ip_reass.c revision 195788
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 195788 2009-07-20 19:40:09Z rwatson $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40#include "opt_carp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/mbuf.h>
46#include <sys/malloc.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/socket.h>
50#include <sys/time.h>
51#include <sys/kernel.h>
52#include <sys/lock.h>
53#include <sys/rwlock.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56#include <sys/vimage.h>
57
58#include <net/pfil.h>
59#include <net/if.h>
60#include <net/if_types.h>
61#include <net/if_var.h>
62#include <net/if_dl.h>
63#include <net/route.h>
64#include <net/netisr.h>
65#include <net/vnet.h>
66#include <net/flowtable.h>
67
68#include <netinet/in.h>
69#include <netinet/in_systm.h>
70#include <netinet/in_var.h>
71#include <netinet/ip.h>
72#include <netinet/in_pcb.h>
73#include <netinet/ip_var.h>
74#include <netinet/ip_fw.h>
75#include <netinet/ip_icmp.h>
76#include <netinet/ip_options.h>
77#include <machine/in_cksum.h>
78#ifdef DEV_CARP
79#include <netinet/ip_carp.h>
80#endif
81#ifdef IPSEC
82#include <netinet/ip_ipsec.h>
83#endif /* IPSEC */
84
85#include <sys/socketvar.h>
86
87#include <security/mac/mac_framework.h>
88
89#ifdef CTASSERT
90CTASSERT(sizeof(struct ip) == 20);
91#endif
92
93static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
94static VNET_DEFINE(int, ip_checkinterface);
95static VNET_DEFINE(int, ip_keepfaith);
96static VNET_DEFINE(int, ip_sendsourcequench);
97
98#define	V_ipsendredirects	VNET(ipsendredirects)
99#define	V_ip_checkinterface	VNET(ip_checkinterface)
100#define	V_ip_keepfaith		VNET(ip_keepfaith)
101#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
102
103VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
104VNET_DEFINE(int, ip_do_randomid);
105VNET_DEFINE(int, ipforwarding);
106
107VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
108VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
109VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
110VNET_DEFINE(struct ipstat, ipstat);
111
112static VNET_DEFINE(int, ip_rsvp_on);
113VNET_DEFINE(struct socket *, ip_rsvpd);
114VNET_DEFINE(int, rsvp_on);
115
116#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
117
118static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
119static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
120static VNET_DEFINE(int, maxfragsperpacket);
121static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
122
123#define	V_ipq			VNET(ipq)
124#define	V_maxnipq		VNET(maxnipq)
125#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
126#define	V_nipq			VNET(nipq)
127
128VNET_DEFINE(int, ipstealth);
129
130struct	rwlock in_ifaddr_lock;
131RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
132
133SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
134    &VNET_NAME(ipforwarding), 0,
135    "Enable IP forwarding between interfaces");
136
137SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
138    &VNET_NAME(ipsendredirects), 0,
139    "Enable sending IP redirects");
140
141SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
142    &VNET_NAME(ip_defttl), 0,
143    "Maximum TTL on IP packets");
144
145SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
146    &VNET_NAME(ip_keepfaith), 0,
147    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
148
149SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
150    &VNET_NAME(ip_sendsourcequench), 0,
151    "Enable the transmission of source quench packets");
152
153SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
154    &VNET_NAME(ip_do_randomid), 0,
155    "Assign random ip_id values");
156
157/*
158 * XXX - Setting ip_checkinterface mostly implements the receive side of
159 * the Strong ES model described in RFC 1122, but since the routing table
160 * and transmit implementation do not implement the Strong ES model,
161 * setting this to 1 results in an odd hybrid.
162 *
163 * XXX - ip_checkinterface currently must be disabled if you use ipnat
164 * to translate the destination address to another local interface.
165 *
166 * XXX - ip_checkinterface must be disabled if you add IP aliases
167 * to the loopback interface instead of the interface where the
168 * packets for those addresses are received.
169 */
170SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
171    &VNET_NAME(ip_checkinterface), 0,
172    "Verify packet arrives on correct interface");
173
174struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
175
176static struct netisr_handler ip_nh = {
177	.nh_name = "ip",
178	.nh_handler = ip_input,
179	.nh_proto = NETISR_IP,
180	.nh_policy = NETISR_POLICY_FLOW,
181};
182
183extern	struct domain inetdomain;
184extern	struct protosw inetsw[];
185u_char	ip_protox[IPPROTO_MAX];
186
187SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
188    &VNET_NAME(ipstat), ipstat,
189    "IP statistics (struct ipstat, netinet/ip_var.h)");
190
191static VNET_DEFINE(uma_zone_t, ipq_zone);
192#define	V_ipq_zone		VNET(ipq_zone)
193
194static struct mtx ipqlock;
195
196#define	IPQ_LOCK()	mtx_lock(&ipqlock)
197#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
198#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
199#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
200
201static void	maxnipq_update(void);
202static void	ipq_zone_change(void *);
203
204SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
205    &VNET_NAME(nipq), 0,
206    "Current number of IPv4 fragment reassembly queue entries");
207
208SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
209    &VNET_NAME(maxfragsperpacket), 0,
210    "Maximum number of IPv4 fragments allowed per packet");
211
212struct callout	ipport_tick_callout;
213
214#ifdef IPCTL_DEFMTU
215SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
216    &ip_mtu, 0, "Default MTU");
217#endif
218
219#ifdef IPSTEALTH
220SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
221    &VNET_NAME(ipstealth), 0,
222    "IP stealth mode, no TTL decrementation on forwarding");
223#endif
224
225#ifdef FLOWTABLE
226static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
227VNET_DEFINE(struct flowtable *, ip_ft);
228#define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
229
230SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
231    &VNET_NAME(ip_output_flowtable_size), 2048,
232    "number of entries in the per-cpu output flow caches");
233#endif
234
235VNET_DEFINE(int, fw_one_pass) = 1;
236
237static void	ip_freef(struct ipqhead *, struct ipq *);
238
239static int
240sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
241{
242	int error, qlimit;
243
244	netisr_getqlimit(&ip_nh, &qlimit);
245	error = sysctl_handle_int(oidp, &qlimit, 0, req);
246	if (error || !req->newptr)
247		return (error);
248	if (qlimit < 1)
249		return (EINVAL);
250	return (netisr_setqlimit(&ip_nh, qlimit));
251}
252SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
253    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
254    "Maximum size of the IP input queue");
255
256static int
257sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
258{
259	u_int64_t qdrops_long;
260	int error, qdrops;
261
262	netisr_getqdrops(&ip_nh, &qdrops_long);
263	qdrops = qdrops_long;
264	error = sysctl_handle_int(oidp, &qdrops, 0, req);
265	if (error || !req->newptr)
266		return (error);
267	if (qdrops != 0)
268		return (EINVAL);
269	netisr_clearqdrops(&ip_nh);
270	return (0);
271}
272
273SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
274    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
275    "Number of packets dropped from the IP input queue");
276
277/*
278 * IP initialization: fill in IP protocol switch table.
279 * All protocols not implemented in kernel go to raw IP protocol handler.
280 */
281void
282ip_init(void)
283{
284	struct protosw *pr;
285	int i;
286
287	V_ip_id = time_second & 0xffff;
288
289	TAILQ_INIT(&V_in_ifaddrhead);
290	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
291
292	/* Initialize IP reassembly queue. */
293	for (i = 0; i < IPREASS_NHASH; i++)
294		TAILQ_INIT(&V_ipq[i]);
295	V_maxnipq = nmbclusters / 32;
296	V_maxfragsperpacket = 16;
297	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
298	    NULL, UMA_ALIGN_PTR, 0);
299	maxnipq_update();
300
301#ifdef FLOWTABLE
302	TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
303	    &V_ip_output_flowtable_size);
304	V_ip_ft = flowtable_alloc(V_ip_output_flowtable_size, FL_PCPU);
305#endif
306
307	/* Skip initialization of globals for non-default instances. */
308	if (!IS_DEFAULT_VNET(curvnet))
309		return;
310
311	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
312	if (pr == NULL)
313		panic("ip_init: PF_INET not found");
314
315	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
316	for (i = 0; i < IPPROTO_MAX; i++)
317		ip_protox[i] = pr - inetsw;
318	/*
319	 * Cycle through IP protocols and put them into the appropriate place
320	 * in ip_protox[].
321	 */
322	for (pr = inetdomain.dom_protosw;
323	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
324		if (pr->pr_domain->dom_family == PF_INET &&
325		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
326			/* Be careful to only index valid IP protocols. */
327			if (pr->pr_protocol < IPPROTO_MAX)
328				ip_protox[pr->pr_protocol] = pr - inetsw;
329		}
330
331	/* Initialize packet filter hooks. */
332	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
333	inet_pfil_hook.ph_af = AF_INET;
334	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
335		printf("%s: WARNING: unable to register pfil hook, "
336			"error %d\n", __func__, i);
337
338	/* Start ipport_tick. */
339	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
340	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
341	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
342		SHUTDOWN_PRI_DEFAULT);
343	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
344		NULL, EVENTHANDLER_PRI_ANY);
345
346	/* Initialize various other remaining things. */
347	IPQ_LOCK_INIT();
348	netisr_register(&ip_nh);
349}
350
351void
352ip_fini(void *xtp)
353{
354
355	callout_stop(&ipport_tick_callout);
356}
357
358/*
359 * Ip input routine.  Checksum and byte swap header.  If fragmented
360 * try to reassemble.  Process options.  Pass to next level.
361 */
362void
363ip_input(struct mbuf *m)
364{
365	struct ip *ip = NULL;
366	struct in_ifaddr *ia = NULL;
367	struct ifaddr *ifa;
368	struct ifnet *ifp;
369	int    checkif, hlen = 0;
370	u_short sum;
371	int dchg = 0;				/* dest changed after fw */
372	struct in_addr odst;			/* original dst address */
373
374	M_ASSERTPKTHDR(m);
375
376	if (m->m_flags & M_FASTFWD_OURS) {
377		/*
378		 * Firewall or NAT changed destination to local.
379		 * We expect ip_len and ip_off to be in host byte order.
380		 */
381		m->m_flags &= ~M_FASTFWD_OURS;
382		/* Set up some basics that will be used later. */
383		ip = mtod(m, struct ip *);
384		hlen = ip->ip_hl << 2;
385		goto ours;
386	}
387
388	IPSTAT_INC(ips_total);
389
390	if (m->m_pkthdr.len < sizeof(struct ip))
391		goto tooshort;
392
393	if (m->m_len < sizeof (struct ip) &&
394	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
395		IPSTAT_INC(ips_toosmall);
396		return;
397	}
398	ip = mtod(m, struct ip *);
399
400	if (ip->ip_v != IPVERSION) {
401		IPSTAT_INC(ips_badvers);
402		goto bad;
403	}
404
405	hlen = ip->ip_hl << 2;
406	if (hlen < sizeof(struct ip)) {	/* minimum header length */
407		IPSTAT_INC(ips_badhlen);
408		goto bad;
409	}
410	if (hlen > m->m_len) {
411		if ((m = m_pullup(m, hlen)) == NULL) {
412			IPSTAT_INC(ips_badhlen);
413			return;
414		}
415		ip = mtod(m, struct ip *);
416	}
417
418	/* 127/8 must not appear on wire - RFC1122 */
419	ifp = m->m_pkthdr.rcvif;
420	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
421	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
422		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
423			IPSTAT_INC(ips_badaddr);
424			goto bad;
425		}
426	}
427
428	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
429		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
430	} else {
431		if (hlen == sizeof(struct ip)) {
432			sum = in_cksum_hdr(ip);
433		} else {
434			sum = in_cksum(m, hlen);
435		}
436	}
437	if (sum) {
438		IPSTAT_INC(ips_badsum);
439		goto bad;
440	}
441
442#ifdef ALTQ
443	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
444		/* packet is dropped by traffic conditioner */
445		return;
446#endif
447
448	/*
449	 * Convert fields to host representation.
450	 */
451	ip->ip_len = ntohs(ip->ip_len);
452	if (ip->ip_len < hlen) {
453		IPSTAT_INC(ips_badlen);
454		goto bad;
455	}
456	ip->ip_off = ntohs(ip->ip_off);
457
458	/*
459	 * Check that the amount of data in the buffers
460	 * is as at least much as the IP header would have us expect.
461	 * Trim mbufs if longer than we expect.
462	 * Drop packet if shorter than we expect.
463	 */
464	if (m->m_pkthdr.len < ip->ip_len) {
465tooshort:
466		IPSTAT_INC(ips_tooshort);
467		goto bad;
468	}
469	if (m->m_pkthdr.len > ip->ip_len) {
470		if (m->m_len == m->m_pkthdr.len) {
471			m->m_len = ip->ip_len;
472			m->m_pkthdr.len = ip->ip_len;
473		} else
474			m_adj(m, ip->ip_len - m->m_pkthdr.len);
475	}
476#ifdef IPSEC
477	/*
478	 * Bypass packet filtering for packets from a tunnel (gif).
479	 */
480	if (ip_ipsec_filtertunnel(m))
481		goto passin;
482#endif /* IPSEC */
483
484	/*
485	 * Run through list of hooks for input packets.
486	 *
487	 * NB: Beware of the destination address changing (e.g.
488	 *     by NAT rewriting).  When this happens, tell
489	 *     ip_forward to do the right thing.
490	 */
491
492	/* Jump over all PFIL processing if hooks are not active. */
493	if (!PFIL_HOOKED(&inet_pfil_hook))
494		goto passin;
495
496	odst = ip->ip_dst;
497	if (pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
498		return;
499	if (m == NULL)			/* consumed by filter */
500		return;
501
502	ip = mtod(m, struct ip *);
503	dchg = (odst.s_addr != ip->ip_dst.s_addr);
504	ifp = m->m_pkthdr.rcvif;
505
506#ifdef IPFIREWALL_FORWARD
507	if (m->m_flags & M_FASTFWD_OURS) {
508		m->m_flags &= ~M_FASTFWD_OURS;
509		goto ours;
510	}
511	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
512		/*
513		 * Directly ship on the packet.  This allows to forward packets
514		 * that were destined for us to some other directly connected
515		 * host.
516		 */
517		ip_forward(m, dchg);
518		return;
519	}
520#endif /* IPFIREWALL_FORWARD */
521
522passin:
523	/*
524	 * Process options and, if not destined for us,
525	 * ship it on.  ip_dooptions returns 1 when an
526	 * error was detected (causing an icmp message
527	 * to be sent and the original packet to be freed).
528	 */
529	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
530		return;
531
532        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
533         * matter if it is destined to another node, or whether it is
534         * a multicast one, RSVP wants it! and prevents it from being forwarded
535         * anywhere else. Also checks if the rsvp daemon is running before
536	 * grabbing the packet.
537         */
538	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
539		goto ours;
540
541	/*
542	 * Check our list of addresses, to see if the packet is for us.
543	 * If we don't have any addresses, assume any unicast packet
544	 * we receive might be for us (and let the upper layers deal
545	 * with it).
546	 */
547	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
548	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
549		goto ours;
550
551	/*
552	 * Enable a consistency check between the destination address
553	 * and the arrival interface for a unicast packet (the RFC 1122
554	 * strong ES model) if IP forwarding is disabled and the packet
555	 * is not locally generated and the packet is not subject to
556	 * 'ipfw fwd'.
557	 *
558	 * XXX - Checking also should be disabled if the destination
559	 * address is ipnat'ed to a different interface.
560	 *
561	 * XXX - Checking is incompatible with IP aliases added
562	 * to the loopback interface instead of the interface where
563	 * the packets are received.
564	 *
565	 * XXX - This is the case for carp vhost IPs as well so we
566	 * insert a workaround. If the packet got here, we already
567	 * checked with carp_iamatch() and carp_forus().
568	 */
569	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
570	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
571#ifdef DEV_CARP
572	    !ifp->if_carp &&
573#endif
574	    (dchg == 0);
575
576	/*
577	 * Check for exact addresses in the hash bucket.
578	 */
579	/* IN_IFADDR_RLOCK(); */
580	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
581		/*
582		 * If the address matches, verify that the packet
583		 * arrived via the correct interface if checking is
584		 * enabled.
585		 */
586		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
587		    (!checkif || ia->ia_ifp == ifp)) {
588			ifa_ref(&ia->ia_ifa);
589			/* IN_IFADDR_RUNLOCK(); */
590			goto ours;
591		}
592	}
593	/* IN_IFADDR_RUNLOCK(); */
594
595	/*
596	 * Check for broadcast addresses.
597	 *
598	 * Only accept broadcast packets that arrive via the matching
599	 * interface.  Reception of forwarded directed broadcasts would
600	 * be handled via ip_forward() and ether_output() with the loopback
601	 * into the stack for SIMPLEX interfaces handled by ether_output().
602	 */
603	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
604		IF_ADDR_LOCK(ifp);
605	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
606			if (ifa->ifa_addr->sa_family != AF_INET)
607				continue;
608			ia = ifatoia(ifa);
609			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
610			    ip->ip_dst.s_addr) {
611				ifa_ref(ifa);
612				IF_ADDR_UNLOCK(ifp);
613				goto ours;
614			}
615			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
616				ifa_ref(ifa);
617				IF_ADDR_UNLOCK(ifp);
618				goto ours;
619			}
620#ifdef BOOTP_COMPAT
621			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
622				ifa_ref(ifa);
623				IF_ADDR_UNLOCK(ifp);
624				goto ours;
625			}
626#endif
627		}
628		IF_ADDR_UNLOCK(ifp);
629		ia = NULL;
630	}
631	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
632	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
633		IPSTAT_INC(ips_cantforward);
634		m_freem(m);
635		return;
636	}
637	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
638		if (V_ip_mrouter) {
639			/*
640			 * If we are acting as a multicast router, all
641			 * incoming multicast packets are passed to the
642			 * kernel-level multicast forwarding function.
643			 * The packet is returned (relatively) intact; if
644			 * ip_mforward() returns a non-zero value, the packet
645			 * must be discarded, else it may be accepted below.
646			 */
647			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
648				IPSTAT_INC(ips_cantforward);
649				m_freem(m);
650				return;
651			}
652
653			/*
654			 * The process-level routing daemon needs to receive
655			 * all multicast IGMP packets, whether or not this
656			 * host belongs to their destination groups.
657			 */
658			if (ip->ip_p == IPPROTO_IGMP)
659				goto ours;
660			IPSTAT_INC(ips_forward);
661		}
662		/*
663		 * Assume the packet is for us, to avoid prematurely taking
664		 * a lock on the in_multi hash. Protocols must perform
665		 * their own filtering and update statistics accordingly.
666		 */
667		goto ours;
668	}
669	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
670		goto ours;
671	if (ip->ip_dst.s_addr == INADDR_ANY)
672		goto ours;
673
674	/*
675	 * FAITH(Firewall Aided Internet Translator)
676	 */
677	if (ifp && ifp->if_type == IFT_FAITH) {
678		if (V_ip_keepfaith) {
679			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
680				goto ours;
681		}
682		m_freem(m);
683		return;
684	}
685
686	/*
687	 * Not for us; forward if possible and desirable.
688	 */
689	if (V_ipforwarding == 0) {
690		IPSTAT_INC(ips_cantforward);
691		m_freem(m);
692	} else {
693#ifdef IPSEC
694		if (ip_ipsec_fwd(m))
695			goto bad;
696#endif /* IPSEC */
697		ip_forward(m, dchg);
698	}
699	return;
700
701ours:
702#ifdef IPSTEALTH
703	/*
704	 * IPSTEALTH: Process non-routing options only
705	 * if the packet is destined for us.
706	 */
707	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
708		if (ia != NULL)
709			ifa_free(&ia->ia_ifa);
710		return;
711	}
712#endif /* IPSTEALTH */
713
714	/* Count the packet in the ip address stats */
715	if (ia != NULL) {
716		ia->ia_ifa.if_ipackets++;
717		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
718		ifa_free(&ia->ia_ifa);
719	}
720
721	/*
722	 * Attempt reassembly; if it succeeds, proceed.
723	 * ip_reass() will return a different mbuf.
724	 */
725	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
726		m = ip_reass(m);
727		if (m == NULL)
728			return;
729		ip = mtod(m, struct ip *);
730		/* Get the header length of the reassembled packet */
731		hlen = ip->ip_hl << 2;
732	}
733
734	/*
735	 * Further protocols expect the packet length to be w/o the
736	 * IP header.
737	 */
738	ip->ip_len -= hlen;
739
740#ifdef IPSEC
741	/*
742	 * enforce IPsec policy checking if we are seeing last header.
743	 * note that we do not visit this with protocols with pcb layer
744	 * code - like udp/tcp/raw ip.
745	 */
746	if (ip_ipsec_input(m))
747		goto bad;
748#endif /* IPSEC */
749
750	/*
751	 * Switch out to protocol's input routine.
752	 */
753	IPSTAT_INC(ips_delivered);
754
755	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
756	return;
757bad:
758	m_freem(m);
759}
760
761/*
762 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
763 * max has slightly different semantics than the sysctl, for historical
764 * reasons.
765 */
766static void
767maxnipq_update(void)
768{
769
770	/*
771	 * -1 for unlimited allocation.
772	 */
773	if (V_maxnipq < 0)
774		uma_zone_set_max(V_ipq_zone, 0);
775	/*
776	 * Positive number for specific bound.
777	 */
778	if (V_maxnipq > 0)
779		uma_zone_set_max(V_ipq_zone, V_maxnipq);
780	/*
781	 * Zero specifies no further fragment queue allocation -- set the
782	 * bound very low, but rely on implementation elsewhere to actually
783	 * prevent allocation and reclaim current queues.
784	 */
785	if (V_maxnipq == 0)
786		uma_zone_set_max(V_ipq_zone, 1);
787}
788
789static void
790ipq_zone_change(void *tag)
791{
792
793	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
794		V_maxnipq = nmbclusters / 32;
795		maxnipq_update();
796	}
797}
798
799static int
800sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
801{
802	int error, i;
803
804	i = V_maxnipq;
805	error = sysctl_handle_int(oidp, &i, 0, req);
806	if (error || !req->newptr)
807		return (error);
808
809	/*
810	 * XXXRW: Might be a good idea to sanity check the argument and place
811	 * an extreme upper bound.
812	 */
813	if (i < -1)
814		return (EINVAL);
815	V_maxnipq = i;
816	maxnipq_update();
817	return (0);
818}
819
820SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
821    NULL, 0, sysctl_maxnipq, "I",
822    "Maximum number of IPv4 fragment reassembly queue entries");
823
824/*
825 * Take incoming datagram fragment and try to reassemble it into
826 * whole datagram.  If the argument is the first fragment or one
827 * in between the function will return NULL and store the mbuf
828 * in the fragment chain.  If the argument is the last fragment
829 * the packet will be reassembled and the pointer to the new
830 * mbuf returned for further processing.  Only m_tags attached
831 * to the first packet/fragment are preserved.
832 * The IP header is *NOT* adjusted out of iplen.
833 */
834struct mbuf *
835ip_reass(struct mbuf *m)
836{
837	struct ip *ip;
838	struct mbuf *p, *q, *nq, *t;
839	struct ipq *fp = NULL;
840	struct ipqhead *head;
841	int i, hlen, next;
842	u_int8_t ecn, ecn0;
843	u_short hash;
844
845	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
846	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
847		IPSTAT_INC(ips_fragments);
848		IPSTAT_INC(ips_fragdropped);
849		m_freem(m);
850		return (NULL);
851	}
852
853	ip = mtod(m, struct ip *);
854	hlen = ip->ip_hl << 2;
855
856	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
857	head = &V_ipq[hash];
858	IPQ_LOCK();
859
860	/*
861	 * Look for queue of fragments
862	 * of this datagram.
863	 */
864	TAILQ_FOREACH(fp, head, ipq_list)
865		if (ip->ip_id == fp->ipq_id &&
866		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
867		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
868#ifdef MAC
869		    mac_ipq_match(m, fp) &&
870#endif
871		    ip->ip_p == fp->ipq_p)
872			goto found;
873
874	fp = NULL;
875
876	/*
877	 * Attempt to trim the number of allocated fragment queues if it
878	 * exceeds the administrative limit.
879	 */
880	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
881		/*
882		 * drop something from the tail of the current queue
883		 * before proceeding further
884		 */
885		struct ipq *q = TAILQ_LAST(head, ipqhead);
886		if (q == NULL) {   /* gak */
887			for (i = 0; i < IPREASS_NHASH; i++) {
888				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
889				if (r) {
890					IPSTAT_ADD(ips_fragtimeout,
891					    r->ipq_nfrags);
892					ip_freef(&V_ipq[i], r);
893					break;
894				}
895			}
896		} else {
897			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
898			ip_freef(head, q);
899		}
900	}
901
902found:
903	/*
904	 * Adjust ip_len to not reflect header,
905	 * convert offset of this to bytes.
906	 */
907	ip->ip_len -= hlen;
908	if (ip->ip_off & IP_MF) {
909		/*
910		 * Make sure that fragments have a data length
911		 * that's a non-zero multiple of 8 bytes.
912		 */
913		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
914			IPSTAT_INC(ips_toosmall); /* XXX */
915			goto dropfrag;
916		}
917		m->m_flags |= M_FRAG;
918	} else
919		m->m_flags &= ~M_FRAG;
920	ip->ip_off <<= 3;
921
922
923	/*
924	 * Attempt reassembly; if it succeeds, proceed.
925	 * ip_reass() will return a different mbuf.
926	 */
927	IPSTAT_INC(ips_fragments);
928	m->m_pkthdr.header = ip;
929
930	/* Previous ip_reass() started here. */
931	/*
932	 * Presence of header sizes in mbufs
933	 * would confuse code below.
934	 */
935	m->m_data += hlen;
936	m->m_len -= hlen;
937
938	/*
939	 * If first fragment to arrive, create a reassembly queue.
940	 */
941	if (fp == NULL) {
942		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
943		if (fp == NULL)
944			goto dropfrag;
945#ifdef MAC
946		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
947			uma_zfree(V_ipq_zone, fp);
948			fp = NULL;
949			goto dropfrag;
950		}
951		mac_ipq_create(m, fp);
952#endif
953		TAILQ_INSERT_HEAD(head, fp, ipq_list);
954		V_nipq++;
955		fp->ipq_nfrags = 1;
956		fp->ipq_ttl = IPFRAGTTL;
957		fp->ipq_p = ip->ip_p;
958		fp->ipq_id = ip->ip_id;
959		fp->ipq_src = ip->ip_src;
960		fp->ipq_dst = ip->ip_dst;
961		fp->ipq_frags = m;
962		m->m_nextpkt = NULL;
963		goto done;
964	} else {
965		fp->ipq_nfrags++;
966#ifdef MAC
967		mac_ipq_update(m, fp);
968#endif
969	}
970
971#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
972
973	/*
974	 * Handle ECN by comparing this segment with the first one;
975	 * if CE is set, do not lose CE.
976	 * drop if CE and not-ECT are mixed for the same packet.
977	 */
978	ecn = ip->ip_tos & IPTOS_ECN_MASK;
979	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
980	if (ecn == IPTOS_ECN_CE) {
981		if (ecn0 == IPTOS_ECN_NOTECT)
982			goto dropfrag;
983		if (ecn0 != IPTOS_ECN_CE)
984			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
985	}
986	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
987		goto dropfrag;
988
989	/*
990	 * Find a segment which begins after this one does.
991	 */
992	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
993		if (GETIP(q)->ip_off > ip->ip_off)
994			break;
995
996	/*
997	 * If there is a preceding segment, it may provide some of
998	 * our data already.  If so, drop the data from the incoming
999	 * segment.  If it provides all of our data, drop us, otherwise
1000	 * stick new segment in the proper place.
1001	 *
1002	 * If some of the data is dropped from the the preceding
1003	 * segment, then it's checksum is invalidated.
1004	 */
1005	if (p) {
1006		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1007		if (i > 0) {
1008			if (i >= ip->ip_len)
1009				goto dropfrag;
1010			m_adj(m, i);
1011			m->m_pkthdr.csum_flags = 0;
1012			ip->ip_off += i;
1013			ip->ip_len -= i;
1014		}
1015		m->m_nextpkt = p->m_nextpkt;
1016		p->m_nextpkt = m;
1017	} else {
1018		m->m_nextpkt = fp->ipq_frags;
1019		fp->ipq_frags = m;
1020	}
1021
1022	/*
1023	 * While we overlap succeeding segments trim them or,
1024	 * if they are completely covered, dequeue them.
1025	 */
1026	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1027	     q = nq) {
1028		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1029		if (i < GETIP(q)->ip_len) {
1030			GETIP(q)->ip_len -= i;
1031			GETIP(q)->ip_off += i;
1032			m_adj(q, i);
1033			q->m_pkthdr.csum_flags = 0;
1034			break;
1035		}
1036		nq = q->m_nextpkt;
1037		m->m_nextpkt = nq;
1038		IPSTAT_INC(ips_fragdropped);
1039		fp->ipq_nfrags--;
1040		m_freem(q);
1041	}
1042
1043	/*
1044	 * Check for complete reassembly and perform frag per packet
1045	 * limiting.
1046	 *
1047	 * Frag limiting is performed here so that the nth frag has
1048	 * a chance to complete the packet before we drop the packet.
1049	 * As a result, n+1 frags are actually allowed per packet, but
1050	 * only n will ever be stored. (n = maxfragsperpacket.)
1051	 *
1052	 */
1053	next = 0;
1054	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1055		if (GETIP(q)->ip_off != next) {
1056			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1057				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1058				ip_freef(head, fp);
1059			}
1060			goto done;
1061		}
1062		next += GETIP(q)->ip_len;
1063	}
1064	/* Make sure the last packet didn't have the IP_MF flag */
1065	if (p->m_flags & M_FRAG) {
1066		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1067			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1068			ip_freef(head, fp);
1069		}
1070		goto done;
1071	}
1072
1073	/*
1074	 * Reassembly is complete.  Make sure the packet is a sane size.
1075	 */
1076	q = fp->ipq_frags;
1077	ip = GETIP(q);
1078	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1079		IPSTAT_INC(ips_toolong);
1080		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1081		ip_freef(head, fp);
1082		goto done;
1083	}
1084
1085	/*
1086	 * Concatenate fragments.
1087	 */
1088	m = q;
1089	t = m->m_next;
1090	m->m_next = NULL;
1091	m_cat(m, t);
1092	nq = q->m_nextpkt;
1093	q->m_nextpkt = NULL;
1094	for (q = nq; q != NULL; q = nq) {
1095		nq = q->m_nextpkt;
1096		q->m_nextpkt = NULL;
1097		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1098		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1099		m_cat(m, q);
1100	}
1101	/*
1102	 * In order to do checksumming faster we do 'end-around carry' here
1103	 * (and not in for{} loop), though it implies we are not going to
1104	 * reassemble more than 64k fragments.
1105	 */
1106	m->m_pkthdr.csum_data =
1107	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1108#ifdef MAC
1109	mac_ipq_reassemble(fp, m);
1110	mac_ipq_destroy(fp);
1111#endif
1112
1113	/*
1114	 * Create header for new ip packet by modifying header of first
1115	 * packet;  dequeue and discard fragment reassembly header.
1116	 * Make header visible.
1117	 */
1118	ip->ip_len = (ip->ip_hl << 2) + next;
1119	ip->ip_src = fp->ipq_src;
1120	ip->ip_dst = fp->ipq_dst;
1121	TAILQ_REMOVE(head, fp, ipq_list);
1122	V_nipq--;
1123	uma_zfree(V_ipq_zone, fp);
1124	m->m_len += (ip->ip_hl << 2);
1125	m->m_data -= (ip->ip_hl << 2);
1126	/* some debugging cruft by sklower, below, will go away soon */
1127	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1128		m_fixhdr(m);
1129	IPSTAT_INC(ips_reassembled);
1130	IPQ_UNLOCK();
1131	return (m);
1132
1133dropfrag:
1134	IPSTAT_INC(ips_fragdropped);
1135	if (fp != NULL)
1136		fp->ipq_nfrags--;
1137	m_freem(m);
1138done:
1139	IPQ_UNLOCK();
1140	return (NULL);
1141
1142#undef GETIP
1143}
1144
1145/*
1146 * Free a fragment reassembly header and all
1147 * associated datagrams.
1148 */
1149static void
1150ip_freef(struct ipqhead *fhp, struct ipq *fp)
1151{
1152	struct mbuf *q;
1153
1154	IPQ_LOCK_ASSERT();
1155
1156	while (fp->ipq_frags) {
1157		q = fp->ipq_frags;
1158		fp->ipq_frags = q->m_nextpkt;
1159		m_freem(q);
1160	}
1161	TAILQ_REMOVE(fhp, fp, ipq_list);
1162	uma_zfree(V_ipq_zone, fp);
1163	V_nipq--;
1164}
1165
1166/*
1167 * IP timer processing;
1168 * if a timer expires on a reassembly
1169 * queue, discard it.
1170 */
1171void
1172ip_slowtimo(void)
1173{
1174	VNET_ITERATOR_DECL(vnet_iter);
1175	struct ipq *fp;
1176	int i;
1177
1178	VNET_LIST_RLOCK_NOSLEEP();
1179	IPQ_LOCK();
1180	VNET_FOREACH(vnet_iter) {
1181		CURVNET_SET(vnet_iter);
1182		for (i = 0; i < IPREASS_NHASH; i++) {
1183			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1184				struct ipq *fpp;
1185
1186				fpp = fp;
1187				fp = TAILQ_NEXT(fp, ipq_list);
1188				if(--fpp->ipq_ttl == 0) {
1189					IPSTAT_ADD(ips_fragtimeout,
1190					    fpp->ipq_nfrags);
1191					ip_freef(&V_ipq[i], fpp);
1192				}
1193			}
1194		}
1195		/*
1196		 * If we are over the maximum number of fragments
1197		 * (due to the limit being lowered), drain off
1198		 * enough to get down to the new limit.
1199		 */
1200		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1201			for (i = 0; i < IPREASS_NHASH; i++) {
1202				while (V_nipq > V_maxnipq &&
1203				    !TAILQ_EMPTY(&V_ipq[i])) {
1204					IPSTAT_ADD(ips_fragdropped,
1205					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1206					ip_freef(&V_ipq[i],
1207					    TAILQ_FIRST(&V_ipq[i]));
1208				}
1209			}
1210		}
1211		CURVNET_RESTORE();
1212	}
1213	IPQ_UNLOCK();
1214	VNET_LIST_RUNLOCK_NOSLEEP();
1215}
1216
1217/*
1218 * Drain off all datagram fragments.
1219 */
1220void
1221ip_drain(void)
1222{
1223	VNET_ITERATOR_DECL(vnet_iter);
1224	int     i;
1225
1226	VNET_LIST_RLOCK_NOSLEEP();
1227	IPQ_LOCK();
1228	VNET_FOREACH(vnet_iter) {
1229		CURVNET_SET(vnet_iter);
1230		for (i = 0; i < IPREASS_NHASH; i++) {
1231			while(!TAILQ_EMPTY(&V_ipq[i])) {
1232				IPSTAT_ADD(ips_fragdropped,
1233				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1234				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1235			}
1236		}
1237		CURVNET_RESTORE();
1238	}
1239	IPQ_UNLOCK();
1240	VNET_LIST_RUNLOCK_NOSLEEP();
1241	in_rtqdrain();
1242}
1243
1244/*
1245 * The protocol to be inserted into ip_protox[] must be already registered
1246 * in inetsw[], either statically or through pf_proto_register().
1247 */
1248int
1249ipproto_register(u_char ipproto)
1250{
1251	struct protosw *pr;
1252
1253	/* Sanity checks. */
1254	if (ipproto == 0)
1255		return (EPROTONOSUPPORT);
1256
1257	/*
1258	 * The protocol slot must not be occupied by another protocol
1259	 * already.  An index pointing to IPPROTO_RAW is unused.
1260	 */
1261	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1262	if (pr == NULL)
1263		return (EPFNOSUPPORT);
1264	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1265		return (EEXIST);
1266
1267	/* Find the protocol position in inetsw[] and set the index. */
1268	for (pr = inetdomain.dom_protosw;
1269	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1270		if (pr->pr_domain->dom_family == PF_INET &&
1271		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1272			/* Be careful to only index valid IP protocols. */
1273			if (pr->pr_protocol < IPPROTO_MAX) {
1274				ip_protox[pr->pr_protocol] = pr - inetsw;
1275				return (0);
1276			} else
1277				return (EINVAL);
1278		}
1279	}
1280	return (EPROTONOSUPPORT);
1281}
1282
1283int
1284ipproto_unregister(u_char ipproto)
1285{
1286	struct protosw *pr;
1287
1288	/* Sanity checks. */
1289	if (ipproto == 0)
1290		return (EPROTONOSUPPORT);
1291
1292	/* Check if the protocol was indeed registered. */
1293	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1294	if (pr == NULL)
1295		return (EPFNOSUPPORT);
1296	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1297		return (ENOENT);
1298
1299	/* Reset the protocol slot to IPPROTO_RAW. */
1300	ip_protox[ipproto] = pr - inetsw;
1301	return (0);
1302}
1303
1304/*
1305 * Given address of next destination (final or next hop), return (referenced)
1306 * internet address info of interface to be used to get there.
1307 */
1308struct in_ifaddr *
1309ip_rtaddr(struct in_addr dst, u_int fibnum)
1310{
1311	struct route sro;
1312	struct sockaddr_in *sin;
1313	struct in_ifaddr *ia;
1314
1315	bzero(&sro, sizeof(sro));
1316	sin = (struct sockaddr_in *)&sro.ro_dst;
1317	sin->sin_family = AF_INET;
1318	sin->sin_len = sizeof(*sin);
1319	sin->sin_addr = dst;
1320	in_rtalloc_ign(&sro, 0, fibnum);
1321
1322	if (sro.ro_rt == NULL)
1323		return (NULL);
1324
1325	ia = ifatoia(sro.ro_rt->rt_ifa);
1326	ifa_ref(&ia->ia_ifa);
1327	RTFREE(sro.ro_rt);
1328	return (ia);
1329}
1330
1331u_char inetctlerrmap[PRC_NCMDS] = {
1332	0,		0,		0,		0,
1333	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1334	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1335	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1336	0,		0,		EHOSTUNREACH,	0,
1337	ENOPROTOOPT,	ECONNREFUSED
1338};
1339
1340/*
1341 * Forward a packet.  If some error occurs return the sender
1342 * an icmp packet.  Note we can't always generate a meaningful
1343 * icmp message because icmp doesn't have a large enough repertoire
1344 * of codes and types.
1345 *
1346 * If not forwarding, just drop the packet.  This could be confusing
1347 * if ipforwarding was zero but some routing protocol was advancing
1348 * us as a gateway to somewhere.  However, we must let the routing
1349 * protocol deal with that.
1350 *
1351 * The srcrt parameter indicates whether the packet is being forwarded
1352 * via a source route.
1353 */
1354void
1355ip_forward(struct mbuf *m, int srcrt)
1356{
1357	struct ip *ip = mtod(m, struct ip *);
1358	struct in_ifaddr *ia;
1359	struct mbuf *mcopy;
1360	struct in_addr dest;
1361	struct route ro;
1362	int error, type = 0, code = 0, mtu = 0;
1363
1364	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1365		IPSTAT_INC(ips_cantforward);
1366		m_freem(m);
1367		return;
1368	}
1369#ifdef IPSTEALTH
1370	if (!V_ipstealth) {
1371#endif
1372		if (ip->ip_ttl <= IPTTLDEC) {
1373			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1374			    0, 0);
1375			return;
1376		}
1377#ifdef IPSTEALTH
1378	}
1379#endif
1380
1381	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1382#ifndef IPSEC
1383	/*
1384	 * 'ia' may be NULL if there is no route for this destination.
1385	 * In case of IPsec, Don't discard it just yet, but pass it to
1386	 * ip_output in case of outgoing IPsec policy.
1387	 */
1388	if (!srcrt && ia == NULL) {
1389		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1390		return;
1391	}
1392#endif
1393
1394	/*
1395	 * Save the IP header and at most 8 bytes of the payload,
1396	 * in case we need to generate an ICMP message to the src.
1397	 *
1398	 * XXX this can be optimized a lot by saving the data in a local
1399	 * buffer on the stack (72 bytes at most), and only allocating the
1400	 * mbuf if really necessary. The vast majority of the packets
1401	 * are forwarded without having to send an ICMP back (either
1402	 * because unnecessary, or because rate limited), so we are
1403	 * really we are wasting a lot of work here.
1404	 *
1405	 * We don't use m_copy() because it might return a reference
1406	 * to a shared cluster. Both this function and ip_output()
1407	 * assume exclusive access to the IP header in `m', so any
1408	 * data in a cluster may change before we reach icmp_error().
1409	 */
1410	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1411	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1412		/*
1413		 * It's probably ok if the pkthdr dup fails (because
1414		 * the deep copy of the tag chain failed), but for now
1415		 * be conservative and just discard the copy since
1416		 * code below may some day want the tags.
1417		 */
1418		m_free(mcopy);
1419		mcopy = NULL;
1420	}
1421	if (mcopy != NULL) {
1422		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1423		mcopy->m_pkthdr.len = mcopy->m_len;
1424		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1425	}
1426
1427#ifdef IPSTEALTH
1428	if (!V_ipstealth) {
1429#endif
1430		ip->ip_ttl -= IPTTLDEC;
1431#ifdef IPSTEALTH
1432	}
1433#endif
1434
1435	/*
1436	 * If forwarding packet using same interface that it came in on,
1437	 * perhaps should send a redirect to sender to shortcut a hop.
1438	 * Only send redirect if source is sending directly to us,
1439	 * and if packet was not source routed (or has any options).
1440	 * Also, don't send redirect if forwarding using a default route
1441	 * or a route modified by a redirect.
1442	 */
1443	dest.s_addr = 0;
1444	if (!srcrt && V_ipsendredirects &&
1445	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1446		struct sockaddr_in *sin;
1447		struct rtentry *rt;
1448
1449		bzero(&ro, sizeof(ro));
1450		sin = (struct sockaddr_in *)&ro.ro_dst;
1451		sin->sin_family = AF_INET;
1452		sin->sin_len = sizeof(*sin);
1453		sin->sin_addr = ip->ip_dst;
1454		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1455
1456		rt = ro.ro_rt;
1457
1458		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1459		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1460#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1461			u_long src = ntohl(ip->ip_src.s_addr);
1462
1463			if (RTA(rt) &&
1464			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1465				if (rt->rt_flags & RTF_GATEWAY)
1466					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1467				else
1468					dest.s_addr = ip->ip_dst.s_addr;
1469				/* Router requirements says to only send host redirects */
1470				type = ICMP_REDIRECT;
1471				code = ICMP_REDIRECT_HOST;
1472			}
1473		}
1474		if (rt)
1475			RTFREE(rt);
1476	}
1477
1478	/*
1479	 * Try to cache the route MTU from ip_output so we can consider it for
1480	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1481	 */
1482	bzero(&ro, sizeof(ro));
1483
1484	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1485
1486	if (error == EMSGSIZE && ro.ro_rt)
1487		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1488	if (ro.ro_rt)
1489		RTFREE(ro.ro_rt);
1490
1491	if (error)
1492		IPSTAT_INC(ips_cantforward);
1493	else {
1494		IPSTAT_INC(ips_forward);
1495		if (type)
1496			IPSTAT_INC(ips_redirectsent);
1497		else {
1498			if (mcopy)
1499				m_freem(mcopy);
1500			if (ia != NULL)
1501				ifa_free(&ia->ia_ifa);
1502			return;
1503		}
1504	}
1505	if (mcopy == NULL) {
1506		if (ia != NULL)
1507			ifa_free(&ia->ia_ifa);
1508		return;
1509	}
1510
1511	switch (error) {
1512
1513	case 0:				/* forwarded, but need redirect */
1514		/* type, code set above */
1515		break;
1516
1517	case ENETUNREACH:
1518	case EHOSTUNREACH:
1519	case ENETDOWN:
1520	case EHOSTDOWN:
1521	default:
1522		type = ICMP_UNREACH;
1523		code = ICMP_UNREACH_HOST;
1524		break;
1525
1526	case EMSGSIZE:
1527		type = ICMP_UNREACH;
1528		code = ICMP_UNREACH_NEEDFRAG;
1529
1530#ifdef IPSEC
1531		/*
1532		 * If IPsec is configured for this path,
1533		 * override any possibly mtu value set by ip_output.
1534		 */
1535		mtu = ip_ipsec_mtu(m, mtu);
1536#endif /* IPSEC */
1537		/*
1538		 * If the MTU was set before make sure we are below the
1539		 * interface MTU.
1540		 * If the MTU wasn't set before use the interface mtu or
1541		 * fall back to the next smaller mtu step compared to the
1542		 * current packet size.
1543		 */
1544		if (mtu != 0) {
1545			if (ia != NULL)
1546				mtu = min(mtu, ia->ia_ifp->if_mtu);
1547		} else {
1548			if (ia != NULL)
1549				mtu = ia->ia_ifp->if_mtu;
1550			else
1551				mtu = ip_next_mtu(ip->ip_len, 0);
1552		}
1553		IPSTAT_INC(ips_cantfrag);
1554		break;
1555
1556	case ENOBUFS:
1557		/*
1558		 * A router should not generate ICMP_SOURCEQUENCH as
1559		 * required in RFC1812 Requirements for IP Version 4 Routers.
1560		 * Source quench could be a big problem under DoS attacks,
1561		 * or if the underlying interface is rate-limited.
1562		 * Those who need source quench packets may re-enable them
1563		 * via the net.inet.ip.sendsourcequench sysctl.
1564		 */
1565		if (V_ip_sendsourcequench == 0) {
1566			m_freem(mcopy);
1567			if (ia != NULL)
1568				ifa_free(&ia->ia_ifa);
1569			return;
1570		} else {
1571			type = ICMP_SOURCEQUENCH;
1572			code = 0;
1573		}
1574		break;
1575
1576	case EACCES:			/* ipfw denied packet */
1577		m_freem(mcopy);
1578		if (ia != NULL)
1579			ifa_free(&ia->ia_ifa);
1580		return;
1581	}
1582	if (ia != NULL)
1583		ifa_free(&ia->ia_ifa);
1584	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1585}
1586
1587void
1588ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1589    struct mbuf *m)
1590{
1591
1592	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1593		struct bintime bt;
1594
1595		bintime(&bt);
1596		if (inp->inp_socket->so_options & SO_BINTIME) {
1597			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1598			SCM_BINTIME, SOL_SOCKET);
1599			if (*mp)
1600				mp = &(*mp)->m_next;
1601		}
1602		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1603			struct timeval tv;
1604
1605			bintime2timeval(&bt, &tv);
1606			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1607				SCM_TIMESTAMP, SOL_SOCKET);
1608			if (*mp)
1609				mp = &(*mp)->m_next;
1610		}
1611	}
1612	if (inp->inp_flags & INP_RECVDSTADDR) {
1613		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1614		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1615		if (*mp)
1616			mp = &(*mp)->m_next;
1617	}
1618	if (inp->inp_flags & INP_RECVTTL) {
1619		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1620		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1621		if (*mp)
1622			mp = &(*mp)->m_next;
1623	}
1624#ifdef notyet
1625	/* XXX
1626	 * Moving these out of udp_input() made them even more broken
1627	 * than they already were.
1628	 */
1629	/* options were tossed already */
1630	if (inp->inp_flags & INP_RECVOPTS) {
1631		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1632		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1633		if (*mp)
1634			mp = &(*mp)->m_next;
1635	}
1636	/* ip_srcroute doesn't do what we want here, need to fix */
1637	if (inp->inp_flags & INP_RECVRETOPTS) {
1638		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1639		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1640		if (*mp)
1641			mp = &(*mp)->m_next;
1642	}
1643#endif
1644	if (inp->inp_flags & INP_RECVIF) {
1645		struct ifnet *ifp;
1646		struct sdlbuf {
1647			struct sockaddr_dl sdl;
1648			u_char	pad[32];
1649		} sdlbuf;
1650		struct sockaddr_dl *sdp;
1651		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1652
1653		if (((ifp = m->m_pkthdr.rcvif))
1654		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1655			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1656			/*
1657			 * Change our mind and don't try copy.
1658			 */
1659			if ((sdp->sdl_family != AF_LINK)
1660			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1661				goto makedummy;
1662			}
1663			bcopy(sdp, sdl2, sdp->sdl_len);
1664		} else {
1665makedummy:
1666			sdl2->sdl_len
1667				= offsetof(struct sockaddr_dl, sdl_data[0]);
1668			sdl2->sdl_family = AF_LINK;
1669			sdl2->sdl_index = 0;
1670			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1671		}
1672		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1673			IP_RECVIF, IPPROTO_IP);
1674		if (*mp)
1675			mp = &(*mp)->m_next;
1676	}
1677}
1678
1679/*
1680 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1681 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1682 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1683 * compiled.
1684 */
1685int
1686ip_rsvp_init(struct socket *so)
1687{
1688
1689	if (so->so_type != SOCK_RAW ||
1690	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1691		return EOPNOTSUPP;
1692
1693	if (V_ip_rsvpd != NULL)
1694		return EADDRINUSE;
1695
1696	V_ip_rsvpd = so;
1697	/*
1698	 * This may seem silly, but we need to be sure we don't over-increment
1699	 * the RSVP counter, in case something slips up.
1700	 */
1701	if (!V_ip_rsvp_on) {
1702		V_ip_rsvp_on = 1;
1703		V_rsvp_on++;
1704	}
1705
1706	return 0;
1707}
1708
1709int
1710ip_rsvp_done(void)
1711{
1712
1713	V_ip_rsvpd = NULL;
1714	/*
1715	 * This may seem silly, but we need to be sure we don't over-decrement
1716	 * the RSVP counter, in case something slips up.
1717	 */
1718	if (V_ip_rsvp_on) {
1719		V_ip_rsvp_on = 0;
1720		V_rsvp_on--;
1721	}
1722	return 0;
1723}
1724
1725void
1726rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1727{
1728
1729	if (rsvp_input_p) { /* call the real one if loaded */
1730		rsvp_input_p(m, off);
1731		return;
1732	}
1733
1734	/* Can still get packets with rsvp_on = 0 if there is a local member
1735	 * of the group to which the RSVP packet is addressed.  But in this
1736	 * case we want to throw the packet away.
1737	 */
1738
1739	if (!V_rsvp_on) {
1740		m_freem(m);
1741		return;
1742	}
1743
1744	if (V_ip_rsvpd != NULL) {
1745		rip_input(m, off);
1746		return;
1747	}
1748	/* Drop the packet */
1749	m_freem(m);
1750}
1751