ip_reass.c revision 205066
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 205066 2010-03-12 05:03:26Z kmacy $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40#include "opt_carp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/mbuf.h>
46#include <sys/malloc.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/socket.h>
50#include <sys/time.h>
51#include <sys/kernel.h>
52#include <sys/lock.h>
53#include <sys/rwlock.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56
57#include <net/pfil.h>
58#include <net/if.h>
59#include <net/if_types.h>
60#include <net/if_var.h>
61#include <net/if_dl.h>
62#include <net/route.h>
63#include <net/netisr.h>
64#include <net/vnet.h>
65#include <net/flowtable.h>
66
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/in_var.h>
70#include <netinet/ip.h>
71#include <netinet/in_pcb.h>
72#include <netinet/ip_var.h>
73#include <netinet/ip_fw.h>
74#include <netinet/ip_icmp.h>
75#include <netinet/ip_options.h>
76#include <machine/in_cksum.h>
77#ifdef DEV_CARP
78#include <netinet/ip_carp.h>
79#endif
80#ifdef IPSEC
81#include <netinet/ip_ipsec.h>
82#endif /* IPSEC */
83
84#include <sys/socketvar.h>
85
86#include <security/mac/mac_framework.h>
87
88#ifdef CTASSERT
89CTASSERT(sizeof(struct ip) == 20);
90#endif
91
92static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
93static VNET_DEFINE(int, ip_checkinterface);
94static VNET_DEFINE(int, ip_keepfaith);
95static VNET_DEFINE(int, ip_sendsourcequench);
96
97#define	V_ipsendredirects	VNET(ipsendredirects)
98#define	V_ip_checkinterface	VNET(ip_checkinterface)
99#define	V_ip_keepfaith		VNET(ip_keepfaith)
100#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
101
102VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
103VNET_DEFINE(int, ip_do_randomid);
104VNET_DEFINE(int, ipforwarding);
105
106VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
107VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
108VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
109VNET_DEFINE(struct ipstat, ipstat);
110
111static VNET_DEFINE(int, ip_rsvp_on);
112VNET_DEFINE(struct socket *, ip_rsvpd);
113VNET_DEFINE(int, rsvp_on);
114
115#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
116
117static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
118static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
119static VNET_DEFINE(int, maxfragsperpacket);
120static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
121
122#define	V_ipq			VNET(ipq)
123#define	V_maxnipq		VNET(maxnipq)
124#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
125#define	V_nipq			VNET(nipq)
126
127VNET_DEFINE(int, ipstealth);
128
129struct	rwlock in_ifaddr_lock;
130RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
131
132SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
133    &VNET_NAME(ipforwarding), 0,
134    "Enable IP forwarding between interfaces");
135
136SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
137    &VNET_NAME(ipsendredirects), 0,
138    "Enable sending IP redirects");
139
140SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
141    &VNET_NAME(ip_defttl), 0,
142    "Maximum TTL on IP packets");
143
144SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
145    &VNET_NAME(ip_keepfaith), 0,
146    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
147
148SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
149    &VNET_NAME(ip_sendsourcequench), 0,
150    "Enable the transmission of source quench packets");
151
152SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
153    &VNET_NAME(ip_do_randomid), 0,
154    "Assign random ip_id values");
155
156/*
157 * XXX - Setting ip_checkinterface mostly implements the receive side of
158 * the Strong ES model described in RFC 1122, but since the routing table
159 * and transmit implementation do not implement the Strong ES model,
160 * setting this to 1 results in an odd hybrid.
161 *
162 * XXX - ip_checkinterface currently must be disabled if you use ipnat
163 * to translate the destination address to another local interface.
164 *
165 * XXX - ip_checkinterface must be disabled if you add IP aliases
166 * to the loopback interface instead of the interface where the
167 * packets for those addresses are received.
168 */
169SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
170    &VNET_NAME(ip_checkinterface), 0,
171    "Verify packet arrives on correct interface");
172
173VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
174
175static struct netisr_handler ip_nh = {
176	.nh_name = "ip",
177	.nh_handler = ip_input,
178	.nh_proto = NETISR_IP,
179	.nh_policy = NETISR_POLICY_FLOW,
180};
181
182extern	struct domain inetdomain;
183extern	struct protosw inetsw[];
184u_char	ip_protox[IPPROTO_MAX];
185
186SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
187    &VNET_NAME(ipstat), ipstat,
188    "IP statistics (struct ipstat, netinet/ip_var.h)");
189
190static VNET_DEFINE(uma_zone_t, ipq_zone);
191#define	V_ipq_zone		VNET(ipq_zone)
192
193static struct mtx ipqlock;
194
195#define	IPQ_LOCK()	mtx_lock(&ipqlock)
196#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
197#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
198#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
199
200static void	maxnipq_update(void);
201static void	ipq_zone_change(void *);
202static void	ip_drain_locked(void);
203
204SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
205    &VNET_NAME(nipq), 0,
206    "Current number of IPv4 fragment reassembly queue entries");
207
208SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
209    &VNET_NAME(maxfragsperpacket), 0,
210    "Maximum number of IPv4 fragments allowed per packet");
211
212struct callout	ipport_tick_callout;
213
214#ifdef IPCTL_DEFMTU
215SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
216    &ip_mtu, 0, "Default MTU");
217#endif
218
219#ifdef IPSTEALTH
220SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
221    &VNET_NAME(ipstealth), 0,
222    "IP stealth mode, no TTL decrementation on forwarding");
223#endif
224
225#ifdef FLOWTABLE
226static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
227VNET_DEFINE(struct flowtable *, ip_ft);
228#define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
229
230SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
231    &VNET_NAME(ip_output_flowtable_size), 2048,
232    "number of entries in the per-cpu output flow caches");
233#endif
234
235VNET_DEFINE(int, fw_one_pass) = 1;
236
237static void	ip_freef(struct ipqhead *, struct ipq *);
238
239/*
240 * Kernel module interface for updating ipstat.  The argument is an index
241 * into ipstat treated as an array of u_long.  While this encodes the general
242 * layout of ipstat into the caller, it doesn't encode its location, so that
243 * future changes to add, for example, per-CPU stats support won't cause
244 * binary compatibility problems for kernel modules.
245 */
246void
247kmod_ipstat_inc(int statnum)
248{
249
250	(*((u_long *)&V_ipstat + statnum))++;
251}
252
253void
254kmod_ipstat_dec(int statnum)
255{
256
257	(*((u_long *)&V_ipstat + statnum))--;
258}
259
260static int
261sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
262{
263	int error, qlimit;
264
265	netisr_getqlimit(&ip_nh, &qlimit);
266	error = sysctl_handle_int(oidp, &qlimit, 0, req);
267	if (error || !req->newptr)
268		return (error);
269	if (qlimit < 1)
270		return (EINVAL);
271	return (netisr_setqlimit(&ip_nh, qlimit));
272}
273SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
274    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
275    "Maximum size of the IP input queue");
276
277static int
278sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
279{
280	u_int64_t qdrops_long;
281	int error, qdrops;
282
283	netisr_getqdrops(&ip_nh, &qdrops_long);
284	qdrops = qdrops_long;
285	error = sysctl_handle_int(oidp, &qdrops, 0, req);
286	if (error || !req->newptr)
287		return (error);
288	if (qdrops != 0)
289		return (EINVAL);
290	netisr_clearqdrops(&ip_nh);
291	return (0);
292}
293
294SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
295    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
296    "Number of packets dropped from the IP input queue");
297
298/*
299 * IP initialization: fill in IP protocol switch table.
300 * All protocols not implemented in kernel go to raw IP protocol handler.
301 */
302void
303ip_init(void)
304{
305	struct protosw *pr;
306	int i;
307
308	V_ip_id = time_second & 0xffff;
309
310	TAILQ_INIT(&V_in_ifaddrhead);
311	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
312
313	/* Initialize IP reassembly queue. */
314	for (i = 0; i < IPREASS_NHASH; i++)
315		TAILQ_INIT(&V_ipq[i]);
316	V_maxnipq = nmbclusters / 32;
317	V_maxfragsperpacket = 16;
318	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
319	    NULL, UMA_ALIGN_PTR, 0);
320	maxnipq_update();
321
322	/* Initialize packet filter hooks. */
323	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
324	V_inet_pfil_hook.ph_af = AF_INET;
325	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
326		printf("%s: WARNING: unable to register pfil hook, "
327			"error %d\n", __func__, i);
328
329#ifdef FLOWTABLE
330	TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
331	    &V_ip_output_flowtable_size);
332	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
333#endif
334
335	/* Skip initialization of globals for non-default instances. */
336	if (!IS_DEFAULT_VNET(curvnet))
337		return;
338
339	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
340	if (pr == NULL)
341		panic("ip_init: PF_INET not found");
342
343	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
344	for (i = 0; i < IPPROTO_MAX; i++)
345		ip_protox[i] = pr - inetsw;
346	/*
347	 * Cycle through IP protocols and put them into the appropriate place
348	 * in ip_protox[].
349	 */
350	for (pr = inetdomain.dom_protosw;
351	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
352		if (pr->pr_domain->dom_family == PF_INET &&
353		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
354			/* Be careful to only index valid IP protocols. */
355			if (pr->pr_protocol < IPPROTO_MAX)
356				ip_protox[pr->pr_protocol] = pr - inetsw;
357		}
358
359	/* Start ipport_tick. */
360	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
361	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
362	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
363		SHUTDOWN_PRI_DEFAULT);
364	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
365		NULL, EVENTHANDLER_PRI_ANY);
366
367	/* Initialize various other remaining things. */
368	IPQ_LOCK_INIT();
369	netisr_register(&ip_nh);
370}
371
372#ifdef VIMAGE
373void
374ip_destroy(void)
375{
376
377	/* Cleanup in_ifaddr hash table; should be empty. */
378	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
379
380	IPQ_LOCK();
381	ip_drain_locked();
382	IPQ_UNLOCK();
383
384	uma_zdestroy(V_ipq_zone);
385}
386#endif
387
388void
389ip_fini(void *xtp)
390{
391
392	callout_stop(&ipport_tick_callout);
393}
394
395/*
396 * Ip input routine.  Checksum and byte swap header.  If fragmented
397 * try to reassemble.  Process options.  Pass to next level.
398 */
399void
400ip_input(struct mbuf *m)
401{
402	struct ip *ip = NULL;
403	struct in_ifaddr *ia = NULL;
404	struct ifaddr *ifa;
405	struct ifnet *ifp;
406	int    checkif, hlen = 0;
407	u_short sum;
408	int dchg = 0;				/* dest changed after fw */
409	struct in_addr odst;			/* original dst address */
410
411	M_ASSERTPKTHDR(m);
412
413	if (m->m_flags & M_FASTFWD_OURS) {
414		/*
415		 * Firewall or NAT changed destination to local.
416		 * We expect ip_len and ip_off to be in host byte order.
417		 */
418		m->m_flags &= ~M_FASTFWD_OURS;
419		/* Set up some basics that will be used later. */
420		ip = mtod(m, struct ip *);
421		hlen = ip->ip_hl << 2;
422		goto ours;
423	}
424
425	IPSTAT_INC(ips_total);
426
427	if (m->m_pkthdr.len < sizeof(struct ip))
428		goto tooshort;
429
430	if (m->m_len < sizeof (struct ip) &&
431	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
432		IPSTAT_INC(ips_toosmall);
433		return;
434	}
435	ip = mtod(m, struct ip *);
436
437	if (ip->ip_v != IPVERSION) {
438		IPSTAT_INC(ips_badvers);
439		goto bad;
440	}
441
442	hlen = ip->ip_hl << 2;
443	if (hlen < sizeof(struct ip)) {	/* minimum header length */
444		IPSTAT_INC(ips_badhlen);
445		goto bad;
446	}
447	if (hlen > m->m_len) {
448		if ((m = m_pullup(m, hlen)) == NULL) {
449			IPSTAT_INC(ips_badhlen);
450			return;
451		}
452		ip = mtod(m, struct ip *);
453	}
454
455	/* 127/8 must not appear on wire - RFC1122 */
456	ifp = m->m_pkthdr.rcvif;
457	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
458	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
459		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
460			IPSTAT_INC(ips_badaddr);
461			goto bad;
462		}
463	}
464
465	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
466		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
467	} else {
468		if (hlen == sizeof(struct ip)) {
469			sum = in_cksum_hdr(ip);
470		} else {
471			sum = in_cksum(m, hlen);
472		}
473	}
474	if (sum) {
475		IPSTAT_INC(ips_badsum);
476		goto bad;
477	}
478
479#ifdef ALTQ
480	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
481		/* packet is dropped by traffic conditioner */
482		return;
483#endif
484
485	/*
486	 * Convert fields to host representation.
487	 */
488	ip->ip_len = ntohs(ip->ip_len);
489	if (ip->ip_len < hlen) {
490		IPSTAT_INC(ips_badlen);
491		goto bad;
492	}
493	ip->ip_off = ntohs(ip->ip_off);
494
495	/*
496	 * Check that the amount of data in the buffers
497	 * is as at least much as the IP header would have us expect.
498	 * Trim mbufs if longer than we expect.
499	 * Drop packet if shorter than we expect.
500	 */
501	if (m->m_pkthdr.len < ip->ip_len) {
502tooshort:
503		IPSTAT_INC(ips_tooshort);
504		goto bad;
505	}
506	if (m->m_pkthdr.len > ip->ip_len) {
507		if (m->m_len == m->m_pkthdr.len) {
508			m->m_len = ip->ip_len;
509			m->m_pkthdr.len = ip->ip_len;
510		} else
511			m_adj(m, ip->ip_len - m->m_pkthdr.len);
512	}
513#ifdef IPSEC
514	/*
515	 * Bypass packet filtering for packets from a tunnel (gif).
516	 */
517	if (ip_ipsec_filtertunnel(m))
518		goto passin;
519#endif /* IPSEC */
520
521	/*
522	 * Run through list of hooks for input packets.
523	 *
524	 * NB: Beware of the destination address changing (e.g.
525	 *     by NAT rewriting).  When this happens, tell
526	 *     ip_forward to do the right thing.
527	 */
528
529	/* Jump over all PFIL processing if hooks are not active. */
530	if (!PFIL_HOOKED(&V_inet_pfil_hook))
531		goto passin;
532
533	odst = ip->ip_dst;
534	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
535		return;
536	if (m == NULL)			/* consumed by filter */
537		return;
538
539	ip = mtod(m, struct ip *);
540	dchg = (odst.s_addr != ip->ip_dst.s_addr);
541	ifp = m->m_pkthdr.rcvif;
542
543#ifdef IPFIREWALL_FORWARD
544	if (m->m_flags & M_FASTFWD_OURS) {
545		m->m_flags &= ~M_FASTFWD_OURS;
546		goto ours;
547	}
548	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
549		/*
550		 * Directly ship the packet on.  This allows forwarding
551		 * packets originally destined to us to some other directly
552		 * connected host.
553		 */
554		ip_forward(m, dchg);
555		return;
556	}
557#endif /* IPFIREWALL_FORWARD */
558
559passin:
560	/*
561	 * Process options and, if not destined for us,
562	 * ship it on.  ip_dooptions returns 1 when an
563	 * error was detected (causing an icmp message
564	 * to be sent and the original packet to be freed).
565	 */
566	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
567		return;
568
569        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
570         * matter if it is destined to another node, or whether it is
571         * a multicast one, RSVP wants it! and prevents it from being forwarded
572         * anywhere else. Also checks if the rsvp daemon is running before
573	 * grabbing the packet.
574         */
575	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
576		goto ours;
577
578	/*
579	 * Check our list of addresses, to see if the packet is for us.
580	 * If we don't have any addresses, assume any unicast packet
581	 * we receive might be for us (and let the upper layers deal
582	 * with it).
583	 */
584	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
585	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
586		goto ours;
587
588	/*
589	 * Enable a consistency check between the destination address
590	 * and the arrival interface for a unicast packet (the RFC 1122
591	 * strong ES model) if IP forwarding is disabled and the packet
592	 * is not locally generated and the packet is not subject to
593	 * 'ipfw fwd'.
594	 *
595	 * XXX - Checking also should be disabled if the destination
596	 * address is ipnat'ed to a different interface.
597	 *
598	 * XXX - Checking is incompatible with IP aliases added
599	 * to the loopback interface instead of the interface where
600	 * the packets are received.
601	 *
602	 * XXX - This is the case for carp vhost IPs as well so we
603	 * insert a workaround. If the packet got here, we already
604	 * checked with carp_iamatch() and carp_forus().
605	 */
606	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
607	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
608#ifdef DEV_CARP
609	    !ifp->if_carp &&
610#endif
611	    (dchg == 0);
612
613	/*
614	 * Check for exact addresses in the hash bucket.
615	 */
616	/* IN_IFADDR_RLOCK(); */
617	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
618		/*
619		 * If the address matches, verify that the packet
620		 * arrived via the correct interface if checking is
621		 * enabled.
622		 */
623		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
624		    (!checkif || ia->ia_ifp == ifp)) {
625			ifa_ref(&ia->ia_ifa);
626			/* IN_IFADDR_RUNLOCK(); */
627			goto ours;
628		}
629	}
630	/* IN_IFADDR_RUNLOCK(); */
631
632	/*
633	 * Check for broadcast addresses.
634	 *
635	 * Only accept broadcast packets that arrive via the matching
636	 * interface.  Reception of forwarded directed broadcasts would
637	 * be handled via ip_forward() and ether_output() with the loopback
638	 * into the stack for SIMPLEX interfaces handled by ether_output().
639	 */
640	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
641		IF_ADDR_LOCK(ifp);
642	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
643			if (ifa->ifa_addr->sa_family != AF_INET)
644				continue;
645			ia = ifatoia(ifa);
646			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
647			    ip->ip_dst.s_addr) {
648				ifa_ref(ifa);
649				IF_ADDR_UNLOCK(ifp);
650				goto ours;
651			}
652			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
653				ifa_ref(ifa);
654				IF_ADDR_UNLOCK(ifp);
655				goto ours;
656			}
657#ifdef BOOTP_COMPAT
658			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
659				ifa_ref(ifa);
660				IF_ADDR_UNLOCK(ifp);
661				goto ours;
662			}
663#endif
664		}
665		IF_ADDR_UNLOCK(ifp);
666		ia = NULL;
667	}
668	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
669	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
670		IPSTAT_INC(ips_cantforward);
671		m_freem(m);
672		return;
673	}
674	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
675		if (V_ip_mrouter) {
676			/*
677			 * If we are acting as a multicast router, all
678			 * incoming multicast packets are passed to the
679			 * kernel-level multicast forwarding function.
680			 * The packet is returned (relatively) intact; if
681			 * ip_mforward() returns a non-zero value, the packet
682			 * must be discarded, else it may be accepted below.
683			 */
684			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
685				IPSTAT_INC(ips_cantforward);
686				m_freem(m);
687				return;
688			}
689
690			/*
691			 * The process-level routing daemon needs to receive
692			 * all multicast IGMP packets, whether or not this
693			 * host belongs to their destination groups.
694			 */
695			if (ip->ip_p == IPPROTO_IGMP)
696				goto ours;
697			IPSTAT_INC(ips_forward);
698		}
699		/*
700		 * Assume the packet is for us, to avoid prematurely taking
701		 * a lock on the in_multi hash. Protocols must perform
702		 * their own filtering and update statistics accordingly.
703		 */
704		goto ours;
705	}
706	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
707		goto ours;
708	if (ip->ip_dst.s_addr == INADDR_ANY)
709		goto ours;
710
711	/*
712	 * FAITH(Firewall Aided Internet Translator)
713	 */
714	if (ifp && ifp->if_type == IFT_FAITH) {
715		if (V_ip_keepfaith) {
716			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
717				goto ours;
718		}
719		m_freem(m);
720		return;
721	}
722
723	/*
724	 * Not for us; forward if possible and desirable.
725	 */
726	if (V_ipforwarding == 0) {
727		IPSTAT_INC(ips_cantforward);
728		m_freem(m);
729	} else {
730#ifdef IPSEC
731		if (ip_ipsec_fwd(m))
732			goto bad;
733#endif /* IPSEC */
734		ip_forward(m, dchg);
735	}
736	return;
737
738ours:
739#ifdef IPSTEALTH
740	/*
741	 * IPSTEALTH: Process non-routing options only
742	 * if the packet is destined for us.
743	 */
744	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
745		if (ia != NULL)
746			ifa_free(&ia->ia_ifa);
747		return;
748	}
749#endif /* IPSTEALTH */
750
751	/* Count the packet in the ip address stats */
752	if (ia != NULL) {
753		ia->ia_ifa.if_ipackets++;
754		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
755		ifa_free(&ia->ia_ifa);
756	}
757
758	/*
759	 * Attempt reassembly; if it succeeds, proceed.
760	 * ip_reass() will return a different mbuf.
761	 */
762	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
763		m = ip_reass(m);
764		if (m == NULL)
765			return;
766		ip = mtod(m, struct ip *);
767		/* Get the header length of the reassembled packet */
768		hlen = ip->ip_hl << 2;
769	}
770
771	/*
772	 * Further protocols expect the packet length to be w/o the
773	 * IP header.
774	 */
775	ip->ip_len -= hlen;
776
777#ifdef IPSEC
778	/*
779	 * enforce IPsec policy checking if we are seeing last header.
780	 * note that we do not visit this with protocols with pcb layer
781	 * code - like udp/tcp/raw ip.
782	 */
783	if (ip_ipsec_input(m))
784		goto bad;
785#endif /* IPSEC */
786
787	/*
788	 * Switch out to protocol's input routine.
789	 */
790	IPSTAT_INC(ips_delivered);
791
792	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
793	return;
794bad:
795	m_freem(m);
796}
797
798/*
799 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
800 * max has slightly different semantics than the sysctl, for historical
801 * reasons.
802 */
803static void
804maxnipq_update(void)
805{
806
807	/*
808	 * -1 for unlimited allocation.
809	 */
810	if (V_maxnipq < 0)
811		uma_zone_set_max(V_ipq_zone, 0);
812	/*
813	 * Positive number for specific bound.
814	 */
815	if (V_maxnipq > 0)
816		uma_zone_set_max(V_ipq_zone, V_maxnipq);
817	/*
818	 * Zero specifies no further fragment queue allocation -- set the
819	 * bound very low, but rely on implementation elsewhere to actually
820	 * prevent allocation and reclaim current queues.
821	 */
822	if (V_maxnipq == 0)
823		uma_zone_set_max(V_ipq_zone, 1);
824}
825
826static void
827ipq_zone_change(void *tag)
828{
829
830	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
831		V_maxnipq = nmbclusters / 32;
832		maxnipq_update();
833	}
834}
835
836static int
837sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
838{
839	int error, i;
840
841	i = V_maxnipq;
842	error = sysctl_handle_int(oidp, &i, 0, req);
843	if (error || !req->newptr)
844		return (error);
845
846	/*
847	 * XXXRW: Might be a good idea to sanity check the argument and place
848	 * an extreme upper bound.
849	 */
850	if (i < -1)
851		return (EINVAL);
852	V_maxnipq = i;
853	maxnipq_update();
854	return (0);
855}
856
857SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
858    NULL, 0, sysctl_maxnipq, "I",
859    "Maximum number of IPv4 fragment reassembly queue entries");
860
861/*
862 * Take incoming datagram fragment and try to reassemble it into
863 * whole datagram.  If the argument is the first fragment or one
864 * in between the function will return NULL and store the mbuf
865 * in the fragment chain.  If the argument is the last fragment
866 * the packet will be reassembled and the pointer to the new
867 * mbuf returned for further processing.  Only m_tags attached
868 * to the first packet/fragment are preserved.
869 * The IP header is *NOT* adjusted out of iplen.
870 */
871struct mbuf *
872ip_reass(struct mbuf *m)
873{
874	struct ip *ip;
875	struct mbuf *p, *q, *nq, *t;
876	struct ipq *fp = NULL;
877	struct ipqhead *head;
878	int i, hlen, next;
879	u_int8_t ecn, ecn0;
880	u_short hash;
881
882	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
883	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
884		IPSTAT_INC(ips_fragments);
885		IPSTAT_INC(ips_fragdropped);
886		m_freem(m);
887		return (NULL);
888	}
889
890	ip = mtod(m, struct ip *);
891	hlen = ip->ip_hl << 2;
892
893	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
894	head = &V_ipq[hash];
895	IPQ_LOCK();
896
897	/*
898	 * Look for queue of fragments
899	 * of this datagram.
900	 */
901	TAILQ_FOREACH(fp, head, ipq_list)
902		if (ip->ip_id == fp->ipq_id &&
903		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
904		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
905#ifdef MAC
906		    mac_ipq_match(m, fp) &&
907#endif
908		    ip->ip_p == fp->ipq_p)
909			goto found;
910
911	fp = NULL;
912
913	/*
914	 * Attempt to trim the number of allocated fragment queues if it
915	 * exceeds the administrative limit.
916	 */
917	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
918		/*
919		 * drop something from the tail of the current queue
920		 * before proceeding further
921		 */
922		struct ipq *q = TAILQ_LAST(head, ipqhead);
923		if (q == NULL) {   /* gak */
924			for (i = 0; i < IPREASS_NHASH; i++) {
925				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
926				if (r) {
927					IPSTAT_ADD(ips_fragtimeout,
928					    r->ipq_nfrags);
929					ip_freef(&V_ipq[i], r);
930					break;
931				}
932			}
933		} else {
934			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
935			ip_freef(head, q);
936		}
937	}
938
939found:
940	/*
941	 * Adjust ip_len to not reflect header,
942	 * convert offset of this to bytes.
943	 */
944	ip->ip_len -= hlen;
945	if (ip->ip_off & IP_MF) {
946		/*
947		 * Make sure that fragments have a data length
948		 * that's a non-zero multiple of 8 bytes.
949		 */
950		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
951			IPSTAT_INC(ips_toosmall); /* XXX */
952			goto dropfrag;
953		}
954		m->m_flags |= M_FRAG;
955	} else
956		m->m_flags &= ~M_FRAG;
957	ip->ip_off <<= 3;
958
959
960	/*
961	 * Attempt reassembly; if it succeeds, proceed.
962	 * ip_reass() will return a different mbuf.
963	 */
964	IPSTAT_INC(ips_fragments);
965	m->m_pkthdr.header = ip;
966
967	/* Previous ip_reass() started here. */
968	/*
969	 * Presence of header sizes in mbufs
970	 * would confuse code below.
971	 */
972	m->m_data += hlen;
973	m->m_len -= hlen;
974
975	/*
976	 * If first fragment to arrive, create a reassembly queue.
977	 */
978	if (fp == NULL) {
979		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
980		if (fp == NULL)
981			goto dropfrag;
982#ifdef MAC
983		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
984			uma_zfree(V_ipq_zone, fp);
985			fp = NULL;
986			goto dropfrag;
987		}
988		mac_ipq_create(m, fp);
989#endif
990		TAILQ_INSERT_HEAD(head, fp, ipq_list);
991		V_nipq++;
992		fp->ipq_nfrags = 1;
993		fp->ipq_ttl = IPFRAGTTL;
994		fp->ipq_p = ip->ip_p;
995		fp->ipq_id = ip->ip_id;
996		fp->ipq_src = ip->ip_src;
997		fp->ipq_dst = ip->ip_dst;
998		fp->ipq_frags = m;
999		m->m_nextpkt = NULL;
1000		goto done;
1001	} else {
1002		fp->ipq_nfrags++;
1003#ifdef MAC
1004		mac_ipq_update(m, fp);
1005#endif
1006	}
1007
1008#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1009
1010	/*
1011	 * Handle ECN by comparing this segment with the first one;
1012	 * if CE is set, do not lose CE.
1013	 * drop if CE and not-ECT are mixed for the same packet.
1014	 */
1015	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1016	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1017	if (ecn == IPTOS_ECN_CE) {
1018		if (ecn0 == IPTOS_ECN_NOTECT)
1019			goto dropfrag;
1020		if (ecn0 != IPTOS_ECN_CE)
1021			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1022	}
1023	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1024		goto dropfrag;
1025
1026	/*
1027	 * Find a segment which begins after this one does.
1028	 */
1029	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1030		if (GETIP(q)->ip_off > ip->ip_off)
1031			break;
1032
1033	/*
1034	 * If there is a preceding segment, it may provide some of
1035	 * our data already.  If so, drop the data from the incoming
1036	 * segment.  If it provides all of our data, drop us, otherwise
1037	 * stick new segment in the proper place.
1038	 *
1039	 * If some of the data is dropped from the the preceding
1040	 * segment, then it's checksum is invalidated.
1041	 */
1042	if (p) {
1043		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1044		if (i > 0) {
1045			if (i >= ip->ip_len)
1046				goto dropfrag;
1047			m_adj(m, i);
1048			m->m_pkthdr.csum_flags = 0;
1049			ip->ip_off += i;
1050			ip->ip_len -= i;
1051		}
1052		m->m_nextpkt = p->m_nextpkt;
1053		p->m_nextpkt = m;
1054	} else {
1055		m->m_nextpkt = fp->ipq_frags;
1056		fp->ipq_frags = m;
1057	}
1058
1059	/*
1060	 * While we overlap succeeding segments trim them or,
1061	 * if they are completely covered, dequeue them.
1062	 */
1063	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1064	     q = nq) {
1065		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1066		if (i < GETIP(q)->ip_len) {
1067			GETIP(q)->ip_len -= i;
1068			GETIP(q)->ip_off += i;
1069			m_adj(q, i);
1070			q->m_pkthdr.csum_flags = 0;
1071			break;
1072		}
1073		nq = q->m_nextpkt;
1074		m->m_nextpkt = nq;
1075		IPSTAT_INC(ips_fragdropped);
1076		fp->ipq_nfrags--;
1077		m_freem(q);
1078	}
1079
1080	/*
1081	 * Check for complete reassembly and perform frag per packet
1082	 * limiting.
1083	 *
1084	 * Frag limiting is performed here so that the nth frag has
1085	 * a chance to complete the packet before we drop the packet.
1086	 * As a result, n+1 frags are actually allowed per packet, but
1087	 * only n will ever be stored. (n = maxfragsperpacket.)
1088	 *
1089	 */
1090	next = 0;
1091	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1092		if (GETIP(q)->ip_off != next) {
1093			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1094				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1095				ip_freef(head, fp);
1096			}
1097			goto done;
1098		}
1099		next += GETIP(q)->ip_len;
1100	}
1101	/* Make sure the last packet didn't have the IP_MF flag */
1102	if (p->m_flags & M_FRAG) {
1103		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1104			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1105			ip_freef(head, fp);
1106		}
1107		goto done;
1108	}
1109
1110	/*
1111	 * Reassembly is complete.  Make sure the packet is a sane size.
1112	 */
1113	q = fp->ipq_frags;
1114	ip = GETIP(q);
1115	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1116		IPSTAT_INC(ips_toolong);
1117		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1118		ip_freef(head, fp);
1119		goto done;
1120	}
1121
1122	/*
1123	 * Concatenate fragments.
1124	 */
1125	m = q;
1126	t = m->m_next;
1127	m->m_next = NULL;
1128	m_cat(m, t);
1129	nq = q->m_nextpkt;
1130	q->m_nextpkt = NULL;
1131	for (q = nq; q != NULL; q = nq) {
1132		nq = q->m_nextpkt;
1133		q->m_nextpkt = NULL;
1134		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1135		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1136		m_cat(m, q);
1137	}
1138	/*
1139	 * In order to do checksumming faster we do 'end-around carry' here
1140	 * (and not in for{} loop), though it implies we are not going to
1141	 * reassemble more than 64k fragments.
1142	 */
1143	m->m_pkthdr.csum_data =
1144	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1145#ifdef MAC
1146	mac_ipq_reassemble(fp, m);
1147	mac_ipq_destroy(fp);
1148#endif
1149
1150	/*
1151	 * Create header for new ip packet by modifying header of first
1152	 * packet;  dequeue and discard fragment reassembly header.
1153	 * Make header visible.
1154	 */
1155	ip->ip_len = (ip->ip_hl << 2) + next;
1156	ip->ip_src = fp->ipq_src;
1157	ip->ip_dst = fp->ipq_dst;
1158	TAILQ_REMOVE(head, fp, ipq_list);
1159	V_nipq--;
1160	uma_zfree(V_ipq_zone, fp);
1161	m->m_len += (ip->ip_hl << 2);
1162	m->m_data -= (ip->ip_hl << 2);
1163	/* some debugging cruft by sklower, below, will go away soon */
1164	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1165		m_fixhdr(m);
1166	IPSTAT_INC(ips_reassembled);
1167	IPQ_UNLOCK();
1168	return (m);
1169
1170dropfrag:
1171	IPSTAT_INC(ips_fragdropped);
1172	if (fp != NULL)
1173		fp->ipq_nfrags--;
1174	m_freem(m);
1175done:
1176	IPQ_UNLOCK();
1177	return (NULL);
1178
1179#undef GETIP
1180}
1181
1182/*
1183 * Free a fragment reassembly header and all
1184 * associated datagrams.
1185 */
1186static void
1187ip_freef(struct ipqhead *fhp, struct ipq *fp)
1188{
1189	struct mbuf *q;
1190
1191	IPQ_LOCK_ASSERT();
1192
1193	while (fp->ipq_frags) {
1194		q = fp->ipq_frags;
1195		fp->ipq_frags = q->m_nextpkt;
1196		m_freem(q);
1197	}
1198	TAILQ_REMOVE(fhp, fp, ipq_list);
1199	uma_zfree(V_ipq_zone, fp);
1200	V_nipq--;
1201}
1202
1203/*
1204 * IP timer processing;
1205 * if a timer expires on a reassembly
1206 * queue, discard it.
1207 */
1208void
1209ip_slowtimo(void)
1210{
1211	VNET_ITERATOR_DECL(vnet_iter);
1212	struct ipq *fp;
1213	int i;
1214
1215	VNET_LIST_RLOCK_NOSLEEP();
1216	IPQ_LOCK();
1217	VNET_FOREACH(vnet_iter) {
1218		CURVNET_SET(vnet_iter);
1219		for (i = 0; i < IPREASS_NHASH; i++) {
1220			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1221				struct ipq *fpp;
1222
1223				fpp = fp;
1224				fp = TAILQ_NEXT(fp, ipq_list);
1225				if(--fpp->ipq_ttl == 0) {
1226					IPSTAT_ADD(ips_fragtimeout,
1227					    fpp->ipq_nfrags);
1228					ip_freef(&V_ipq[i], fpp);
1229				}
1230			}
1231		}
1232		/*
1233		 * If we are over the maximum number of fragments
1234		 * (due to the limit being lowered), drain off
1235		 * enough to get down to the new limit.
1236		 */
1237		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1238			for (i = 0; i < IPREASS_NHASH; i++) {
1239				while (V_nipq > V_maxnipq &&
1240				    !TAILQ_EMPTY(&V_ipq[i])) {
1241					IPSTAT_ADD(ips_fragdropped,
1242					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1243					ip_freef(&V_ipq[i],
1244					    TAILQ_FIRST(&V_ipq[i]));
1245				}
1246			}
1247		}
1248		CURVNET_RESTORE();
1249	}
1250	IPQ_UNLOCK();
1251	VNET_LIST_RUNLOCK_NOSLEEP();
1252}
1253
1254/*
1255 * Drain off all datagram fragments.
1256 */
1257static void
1258ip_drain_locked(void)
1259{
1260	int     i;
1261
1262	IPQ_LOCK_ASSERT();
1263
1264	for (i = 0; i < IPREASS_NHASH; i++) {
1265		while(!TAILQ_EMPTY(&V_ipq[i])) {
1266			IPSTAT_ADD(ips_fragdropped,
1267			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1268			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1269		}
1270	}
1271}
1272
1273void
1274ip_drain(void)
1275{
1276	VNET_ITERATOR_DECL(vnet_iter);
1277
1278	VNET_LIST_RLOCK_NOSLEEP();
1279	IPQ_LOCK();
1280	VNET_FOREACH(vnet_iter) {
1281		CURVNET_SET(vnet_iter);
1282		ip_drain_locked();
1283		CURVNET_RESTORE();
1284	}
1285	IPQ_UNLOCK();
1286	VNET_LIST_RUNLOCK_NOSLEEP();
1287	in_rtqdrain();
1288}
1289
1290/*
1291 * The protocol to be inserted into ip_protox[] must be already registered
1292 * in inetsw[], either statically or through pf_proto_register().
1293 */
1294int
1295ipproto_register(u_char ipproto)
1296{
1297	struct protosw *pr;
1298
1299	/* Sanity checks. */
1300	if (ipproto == 0)
1301		return (EPROTONOSUPPORT);
1302
1303	/*
1304	 * The protocol slot must not be occupied by another protocol
1305	 * already.  An index pointing to IPPROTO_RAW is unused.
1306	 */
1307	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1308	if (pr == NULL)
1309		return (EPFNOSUPPORT);
1310	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1311		return (EEXIST);
1312
1313	/* Find the protocol position in inetsw[] and set the index. */
1314	for (pr = inetdomain.dom_protosw;
1315	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1316		if (pr->pr_domain->dom_family == PF_INET &&
1317		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1318			/* Be careful to only index valid IP protocols. */
1319			if (pr->pr_protocol < IPPROTO_MAX) {
1320				ip_protox[pr->pr_protocol] = pr - inetsw;
1321				return (0);
1322			} else
1323				return (EINVAL);
1324		}
1325	}
1326	return (EPROTONOSUPPORT);
1327}
1328
1329int
1330ipproto_unregister(u_char ipproto)
1331{
1332	struct protosw *pr;
1333
1334	/* Sanity checks. */
1335	if (ipproto == 0)
1336		return (EPROTONOSUPPORT);
1337
1338	/* Check if the protocol was indeed registered. */
1339	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1340	if (pr == NULL)
1341		return (EPFNOSUPPORT);
1342	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1343		return (ENOENT);
1344
1345	/* Reset the protocol slot to IPPROTO_RAW. */
1346	ip_protox[ipproto] = pr - inetsw;
1347	return (0);
1348}
1349
1350/*
1351 * Given address of next destination (final or next hop), return (referenced)
1352 * internet address info of interface to be used to get there.
1353 */
1354struct in_ifaddr *
1355ip_rtaddr(struct in_addr dst, u_int fibnum)
1356{
1357	struct route sro;
1358	struct sockaddr_in *sin;
1359	struct in_ifaddr *ia;
1360
1361	bzero(&sro, sizeof(sro));
1362	sin = (struct sockaddr_in *)&sro.ro_dst;
1363	sin->sin_family = AF_INET;
1364	sin->sin_len = sizeof(*sin);
1365	sin->sin_addr = dst;
1366	in_rtalloc_ign(&sro, 0, fibnum);
1367
1368	if (sro.ro_rt == NULL)
1369		return (NULL);
1370
1371	ia = ifatoia(sro.ro_rt->rt_ifa);
1372	ifa_ref(&ia->ia_ifa);
1373	RTFREE(sro.ro_rt);
1374	return (ia);
1375}
1376
1377u_char inetctlerrmap[PRC_NCMDS] = {
1378	0,		0,		0,		0,
1379	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1380	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1381	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1382	0,		0,		EHOSTUNREACH,	0,
1383	ENOPROTOOPT,	ECONNREFUSED
1384};
1385
1386/*
1387 * Forward a packet.  If some error occurs return the sender
1388 * an icmp packet.  Note we can't always generate a meaningful
1389 * icmp message because icmp doesn't have a large enough repertoire
1390 * of codes and types.
1391 *
1392 * If not forwarding, just drop the packet.  This could be confusing
1393 * if ipforwarding was zero but some routing protocol was advancing
1394 * us as a gateway to somewhere.  However, we must let the routing
1395 * protocol deal with that.
1396 *
1397 * The srcrt parameter indicates whether the packet is being forwarded
1398 * via a source route.
1399 */
1400void
1401ip_forward(struct mbuf *m, int srcrt)
1402{
1403	struct ip *ip = mtod(m, struct ip *);
1404	struct in_ifaddr *ia;
1405	struct mbuf *mcopy;
1406	struct in_addr dest;
1407	struct route ro;
1408	int error, type = 0, code = 0, mtu = 0;
1409
1410	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1411		IPSTAT_INC(ips_cantforward);
1412		m_freem(m);
1413		return;
1414	}
1415#ifdef IPSTEALTH
1416	if (!V_ipstealth) {
1417#endif
1418		if (ip->ip_ttl <= IPTTLDEC) {
1419			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1420			    0, 0);
1421			return;
1422		}
1423#ifdef IPSTEALTH
1424	}
1425#endif
1426
1427	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1428#ifndef IPSEC
1429	/*
1430	 * 'ia' may be NULL if there is no route for this destination.
1431	 * In case of IPsec, Don't discard it just yet, but pass it to
1432	 * ip_output in case of outgoing IPsec policy.
1433	 */
1434	if (!srcrt && ia == NULL) {
1435		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1436		return;
1437	}
1438#endif
1439
1440	/*
1441	 * Save the IP header and at most 8 bytes of the payload,
1442	 * in case we need to generate an ICMP message to the src.
1443	 *
1444	 * XXX this can be optimized a lot by saving the data in a local
1445	 * buffer on the stack (72 bytes at most), and only allocating the
1446	 * mbuf if really necessary. The vast majority of the packets
1447	 * are forwarded without having to send an ICMP back (either
1448	 * because unnecessary, or because rate limited), so we are
1449	 * really we are wasting a lot of work here.
1450	 *
1451	 * We don't use m_copy() because it might return a reference
1452	 * to a shared cluster. Both this function and ip_output()
1453	 * assume exclusive access to the IP header in `m', so any
1454	 * data in a cluster may change before we reach icmp_error().
1455	 */
1456	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1457	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1458		/*
1459		 * It's probably ok if the pkthdr dup fails (because
1460		 * the deep copy of the tag chain failed), but for now
1461		 * be conservative and just discard the copy since
1462		 * code below may some day want the tags.
1463		 */
1464		m_free(mcopy);
1465		mcopy = NULL;
1466	}
1467	if (mcopy != NULL) {
1468		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1469		mcopy->m_pkthdr.len = mcopy->m_len;
1470		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1471	}
1472
1473#ifdef IPSTEALTH
1474	if (!V_ipstealth) {
1475#endif
1476		ip->ip_ttl -= IPTTLDEC;
1477#ifdef IPSTEALTH
1478	}
1479#endif
1480
1481	/*
1482	 * If forwarding packet using same interface that it came in on,
1483	 * perhaps should send a redirect to sender to shortcut a hop.
1484	 * Only send redirect if source is sending directly to us,
1485	 * and if packet was not source routed (or has any options).
1486	 * Also, don't send redirect if forwarding using a default route
1487	 * or a route modified by a redirect.
1488	 */
1489	dest.s_addr = 0;
1490	if (!srcrt && V_ipsendredirects &&
1491	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1492		struct sockaddr_in *sin;
1493		struct rtentry *rt;
1494
1495		bzero(&ro, sizeof(ro));
1496		sin = (struct sockaddr_in *)&ro.ro_dst;
1497		sin->sin_family = AF_INET;
1498		sin->sin_len = sizeof(*sin);
1499		sin->sin_addr = ip->ip_dst;
1500		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1501
1502		rt = ro.ro_rt;
1503
1504		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1505		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1506#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1507			u_long src = ntohl(ip->ip_src.s_addr);
1508
1509			if (RTA(rt) &&
1510			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1511				if (rt->rt_flags & RTF_GATEWAY)
1512					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1513				else
1514					dest.s_addr = ip->ip_dst.s_addr;
1515				/* Router requirements says to only send host redirects */
1516				type = ICMP_REDIRECT;
1517				code = ICMP_REDIRECT_HOST;
1518			}
1519		}
1520		if (rt)
1521			RTFREE(rt);
1522	}
1523
1524	/*
1525	 * Try to cache the route MTU from ip_output so we can consider it for
1526	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1527	 */
1528	bzero(&ro, sizeof(ro));
1529
1530	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1531
1532	if (error == EMSGSIZE && ro.ro_rt)
1533		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1534	if (ro.ro_rt)
1535		RTFREE(ro.ro_rt);
1536
1537	if (error)
1538		IPSTAT_INC(ips_cantforward);
1539	else {
1540		IPSTAT_INC(ips_forward);
1541		if (type)
1542			IPSTAT_INC(ips_redirectsent);
1543		else {
1544			if (mcopy)
1545				m_freem(mcopy);
1546			if (ia != NULL)
1547				ifa_free(&ia->ia_ifa);
1548			return;
1549		}
1550	}
1551	if (mcopy == NULL) {
1552		if (ia != NULL)
1553			ifa_free(&ia->ia_ifa);
1554		return;
1555	}
1556
1557	switch (error) {
1558
1559	case 0:				/* forwarded, but need redirect */
1560		/* type, code set above */
1561		break;
1562
1563	case ENETUNREACH:
1564	case EHOSTUNREACH:
1565	case ENETDOWN:
1566	case EHOSTDOWN:
1567	default:
1568		type = ICMP_UNREACH;
1569		code = ICMP_UNREACH_HOST;
1570		break;
1571
1572	case EMSGSIZE:
1573		type = ICMP_UNREACH;
1574		code = ICMP_UNREACH_NEEDFRAG;
1575
1576#ifdef IPSEC
1577		/*
1578		 * If IPsec is configured for this path,
1579		 * override any possibly mtu value set by ip_output.
1580		 */
1581		mtu = ip_ipsec_mtu(m, mtu);
1582#endif /* IPSEC */
1583		/*
1584		 * If the MTU was set before make sure we are below the
1585		 * interface MTU.
1586		 * If the MTU wasn't set before use the interface mtu or
1587		 * fall back to the next smaller mtu step compared to the
1588		 * current packet size.
1589		 */
1590		if (mtu != 0) {
1591			if (ia != NULL)
1592				mtu = min(mtu, ia->ia_ifp->if_mtu);
1593		} else {
1594			if (ia != NULL)
1595				mtu = ia->ia_ifp->if_mtu;
1596			else
1597				mtu = ip_next_mtu(ip->ip_len, 0);
1598		}
1599		IPSTAT_INC(ips_cantfrag);
1600		break;
1601
1602	case ENOBUFS:
1603		/*
1604		 * A router should not generate ICMP_SOURCEQUENCH as
1605		 * required in RFC1812 Requirements for IP Version 4 Routers.
1606		 * Source quench could be a big problem under DoS attacks,
1607		 * or if the underlying interface is rate-limited.
1608		 * Those who need source quench packets may re-enable them
1609		 * via the net.inet.ip.sendsourcequench sysctl.
1610		 */
1611		if (V_ip_sendsourcequench == 0) {
1612			m_freem(mcopy);
1613			if (ia != NULL)
1614				ifa_free(&ia->ia_ifa);
1615			return;
1616		} else {
1617			type = ICMP_SOURCEQUENCH;
1618			code = 0;
1619		}
1620		break;
1621
1622	case EACCES:			/* ipfw denied packet */
1623		m_freem(mcopy);
1624		if (ia != NULL)
1625			ifa_free(&ia->ia_ifa);
1626		return;
1627	}
1628	if (ia != NULL)
1629		ifa_free(&ia->ia_ifa);
1630	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1631}
1632
1633void
1634ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1635    struct mbuf *m)
1636{
1637
1638	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1639		struct bintime bt;
1640
1641		bintime(&bt);
1642		if (inp->inp_socket->so_options & SO_BINTIME) {
1643			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1644			SCM_BINTIME, SOL_SOCKET);
1645			if (*mp)
1646				mp = &(*mp)->m_next;
1647		}
1648		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1649			struct timeval tv;
1650
1651			bintime2timeval(&bt, &tv);
1652			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1653				SCM_TIMESTAMP, SOL_SOCKET);
1654			if (*mp)
1655				mp = &(*mp)->m_next;
1656		}
1657	}
1658	if (inp->inp_flags & INP_RECVDSTADDR) {
1659		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1660		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1661		if (*mp)
1662			mp = &(*mp)->m_next;
1663	}
1664	if (inp->inp_flags & INP_RECVTTL) {
1665		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1666		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1667		if (*mp)
1668			mp = &(*mp)->m_next;
1669	}
1670#ifdef notyet
1671	/* XXX
1672	 * Moving these out of udp_input() made them even more broken
1673	 * than they already were.
1674	 */
1675	/* options were tossed already */
1676	if (inp->inp_flags & INP_RECVOPTS) {
1677		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1678		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1679		if (*mp)
1680			mp = &(*mp)->m_next;
1681	}
1682	/* ip_srcroute doesn't do what we want here, need to fix */
1683	if (inp->inp_flags & INP_RECVRETOPTS) {
1684		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1685		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1686		if (*mp)
1687			mp = &(*mp)->m_next;
1688	}
1689#endif
1690	if (inp->inp_flags & INP_RECVIF) {
1691		struct ifnet *ifp;
1692		struct sdlbuf {
1693			struct sockaddr_dl sdl;
1694			u_char	pad[32];
1695		} sdlbuf;
1696		struct sockaddr_dl *sdp;
1697		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1698
1699		if (((ifp = m->m_pkthdr.rcvif))
1700		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1701			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1702			/*
1703			 * Change our mind and don't try copy.
1704			 */
1705			if ((sdp->sdl_family != AF_LINK)
1706			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1707				goto makedummy;
1708			}
1709			bcopy(sdp, sdl2, sdp->sdl_len);
1710		} else {
1711makedummy:
1712			sdl2->sdl_len
1713				= offsetof(struct sockaddr_dl, sdl_data[0]);
1714			sdl2->sdl_family = AF_LINK;
1715			sdl2->sdl_index = 0;
1716			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1717		}
1718		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1719			IP_RECVIF, IPPROTO_IP);
1720		if (*mp)
1721			mp = &(*mp)->m_next;
1722	}
1723}
1724
1725/*
1726 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1727 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1728 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1729 * compiled.
1730 */
1731int
1732ip_rsvp_init(struct socket *so)
1733{
1734
1735	if (so->so_type != SOCK_RAW ||
1736	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1737		return EOPNOTSUPP;
1738
1739	if (V_ip_rsvpd != NULL)
1740		return EADDRINUSE;
1741
1742	V_ip_rsvpd = so;
1743	/*
1744	 * This may seem silly, but we need to be sure we don't over-increment
1745	 * the RSVP counter, in case something slips up.
1746	 */
1747	if (!V_ip_rsvp_on) {
1748		V_ip_rsvp_on = 1;
1749		V_rsvp_on++;
1750	}
1751
1752	return 0;
1753}
1754
1755int
1756ip_rsvp_done(void)
1757{
1758
1759	V_ip_rsvpd = NULL;
1760	/*
1761	 * This may seem silly, but we need to be sure we don't over-decrement
1762	 * the RSVP counter, in case something slips up.
1763	 */
1764	if (V_ip_rsvp_on) {
1765		V_ip_rsvp_on = 0;
1766		V_rsvp_on--;
1767	}
1768	return 0;
1769}
1770
1771void
1772rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1773{
1774
1775	if (rsvp_input_p) { /* call the real one if loaded */
1776		rsvp_input_p(m, off);
1777		return;
1778	}
1779
1780	/* Can still get packets with rsvp_on = 0 if there is a local member
1781	 * of the group to which the RSVP packet is addressed.  But in this
1782	 * case we want to throw the packet away.
1783	 */
1784
1785	if (!V_rsvp_on) {
1786		m_freem(m);
1787		return;
1788	}
1789
1790	if (V_ip_rsvpd != NULL) {
1791		rip_input(m, off);
1792		return;
1793	}
1794	/* Drop the packet */
1795	m_freem(m);
1796}
1797