ip_reass.c revision 198393
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 198393 2009-10-23 13:35:00Z rwatson $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40#include "opt_carp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/mbuf.h>
46#include <sys/malloc.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/socket.h>
50#include <sys/time.h>
51#include <sys/kernel.h>
52#include <sys/lock.h>
53#include <sys/rwlock.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56
57#include <net/pfil.h>
58#include <net/if.h>
59#include <net/if_types.h>
60#include <net/if_var.h>
61#include <net/if_dl.h>
62#include <net/route.h>
63#include <net/netisr.h>
64#include <net/vnet.h>
65#include <net/flowtable.h>
66
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/in_var.h>
70#include <netinet/ip.h>
71#include <netinet/in_pcb.h>
72#include <netinet/ip_var.h>
73#include <netinet/ip_fw.h>
74#include <netinet/ip_icmp.h>
75#include <netinet/ip_options.h>
76#include <machine/in_cksum.h>
77#ifdef DEV_CARP
78#include <netinet/ip_carp.h>
79#endif
80#ifdef IPSEC
81#include <netinet/ip_ipsec.h>
82#endif /* IPSEC */
83
84#include <sys/socketvar.h>
85
86#include <security/mac/mac_framework.h>
87
88#ifdef CTASSERT
89CTASSERT(sizeof(struct ip) == 20);
90#endif
91
92static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
93static VNET_DEFINE(int, ip_checkinterface);
94static VNET_DEFINE(int, ip_keepfaith);
95static VNET_DEFINE(int, ip_sendsourcequench);
96
97#define	V_ipsendredirects	VNET(ipsendredirects)
98#define	V_ip_checkinterface	VNET(ip_checkinterface)
99#define	V_ip_keepfaith		VNET(ip_keepfaith)
100#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
101
102VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
103VNET_DEFINE(int, ip_do_randomid);
104VNET_DEFINE(int, ipforwarding);
105
106VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
107VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
108VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
109VNET_DEFINE(struct ipstat, ipstat);
110
111static VNET_DEFINE(int, ip_rsvp_on);
112VNET_DEFINE(struct socket *, ip_rsvpd);
113VNET_DEFINE(int, rsvp_on);
114
115#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
116
117static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
118static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
119static VNET_DEFINE(int, maxfragsperpacket);
120static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
121
122#define	V_ipq			VNET(ipq)
123#define	V_maxnipq		VNET(maxnipq)
124#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
125#define	V_nipq			VNET(nipq)
126
127VNET_DEFINE(int, ipstealth);
128
129struct	rwlock in_ifaddr_lock;
130RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
131
132SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
133    &VNET_NAME(ipforwarding), 0,
134    "Enable IP forwarding between interfaces");
135
136SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
137    &VNET_NAME(ipsendredirects), 0,
138    "Enable sending IP redirects");
139
140SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
141    &VNET_NAME(ip_defttl), 0,
142    "Maximum TTL on IP packets");
143
144SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
145    &VNET_NAME(ip_keepfaith), 0,
146    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
147
148SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
149    &VNET_NAME(ip_sendsourcequench), 0,
150    "Enable the transmission of source quench packets");
151
152SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
153    &VNET_NAME(ip_do_randomid), 0,
154    "Assign random ip_id values");
155
156/*
157 * XXX - Setting ip_checkinterface mostly implements the receive side of
158 * the Strong ES model described in RFC 1122, but since the routing table
159 * and transmit implementation do not implement the Strong ES model,
160 * setting this to 1 results in an odd hybrid.
161 *
162 * XXX - ip_checkinterface currently must be disabled if you use ipnat
163 * to translate the destination address to another local interface.
164 *
165 * XXX - ip_checkinterface must be disabled if you add IP aliases
166 * to the loopback interface instead of the interface where the
167 * packets for those addresses are received.
168 */
169SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
170    &VNET_NAME(ip_checkinterface), 0,
171    "Verify packet arrives on correct interface");
172
173VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
174
175static struct netisr_handler ip_nh = {
176	.nh_name = "ip",
177	.nh_handler = ip_input,
178	.nh_proto = NETISR_IP,
179	.nh_policy = NETISR_POLICY_FLOW,
180};
181
182extern	struct domain inetdomain;
183extern	struct protosw inetsw[];
184u_char	ip_protox[IPPROTO_MAX];
185
186SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
187    &VNET_NAME(ipstat), ipstat,
188    "IP statistics (struct ipstat, netinet/ip_var.h)");
189
190static VNET_DEFINE(uma_zone_t, ipq_zone);
191#define	V_ipq_zone		VNET(ipq_zone)
192
193static struct mtx ipqlock;
194
195#define	IPQ_LOCK()	mtx_lock(&ipqlock)
196#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
197#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
198#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
199
200static void	maxnipq_update(void);
201static void	ipq_zone_change(void *);
202
203SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
204    &VNET_NAME(nipq), 0,
205    "Current number of IPv4 fragment reassembly queue entries");
206
207SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
208    &VNET_NAME(maxfragsperpacket), 0,
209    "Maximum number of IPv4 fragments allowed per packet");
210
211struct callout	ipport_tick_callout;
212
213#ifdef IPCTL_DEFMTU
214SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
215    &ip_mtu, 0, "Default MTU");
216#endif
217
218#ifdef IPSTEALTH
219SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
220    &VNET_NAME(ipstealth), 0,
221    "IP stealth mode, no TTL decrementation on forwarding");
222#endif
223
224#ifdef FLOWTABLE
225static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
226VNET_DEFINE(struct flowtable *, ip_ft);
227#define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
228
229SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
230    &VNET_NAME(ip_output_flowtable_size), 2048,
231    "number of entries in the per-cpu output flow caches");
232#endif
233
234VNET_DEFINE(int, fw_one_pass) = 1;
235
236static void	ip_freef(struct ipqhead *, struct ipq *);
237
238/*
239 * Kernel module interface for updating ipstat.  The argument is an index
240 * into ipstat treated as an array of u_long.  While this encodes the general
241 * layout of ipstat into the caller, it doesn't encode its location, so that
242 * future changes to add, for example, per-CPU stats support won't cause
243 * binary compatibility problems for kernel modules.
244 */
245void
246kmod_ipstat_inc(int statnum)
247{
248
249	(*((u_long *)&V_ipstat + statnum))++;
250}
251
252void
253kmod_ipstat_dec(int statnum)
254{
255
256	(*((u_long *)&V_ipstat + statnum))--;
257}
258
259static int
260sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
261{
262	int error, qlimit;
263
264	netisr_getqlimit(&ip_nh, &qlimit);
265	error = sysctl_handle_int(oidp, &qlimit, 0, req);
266	if (error || !req->newptr)
267		return (error);
268	if (qlimit < 1)
269		return (EINVAL);
270	return (netisr_setqlimit(&ip_nh, qlimit));
271}
272SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
273    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
274    "Maximum size of the IP input queue");
275
276static int
277sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
278{
279	u_int64_t qdrops_long;
280	int error, qdrops;
281
282	netisr_getqdrops(&ip_nh, &qdrops_long);
283	qdrops = qdrops_long;
284	error = sysctl_handle_int(oidp, &qdrops, 0, req);
285	if (error || !req->newptr)
286		return (error);
287	if (qdrops != 0)
288		return (EINVAL);
289	netisr_clearqdrops(&ip_nh);
290	return (0);
291}
292
293SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
294    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
295    "Number of packets dropped from the IP input queue");
296
297/*
298 * IP initialization: fill in IP protocol switch table.
299 * All protocols not implemented in kernel go to raw IP protocol handler.
300 */
301void
302ip_init(void)
303{
304	struct protosw *pr;
305	int i;
306
307	V_ip_id = time_second & 0xffff;
308
309	TAILQ_INIT(&V_in_ifaddrhead);
310	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
311
312	/* Initialize IP reassembly queue. */
313	for (i = 0; i < IPREASS_NHASH; i++)
314		TAILQ_INIT(&V_ipq[i]);
315	V_maxnipq = nmbclusters / 32;
316	V_maxfragsperpacket = 16;
317	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
318	    NULL, UMA_ALIGN_PTR, 0);
319	maxnipq_update();
320
321	/* Initialize packet filter hooks. */
322	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
323	V_inet_pfil_hook.ph_af = AF_INET;
324	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
325		printf("%s: WARNING: unable to register pfil hook, "
326			"error %d\n", __func__, i);
327
328#ifdef FLOWTABLE
329	TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
330	    &V_ip_output_flowtable_size);
331	V_ip_ft = flowtable_alloc(V_ip_output_flowtable_size, FL_PCPU);
332#endif
333
334	/* Skip initialization of globals for non-default instances. */
335	if (!IS_DEFAULT_VNET(curvnet))
336		return;
337
338	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
339	if (pr == NULL)
340		panic("ip_init: PF_INET not found");
341
342	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
343	for (i = 0; i < IPPROTO_MAX; i++)
344		ip_protox[i] = pr - inetsw;
345	/*
346	 * Cycle through IP protocols and put them into the appropriate place
347	 * in ip_protox[].
348	 */
349	for (pr = inetdomain.dom_protosw;
350	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
351		if (pr->pr_domain->dom_family == PF_INET &&
352		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
353			/* Be careful to only index valid IP protocols. */
354			if (pr->pr_protocol < IPPROTO_MAX)
355				ip_protox[pr->pr_protocol] = pr - inetsw;
356		}
357
358	/* Start ipport_tick. */
359	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
360	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
361	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
362		SHUTDOWN_PRI_DEFAULT);
363	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
364		NULL, EVENTHANDLER_PRI_ANY);
365
366	/* Initialize various other remaining things. */
367	IPQ_LOCK_INIT();
368	netisr_register(&ip_nh);
369}
370
371void
372ip_fini(void *xtp)
373{
374
375	callout_stop(&ipport_tick_callout);
376}
377
378/*
379 * Ip input routine.  Checksum and byte swap header.  If fragmented
380 * try to reassemble.  Process options.  Pass to next level.
381 */
382void
383ip_input(struct mbuf *m)
384{
385	struct ip *ip = NULL;
386	struct in_ifaddr *ia = NULL;
387	struct ifaddr *ifa;
388	struct ifnet *ifp;
389	int    checkif, hlen = 0;
390	u_short sum;
391	int dchg = 0;				/* dest changed after fw */
392	struct in_addr odst;			/* original dst address */
393
394	M_ASSERTPKTHDR(m);
395
396	if (m->m_flags & M_FASTFWD_OURS) {
397		/*
398		 * Firewall or NAT changed destination to local.
399		 * We expect ip_len and ip_off to be in host byte order.
400		 */
401		m->m_flags &= ~M_FASTFWD_OURS;
402		/* Set up some basics that will be used later. */
403		ip = mtod(m, struct ip *);
404		hlen = ip->ip_hl << 2;
405		goto ours;
406	}
407
408	IPSTAT_INC(ips_total);
409
410	if (m->m_pkthdr.len < sizeof(struct ip))
411		goto tooshort;
412
413	if (m->m_len < sizeof (struct ip) &&
414	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
415		IPSTAT_INC(ips_toosmall);
416		return;
417	}
418	ip = mtod(m, struct ip *);
419
420	if (ip->ip_v != IPVERSION) {
421		IPSTAT_INC(ips_badvers);
422		goto bad;
423	}
424
425	hlen = ip->ip_hl << 2;
426	if (hlen < sizeof(struct ip)) {	/* minimum header length */
427		IPSTAT_INC(ips_badhlen);
428		goto bad;
429	}
430	if (hlen > m->m_len) {
431		if ((m = m_pullup(m, hlen)) == NULL) {
432			IPSTAT_INC(ips_badhlen);
433			return;
434		}
435		ip = mtod(m, struct ip *);
436	}
437
438	/* 127/8 must not appear on wire - RFC1122 */
439	ifp = m->m_pkthdr.rcvif;
440	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
441	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
442		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
443			IPSTAT_INC(ips_badaddr);
444			goto bad;
445		}
446	}
447
448	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
449		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
450	} else {
451		if (hlen == sizeof(struct ip)) {
452			sum = in_cksum_hdr(ip);
453		} else {
454			sum = in_cksum(m, hlen);
455		}
456	}
457	if (sum) {
458		IPSTAT_INC(ips_badsum);
459		goto bad;
460	}
461
462#ifdef ALTQ
463	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
464		/* packet is dropped by traffic conditioner */
465		return;
466#endif
467
468	/*
469	 * Convert fields to host representation.
470	 */
471	ip->ip_len = ntohs(ip->ip_len);
472	if (ip->ip_len < hlen) {
473		IPSTAT_INC(ips_badlen);
474		goto bad;
475	}
476	ip->ip_off = ntohs(ip->ip_off);
477
478	/*
479	 * Check that the amount of data in the buffers
480	 * is as at least much as the IP header would have us expect.
481	 * Trim mbufs if longer than we expect.
482	 * Drop packet if shorter than we expect.
483	 */
484	if (m->m_pkthdr.len < ip->ip_len) {
485tooshort:
486		IPSTAT_INC(ips_tooshort);
487		goto bad;
488	}
489	if (m->m_pkthdr.len > ip->ip_len) {
490		if (m->m_len == m->m_pkthdr.len) {
491			m->m_len = ip->ip_len;
492			m->m_pkthdr.len = ip->ip_len;
493		} else
494			m_adj(m, ip->ip_len - m->m_pkthdr.len);
495	}
496#ifdef IPSEC
497	/*
498	 * Bypass packet filtering for packets from a tunnel (gif).
499	 */
500	if (ip_ipsec_filtertunnel(m))
501		goto passin;
502#endif /* IPSEC */
503
504	/*
505	 * Run through list of hooks for input packets.
506	 *
507	 * NB: Beware of the destination address changing (e.g.
508	 *     by NAT rewriting).  When this happens, tell
509	 *     ip_forward to do the right thing.
510	 */
511
512	/* Jump over all PFIL processing if hooks are not active. */
513	if (!PFIL_HOOKED(&V_inet_pfil_hook))
514		goto passin;
515
516	odst = ip->ip_dst;
517	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
518		return;
519	if (m == NULL)			/* consumed by filter */
520		return;
521
522	ip = mtod(m, struct ip *);
523	dchg = (odst.s_addr != ip->ip_dst.s_addr);
524	ifp = m->m_pkthdr.rcvif;
525
526#ifdef IPFIREWALL_FORWARD
527	if (m->m_flags & M_FASTFWD_OURS) {
528		m->m_flags &= ~M_FASTFWD_OURS;
529		goto ours;
530	}
531	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
532		/*
533		 * Directly ship the packet on.  This allows forwarding
534		 * packets originally destined to us to ome other directly
535		 * connected host.
536		 */
537		ip_forward(m, dchg);
538		return;
539	}
540#endif /* IPFIREWALL_FORWARD */
541
542passin:
543	/*
544	 * Process options and, if not destined for us,
545	 * ship it on.  ip_dooptions returns 1 when an
546	 * error was detected (causing an icmp message
547	 * to be sent and the original packet to be freed).
548	 */
549	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
550		return;
551
552        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
553         * matter if it is destined to another node, or whether it is
554         * a multicast one, RSVP wants it! and prevents it from being forwarded
555         * anywhere else. Also checks if the rsvp daemon is running before
556	 * grabbing the packet.
557         */
558	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
559		goto ours;
560
561	/*
562	 * Check our list of addresses, to see if the packet is for us.
563	 * If we don't have any addresses, assume any unicast packet
564	 * we receive might be for us (and let the upper layers deal
565	 * with it).
566	 */
567	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
568	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
569		goto ours;
570
571	/*
572	 * Enable a consistency check between the destination address
573	 * and the arrival interface for a unicast packet (the RFC 1122
574	 * strong ES model) if IP forwarding is disabled and the packet
575	 * is not locally generated and the packet is not subject to
576	 * 'ipfw fwd'.
577	 *
578	 * XXX - Checking also should be disabled if the destination
579	 * address is ipnat'ed to a different interface.
580	 *
581	 * XXX - Checking is incompatible with IP aliases added
582	 * to the loopback interface instead of the interface where
583	 * the packets are received.
584	 *
585	 * XXX - This is the case for carp vhost IPs as well so we
586	 * insert a workaround. If the packet got here, we already
587	 * checked with carp_iamatch() and carp_forus().
588	 */
589	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
590	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
591#ifdef DEV_CARP
592	    !ifp->if_carp &&
593#endif
594	    (dchg == 0);
595
596	/*
597	 * Check for exact addresses in the hash bucket.
598	 */
599	/* IN_IFADDR_RLOCK(); */
600	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
601		/*
602		 * If the address matches, verify that the packet
603		 * arrived via the correct interface if checking is
604		 * enabled.
605		 */
606		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
607		    (!checkif || ia->ia_ifp == ifp)) {
608			ifa_ref(&ia->ia_ifa);
609			/* IN_IFADDR_RUNLOCK(); */
610			goto ours;
611		}
612	}
613	/* IN_IFADDR_RUNLOCK(); */
614
615	/*
616	 * Check for broadcast addresses.
617	 *
618	 * Only accept broadcast packets that arrive via the matching
619	 * interface.  Reception of forwarded directed broadcasts would
620	 * be handled via ip_forward() and ether_output() with the loopback
621	 * into the stack for SIMPLEX interfaces handled by ether_output().
622	 */
623	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
624		IF_ADDR_LOCK(ifp);
625	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
626			if (ifa->ifa_addr->sa_family != AF_INET)
627				continue;
628			ia = ifatoia(ifa);
629			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
630			    ip->ip_dst.s_addr) {
631				ifa_ref(ifa);
632				IF_ADDR_UNLOCK(ifp);
633				goto ours;
634			}
635			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
636				ifa_ref(ifa);
637				IF_ADDR_UNLOCK(ifp);
638				goto ours;
639			}
640#ifdef BOOTP_COMPAT
641			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
642				ifa_ref(ifa);
643				IF_ADDR_UNLOCK(ifp);
644				goto ours;
645			}
646#endif
647		}
648		IF_ADDR_UNLOCK(ifp);
649		ia = NULL;
650	}
651	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
652	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
653		IPSTAT_INC(ips_cantforward);
654		m_freem(m);
655		return;
656	}
657	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
658		if (V_ip_mrouter) {
659			/*
660			 * If we are acting as a multicast router, all
661			 * incoming multicast packets are passed to the
662			 * kernel-level multicast forwarding function.
663			 * The packet is returned (relatively) intact; if
664			 * ip_mforward() returns a non-zero value, the packet
665			 * must be discarded, else it may be accepted below.
666			 */
667			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
668				IPSTAT_INC(ips_cantforward);
669				m_freem(m);
670				return;
671			}
672
673			/*
674			 * The process-level routing daemon needs to receive
675			 * all multicast IGMP packets, whether or not this
676			 * host belongs to their destination groups.
677			 */
678			if (ip->ip_p == IPPROTO_IGMP)
679				goto ours;
680			IPSTAT_INC(ips_forward);
681		}
682		/*
683		 * Assume the packet is for us, to avoid prematurely taking
684		 * a lock on the in_multi hash. Protocols must perform
685		 * their own filtering and update statistics accordingly.
686		 */
687		goto ours;
688	}
689	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
690		goto ours;
691	if (ip->ip_dst.s_addr == INADDR_ANY)
692		goto ours;
693
694	/*
695	 * FAITH(Firewall Aided Internet Translator)
696	 */
697	if (ifp && ifp->if_type == IFT_FAITH) {
698		if (V_ip_keepfaith) {
699			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
700				goto ours;
701		}
702		m_freem(m);
703		return;
704	}
705
706	/*
707	 * Not for us; forward if possible and desirable.
708	 */
709	if (V_ipforwarding == 0) {
710		IPSTAT_INC(ips_cantforward);
711		m_freem(m);
712	} else {
713#ifdef IPSEC
714		if (ip_ipsec_fwd(m))
715			goto bad;
716#endif /* IPSEC */
717		ip_forward(m, dchg);
718	}
719	return;
720
721ours:
722#ifdef IPSTEALTH
723	/*
724	 * IPSTEALTH: Process non-routing options only
725	 * if the packet is destined for us.
726	 */
727	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
728		if (ia != NULL)
729			ifa_free(&ia->ia_ifa);
730		return;
731	}
732#endif /* IPSTEALTH */
733
734	/* Count the packet in the ip address stats */
735	if (ia != NULL) {
736		ia->ia_ifa.if_ipackets++;
737		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
738		ifa_free(&ia->ia_ifa);
739	}
740
741	/*
742	 * Attempt reassembly; if it succeeds, proceed.
743	 * ip_reass() will return a different mbuf.
744	 */
745	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
746		m = ip_reass(m);
747		if (m == NULL)
748			return;
749		ip = mtod(m, struct ip *);
750		/* Get the header length of the reassembled packet */
751		hlen = ip->ip_hl << 2;
752	}
753
754	/*
755	 * Further protocols expect the packet length to be w/o the
756	 * IP header.
757	 */
758	ip->ip_len -= hlen;
759
760#ifdef IPSEC
761	/*
762	 * enforce IPsec policy checking if we are seeing last header.
763	 * note that we do not visit this with protocols with pcb layer
764	 * code - like udp/tcp/raw ip.
765	 */
766	if (ip_ipsec_input(m))
767		goto bad;
768#endif /* IPSEC */
769
770	/*
771	 * Switch out to protocol's input routine.
772	 */
773	IPSTAT_INC(ips_delivered);
774
775	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
776	return;
777bad:
778	m_freem(m);
779}
780
781/*
782 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
783 * max has slightly different semantics than the sysctl, for historical
784 * reasons.
785 */
786static void
787maxnipq_update(void)
788{
789
790	/*
791	 * -1 for unlimited allocation.
792	 */
793	if (V_maxnipq < 0)
794		uma_zone_set_max(V_ipq_zone, 0);
795	/*
796	 * Positive number for specific bound.
797	 */
798	if (V_maxnipq > 0)
799		uma_zone_set_max(V_ipq_zone, V_maxnipq);
800	/*
801	 * Zero specifies no further fragment queue allocation -- set the
802	 * bound very low, but rely on implementation elsewhere to actually
803	 * prevent allocation and reclaim current queues.
804	 */
805	if (V_maxnipq == 0)
806		uma_zone_set_max(V_ipq_zone, 1);
807}
808
809static void
810ipq_zone_change(void *tag)
811{
812
813	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
814		V_maxnipq = nmbclusters / 32;
815		maxnipq_update();
816	}
817}
818
819static int
820sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
821{
822	int error, i;
823
824	i = V_maxnipq;
825	error = sysctl_handle_int(oidp, &i, 0, req);
826	if (error || !req->newptr)
827		return (error);
828
829	/*
830	 * XXXRW: Might be a good idea to sanity check the argument and place
831	 * an extreme upper bound.
832	 */
833	if (i < -1)
834		return (EINVAL);
835	V_maxnipq = i;
836	maxnipq_update();
837	return (0);
838}
839
840SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
841    NULL, 0, sysctl_maxnipq, "I",
842    "Maximum number of IPv4 fragment reassembly queue entries");
843
844/*
845 * Take incoming datagram fragment and try to reassemble it into
846 * whole datagram.  If the argument is the first fragment or one
847 * in between the function will return NULL and store the mbuf
848 * in the fragment chain.  If the argument is the last fragment
849 * the packet will be reassembled and the pointer to the new
850 * mbuf returned for further processing.  Only m_tags attached
851 * to the first packet/fragment are preserved.
852 * The IP header is *NOT* adjusted out of iplen.
853 */
854struct mbuf *
855ip_reass(struct mbuf *m)
856{
857	struct ip *ip;
858	struct mbuf *p, *q, *nq, *t;
859	struct ipq *fp = NULL;
860	struct ipqhead *head;
861	int i, hlen, next;
862	u_int8_t ecn, ecn0;
863	u_short hash;
864
865	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
866	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
867		IPSTAT_INC(ips_fragments);
868		IPSTAT_INC(ips_fragdropped);
869		m_freem(m);
870		return (NULL);
871	}
872
873	ip = mtod(m, struct ip *);
874	hlen = ip->ip_hl << 2;
875
876	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
877	head = &V_ipq[hash];
878	IPQ_LOCK();
879
880	/*
881	 * Look for queue of fragments
882	 * of this datagram.
883	 */
884	TAILQ_FOREACH(fp, head, ipq_list)
885		if (ip->ip_id == fp->ipq_id &&
886		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
887		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
888#ifdef MAC
889		    mac_ipq_match(m, fp) &&
890#endif
891		    ip->ip_p == fp->ipq_p)
892			goto found;
893
894	fp = NULL;
895
896	/*
897	 * Attempt to trim the number of allocated fragment queues if it
898	 * exceeds the administrative limit.
899	 */
900	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
901		/*
902		 * drop something from the tail of the current queue
903		 * before proceeding further
904		 */
905		struct ipq *q = TAILQ_LAST(head, ipqhead);
906		if (q == NULL) {   /* gak */
907			for (i = 0; i < IPREASS_NHASH; i++) {
908				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
909				if (r) {
910					IPSTAT_ADD(ips_fragtimeout,
911					    r->ipq_nfrags);
912					ip_freef(&V_ipq[i], r);
913					break;
914				}
915			}
916		} else {
917			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
918			ip_freef(head, q);
919		}
920	}
921
922found:
923	/*
924	 * Adjust ip_len to not reflect header,
925	 * convert offset of this to bytes.
926	 */
927	ip->ip_len -= hlen;
928	if (ip->ip_off & IP_MF) {
929		/*
930		 * Make sure that fragments have a data length
931		 * that's a non-zero multiple of 8 bytes.
932		 */
933		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
934			IPSTAT_INC(ips_toosmall); /* XXX */
935			goto dropfrag;
936		}
937		m->m_flags |= M_FRAG;
938	} else
939		m->m_flags &= ~M_FRAG;
940	ip->ip_off <<= 3;
941
942
943	/*
944	 * Attempt reassembly; if it succeeds, proceed.
945	 * ip_reass() will return a different mbuf.
946	 */
947	IPSTAT_INC(ips_fragments);
948	m->m_pkthdr.header = ip;
949
950	/* Previous ip_reass() started here. */
951	/*
952	 * Presence of header sizes in mbufs
953	 * would confuse code below.
954	 */
955	m->m_data += hlen;
956	m->m_len -= hlen;
957
958	/*
959	 * If first fragment to arrive, create a reassembly queue.
960	 */
961	if (fp == NULL) {
962		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
963		if (fp == NULL)
964			goto dropfrag;
965#ifdef MAC
966		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
967			uma_zfree(V_ipq_zone, fp);
968			fp = NULL;
969			goto dropfrag;
970		}
971		mac_ipq_create(m, fp);
972#endif
973		TAILQ_INSERT_HEAD(head, fp, ipq_list);
974		V_nipq++;
975		fp->ipq_nfrags = 1;
976		fp->ipq_ttl = IPFRAGTTL;
977		fp->ipq_p = ip->ip_p;
978		fp->ipq_id = ip->ip_id;
979		fp->ipq_src = ip->ip_src;
980		fp->ipq_dst = ip->ip_dst;
981		fp->ipq_frags = m;
982		m->m_nextpkt = NULL;
983		goto done;
984	} else {
985		fp->ipq_nfrags++;
986#ifdef MAC
987		mac_ipq_update(m, fp);
988#endif
989	}
990
991#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
992
993	/*
994	 * Handle ECN by comparing this segment with the first one;
995	 * if CE is set, do not lose CE.
996	 * drop if CE and not-ECT are mixed for the same packet.
997	 */
998	ecn = ip->ip_tos & IPTOS_ECN_MASK;
999	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1000	if (ecn == IPTOS_ECN_CE) {
1001		if (ecn0 == IPTOS_ECN_NOTECT)
1002			goto dropfrag;
1003		if (ecn0 != IPTOS_ECN_CE)
1004			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1005	}
1006	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1007		goto dropfrag;
1008
1009	/*
1010	 * Find a segment which begins after this one does.
1011	 */
1012	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1013		if (GETIP(q)->ip_off > ip->ip_off)
1014			break;
1015
1016	/*
1017	 * If there is a preceding segment, it may provide some of
1018	 * our data already.  If so, drop the data from the incoming
1019	 * segment.  If it provides all of our data, drop us, otherwise
1020	 * stick new segment in the proper place.
1021	 *
1022	 * If some of the data is dropped from the the preceding
1023	 * segment, then it's checksum is invalidated.
1024	 */
1025	if (p) {
1026		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1027		if (i > 0) {
1028			if (i >= ip->ip_len)
1029				goto dropfrag;
1030			m_adj(m, i);
1031			m->m_pkthdr.csum_flags = 0;
1032			ip->ip_off += i;
1033			ip->ip_len -= i;
1034		}
1035		m->m_nextpkt = p->m_nextpkt;
1036		p->m_nextpkt = m;
1037	} else {
1038		m->m_nextpkt = fp->ipq_frags;
1039		fp->ipq_frags = m;
1040	}
1041
1042	/*
1043	 * While we overlap succeeding segments trim them or,
1044	 * if they are completely covered, dequeue them.
1045	 */
1046	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1047	     q = nq) {
1048		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1049		if (i < GETIP(q)->ip_len) {
1050			GETIP(q)->ip_len -= i;
1051			GETIP(q)->ip_off += i;
1052			m_adj(q, i);
1053			q->m_pkthdr.csum_flags = 0;
1054			break;
1055		}
1056		nq = q->m_nextpkt;
1057		m->m_nextpkt = nq;
1058		IPSTAT_INC(ips_fragdropped);
1059		fp->ipq_nfrags--;
1060		m_freem(q);
1061	}
1062
1063	/*
1064	 * Check for complete reassembly and perform frag per packet
1065	 * limiting.
1066	 *
1067	 * Frag limiting is performed here so that the nth frag has
1068	 * a chance to complete the packet before we drop the packet.
1069	 * As a result, n+1 frags are actually allowed per packet, but
1070	 * only n will ever be stored. (n = maxfragsperpacket.)
1071	 *
1072	 */
1073	next = 0;
1074	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1075		if (GETIP(q)->ip_off != next) {
1076			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1077				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1078				ip_freef(head, fp);
1079			}
1080			goto done;
1081		}
1082		next += GETIP(q)->ip_len;
1083	}
1084	/* Make sure the last packet didn't have the IP_MF flag */
1085	if (p->m_flags & M_FRAG) {
1086		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1087			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1088			ip_freef(head, fp);
1089		}
1090		goto done;
1091	}
1092
1093	/*
1094	 * Reassembly is complete.  Make sure the packet is a sane size.
1095	 */
1096	q = fp->ipq_frags;
1097	ip = GETIP(q);
1098	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1099		IPSTAT_INC(ips_toolong);
1100		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1101		ip_freef(head, fp);
1102		goto done;
1103	}
1104
1105	/*
1106	 * Concatenate fragments.
1107	 */
1108	m = q;
1109	t = m->m_next;
1110	m->m_next = NULL;
1111	m_cat(m, t);
1112	nq = q->m_nextpkt;
1113	q->m_nextpkt = NULL;
1114	for (q = nq; q != NULL; q = nq) {
1115		nq = q->m_nextpkt;
1116		q->m_nextpkt = NULL;
1117		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1118		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1119		m_cat(m, q);
1120	}
1121	/*
1122	 * In order to do checksumming faster we do 'end-around carry' here
1123	 * (and not in for{} loop), though it implies we are not going to
1124	 * reassemble more than 64k fragments.
1125	 */
1126	m->m_pkthdr.csum_data =
1127	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1128#ifdef MAC
1129	mac_ipq_reassemble(fp, m);
1130	mac_ipq_destroy(fp);
1131#endif
1132
1133	/*
1134	 * Create header for new ip packet by modifying header of first
1135	 * packet;  dequeue and discard fragment reassembly header.
1136	 * Make header visible.
1137	 */
1138	ip->ip_len = (ip->ip_hl << 2) + next;
1139	ip->ip_src = fp->ipq_src;
1140	ip->ip_dst = fp->ipq_dst;
1141	TAILQ_REMOVE(head, fp, ipq_list);
1142	V_nipq--;
1143	uma_zfree(V_ipq_zone, fp);
1144	m->m_len += (ip->ip_hl << 2);
1145	m->m_data -= (ip->ip_hl << 2);
1146	/* some debugging cruft by sklower, below, will go away soon */
1147	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1148		m_fixhdr(m);
1149	IPSTAT_INC(ips_reassembled);
1150	IPQ_UNLOCK();
1151	return (m);
1152
1153dropfrag:
1154	IPSTAT_INC(ips_fragdropped);
1155	if (fp != NULL)
1156		fp->ipq_nfrags--;
1157	m_freem(m);
1158done:
1159	IPQ_UNLOCK();
1160	return (NULL);
1161
1162#undef GETIP
1163}
1164
1165/*
1166 * Free a fragment reassembly header and all
1167 * associated datagrams.
1168 */
1169static void
1170ip_freef(struct ipqhead *fhp, struct ipq *fp)
1171{
1172	struct mbuf *q;
1173
1174	IPQ_LOCK_ASSERT();
1175
1176	while (fp->ipq_frags) {
1177		q = fp->ipq_frags;
1178		fp->ipq_frags = q->m_nextpkt;
1179		m_freem(q);
1180	}
1181	TAILQ_REMOVE(fhp, fp, ipq_list);
1182	uma_zfree(V_ipq_zone, fp);
1183	V_nipq--;
1184}
1185
1186/*
1187 * IP timer processing;
1188 * if a timer expires on a reassembly
1189 * queue, discard it.
1190 */
1191void
1192ip_slowtimo(void)
1193{
1194	VNET_ITERATOR_DECL(vnet_iter);
1195	struct ipq *fp;
1196	int i;
1197
1198	VNET_LIST_RLOCK_NOSLEEP();
1199	IPQ_LOCK();
1200	VNET_FOREACH(vnet_iter) {
1201		CURVNET_SET(vnet_iter);
1202		for (i = 0; i < IPREASS_NHASH; i++) {
1203			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1204				struct ipq *fpp;
1205
1206				fpp = fp;
1207				fp = TAILQ_NEXT(fp, ipq_list);
1208				if(--fpp->ipq_ttl == 0) {
1209					IPSTAT_ADD(ips_fragtimeout,
1210					    fpp->ipq_nfrags);
1211					ip_freef(&V_ipq[i], fpp);
1212				}
1213			}
1214		}
1215		/*
1216		 * If we are over the maximum number of fragments
1217		 * (due to the limit being lowered), drain off
1218		 * enough to get down to the new limit.
1219		 */
1220		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1221			for (i = 0; i < IPREASS_NHASH; i++) {
1222				while (V_nipq > V_maxnipq &&
1223				    !TAILQ_EMPTY(&V_ipq[i])) {
1224					IPSTAT_ADD(ips_fragdropped,
1225					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1226					ip_freef(&V_ipq[i],
1227					    TAILQ_FIRST(&V_ipq[i]));
1228				}
1229			}
1230		}
1231		CURVNET_RESTORE();
1232	}
1233	IPQ_UNLOCK();
1234	VNET_LIST_RUNLOCK_NOSLEEP();
1235}
1236
1237/*
1238 * Drain off all datagram fragments.
1239 */
1240void
1241ip_drain(void)
1242{
1243	VNET_ITERATOR_DECL(vnet_iter);
1244	int     i;
1245
1246	VNET_LIST_RLOCK_NOSLEEP();
1247	IPQ_LOCK();
1248	VNET_FOREACH(vnet_iter) {
1249		CURVNET_SET(vnet_iter);
1250		for (i = 0; i < IPREASS_NHASH; i++) {
1251			while(!TAILQ_EMPTY(&V_ipq[i])) {
1252				IPSTAT_ADD(ips_fragdropped,
1253				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1254				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1255			}
1256		}
1257		CURVNET_RESTORE();
1258	}
1259	IPQ_UNLOCK();
1260	VNET_LIST_RUNLOCK_NOSLEEP();
1261	in_rtqdrain();
1262}
1263
1264/*
1265 * The protocol to be inserted into ip_protox[] must be already registered
1266 * in inetsw[], either statically or through pf_proto_register().
1267 */
1268int
1269ipproto_register(u_char ipproto)
1270{
1271	struct protosw *pr;
1272
1273	/* Sanity checks. */
1274	if (ipproto == 0)
1275		return (EPROTONOSUPPORT);
1276
1277	/*
1278	 * The protocol slot must not be occupied by another protocol
1279	 * already.  An index pointing to IPPROTO_RAW is unused.
1280	 */
1281	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1282	if (pr == NULL)
1283		return (EPFNOSUPPORT);
1284	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1285		return (EEXIST);
1286
1287	/* Find the protocol position in inetsw[] and set the index. */
1288	for (pr = inetdomain.dom_protosw;
1289	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1290		if (pr->pr_domain->dom_family == PF_INET &&
1291		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1292			/* Be careful to only index valid IP protocols. */
1293			if (pr->pr_protocol < IPPROTO_MAX) {
1294				ip_protox[pr->pr_protocol] = pr - inetsw;
1295				return (0);
1296			} else
1297				return (EINVAL);
1298		}
1299	}
1300	return (EPROTONOSUPPORT);
1301}
1302
1303int
1304ipproto_unregister(u_char ipproto)
1305{
1306	struct protosw *pr;
1307
1308	/* Sanity checks. */
1309	if (ipproto == 0)
1310		return (EPROTONOSUPPORT);
1311
1312	/* Check if the protocol was indeed registered. */
1313	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1314	if (pr == NULL)
1315		return (EPFNOSUPPORT);
1316	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1317		return (ENOENT);
1318
1319	/* Reset the protocol slot to IPPROTO_RAW. */
1320	ip_protox[ipproto] = pr - inetsw;
1321	return (0);
1322}
1323
1324/*
1325 * Given address of next destination (final or next hop), return (referenced)
1326 * internet address info of interface to be used to get there.
1327 */
1328struct in_ifaddr *
1329ip_rtaddr(struct in_addr dst, u_int fibnum)
1330{
1331	struct route sro;
1332	struct sockaddr_in *sin;
1333	struct in_ifaddr *ia;
1334
1335	bzero(&sro, sizeof(sro));
1336	sin = (struct sockaddr_in *)&sro.ro_dst;
1337	sin->sin_family = AF_INET;
1338	sin->sin_len = sizeof(*sin);
1339	sin->sin_addr = dst;
1340	in_rtalloc_ign(&sro, 0, fibnum);
1341
1342	if (sro.ro_rt == NULL)
1343		return (NULL);
1344
1345	ia = ifatoia(sro.ro_rt->rt_ifa);
1346	ifa_ref(&ia->ia_ifa);
1347	RTFREE(sro.ro_rt);
1348	return (ia);
1349}
1350
1351u_char inetctlerrmap[PRC_NCMDS] = {
1352	0,		0,		0,		0,
1353	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1354	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1355	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1356	0,		0,		EHOSTUNREACH,	0,
1357	ENOPROTOOPT,	ECONNREFUSED
1358};
1359
1360/*
1361 * Forward a packet.  If some error occurs return the sender
1362 * an icmp packet.  Note we can't always generate a meaningful
1363 * icmp message because icmp doesn't have a large enough repertoire
1364 * of codes and types.
1365 *
1366 * If not forwarding, just drop the packet.  This could be confusing
1367 * if ipforwarding was zero but some routing protocol was advancing
1368 * us as a gateway to somewhere.  However, we must let the routing
1369 * protocol deal with that.
1370 *
1371 * The srcrt parameter indicates whether the packet is being forwarded
1372 * via a source route.
1373 */
1374void
1375ip_forward(struct mbuf *m, int srcrt)
1376{
1377	struct ip *ip = mtod(m, struct ip *);
1378	struct in_ifaddr *ia;
1379	struct mbuf *mcopy;
1380	struct in_addr dest;
1381	struct route ro;
1382	int error, type = 0, code = 0, mtu = 0;
1383
1384	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1385		IPSTAT_INC(ips_cantforward);
1386		m_freem(m);
1387		return;
1388	}
1389#ifdef IPSTEALTH
1390	if (!V_ipstealth) {
1391#endif
1392		if (ip->ip_ttl <= IPTTLDEC) {
1393			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1394			    0, 0);
1395			return;
1396		}
1397#ifdef IPSTEALTH
1398	}
1399#endif
1400
1401	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1402#ifndef IPSEC
1403	/*
1404	 * 'ia' may be NULL if there is no route for this destination.
1405	 * In case of IPsec, Don't discard it just yet, but pass it to
1406	 * ip_output in case of outgoing IPsec policy.
1407	 */
1408	if (!srcrt && ia == NULL) {
1409		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1410		return;
1411	}
1412#endif
1413
1414	/*
1415	 * Save the IP header and at most 8 bytes of the payload,
1416	 * in case we need to generate an ICMP message to the src.
1417	 *
1418	 * XXX this can be optimized a lot by saving the data in a local
1419	 * buffer on the stack (72 bytes at most), and only allocating the
1420	 * mbuf if really necessary. The vast majority of the packets
1421	 * are forwarded without having to send an ICMP back (either
1422	 * because unnecessary, or because rate limited), so we are
1423	 * really we are wasting a lot of work here.
1424	 *
1425	 * We don't use m_copy() because it might return a reference
1426	 * to a shared cluster. Both this function and ip_output()
1427	 * assume exclusive access to the IP header in `m', so any
1428	 * data in a cluster may change before we reach icmp_error().
1429	 */
1430	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1431	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1432		/*
1433		 * It's probably ok if the pkthdr dup fails (because
1434		 * the deep copy of the tag chain failed), but for now
1435		 * be conservative and just discard the copy since
1436		 * code below may some day want the tags.
1437		 */
1438		m_free(mcopy);
1439		mcopy = NULL;
1440	}
1441	if (mcopy != NULL) {
1442		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1443		mcopy->m_pkthdr.len = mcopy->m_len;
1444		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1445	}
1446
1447#ifdef IPSTEALTH
1448	if (!V_ipstealth) {
1449#endif
1450		ip->ip_ttl -= IPTTLDEC;
1451#ifdef IPSTEALTH
1452	}
1453#endif
1454
1455	/*
1456	 * If forwarding packet using same interface that it came in on,
1457	 * perhaps should send a redirect to sender to shortcut a hop.
1458	 * Only send redirect if source is sending directly to us,
1459	 * and if packet was not source routed (or has any options).
1460	 * Also, don't send redirect if forwarding using a default route
1461	 * or a route modified by a redirect.
1462	 */
1463	dest.s_addr = 0;
1464	if (!srcrt && V_ipsendredirects &&
1465	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1466		struct sockaddr_in *sin;
1467		struct rtentry *rt;
1468
1469		bzero(&ro, sizeof(ro));
1470		sin = (struct sockaddr_in *)&ro.ro_dst;
1471		sin->sin_family = AF_INET;
1472		sin->sin_len = sizeof(*sin);
1473		sin->sin_addr = ip->ip_dst;
1474		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1475
1476		rt = ro.ro_rt;
1477
1478		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1479		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1480#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1481			u_long src = ntohl(ip->ip_src.s_addr);
1482
1483			if (RTA(rt) &&
1484			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1485				if (rt->rt_flags & RTF_GATEWAY)
1486					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1487				else
1488					dest.s_addr = ip->ip_dst.s_addr;
1489				/* Router requirements says to only send host redirects */
1490				type = ICMP_REDIRECT;
1491				code = ICMP_REDIRECT_HOST;
1492			}
1493		}
1494		if (rt)
1495			RTFREE(rt);
1496	}
1497
1498	/*
1499	 * Try to cache the route MTU from ip_output so we can consider it for
1500	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1501	 */
1502	bzero(&ro, sizeof(ro));
1503
1504	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1505
1506	if (error == EMSGSIZE && ro.ro_rt)
1507		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1508	if (ro.ro_rt)
1509		RTFREE(ro.ro_rt);
1510
1511	if (error)
1512		IPSTAT_INC(ips_cantforward);
1513	else {
1514		IPSTAT_INC(ips_forward);
1515		if (type)
1516			IPSTAT_INC(ips_redirectsent);
1517		else {
1518			if (mcopy)
1519				m_freem(mcopy);
1520			if (ia != NULL)
1521				ifa_free(&ia->ia_ifa);
1522			return;
1523		}
1524	}
1525	if (mcopy == NULL) {
1526		if (ia != NULL)
1527			ifa_free(&ia->ia_ifa);
1528		return;
1529	}
1530
1531	switch (error) {
1532
1533	case 0:				/* forwarded, but need redirect */
1534		/* type, code set above */
1535		break;
1536
1537	case ENETUNREACH:
1538	case EHOSTUNREACH:
1539	case ENETDOWN:
1540	case EHOSTDOWN:
1541	default:
1542		type = ICMP_UNREACH;
1543		code = ICMP_UNREACH_HOST;
1544		break;
1545
1546	case EMSGSIZE:
1547		type = ICMP_UNREACH;
1548		code = ICMP_UNREACH_NEEDFRAG;
1549
1550#ifdef IPSEC
1551		/*
1552		 * If IPsec is configured for this path,
1553		 * override any possibly mtu value set by ip_output.
1554		 */
1555		mtu = ip_ipsec_mtu(m, mtu);
1556#endif /* IPSEC */
1557		/*
1558		 * If the MTU was set before make sure we are below the
1559		 * interface MTU.
1560		 * If the MTU wasn't set before use the interface mtu or
1561		 * fall back to the next smaller mtu step compared to the
1562		 * current packet size.
1563		 */
1564		if (mtu != 0) {
1565			if (ia != NULL)
1566				mtu = min(mtu, ia->ia_ifp->if_mtu);
1567		} else {
1568			if (ia != NULL)
1569				mtu = ia->ia_ifp->if_mtu;
1570			else
1571				mtu = ip_next_mtu(ip->ip_len, 0);
1572		}
1573		IPSTAT_INC(ips_cantfrag);
1574		break;
1575
1576	case ENOBUFS:
1577		/*
1578		 * A router should not generate ICMP_SOURCEQUENCH as
1579		 * required in RFC1812 Requirements for IP Version 4 Routers.
1580		 * Source quench could be a big problem under DoS attacks,
1581		 * or if the underlying interface is rate-limited.
1582		 * Those who need source quench packets may re-enable them
1583		 * via the net.inet.ip.sendsourcequench sysctl.
1584		 */
1585		if (V_ip_sendsourcequench == 0) {
1586			m_freem(mcopy);
1587			if (ia != NULL)
1588				ifa_free(&ia->ia_ifa);
1589			return;
1590		} else {
1591			type = ICMP_SOURCEQUENCH;
1592			code = 0;
1593		}
1594		break;
1595
1596	case EACCES:			/* ipfw denied packet */
1597		m_freem(mcopy);
1598		if (ia != NULL)
1599			ifa_free(&ia->ia_ifa);
1600		return;
1601	}
1602	if (ia != NULL)
1603		ifa_free(&ia->ia_ifa);
1604	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1605}
1606
1607void
1608ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1609    struct mbuf *m)
1610{
1611
1612	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1613		struct bintime bt;
1614
1615		bintime(&bt);
1616		if (inp->inp_socket->so_options & SO_BINTIME) {
1617			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1618			SCM_BINTIME, SOL_SOCKET);
1619			if (*mp)
1620				mp = &(*mp)->m_next;
1621		}
1622		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1623			struct timeval tv;
1624
1625			bintime2timeval(&bt, &tv);
1626			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1627				SCM_TIMESTAMP, SOL_SOCKET);
1628			if (*mp)
1629				mp = &(*mp)->m_next;
1630		}
1631	}
1632	if (inp->inp_flags & INP_RECVDSTADDR) {
1633		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1634		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1635		if (*mp)
1636			mp = &(*mp)->m_next;
1637	}
1638	if (inp->inp_flags & INP_RECVTTL) {
1639		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1640		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1641		if (*mp)
1642			mp = &(*mp)->m_next;
1643	}
1644#ifdef notyet
1645	/* XXX
1646	 * Moving these out of udp_input() made them even more broken
1647	 * than they already were.
1648	 */
1649	/* options were tossed already */
1650	if (inp->inp_flags & INP_RECVOPTS) {
1651		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1652		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1653		if (*mp)
1654			mp = &(*mp)->m_next;
1655	}
1656	/* ip_srcroute doesn't do what we want here, need to fix */
1657	if (inp->inp_flags & INP_RECVRETOPTS) {
1658		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1659		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1660		if (*mp)
1661			mp = &(*mp)->m_next;
1662	}
1663#endif
1664	if (inp->inp_flags & INP_RECVIF) {
1665		struct ifnet *ifp;
1666		struct sdlbuf {
1667			struct sockaddr_dl sdl;
1668			u_char	pad[32];
1669		} sdlbuf;
1670		struct sockaddr_dl *sdp;
1671		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1672
1673		if (((ifp = m->m_pkthdr.rcvif))
1674		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1675			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1676			/*
1677			 * Change our mind and don't try copy.
1678			 */
1679			if ((sdp->sdl_family != AF_LINK)
1680			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1681				goto makedummy;
1682			}
1683			bcopy(sdp, sdl2, sdp->sdl_len);
1684		} else {
1685makedummy:
1686			sdl2->sdl_len
1687				= offsetof(struct sockaddr_dl, sdl_data[0]);
1688			sdl2->sdl_family = AF_LINK;
1689			sdl2->sdl_index = 0;
1690			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1691		}
1692		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1693			IP_RECVIF, IPPROTO_IP);
1694		if (*mp)
1695			mp = &(*mp)->m_next;
1696	}
1697}
1698
1699/*
1700 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1701 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1702 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1703 * compiled.
1704 */
1705int
1706ip_rsvp_init(struct socket *so)
1707{
1708
1709	if (so->so_type != SOCK_RAW ||
1710	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1711		return EOPNOTSUPP;
1712
1713	if (V_ip_rsvpd != NULL)
1714		return EADDRINUSE;
1715
1716	V_ip_rsvpd = so;
1717	/*
1718	 * This may seem silly, but we need to be sure we don't over-increment
1719	 * the RSVP counter, in case something slips up.
1720	 */
1721	if (!V_ip_rsvp_on) {
1722		V_ip_rsvp_on = 1;
1723		V_rsvp_on++;
1724	}
1725
1726	return 0;
1727}
1728
1729int
1730ip_rsvp_done(void)
1731{
1732
1733	V_ip_rsvpd = NULL;
1734	/*
1735	 * This may seem silly, but we need to be sure we don't over-decrement
1736	 * the RSVP counter, in case something slips up.
1737	 */
1738	if (V_ip_rsvp_on) {
1739		V_ip_rsvp_on = 0;
1740		V_rsvp_on--;
1741	}
1742	return 0;
1743}
1744
1745void
1746rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1747{
1748
1749	if (rsvp_input_p) { /* call the real one if loaded */
1750		rsvp_input_p(m, off);
1751		return;
1752	}
1753
1754	/* Can still get packets with rsvp_on = 0 if there is a local member
1755	 * of the group to which the RSVP packet is addressed.  But in this
1756	 * case we want to throw the packet away.
1757	 */
1758
1759	if (!V_rsvp_on) {
1760		m_freem(m);
1761		return;
1762	}
1763
1764	if (V_ip_rsvpd != NULL) {
1765		rip_input(m, off);
1766		return;
1767	}
1768	/* Drop the packet */
1769	m_freem(m);
1770}
1771