ip_reass.c revision 196019
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 196019 2009-08-01 19:26:27Z rwatson $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40#include "opt_carp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/mbuf.h>
46#include <sys/malloc.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/socket.h>
50#include <sys/time.h>
51#include <sys/kernel.h>
52#include <sys/lock.h>
53#include <sys/rwlock.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56
57#include <net/pfil.h>
58#include <net/if.h>
59#include <net/if_types.h>
60#include <net/if_var.h>
61#include <net/if_dl.h>
62#include <net/route.h>
63#include <net/netisr.h>
64#include <net/vnet.h>
65#include <net/flowtable.h>
66
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/in_var.h>
70#include <netinet/ip.h>
71#include <netinet/in_pcb.h>
72#include <netinet/ip_var.h>
73#include <netinet/ip_fw.h>
74#include <netinet/ip_icmp.h>
75#include <netinet/ip_options.h>
76#include <machine/in_cksum.h>
77#ifdef DEV_CARP
78#include <netinet/ip_carp.h>
79#endif
80#ifdef IPSEC
81#include <netinet/ip_ipsec.h>
82#endif /* IPSEC */
83
84#include <sys/socketvar.h>
85
86#include <security/mac/mac_framework.h>
87
88#ifdef CTASSERT
89CTASSERT(sizeof(struct ip) == 20);
90#endif
91
92static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
93static VNET_DEFINE(int, ip_checkinterface);
94static VNET_DEFINE(int, ip_keepfaith);
95static VNET_DEFINE(int, ip_sendsourcequench);
96
97#define	V_ipsendredirects	VNET(ipsendredirects)
98#define	V_ip_checkinterface	VNET(ip_checkinterface)
99#define	V_ip_keepfaith		VNET(ip_keepfaith)
100#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
101
102VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
103VNET_DEFINE(int, ip_do_randomid);
104VNET_DEFINE(int, ipforwarding);
105
106VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
107VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
108VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
109VNET_DEFINE(struct ipstat, ipstat);
110
111static VNET_DEFINE(int, ip_rsvp_on);
112VNET_DEFINE(struct socket *, ip_rsvpd);
113VNET_DEFINE(int, rsvp_on);
114
115#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
116
117static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
118static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
119static VNET_DEFINE(int, maxfragsperpacket);
120static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
121
122#define	V_ipq			VNET(ipq)
123#define	V_maxnipq		VNET(maxnipq)
124#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
125#define	V_nipq			VNET(nipq)
126
127VNET_DEFINE(int, ipstealth);
128
129struct	rwlock in_ifaddr_lock;
130RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
131
132SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
133    &VNET_NAME(ipforwarding), 0,
134    "Enable IP forwarding between interfaces");
135
136SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
137    &VNET_NAME(ipsendredirects), 0,
138    "Enable sending IP redirects");
139
140SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
141    &VNET_NAME(ip_defttl), 0,
142    "Maximum TTL on IP packets");
143
144SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
145    &VNET_NAME(ip_keepfaith), 0,
146    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
147
148SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
149    &VNET_NAME(ip_sendsourcequench), 0,
150    "Enable the transmission of source quench packets");
151
152SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
153    &VNET_NAME(ip_do_randomid), 0,
154    "Assign random ip_id values");
155
156/*
157 * XXX - Setting ip_checkinterface mostly implements the receive side of
158 * the Strong ES model described in RFC 1122, but since the routing table
159 * and transmit implementation do not implement the Strong ES model,
160 * setting this to 1 results in an odd hybrid.
161 *
162 * XXX - ip_checkinterface currently must be disabled if you use ipnat
163 * to translate the destination address to another local interface.
164 *
165 * XXX - ip_checkinterface must be disabled if you add IP aliases
166 * to the loopback interface instead of the interface where the
167 * packets for those addresses are received.
168 */
169SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
170    &VNET_NAME(ip_checkinterface), 0,
171    "Verify packet arrives on correct interface");
172
173struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
174
175static struct netisr_handler ip_nh = {
176	.nh_name = "ip",
177	.nh_handler = ip_input,
178	.nh_proto = NETISR_IP,
179	.nh_policy = NETISR_POLICY_FLOW,
180};
181
182extern	struct domain inetdomain;
183extern	struct protosw inetsw[];
184u_char	ip_protox[IPPROTO_MAX];
185
186SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
187    &VNET_NAME(ipstat), ipstat,
188    "IP statistics (struct ipstat, netinet/ip_var.h)");
189
190static VNET_DEFINE(uma_zone_t, ipq_zone);
191#define	V_ipq_zone		VNET(ipq_zone)
192
193static struct mtx ipqlock;
194
195#define	IPQ_LOCK()	mtx_lock(&ipqlock)
196#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
197#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
198#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
199
200static void	maxnipq_update(void);
201static void	ipq_zone_change(void *);
202
203SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
204    &VNET_NAME(nipq), 0,
205    "Current number of IPv4 fragment reassembly queue entries");
206
207SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
208    &VNET_NAME(maxfragsperpacket), 0,
209    "Maximum number of IPv4 fragments allowed per packet");
210
211struct callout	ipport_tick_callout;
212
213#ifdef IPCTL_DEFMTU
214SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
215    &ip_mtu, 0, "Default MTU");
216#endif
217
218#ifdef IPSTEALTH
219SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
220    &VNET_NAME(ipstealth), 0,
221    "IP stealth mode, no TTL decrementation on forwarding");
222#endif
223
224#ifdef FLOWTABLE
225static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
226VNET_DEFINE(struct flowtable *, ip_ft);
227#define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
228
229SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
230    &VNET_NAME(ip_output_flowtable_size), 2048,
231    "number of entries in the per-cpu output flow caches");
232#endif
233
234VNET_DEFINE(int, fw_one_pass) = 1;
235
236static void	ip_freef(struct ipqhead *, struct ipq *);
237
238static int
239sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
240{
241	int error, qlimit;
242
243	netisr_getqlimit(&ip_nh, &qlimit);
244	error = sysctl_handle_int(oidp, &qlimit, 0, req);
245	if (error || !req->newptr)
246		return (error);
247	if (qlimit < 1)
248		return (EINVAL);
249	return (netisr_setqlimit(&ip_nh, qlimit));
250}
251SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
252    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
253    "Maximum size of the IP input queue");
254
255static int
256sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
257{
258	u_int64_t qdrops_long;
259	int error, qdrops;
260
261	netisr_getqdrops(&ip_nh, &qdrops_long);
262	qdrops = qdrops_long;
263	error = sysctl_handle_int(oidp, &qdrops, 0, req);
264	if (error || !req->newptr)
265		return (error);
266	if (qdrops != 0)
267		return (EINVAL);
268	netisr_clearqdrops(&ip_nh);
269	return (0);
270}
271
272SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
273    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
274    "Number of packets dropped from the IP input queue");
275
276/*
277 * IP initialization: fill in IP protocol switch table.
278 * All protocols not implemented in kernel go to raw IP protocol handler.
279 */
280void
281ip_init(void)
282{
283	struct protosw *pr;
284	int i;
285
286	V_ip_id = time_second & 0xffff;
287
288	TAILQ_INIT(&V_in_ifaddrhead);
289	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
290
291	/* Initialize IP reassembly queue. */
292	for (i = 0; i < IPREASS_NHASH; i++)
293		TAILQ_INIT(&V_ipq[i]);
294	V_maxnipq = nmbclusters / 32;
295	V_maxfragsperpacket = 16;
296	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
297	    NULL, UMA_ALIGN_PTR, 0);
298	maxnipq_update();
299
300#ifdef FLOWTABLE
301	TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
302	    &V_ip_output_flowtable_size);
303	V_ip_ft = flowtable_alloc(V_ip_output_flowtable_size, FL_PCPU);
304#endif
305
306	/* Skip initialization of globals for non-default instances. */
307	if (!IS_DEFAULT_VNET(curvnet))
308		return;
309
310	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
311	if (pr == NULL)
312		panic("ip_init: PF_INET not found");
313
314	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
315	for (i = 0; i < IPPROTO_MAX; i++)
316		ip_protox[i] = pr - inetsw;
317	/*
318	 * Cycle through IP protocols and put them into the appropriate place
319	 * in ip_protox[].
320	 */
321	for (pr = inetdomain.dom_protosw;
322	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
323		if (pr->pr_domain->dom_family == PF_INET &&
324		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
325			/* Be careful to only index valid IP protocols. */
326			if (pr->pr_protocol < IPPROTO_MAX)
327				ip_protox[pr->pr_protocol] = pr - inetsw;
328		}
329
330	/* Initialize packet filter hooks. */
331	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
332	inet_pfil_hook.ph_af = AF_INET;
333	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
334		printf("%s: WARNING: unable to register pfil hook, "
335			"error %d\n", __func__, i);
336
337	/* Start ipport_tick. */
338	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
339	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
340	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
341		SHUTDOWN_PRI_DEFAULT);
342	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
343		NULL, EVENTHANDLER_PRI_ANY);
344
345	/* Initialize various other remaining things. */
346	IPQ_LOCK_INIT();
347	netisr_register(&ip_nh);
348}
349
350void
351ip_fini(void *xtp)
352{
353
354	callout_stop(&ipport_tick_callout);
355}
356
357/*
358 * Ip input routine.  Checksum and byte swap header.  If fragmented
359 * try to reassemble.  Process options.  Pass to next level.
360 */
361void
362ip_input(struct mbuf *m)
363{
364	struct ip *ip = NULL;
365	struct in_ifaddr *ia = NULL;
366	struct ifaddr *ifa;
367	struct ifnet *ifp;
368	int    checkif, hlen = 0;
369	u_short sum;
370	int dchg = 0;				/* dest changed after fw */
371	struct in_addr odst;			/* original dst address */
372
373	M_ASSERTPKTHDR(m);
374
375	if (m->m_flags & M_FASTFWD_OURS) {
376		/*
377		 * Firewall or NAT changed destination to local.
378		 * We expect ip_len and ip_off to be in host byte order.
379		 */
380		m->m_flags &= ~M_FASTFWD_OURS;
381		/* Set up some basics that will be used later. */
382		ip = mtod(m, struct ip *);
383		hlen = ip->ip_hl << 2;
384		goto ours;
385	}
386
387	IPSTAT_INC(ips_total);
388
389	if (m->m_pkthdr.len < sizeof(struct ip))
390		goto tooshort;
391
392	if (m->m_len < sizeof (struct ip) &&
393	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
394		IPSTAT_INC(ips_toosmall);
395		return;
396	}
397	ip = mtod(m, struct ip *);
398
399	if (ip->ip_v != IPVERSION) {
400		IPSTAT_INC(ips_badvers);
401		goto bad;
402	}
403
404	hlen = ip->ip_hl << 2;
405	if (hlen < sizeof(struct ip)) {	/* minimum header length */
406		IPSTAT_INC(ips_badhlen);
407		goto bad;
408	}
409	if (hlen > m->m_len) {
410		if ((m = m_pullup(m, hlen)) == NULL) {
411			IPSTAT_INC(ips_badhlen);
412			return;
413		}
414		ip = mtod(m, struct ip *);
415	}
416
417	/* 127/8 must not appear on wire - RFC1122 */
418	ifp = m->m_pkthdr.rcvif;
419	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
420	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
421		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
422			IPSTAT_INC(ips_badaddr);
423			goto bad;
424		}
425	}
426
427	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
428		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
429	} else {
430		if (hlen == sizeof(struct ip)) {
431			sum = in_cksum_hdr(ip);
432		} else {
433			sum = in_cksum(m, hlen);
434		}
435	}
436	if (sum) {
437		IPSTAT_INC(ips_badsum);
438		goto bad;
439	}
440
441#ifdef ALTQ
442	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
443		/* packet is dropped by traffic conditioner */
444		return;
445#endif
446
447	/*
448	 * Convert fields to host representation.
449	 */
450	ip->ip_len = ntohs(ip->ip_len);
451	if (ip->ip_len < hlen) {
452		IPSTAT_INC(ips_badlen);
453		goto bad;
454	}
455	ip->ip_off = ntohs(ip->ip_off);
456
457	/*
458	 * Check that the amount of data in the buffers
459	 * is as at least much as the IP header would have us expect.
460	 * Trim mbufs if longer than we expect.
461	 * Drop packet if shorter than we expect.
462	 */
463	if (m->m_pkthdr.len < ip->ip_len) {
464tooshort:
465		IPSTAT_INC(ips_tooshort);
466		goto bad;
467	}
468	if (m->m_pkthdr.len > ip->ip_len) {
469		if (m->m_len == m->m_pkthdr.len) {
470			m->m_len = ip->ip_len;
471			m->m_pkthdr.len = ip->ip_len;
472		} else
473			m_adj(m, ip->ip_len - m->m_pkthdr.len);
474	}
475#ifdef IPSEC
476	/*
477	 * Bypass packet filtering for packets from a tunnel (gif).
478	 */
479	if (ip_ipsec_filtertunnel(m))
480		goto passin;
481#endif /* IPSEC */
482
483	/*
484	 * Run through list of hooks for input packets.
485	 *
486	 * NB: Beware of the destination address changing (e.g.
487	 *     by NAT rewriting).  When this happens, tell
488	 *     ip_forward to do the right thing.
489	 */
490
491	/* Jump over all PFIL processing if hooks are not active. */
492	if (!PFIL_HOOKED(&inet_pfil_hook))
493		goto passin;
494
495	odst = ip->ip_dst;
496	if (pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
497		return;
498	if (m == NULL)			/* consumed by filter */
499		return;
500
501	ip = mtod(m, struct ip *);
502	dchg = (odst.s_addr != ip->ip_dst.s_addr);
503	ifp = m->m_pkthdr.rcvif;
504
505#ifdef IPFIREWALL_FORWARD
506	if (m->m_flags & M_FASTFWD_OURS) {
507		m->m_flags &= ~M_FASTFWD_OURS;
508		goto ours;
509	}
510	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
511		/*
512		 * Directly ship on the packet.  This allows to forward packets
513		 * that were destined for us to some other directly connected
514		 * host.
515		 */
516		ip_forward(m, dchg);
517		return;
518	}
519#endif /* IPFIREWALL_FORWARD */
520
521passin:
522	/*
523	 * Process options and, if not destined for us,
524	 * ship it on.  ip_dooptions returns 1 when an
525	 * error was detected (causing an icmp message
526	 * to be sent and the original packet to be freed).
527	 */
528	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
529		return;
530
531        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
532         * matter if it is destined to another node, or whether it is
533         * a multicast one, RSVP wants it! and prevents it from being forwarded
534         * anywhere else. Also checks if the rsvp daemon is running before
535	 * grabbing the packet.
536         */
537	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
538		goto ours;
539
540	/*
541	 * Check our list of addresses, to see if the packet is for us.
542	 * If we don't have any addresses, assume any unicast packet
543	 * we receive might be for us (and let the upper layers deal
544	 * with it).
545	 */
546	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
547	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
548		goto ours;
549
550	/*
551	 * Enable a consistency check between the destination address
552	 * and the arrival interface for a unicast packet (the RFC 1122
553	 * strong ES model) if IP forwarding is disabled and the packet
554	 * is not locally generated and the packet is not subject to
555	 * 'ipfw fwd'.
556	 *
557	 * XXX - Checking also should be disabled if the destination
558	 * address is ipnat'ed to a different interface.
559	 *
560	 * XXX - Checking is incompatible with IP aliases added
561	 * to the loopback interface instead of the interface where
562	 * the packets are received.
563	 *
564	 * XXX - This is the case for carp vhost IPs as well so we
565	 * insert a workaround. If the packet got here, we already
566	 * checked with carp_iamatch() and carp_forus().
567	 */
568	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
569	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
570#ifdef DEV_CARP
571	    !ifp->if_carp &&
572#endif
573	    (dchg == 0);
574
575	/*
576	 * Check for exact addresses in the hash bucket.
577	 */
578	/* IN_IFADDR_RLOCK(); */
579	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
580		/*
581		 * If the address matches, verify that the packet
582		 * arrived via the correct interface if checking is
583		 * enabled.
584		 */
585		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
586		    (!checkif || ia->ia_ifp == ifp)) {
587			ifa_ref(&ia->ia_ifa);
588			/* IN_IFADDR_RUNLOCK(); */
589			goto ours;
590		}
591	}
592	/* IN_IFADDR_RUNLOCK(); */
593
594	/*
595	 * Check for broadcast addresses.
596	 *
597	 * Only accept broadcast packets that arrive via the matching
598	 * interface.  Reception of forwarded directed broadcasts would
599	 * be handled via ip_forward() and ether_output() with the loopback
600	 * into the stack for SIMPLEX interfaces handled by ether_output().
601	 */
602	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
603		IF_ADDR_LOCK(ifp);
604	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
605			if (ifa->ifa_addr->sa_family != AF_INET)
606				continue;
607			ia = ifatoia(ifa);
608			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
609			    ip->ip_dst.s_addr) {
610				ifa_ref(ifa);
611				IF_ADDR_UNLOCK(ifp);
612				goto ours;
613			}
614			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
615				ifa_ref(ifa);
616				IF_ADDR_UNLOCK(ifp);
617				goto ours;
618			}
619#ifdef BOOTP_COMPAT
620			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
621				ifa_ref(ifa);
622				IF_ADDR_UNLOCK(ifp);
623				goto ours;
624			}
625#endif
626		}
627		IF_ADDR_UNLOCK(ifp);
628		ia = NULL;
629	}
630	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
631	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
632		IPSTAT_INC(ips_cantforward);
633		m_freem(m);
634		return;
635	}
636	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
637		if (V_ip_mrouter) {
638			/*
639			 * If we are acting as a multicast router, all
640			 * incoming multicast packets are passed to the
641			 * kernel-level multicast forwarding function.
642			 * The packet is returned (relatively) intact; if
643			 * ip_mforward() returns a non-zero value, the packet
644			 * must be discarded, else it may be accepted below.
645			 */
646			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
647				IPSTAT_INC(ips_cantforward);
648				m_freem(m);
649				return;
650			}
651
652			/*
653			 * The process-level routing daemon needs to receive
654			 * all multicast IGMP packets, whether or not this
655			 * host belongs to their destination groups.
656			 */
657			if (ip->ip_p == IPPROTO_IGMP)
658				goto ours;
659			IPSTAT_INC(ips_forward);
660		}
661		/*
662		 * Assume the packet is for us, to avoid prematurely taking
663		 * a lock on the in_multi hash. Protocols must perform
664		 * their own filtering and update statistics accordingly.
665		 */
666		goto ours;
667	}
668	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
669		goto ours;
670	if (ip->ip_dst.s_addr == INADDR_ANY)
671		goto ours;
672
673	/*
674	 * FAITH(Firewall Aided Internet Translator)
675	 */
676	if (ifp && ifp->if_type == IFT_FAITH) {
677		if (V_ip_keepfaith) {
678			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
679				goto ours;
680		}
681		m_freem(m);
682		return;
683	}
684
685	/*
686	 * Not for us; forward if possible and desirable.
687	 */
688	if (V_ipforwarding == 0) {
689		IPSTAT_INC(ips_cantforward);
690		m_freem(m);
691	} else {
692#ifdef IPSEC
693		if (ip_ipsec_fwd(m))
694			goto bad;
695#endif /* IPSEC */
696		ip_forward(m, dchg);
697	}
698	return;
699
700ours:
701#ifdef IPSTEALTH
702	/*
703	 * IPSTEALTH: Process non-routing options only
704	 * if the packet is destined for us.
705	 */
706	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
707		if (ia != NULL)
708			ifa_free(&ia->ia_ifa);
709		return;
710	}
711#endif /* IPSTEALTH */
712
713	/* Count the packet in the ip address stats */
714	if (ia != NULL) {
715		ia->ia_ifa.if_ipackets++;
716		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
717		ifa_free(&ia->ia_ifa);
718	}
719
720	/*
721	 * Attempt reassembly; if it succeeds, proceed.
722	 * ip_reass() will return a different mbuf.
723	 */
724	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
725		m = ip_reass(m);
726		if (m == NULL)
727			return;
728		ip = mtod(m, struct ip *);
729		/* Get the header length of the reassembled packet */
730		hlen = ip->ip_hl << 2;
731	}
732
733	/*
734	 * Further protocols expect the packet length to be w/o the
735	 * IP header.
736	 */
737	ip->ip_len -= hlen;
738
739#ifdef IPSEC
740	/*
741	 * enforce IPsec policy checking if we are seeing last header.
742	 * note that we do not visit this with protocols with pcb layer
743	 * code - like udp/tcp/raw ip.
744	 */
745	if (ip_ipsec_input(m))
746		goto bad;
747#endif /* IPSEC */
748
749	/*
750	 * Switch out to protocol's input routine.
751	 */
752	IPSTAT_INC(ips_delivered);
753
754	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
755	return;
756bad:
757	m_freem(m);
758}
759
760/*
761 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
762 * max has slightly different semantics than the sysctl, for historical
763 * reasons.
764 */
765static void
766maxnipq_update(void)
767{
768
769	/*
770	 * -1 for unlimited allocation.
771	 */
772	if (V_maxnipq < 0)
773		uma_zone_set_max(V_ipq_zone, 0);
774	/*
775	 * Positive number for specific bound.
776	 */
777	if (V_maxnipq > 0)
778		uma_zone_set_max(V_ipq_zone, V_maxnipq);
779	/*
780	 * Zero specifies no further fragment queue allocation -- set the
781	 * bound very low, but rely on implementation elsewhere to actually
782	 * prevent allocation and reclaim current queues.
783	 */
784	if (V_maxnipq == 0)
785		uma_zone_set_max(V_ipq_zone, 1);
786}
787
788static void
789ipq_zone_change(void *tag)
790{
791
792	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
793		V_maxnipq = nmbclusters / 32;
794		maxnipq_update();
795	}
796}
797
798static int
799sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
800{
801	int error, i;
802
803	i = V_maxnipq;
804	error = sysctl_handle_int(oidp, &i, 0, req);
805	if (error || !req->newptr)
806		return (error);
807
808	/*
809	 * XXXRW: Might be a good idea to sanity check the argument and place
810	 * an extreme upper bound.
811	 */
812	if (i < -1)
813		return (EINVAL);
814	V_maxnipq = i;
815	maxnipq_update();
816	return (0);
817}
818
819SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
820    NULL, 0, sysctl_maxnipq, "I",
821    "Maximum number of IPv4 fragment reassembly queue entries");
822
823/*
824 * Take incoming datagram fragment and try to reassemble it into
825 * whole datagram.  If the argument is the first fragment or one
826 * in between the function will return NULL and store the mbuf
827 * in the fragment chain.  If the argument is the last fragment
828 * the packet will be reassembled and the pointer to the new
829 * mbuf returned for further processing.  Only m_tags attached
830 * to the first packet/fragment are preserved.
831 * The IP header is *NOT* adjusted out of iplen.
832 */
833struct mbuf *
834ip_reass(struct mbuf *m)
835{
836	struct ip *ip;
837	struct mbuf *p, *q, *nq, *t;
838	struct ipq *fp = NULL;
839	struct ipqhead *head;
840	int i, hlen, next;
841	u_int8_t ecn, ecn0;
842	u_short hash;
843
844	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
845	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
846		IPSTAT_INC(ips_fragments);
847		IPSTAT_INC(ips_fragdropped);
848		m_freem(m);
849		return (NULL);
850	}
851
852	ip = mtod(m, struct ip *);
853	hlen = ip->ip_hl << 2;
854
855	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
856	head = &V_ipq[hash];
857	IPQ_LOCK();
858
859	/*
860	 * Look for queue of fragments
861	 * of this datagram.
862	 */
863	TAILQ_FOREACH(fp, head, ipq_list)
864		if (ip->ip_id == fp->ipq_id &&
865		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
866		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
867#ifdef MAC
868		    mac_ipq_match(m, fp) &&
869#endif
870		    ip->ip_p == fp->ipq_p)
871			goto found;
872
873	fp = NULL;
874
875	/*
876	 * Attempt to trim the number of allocated fragment queues if it
877	 * exceeds the administrative limit.
878	 */
879	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
880		/*
881		 * drop something from the tail of the current queue
882		 * before proceeding further
883		 */
884		struct ipq *q = TAILQ_LAST(head, ipqhead);
885		if (q == NULL) {   /* gak */
886			for (i = 0; i < IPREASS_NHASH; i++) {
887				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
888				if (r) {
889					IPSTAT_ADD(ips_fragtimeout,
890					    r->ipq_nfrags);
891					ip_freef(&V_ipq[i], r);
892					break;
893				}
894			}
895		} else {
896			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
897			ip_freef(head, q);
898		}
899	}
900
901found:
902	/*
903	 * Adjust ip_len to not reflect header,
904	 * convert offset of this to bytes.
905	 */
906	ip->ip_len -= hlen;
907	if (ip->ip_off & IP_MF) {
908		/*
909		 * Make sure that fragments have a data length
910		 * that's a non-zero multiple of 8 bytes.
911		 */
912		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
913			IPSTAT_INC(ips_toosmall); /* XXX */
914			goto dropfrag;
915		}
916		m->m_flags |= M_FRAG;
917	} else
918		m->m_flags &= ~M_FRAG;
919	ip->ip_off <<= 3;
920
921
922	/*
923	 * Attempt reassembly; if it succeeds, proceed.
924	 * ip_reass() will return a different mbuf.
925	 */
926	IPSTAT_INC(ips_fragments);
927	m->m_pkthdr.header = ip;
928
929	/* Previous ip_reass() started here. */
930	/*
931	 * Presence of header sizes in mbufs
932	 * would confuse code below.
933	 */
934	m->m_data += hlen;
935	m->m_len -= hlen;
936
937	/*
938	 * If first fragment to arrive, create a reassembly queue.
939	 */
940	if (fp == NULL) {
941		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
942		if (fp == NULL)
943			goto dropfrag;
944#ifdef MAC
945		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
946			uma_zfree(V_ipq_zone, fp);
947			fp = NULL;
948			goto dropfrag;
949		}
950		mac_ipq_create(m, fp);
951#endif
952		TAILQ_INSERT_HEAD(head, fp, ipq_list);
953		V_nipq++;
954		fp->ipq_nfrags = 1;
955		fp->ipq_ttl = IPFRAGTTL;
956		fp->ipq_p = ip->ip_p;
957		fp->ipq_id = ip->ip_id;
958		fp->ipq_src = ip->ip_src;
959		fp->ipq_dst = ip->ip_dst;
960		fp->ipq_frags = m;
961		m->m_nextpkt = NULL;
962		goto done;
963	} else {
964		fp->ipq_nfrags++;
965#ifdef MAC
966		mac_ipq_update(m, fp);
967#endif
968	}
969
970#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
971
972	/*
973	 * Handle ECN by comparing this segment with the first one;
974	 * if CE is set, do not lose CE.
975	 * drop if CE and not-ECT are mixed for the same packet.
976	 */
977	ecn = ip->ip_tos & IPTOS_ECN_MASK;
978	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
979	if (ecn == IPTOS_ECN_CE) {
980		if (ecn0 == IPTOS_ECN_NOTECT)
981			goto dropfrag;
982		if (ecn0 != IPTOS_ECN_CE)
983			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
984	}
985	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
986		goto dropfrag;
987
988	/*
989	 * Find a segment which begins after this one does.
990	 */
991	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
992		if (GETIP(q)->ip_off > ip->ip_off)
993			break;
994
995	/*
996	 * If there is a preceding segment, it may provide some of
997	 * our data already.  If so, drop the data from the incoming
998	 * segment.  If it provides all of our data, drop us, otherwise
999	 * stick new segment in the proper place.
1000	 *
1001	 * If some of the data is dropped from the the preceding
1002	 * segment, then it's checksum is invalidated.
1003	 */
1004	if (p) {
1005		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1006		if (i > 0) {
1007			if (i >= ip->ip_len)
1008				goto dropfrag;
1009			m_adj(m, i);
1010			m->m_pkthdr.csum_flags = 0;
1011			ip->ip_off += i;
1012			ip->ip_len -= i;
1013		}
1014		m->m_nextpkt = p->m_nextpkt;
1015		p->m_nextpkt = m;
1016	} else {
1017		m->m_nextpkt = fp->ipq_frags;
1018		fp->ipq_frags = m;
1019	}
1020
1021	/*
1022	 * While we overlap succeeding segments trim them or,
1023	 * if they are completely covered, dequeue them.
1024	 */
1025	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1026	     q = nq) {
1027		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1028		if (i < GETIP(q)->ip_len) {
1029			GETIP(q)->ip_len -= i;
1030			GETIP(q)->ip_off += i;
1031			m_adj(q, i);
1032			q->m_pkthdr.csum_flags = 0;
1033			break;
1034		}
1035		nq = q->m_nextpkt;
1036		m->m_nextpkt = nq;
1037		IPSTAT_INC(ips_fragdropped);
1038		fp->ipq_nfrags--;
1039		m_freem(q);
1040	}
1041
1042	/*
1043	 * Check for complete reassembly and perform frag per packet
1044	 * limiting.
1045	 *
1046	 * Frag limiting is performed here so that the nth frag has
1047	 * a chance to complete the packet before we drop the packet.
1048	 * As a result, n+1 frags are actually allowed per packet, but
1049	 * only n will ever be stored. (n = maxfragsperpacket.)
1050	 *
1051	 */
1052	next = 0;
1053	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1054		if (GETIP(q)->ip_off != next) {
1055			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1056				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1057				ip_freef(head, fp);
1058			}
1059			goto done;
1060		}
1061		next += GETIP(q)->ip_len;
1062	}
1063	/* Make sure the last packet didn't have the IP_MF flag */
1064	if (p->m_flags & M_FRAG) {
1065		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1066			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1067			ip_freef(head, fp);
1068		}
1069		goto done;
1070	}
1071
1072	/*
1073	 * Reassembly is complete.  Make sure the packet is a sane size.
1074	 */
1075	q = fp->ipq_frags;
1076	ip = GETIP(q);
1077	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1078		IPSTAT_INC(ips_toolong);
1079		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1080		ip_freef(head, fp);
1081		goto done;
1082	}
1083
1084	/*
1085	 * Concatenate fragments.
1086	 */
1087	m = q;
1088	t = m->m_next;
1089	m->m_next = NULL;
1090	m_cat(m, t);
1091	nq = q->m_nextpkt;
1092	q->m_nextpkt = NULL;
1093	for (q = nq; q != NULL; q = nq) {
1094		nq = q->m_nextpkt;
1095		q->m_nextpkt = NULL;
1096		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1097		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1098		m_cat(m, q);
1099	}
1100	/*
1101	 * In order to do checksumming faster we do 'end-around carry' here
1102	 * (and not in for{} loop), though it implies we are not going to
1103	 * reassemble more than 64k fragments.
1104	 */
1105	m->m_pkthdr.csum_data =
1106	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1107#ifdef MAC
1108	mac_ipq_reassemble(fp, m);
1109	mac_ipq_destroy(fp);
1110#endif
1111
1112	/*
1113	 * Create header for new ip packet by modifying header of first
1114	 * packet;  dequeue and discard fragment reassembly header.
1115	 * Make header visible.
1116	 */
1117	ip->ip_len = (ip->ip_hl << 2) + next;
1118	ip->ip_src = fp->ipq_src;
1119	ip->ip_dst = fp->ipq_dst;
1120	TAILQ_REMOVE(head, fp, ipq_list);
1121	V_nipq--;
1122	uma_zfree(V_ipq_zone, fp);
1123	m->m_len += (ip->ip_hl << 2);
1124	m->m_data -= (ip->ip_hl << 2);
1125	/* some debugging cruft by sklower, below, will go away soon */
1126	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1127		m_fixhdr(m);
1128	IPSTAT_INC(ips_reassembled);
1129	IPQ_UNLOCK();
1130	return (m);
1131
1132dropfrag:
1133	IPSTAT_INC(ips_fragdropped);
1134	if (fp != NULL)
1135		fp->ipq_nfrags--;
1136	m_freem(m);
1137done:
1138	IPQ_UNLOCK();
1139	return (NULL);
1140
1141#undef GETIP
1142}
1143
1144/*
1145 * Free a fragment reassembly header and all
1146 * associated datagrams.
1147 */
1148static void
1149ip_freef(struct ipqhead *fhp, struct ipq *fp)
1150{
1151	struct mbuf *q;
1152
1153	IPQ_LOCK_ASSERT();
1154
1155	while (fp->ipq_frags) {
1156		q = fp->ipq_frags;
1157		fp->ipq_frags = q->m_nextpkt;
1158		m_freem(q);
1159	}
1160	TAILQ_REMOVE(fhp, fp, ipq_list);
1161	uma_zfree(V_ipq_zone, fp);
1162	V_nipq--;
1163}
1164
1165/*
1166 * IP timer processing;
1167 * if a timer expires on a reassembly
1168 * queue, discard it.
1169 */
1170void
1171ip_slowtimo(void)
1172{
1173	VNET_ITERATOR_DECL(vnet_iter);
1174	struct ipq *fp;
1175	int i;
1176
1177	VNET_LIST_RLOCK_NOSLEEP();
1178	IPQ_LOCK();
1179	VNET_FOREACH(vnet_iter) {
1180		CURVNET_SET(vnet_iter);
1181		for (i = 0; i < IPREASS_NHASH; i++) {
1182			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1183				struct ipq *fpp;
1184
1185				fpp = fp;
1186				fp = TAILQ_NEXT(fp, ipq_list);
1187				if(--fpp->ipq_ttl == 0) {
1188					IPSTAT_ADD(ips_fragtimeout,
1189					    fpp->ipq_nfrags);
1190					ip_freef(&V_ipq[i], fpp);
1191				}
1192			}
1193		}
1194		/*
1195		 * If we are over the maximum number of fragments
1196		 * (due to the limit being lowered), drain off
1197		 * enough to get down to the new limit.
1198		 */
1199		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1200			for (i = 0; i < IPREASS_NHASH; i++) {
1201				while (V_nipq > V_maxnipq &&
1202				    !TAILQ_EMPTY(&V_ipq[i])) {
1203					IPSTAT_ADD(ips_fragdropped,
1204					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1205					ip_freef(&V_ipq[i],
1206					    TAILQ_FIRST(&V_ipq[i]));
1207				}
1208			}
1209		}
1210		CURVNET_RESTORE();
1211	}
1212	IPQ_UNLOCK();
1213	VNET_LIST_RUNLOCK_NOSLEEP();
1214}
1215
1216/*
1217 * Drain off all datagram fragments.
1218 */
1219void
1220ip_drain(void)
1221{
1222	VNET_ITERATOR_DECL(vnet_iter);
1223	int     i;
1224
1225	VNET_LIST_RLOCK_NOSLEEP();
1226	IPQ_LOCK();
1227	VNET_FOREACH(vnet_iter) {
1228		CURVNET_SET(vnet_iter);
1229		for (i = 0; i < IPREASS_NHASH; i++) {
1230			while(!TAILQ_EMPTY(&V_ipq[i])) {
1231				IPSTAT_ADD(ips_fragdropped,
1232				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1233				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1234			}
1235		}
1236		CURVNET_RESTORE();
1237	}
1238	IPQ_UNLOCK();
1239	VNET_LIST_RUNLOCK_NOSLEEP();
1240	in_rtqdrain();
1241}
1242
1243/*
1244 * The protocol to be inserted into ip_protox[] must be already registered
1245 * in inetsw[], either statically or through pf_proto_register().
1246 */
1247int
1248ipproto_register(u_char ipproto)
1249{
1250	struct protosw *pr;
1251
1252	/* Sanity checks. */
1253	if (ipproto == 0)
1254		return (EPROTONOSUPPORT);
1255
1256	/*
1257	 * The protocol slot must not be occupied by another protocol
1258	 * already.  An index pointing to IPPROTO_RAW is unused.
1259	 */
1260	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1261	if (pr == NULL)
1262		return (EPFNOSUPPORT);
1263	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1264		return (EEXIST);
1265
1266	/* Find the protocol position in inetsw[] and set the index. */
1267	for (pr = inetdomain.dom_protosw;
1268	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1269		if (pr->pr_domain->dom_family == PF_INET &&
1270		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1271			/* Be careful to only index valid IP protocols. */
1272			if (pr->pr_protocol < IPPROTO_MAX) {
1273				ip_protox[pr->pr_protocol] = pr - inetsw;
1274				return (0);
1275			} else
1276				return (EINVAL);
1277		}
1278	}
1279	return (EPROTONOSUPPORT);
1280}
1281
1282int
1283ipproto_unregister(u_char ipproto)
1284{
1285	struct protosw *pr;
1286
1287	/* Sanity checks. */
1288	if (ipproto == 0)
1289		return (EPROTONOSUPPORT);
1290
1291	/* Check if the protocol was indeed registered. */
1292	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1293	if (pr == NULL)
1294		return (EPFNOSUPPORT);
1295	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1296		return (ENOENT);
1297
1298	/* Reset the protocol slot to IPPROTO_RAW. */
1299	ip_protox[ipproto] = pr - inetsw;
1300	return (0);
1301}
1302
1303/*
1304 * Given address of next destination (final or next hop), return (referenced)
1305 * internet address info of interface to be used to get there.
1306 */
1307struct in_ifaddr *
1308ip_rtaddr(struct in_addr dst, u_int fibnum)
1309{
1310	struct route sro;
1311	struct sockaddr_in *sin;
1312	struct in_ifaddr *ia;
1313
1314	bzero(&sro, sizeof(sro));
1315	sin = (struct sockaddr_in *)&sro.ro_dst;
1316	sin->sin_family = AF_INET;
1317	sin->sin_len = sizeof(*sin);
1318	sin->sin_addr = dst;
1319	in_rtalloc_ign(&sro, 0, fibnum);
1320
1321	if (sro.ro_rt == NULL)
1322		return (NULL);
1323
1324	ia = ifatoia(sro.ro_rt->rt_ifa);
1325	ifa_ref(&ia->ia_ifa);
1326	RTFREE(sro.ro_rt);
1327	return (ia);
1328}
1329
1330u_char inetctlerrmap[PRC_NCMDS] = {
1331	0,		0,		0,		0,
1332	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1333	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1334	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1335	0,		0,		EHOSTUNREACH,	0,
1336	ENOPROTOOPT,	ECONNREFUSED
1337};
1338
1339/*
1340 * Forward a packet.  If some error occurs return the sender
1341 * an icmp packet.  Note we can't always generate a meaningful
1342 * icmp message because icmp doesn't have a large enough repertoire
1343 * of codes and types.
1344 *
1345 * If not forwarding, just drop the packet.  This could be confusing
1346 * if ipforwarding was zero but some routing protocol was advancing
1347 * us as a gateway to somewhere.  However, we must let the routing
1348 * protocol deal with that.
1349 *
1350 * The srcrt parameter indicates whether the packet is being forwarded
1351 * via a source route.
1352 */
1353void
1354ip_forward(struct mbuf *m, int srcrt)
1355{
1356	struct ip *ip = mtod(m, struct ip *);
1357	struct in_ifaddr *ia;
1358	struct mbuf *mcopy;
1359	struct in_addr dest;
1360	struct route ro;
1361	int error, type = 0, code = 0, mtu = 0;
1362
1363	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1364		IPSTAT_INC(ips_cantforward);
1365		m_freem(m);
1366		return;
1367	}
1368#ifdef IPSTEALTH
1369	if (!V_ipstealth) {
1370#endif
1371		if (ip->ip_ttl <= IPTTLDEC) {
1372			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1373			    0, 0);
1374			return;
1375		}
1376#ifdef IPSTEALTH
1377	}
1378#endif
1379
1380	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1381#ifndef IPSEC
1382	/*
1383	 * 'ia' may be NULL if there is no route for this destination.
1384	 * In case of IPsec, Don't discard it just yet, but pass it to
1385	 * ip_output in case of outgoing IPsec policy.
1386	 */
1387	if (!srcrt && ia == NULL) {
1388		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1389		return;
1390	}
1391#endif
1392
1393	/*
1394	 * Save the IP header and at most 8 bytes of the payload,
1395	 * in case we need to generate an ICMP message to the src.
1396	 *
1397	 * XXX this can be optimized a lot by saving the data in a local
1398	 * buffer on the stack (72 bytes at most), and only allocating the
1399	 * mbuf if really necessary. The vast majority of the packets
1400	 * are forwarded without having to send an ICMP back (either
1401	 * because unnecessary, or because rate limited), so we are
1402	 * really we are wasting a lot of work here.
1403	 *
1404	 * We don't use m_copy() because it might return a reference
1405	 * to a shared cluster. Both this function and ip_output()
1406	 * assume exclusive access to the IP header in `m', so any
1407	 * data in a cluster may change before we reach icmp_error().
1408	 */
1409	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1410	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1411		/*
1412		 * It's probably ok if the pkthdr dup fails (because
1413		 * the deep copy of the tag chain failed), but for now
1414		 * be conservative and just discard the copy since
1415		 * code below may some day want the tags.
1416		 */
1417		m_free(mcopy);
1418		mcopy = NULL;
1419	}
1420	if (mcopy != NULL) {
1421		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1422		mcopy->m_pkthdr.len = mcopy->m_len;
1423		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1424	}
1425
1426#ifdef IPSTEALTH
1427	if (!V_ipstealth) {
1428#endif
1429		ip->ip_ttl -= IPTTLDEC;
1430#ifdef IPSTEALTH
1431	}
1432#endif
1433
1434	/*
1435	 * If forwarding packet using same interface that it came in on,
1436	 * perhaps should send a redirect to sender to shortcut a hop.
1437	 * Only send redirect if source is sending directly to us,
1438	 * and if packet was not source routed (or has any options).
1439	 * Also, don't send redirect if forwarding using a default route
1440	 * or a route modified by a redirect.
1441	 */
1442	dest.s_addr = 0;
1443	if (!srcrt && V_ipsendredirects &&
1444	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1445		struct sockaddr_in *sin;
1446		struct rtentry *rt;
1447
1448		bzero(&ro, sizeof(ro));
1449		sin = (struct sockaddr_in *)&ro.ro_dst;
1450		sin->sin_family = AF_INET;
1451		sin->sin_len = sizeof(*sin);
1452		sin->sin_addr = ip->ip_dst;
1453		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1454
1455		rt = ro.ro_rt;
1456
1457		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1458		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1459#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1460			u_long src = ntohl(ip->ip_src.s_addr);
1461
1462			if (RTA(rt) &&
1463			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1464				if (rt->rt_flags & RTF_GATEWAY)
1465					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1466				else
1467					dest.s_addr = ip->ip_dst.s_addr;
1468				/* Router requirements says to only send host redirects */
1469				type = ICMP_REDIRECT;
1470				code = ICMP_REDIRECT_HOST;
1471			}
1472		}
1473		if (rt)
1474			RTFREE(rt);
1475	}
1476
1477	/*
1478	 * Try to cache the route MTU from ip_output so we can consider it for
1479	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1480	 */
1481	bzero(&ro, sizeof(ro));
1482
1483	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1484
1485	if (error == EMSGSIZE && ro.ro_rt)
1486		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1487	if (ro.ro_rt)
1488		RTFREE(ro.ro_rt);
1489
1490	if (error)
1491		IPSTAT_INC(ips_cantforward);
1492	else {
1493		IPSTAT_INC(ips_forward);
1494		if (type)
1495			IPSTAT_INC(ips_redirectsent);
1496		else {
1497			if (mcopy)
1498				m_freem(mcopy);
1499			if (ia != NULL)
1500				ifa_free(&ia->ia_ifa);
1501			return;
1502		}
1503	}
1504	if (mcopy == NULL) {
1505		if (ia != NULL)
1506			ifa_free(&ia->ia_ifa);
1507		return;
1508	}
1509
1510	switch (error) {
1511
1512	case 0:				/* forwarded, but need redirect */
1513		/* type, code set above */
1514		break;
1515
1516	case ENETUNREACH:
1517	case EHOSTUNREACH:
1518	case ENETDOWN:
1519	case EHOSTDOWN:
1520	default:
1521		type = ICMP_UNREACH;
1522		code = ICMP_UNREACH_HOST;
1523		break;
1524
1525	case EMSGSIZE:
1526		type = ICMP_UNREACH;
1527		code = ICMP_UNREACH_NEEDFRAG;
1528
1529#ifdef IPSEC
1530		/*
1531		 * If IPsec is configured for this path,
1532		 * override any possibly mtu value set by ip_output.
1533		 */
1534		mtu = ip_ipsec_mtu(m, mtu);
1535#endif /* IPSEC */
1536		/*
1537		 * If the MTU was set before make sure we are below the
1538		 * interface MTU.
1539		 * If the MTU wasn't set before use the interface mtu or
1540		 * fall back to the next smaller mtu step compared to the
1541		 * current packet size.
1542		 */
1543		if (mtu != 0) {
1544			if (ia != NULL)
1545				mtu = min(mtu, ia->ia_ifp->if_mtu);
1546		} else {
1547			if (ia != NULL)
1548				mtu = ia->ia_ifp->if_mtu;
1549			else
1550				mtu = ip_next_mtu(ip->ip_len, 0);
1551		}
1552		IPSTAT_INC(ips_cantfrag);
1553		break;
1554
1555	case ENOBUFS:
1556		/*
1557		 * A router should not generate ICMP_SOURCEQUENCH as
1558		 * required in RFC1812 Requirements for IP Version 4 Routers.
1559		 * Source quench could be a big problem under DoS attacks,
1560		 * or if the underlying interface is rate-limited.
1561		 * Those who need source quench packets may re-enable them
1562		 * via the net.inet.ip.sendsourcequench sysctl.
1563		 */
1564		if (V_ip_sendsourcequench == 0) {
1565			m_freem(mcopy);
1566			if (ia != NULL)
1567				ifa_free(&ia->ia_ifa);
1568			return;
1569		} else {
1570			type = ICMP_SOURCEQUENCH;
1571			code = 0;
1572		}
1573		break;
1574
1575	case EACCES:			/* ipfw denied packet */
1576		m_freem(mcopy);
1577		if (ia != NULL)
1578			ifa_free(&ia->ia_ifa);
1579		return;
1580	}
1581	if (ia != NULL)
1582		ifa_free(&ia->ia_ifa);
1583	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1584}
1585
1586void
1587ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1588    struct mbuf *m)
1589{
1590
1591	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1592		struct bintime bt;
1593
1594		bintime(&bt);
1595		if (inp->inp_socket->so_options & SO_BINTIME) {
1596			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1597			SCM_BINTIME, SOL_SOCKET);
1598			if (*mp)
1599				mp = &(*mp)->m_next;
1600		}
1601		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1602			struct timeval tv;
1603
1604			bintime2timeval(&bt, &tv);
1605			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1606				SCM_TIMESTAMP, SOL_SOCKET);
1607			if (*mp)
1608				mp = &(*mp)->m_next;
1609		}
1610	}
1611	if (inp->inp_flags & INP_RECVDSTADDR) {
1612		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1613		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1614		if (*mp)
1615			mp = &(*mp)->m_next;
1616	}
1617	if (inp->inp_flags & INP_RECVTTL) {
1618		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1619		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1620		if (*mp)
1621			mp = &(*mp)->m_next;
1622	}
1623#ifdef notyet
1624	/* XXX
1625	 * Moving these out of udp_input() made them even more broken
1626	 * than they already were.
1627	 */
1628	/* options were tossed already */
1629	if (inp->inp_flags & INP_RECVOPTS) {
1630		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1631		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1632		if (*mp)
1633			mp = &(*mp)->m_next;
1634	}
1635	/* ip_srcroute doesn't do what we want here, need to fix */
1636	if (inp->inp_flags & INP_RECVRETOPTS) {
1637		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1638		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1639		if (*mp)
1640			mp = &(*mp)->m_next;
1641	}
1642#endif
1643	if (inp->inp_flags & INP_RECVIF) {
1644		struct ifnet *ifp;
1645		struct sdlbuf {
1646			struct sockaddr_dl sdl;
1647			u_char	pad[32];
1648		} sdlbuf;
1649		struct sockaddr_dl *sdp;
1650		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1651
1652		if (((ifp = m->m_pkthdr.rcvif))
1653		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1654			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1655			/*
1656			 * Change our mind and don't try copy.
1657			 */
1658			if ((sdp->sdl_family != AF_LINK)
1659			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1660				goto makedummy;
1661			}
1662			bcopy(sdp, sdl2, sdp->sdl_len);
1663		} else {
1664makedummy:
1665			sdl2->sdl_len
1666				= offsetof(struct sockaddr_dl, sdl_data[0]);
1667			sdl2->sdl_family = AF_LINK;
1668			sdl2->sdl_index = 0;
1669			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1670		}
1671		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1672			IP_RECVIF, IPPROTO_IP);
1673		if (*mp)
1674			mp = &(*mp)->m_next;
1675	}
1676}
1677
1678/*
1679 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1680 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1681 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1682 * compiled.
1683 */
1684int
1685ip_rsvp_init(struct socket *so)
1686{
1687
1688	if (so->so_type != SOCK_RAW ||
1689	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1690		return EOPNOTSUPP;
1691
1692	if (V_ip_rsvpd != NULL)
1693		return EADDRINUSE;
1694
1695	V_ip_rsvpd = so;
1696	/*
1697	 * This may seem silly, but we need to be sure we don't over-increment
1698	 * the RSVP counter, in case something slips up.
1699	 */
1700	if (!V_ip_rsvp_on) {
1701		V_ip_rsvp_on = 1;
1702		V_rsvp_on++;
1703	}
1704
1705	return 0;
1706}
1707
1708int
1709ip_rsvp_done(void)
1710{
1711
1712	V_ip_rsvpd = NULL;
1713	/*
1714	 * This may seem silly, but we need to be sure we don't over-decrement
1715	 * the RSVP counter, in case something slips up.
1716	 */
1717	if (V_ip_rsvp_on) {
1718		V_ip_rsvp_on = 0;
1719		V_rsvp_on--;
1720	}
1721	return 0;
1722}
1723
1724void
1725rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1726{
1727
1728	if (rsvp_input_p) { /* call the real one if loaded */
1729		rsvp_input_p(m, off);
1730		return;
1731	}
1732
1733	/* Can still get packets with rsvp_on = 0 if there is a local member
1734	 * of the group to which the RSVP packet is addressed.  But in this
1735	 * case we want to throw the packet away.
1736	 */
1737
1738	if (!V_rsvp_on) {
1739		m_freem(m);
1740		return;
1741	}
1742
1743	if (V_ip_rsvpd != NULL) {
1744		rip_input(m, off);
1745		return;
1746	}
1747	/* Drop the packet */
1748	m_freem(m);
1749}
1750