1215			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1216				struct ipq *fpp;
1217
1218				fpp = fp;
1219				fp = TAILQ_NEXT(fp, ipq_list);
1220				if(--fpp->ipq_ttl == 0) {
1221					IPSTAT_ADD(ips_fragtimeout,
1222					    fpp->ipq_nfrags);
1223					ip_freef(&V_ipq[i], fpp);
1224				}
1225			}
1226		}
1227		/*
1228		 * If we are over the maximum number of fragments
1229		 * (due to the limit being lowered), drain off
1230		 * enough to get down to the new limit.
1231		 */
1232		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1233			for (i = 0; i < IPREASS_NHASH; i++) {
1234				while (V_nipq > V_maxnipq &&
1235				    !TAILQ_EMPTY(&V_ipq[i])) {
1236					IPSTAT_ADD(ips_fragdropped,
1237					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1238					ip_freef(&V_ipq[i],
1239					    TAILQ_FIRST(&V_ipq[i]));
1240				}
1241			}
1242		}
1243		CURVNET_RESTORE();
1244	}
1245	IPQ_UNLOCK();
1246	VNET_LIST_RUNLOCK_NOSLEEP();
1247}
1248
1249/*
1250 * Drain off all datagram fragments.
1251 */
1252static void
1253ip_drain_locked(void)
1254{
1255	int     i;
1256
1257	IPQ_LOCK_ASSERT();
1258
1259	for (i = 0; i < IPREASS_NHASH; i++) {
1260		while(!TAILQ_EMPTY(&V_ipq[i])) {
1261			IPSTAT_ADD(ips_fragdropped,
1262			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1263			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1264		}
1265	}
1266}
1267
1268void
1269ip_drain(void)
1270{
1271	VNET_ITERATOR_DECL(vnet_iter);
1272
1273	VNET_LIST_RLOCK_NOSLEEP();
1274	IPQ_LOCK();
1275	VNET_FOREACH(vnet_iter) {
1276		CURVNET_SET(vnet_iter);
1277		ip_drain_locked();
1278		CURVNET_RESTORE();
1279	}
1280	IPQ_UNLOCK();
1281	VNET_LIST_RUNLOCK_NOSLEEP();
1282	in_rtqdrain();
1283}
1284
1285/*
1286 * The protocol to be inserted into ip_protox[] must be already registered
1287 * in inetsw[], either statically or through pf_proto_register().
1288 */
1289int
1290ipproto_register(u_char ipproto)
1291{
1292	struct protosw *pr;
1293
1294	/* Sanity checks. */
1295	if (ipproto == 0)
1296		return (EPROTONOSUPPORT);
1297
1298	/*
1299	 * The protocol slot must not be occupied by another protocol
1300	 * already.  An index pointing to IPPROTO_RAW is unused.
1301	 */
1302	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1303	if (pr == NULL)
1304		return (EPFNOSUPPORT);
1305	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1306		return (EEXIST);
1307
1308	/* Find the protocol position in inetsw[] and set the index. */
1309	for (pr = inetdomain.dom_protosw;
1310	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1311		if (pr->pr_domain->dom_family == PF_INET &&
1312		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1313			/* Be careful to only index valid IP protocols. */
1314			if (pr->pr_protocol < IPPROTO_MAX) {
1315				ip_protox[pr->pr_protocol] = pr - inetsw;
1316				return (0);
1317			} else
1318				return (EINVAL);
1319		}
1320	}
1321	return (EPROTONOSUPPORT);
1322}
1323
1324int
1325ipproto_unregister(u_char ipproto)
1326{
1327	struct protosw *pr;
1328
1329	/* Sanity checks. */
1330	if (ipproto == 0)
1331		return (EPROTONOSUPPORT);
1332
1333	/* Check if the protocol was indeed registered. */
1334	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1335	if (pr == NULL)
1336		return (EPFNOSUPPORT);
1337	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1338		return (ENOENT);
1339
1340	/* Reset the protocol slot to IPPROTO_RAW. */
1341	ip_protox[ipproto] = pr - inetsw;
1342	return (0);
1343}
1344
1345/*
1346 * Given address of next destination (final or next hop), return (referenced)
1347 * internet address info of interface to be used to get there.
1348 */
1349struct in_ifaddr *
1350ip_rtaddr(struct in_addr dst, u_int fibnum)
1351{
1352	struct route sro;
1353	struct sockaddr_in *sin;
1354	struct in_ifaddr *ia;
1355
1356	bzero(&sro, sizeof(sro));
1357	sin = (struct sockaddr_in *)&sro.ro_dst;
1358	sin->sin_family = AF_INET;
1359	sin->sin_len = sizeof(*sin);
1360	sin->sin_addr = dst;
1361	in_rtalloc_ign(&sro, 0, fibnum);
1362
1363	if (sro.ro_rt == NULL)
1364		return (NULL);
1365
1366	ia = ifatoia(sro.ro_rt->rt_ifa);
1367	ifa_ref(&ia->ia_ifa);
1368	RTFREE(sro.ro_rt);
1369	return (ia);
1370}
1371
1372u_char inetctlerrmap[PRC_NCMDS] = {
1373	0,		0,		0,		0,
1374	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1375	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1376	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1377	0,		0,		EHOSTUNREACH,	0,
1378	ENOPROTOOPT,	ECONNREFUSED
1379};
1380
1381/*
1382 * Forward a packet.  If some error occurs return the sender
1383 * an icmp packet.  Note we can't always generate a meaningful
1384 * icmp message because icmp doesn't have a large enough repertoire
1385 * of codes and types.
1386 *
1387 * If not forwarding, just drop the packet.  This could be confusing
1388 * if ipforwarding was zero but some routing protocol was advancing
1389 * us as a gateway to somewhere.  However, we must let the routing
1390 * protocol deal with that.
1391 *
1392 * The srcrt parameter indicates whether the packet is being forwarded
1393 * via a source route.
1394 */
1395void
1396ip_forward(struct mbuf *m, int srcrt)
1397{
1398	struct ip *ip = mtod(m, struct ip *);
1399	struct in_ifaddr *ia;
1400	struct mbuf *mcopy;
1401	struct in_addr dest;
1402	struct route ro;
1403	int error, type = 0, code = 0, mtu = 0;
1404
1405	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1406		IPSTAT_INC(ips_cantforward);
1407		m_freem(m);
1408		return;
1409	}
1410#ifdef IPSTEALTH
1411	if (!V_ipstealth) {
1412#endif
1413		if (ip->ip_ttl <= IPTTLDEC) {
1414			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1415			    0, 0);
1416			return;
1417		}
1418#ifdef IPSTEALTH
1419	}
1420#endif
1421
1422	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1423#ifndef IPSEC
1424	/*
1425	 * 'ia' may be NULL if there is no route for this destination.
1426	 * In case of IPsec, Don't discard it just yet, but pass it to
1427	 * ip_output in case of outgoing IPsec policy.
1428	 */
1429	if (!srcrt && ia == NULL) {
1430		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1431		return;
1432	}
1433#endif
1434
1435	/*
1436	 * Save the IP header and at most 8 bytes of the payload,
1437	 * in case we need to generate an ICMP message to the src.
1438	 *
1439	 * XXX this can be optimized a lot by saving the data in a local
1440	 * buffer on the stack (72 bytes at most), and only allocating the
1441	 * mbuf if really necessary. The vast majority of the packets
1442	 * are forwarded without having to send an ICMP back (either
1443	 * because unnecessary, or because rate limited), so we are
1444	 * really we are wasting a lot of work here.
1445	 *
1446	 * We don't use m_copy() because it might return a reference
1447	 * to a shared cluster. Both this function and ip_output()
1448	 * assume exclusive access to the IP header in `m', so any
1449	 * data in a cluster may change before we reach icmp_error().
1450	 */
1451	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1452	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1453		/*
1454		 * It's probably ok if the pkthdr dup fails (because
1455		 * the deep copy of the tag chain failed), but for now
1456		 * be conservative and just discard the copy since
1457		 * code below may some day want the tags.
1458		 */
1459		m_free(mcopy);
1460		mcopy = NULL;
1461	}
1462	if (mcopy != NULL) {
1463		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1464		mcopy->m_pkthdr.len = mcopy->m_len;
1465		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1466	}
1467
1468#ifdef IPSTEALTH
1469	if (!V_ipstealth) {
1470#endif
1471		ip->ip_ttl -= IPTTLDEC;
1472#ifdef IPSTEALTH
1473	}
1474#endif
1475
1476	/*
1477	 * If forwarding packet using same interface that it came in on,
1478	 * perhaps should send a redirect to sender to shortcut a hop.
1479	 * Only send redirect if source is sending directly to us,
1480	 * and if packet was not source routed (or has any options).
1481	 * Also, don't send redirect if forwarding using a default route
1482	 * or a route modified by a redirect.
1483	 */
1484	dest.s_addr = 0;
1485	if (!srcrt && V_ipsendredirects &&
1486	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1487		struct sockaddr_in *sin;
1488		struct rtentry *rt;
1489
1490		bzero(&ro, sizeof(ro));
1491		sin = (struct sockaddr_in *)&ro.ro_dst;
1492		sin->sin_family = AF_INET;
1493		sin->sin_len = sizeof(*sin);
1494		sin->sin_addr = ip->ip_dst;
1495		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1496
1497		rt = ro.ro_rt;
1498
1499		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1500		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1501#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1502			u_long src = ntohl(ip->ip_src.s_addr);
1503
1504			if (RTA(rt) &&
1505			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1506				if (rt->rt_flags & RTF_GATEWAY)
1507					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1508				else
1509					dest.s_addr = ip->ip_dst.s_addr;
1510				/* Router requirements says to only send host redirects */
1511				type = ICMP_REDIRECT;
1512				code = ICMP_REDIRECT_HOST;
1513			}
1514		}
1515		if (rt)
1516			RTFREE(rt);
1517	}
1518
1519	/*
1520	 * Try to cache the route MTU from ip_output so we can consider it for
1521	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1522	 */
1523	bzero(&ro, sizeof(ro));
1524
1525	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1526
1527	if (error == EMSGSIZE && ro.ro_rt)
1528		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1529	if (ro.ro_rt)
1530		RTFREE(ro.ro_rt);
1531
1532	if (error)
1533		IPSTAT_INC(ips_cantforward);
1534	else {
1535		IPSTAT_INC(ips_forward);
1536		if (type)
1537			IPSTAT_INC(ips_redirectsent);
1538		else {
1539			if (mcopy)
1540				m_freem(mcopy);
1541			if (ia != NULL)
1542				ifa_free(&ia->ia_ifa);
1543			return;
1544		}
1545	}
1546	if (mcopy == NULL) {
1547		if (ia != NULL)
1548			ifa_free(&ia->ia_ifa);
1549		return;
1550	}
1551
1552	switch (error) {
1553
1554	case 0:				/* forwarded, but need redirect */
1555		/* type, code set above */
1556		break;
1557
1558	case ENETUNREACH:
1559	case EHOSTUNREACH:
1560	case ENETDOWN:
1561	case EHOSTDOWN:
1562	default:
1563		type = ICMP_UNREACH;
1564		code = ICMP_UNREACH_HOST;
1565		break;
1566
1567	case EMSGSIZE:
1568		type = ICMP_UNREACH;
1569		code = ICMP_UNREACH_NEEDFRAG;
1570
1571#ifdef IPSEC
1572		/*
1573		 * If IPsec is configured for this path,
1574		 * override any possibly mtu value set by ip_output.
1575		 */
1576		mtu = ip_ipsec_mtu(mcopy, mtu);
1577#endif /* IPSEC */
1578		/*
1579		 * If the MTU was set before make sure we are below the
1580		 * interface MTU.
1581		 * If the MTU wasn't set before use the interface mtu or
1582		 * fall back to the next smaller mtu step compared to the
1583		 * current packet size.
1584		 */
1585		if (mtu != 0) {
1586			if (ia != NULL)
1587				mtu = min(mtu, ia->ia_ifp->if_mtu);
1588		} else {
1589			if (ia != NULL)
1590				mtu = ia->ia_ifp->if_mtu;
1591			else
1592				mtu = ip_next_mtu(ip->ip_len, 0);
1593		}
1594		IPSTAT_INC(ips_cantfrag);
1595		break;
1596
1597	case ENOBUFS:
1598		/*
1599		 * A router should not generate ICMP_SOURCEQUENCH as
1600		 * required in RFC1812 Requirements for IP Version 4 Routers.
1601		 * Source quench could be a big problem under DoS attacks,
1602		 * or if the underlying interface is rate-limited.
1603		 * Those who need source quench packets may re-enable them
1604		 * via the net.inet.ip.sendsourcequench sysctl.
1605		 */
1606		if (V_ip_sendsourcequench == 0) {
1607			m_freem(mcopy);
1608			if (ia != NULL)
1609				ifa_free(&ia->ia_ifa);
1610			return;
1611		} else {
1612			type = ICMP_SOURCEQUENCH;
1613			code = 0;
1614		}
1615		break;
1616
1617	case EACCES:			/* ipfw denied packet */
1618		m_freem(mcopy);
1619		if (ia != NULL)
1620			ifa_free(&ia->ia_ifa);
1621		return;
1622	}
1623	if (ia != NULL)
1624		ifa_free(&ia->ia_ifa);
1625	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1626}
1627
1628void
1629ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1630    struct mbuf *m)
1631{
1632
1633	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1634		struct bintime bt;
1635
1636		bintime(&bt);
1637		if (inp->inp_socket->so_options & SO_BINTIME) {
1638			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1639			SCM_BINTIME, SOL_SOCKET);
1640			if (*mp)
1641				mp = &(*mp)->m_next;
1642		}
1643		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1644			struct timeval tv;
1645
1646			bintime2timeval(&bt, &tv);
1647			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1648				SCM_TIMESTAMP, SOL_SOCKET);
1649			if (*mp)
1650				mp = &(*mp)->m_next;
1651		}
1652	}
1653	if (inp->inp_flags & INP_RECVDSTADDR) {
1654		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1655		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1656		if (*mp)
1657			mp = &(*mp)->m_next;
1658	}
1659	if (inp->inp_flags & INP_RECVTTL) {
1660		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1661		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1662		if (*mp)
1663			mp = &(*mp)->m_next;
1664	}
1665#ifdef notyet
1666	/* XXX
1667	 * Moving these out of udp_input() made them even more broken
1668	 * than they already were.
1669	 */
1670	/* options were tossed already */
1671	if (inp->inp_flags & INP_RECVOPTS) {
1672		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1673		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1674		if (*mp)
1675			mp = &(*mp)->m_next;
1676	}
1677	/* ip_srcroute doesn't do what we want here, need to fix */
1678	if (inp->inp_flags & INP_RECVRETOPTS) {
1679		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1680		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1681		if (*mp)
1682			mp = &(*mp)->m_next;
1683	}
1684#endif
1685	if (inp->inp_flags & INP_RECVIF) {
1686		struct ifnet *ifp;
1687		struct sdlbuf {
1688			struct sockaddr_dl sdl;
1689			u_char	pad[32];
1690		} sdlbuf;
1691		struct sockaddr_dl *sdp;
1692		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1693
1694		if (((ifp = m->m_pkthdr.rcvif))
1695		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1696			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1697			/*
1698			 * Change our mind and don't try copy.
1699			 */
1700			if ((sdp->sdl_family != AF_LINK)
1701			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1702				goto makedummy;
1703			}
1704			bcopy(sdp, sdl2, sdp->sdl_len);
1705		} else {
1706makedummy:
1707			sdl2->sdl_len
1708				= offsetof(struct sockaddr_dl, sdl_data[0]);
1709			sdl2->sdl_family = AF_LINK;
1710			sdl2->sdl_index = 0;
1711			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1712		}
1713		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1714			IP_RECVIF, IPPROTO_IP);
1715		if (*mp)
1716			mp = &(*mp)->m_next;
1717	}
1718}
1719
1720/*
1721 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1722 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1723 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1724 * compiled.
1725 */
1726static VNET_DEFINE(int, ip_rsvp_on);
1727VNET_DEFINE(struct socket *, ip_rsvpd);
1728
1729#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1730
1731int
1732ip_rsvp_init(struct socket *so)
1733{
1734
1735	if (so->so_type != SOCK_RAW ||
1736	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1737		return EOPNOTSUPP;
1738
1739	if (V_ip_rsvpd != NULL)
1740		return EADDRINUSE;
1741
1742	V_ip_rsvpd = so;
1743	/*
1744	 * This may seem silly, but we need to be sure we don't over-increment
1745	 * the RSVP counter, in case something slips up.
1746	 */
1747	if (!V_ip_rsvp_on) {
1748		V_ip_rsvp_on = 1;
1749		V_rsvp_on++;
1750	}
1751
1752	return 0;
1753}
1754
1755int
1756ip_rsvp_done(void)
1757{
1758
1759	V_ip_rsvpd = NULL;
1760	/*
1761	 * This may seem silly, but we need to be sure we don't over-decrement
1762	 * the RSVP counter, in case something slips up.
1763	 */
1764	if (V_ip_rsvp_on) {
1765		V_ip_rsvp_on = 0;
1766		V_rsvp_on--;
1767	}
1768	return 0;
1769}
1770
1771void
1772rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1773{
1774
1775	if (rsvp_input_p) { /* call the real one if loaded */
1776		rsvp_input_p(m, off);
1777		return;
1778	}
1779
1780	/* Can still get packets with rsvp_on = 0 if there is a local member
1781	 * of the group to which the RSVP packet is addressed.  But in this
1782	 * case we want to throw the packet away.
1783	 */
1784
1785	if (!V_rsvp_on) {
1786		m_freem(m);
1787		return;
1788	}
1789
1790	if (V_ip_rsvpd != NULL) {
1791		rip_input(m, off);
1792		return;
1793	}
1794	/* Drop the packet */
1795	m_freem(m);
1796}
1797