ip_reass.c revision 194962
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 194962 2009-06-25 14:44:00Z rwatson $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40#include "opt_carp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/mbuf.h>
46#include <sys/malloc.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/socket.h>
50#include <sys/time.h>
51#include <sys/kernel.h>
52#include <sys/lock.h>
53#include <sys/rwlock.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56#include <sys/vimage.h>
57
58#include <net/pfil.h>
59#include <net/if.h>
60#include <net/if_types.h>
61#include <net/if_var.h>
62#include <net/if_dl.h>
63#include <net/route.h>
64#include <net/netisr.h>
65#include <net/vnet.h>
66#include <net/flowtable.h>
67
68#include <netinet/in.h>
69#include <netinet/in_systm.h>
70#include <netinet/in_var.h>
71#include <netinet/ip.h>
72#include <netinet/in_pcb.h>
73#include <netinet/ip_var.h>
74#include <netinet/ip_icmp.h>
75#include <netinet/ip_options.h>
76#include <machine/in_cksum.h>
77#include <netinet/vinet.h>
78#ifdef DEV_CARP
79#include <netinet/ip_carp.h>
80#endif
81#ifdef IPSEC
82#include <netinet/ip_ipsec.h>
83#endif /* IPSEC */
84
85#include <sys/socketvar.h>
86
87#include <security/mac/mac_framework.h>
88
89#ifdef CTASSERT
90CTASSERT(sizeof(struct ip) == 20);
91#endif
92
93#ifndef VIMAGE
94#ifndef VIMAGE_GLOBALS
95struct vnet_inet vnet_inet_0;
96#endif
97#endif
98
99#ifdef VIMAGE_GLOBALS
100static int	ipsendredirects;
101static int	ip_checkinterface;
102static int	ip_keepfaith;
103static int	ip_sendsourcequench;
104int	ip_defttl;
105int	ip_do_randomid;
106int	ipforwarding;
107struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
108struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
109u_long 	in_ifaddrhmask;				/* mask for hash table */
110struct ipstat ipstat;
111static int ip_rsvp_on;
112struct socket *ip_rsvpd;
113int	rsvp_on;
114static struct ipqhead ipq[IPREASS_NHASH];
115static int	maxnipq;	/* Administrative limit on # reass queues. */
116static int	maxfragsperpacket;
117int	ipstealth;
118static int	nipq;	/* Total # of reass queues */
119#endif
120
121struct	rwlock in_ifaddr_lock;
122RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
123
124SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_FORWARDING,
125    forwarding, CTLFLAG_RW, ipforwarding, 0,
126    "Enable IP forwarding between interfaces");
127
128SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_SENDREDIRECTS,
129    redirect, CTLFLAG_RW, ipsendredirects, 0,
130    "Enable sending IP redirects");
131
132SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_DEFTTL,
133    ttl, CTLFLAG_RW, ip_defttl, 0, "Maximum TTL on IP packets");
134
135SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_KEEPFAITH,
136    keepfaith, CTLFLAG_RW, ip_keepfaith,	0,
137    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
138
139SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
140    sendsourcequench, CTLFLAG_RW, ip_sendsourcequench, 0,
141    "Enable the transmission of source quench packets");
142
143SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, random_id,
144    CTLFLAG_RW, ip_do_randomid, 0, "Assign random ip_id values");
145
146/*
147 * XXX - Setting ip_checkinterface mostly implements the receive side of
148 * the Strong ES model described in RFC 1122, but since the routing table
149 * and transmit implementation do not implement the Strong ES model,
150 * setting this to 1 results in an odd hybrid.
151 *
152 * XXX - ip_checkinterface currently must be disabled if you use ipnat
153 * to translate the destination address to another local interface.
154 *
155 * XXX - ip_checkinterface must be disabled if you add IP aliases
156 * to the loopback interface instead of the interface where the
157 * packets for those addresses are received.
158 */
159SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
160    check_interface, CTLFLAG_RW, ip_checkinterface, 0,
161    "Verify packet arrives on correct interface");
162
163struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
164
165static struct netisr_handler ip_nh = {
166	.nh_name = "ip",
167	.nh_handler = ip_input,
168	.nh_proto = NETISR_IP,
169	.nh_policy = NETISR_POLICY_FLOW,
170};
171
172extern	struct domain inetdomain;
173extern	struct protosw inetsw[];
174u_char	ip_protox[IPPROTO_MAX];
175
176
177SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
178    ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
179
180#ifdef VIMAGE_GLOBALS
181static uma_zone_t ipq_zone;
182#endif
183static struct mtx ipqlock;
184
185#define	IPQ_LOCK()	mtx_lock(&ipqlock)
186#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
187#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
188#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
189
190static void	maxnipq_update(void);
191static void	ipq_zone_change(void *);
192
193SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, fragpackets,
194    CTLFLAG_RD, nipq, 0,
195    "Current number of IPv4 fragment reassembly queue entries");
196
197SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, maxfragsperpacket,
198    CTLFLAG_RW, maxfragsperpacket, 0,
199    "Maximum number of IPv4 fragments allowed per packet");
200
201struct callout	ipport_tick_callout;
202
203#ifdef IPCTL_DEFMTU
204SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
205    &ip_mtu, 0, "Default MTU");
206#endif
207
208#ifdef IPSTEALTH
209SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
210    ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
211#endif
212#ifdef FLOWTABLE
213#ifdef VIMAGE_GLOBALS
214static int ip_output_flowtable_size;
215struct flowtable *ip_ft;
216#endif
217SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, output_flowtable_size,
218    CTLFLAG_RDTUN, ip_output_flowtable_size, 2048,
219    "number of entries in the per-cpu output flow caches");
220#endif
221
222#ifdef VIMAGE_GLOBALS
223int fw_one_pass;
224#endif
225
226static void	ip_freef(struct ipqhead *, struct ipq *);
227
228#ifndef VIMAGE_GLOBALS
229static void vnet_inet_register(void);
230
231static const vnet_modinfo_t vnet_inet_modinfo = {
232	.vmi_id		= VNET_MOD_INET,
233	.vmi_name	= "inet",
234	.vmi_size	= sizeof(struct vnet_inet)
235};
236
237static void vnet_inet_register()
238{
239
240	vnet_mod_register(&vnet_inet_modinfo);
241}
242
243SYSINIT(inet, SI_SUB_PROTO_BEGIN, SI_ORDER_FIRST, vnet_inet_register, 0);
244#endif
245
246static int
247sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
248{
249	int error, qlimit;
250
251	netisr_getqlimit(&ip_nh, &qlimit);
252	error = sysctl_handle_int(oidp, &qlimit, 0, req);
253	if (error || !req->newptr)
254		return (error);
255	if (qlimit < 1)
256		return (EINVAL);
257	return (netisr_setqlimit(&ip_nh, qlimit));
258}
259SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
260    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
261    "Maximum size of the IP input queue");
262
263static int
264sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
265{
266	u_int64_t qdrops_long;
267	int error, qdrops;
268
269	netisr_getqdrops(&ip_nh, &qdrops_long);
270	qdrops = qdrops_long;
271	error = sysctl_handle_int(oidp, &qdrops, 0, req);
272	if (error || !req->newptr)
273		return (error);
274	if (qdrops != 0)
275		return (EINVAL);
276	netisr_clearqdrops(&ip_nh);
277	return (0);
278}
279
280SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
281    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
282    "Number of packets dropped from the IP input queue");
283
284/*
285 * IP initialization: fill in IP protocol switch table.
286 * All protocols not implemented in kernel go to raw IP protocol handler.
287 */
288void
289ip_init(void)
290{
291	INIT_VNET_INET(curvnet);
292	struct protosw *pr;
293	int i;
294
295	V_ipsendredirects = 1; /* XXX */
296	V_ip_checkinterface = 0;
297	V_ip_keepfaith = 0;
298	V_ip_sendsourcequench = 0;
299	V_rsvp_on = 0;
300	V_ip_defttl = IPDEFTTL;
301	V_ip_do_randomid = 0;
302	V_ip_id = time_second & 0xffff;
303	V_ipforwarding = 0;
304	V_ipstealth = 0;
305	V_nipq = 0;	/* Total # of reass queues */
306
307	V_ipport_lowfirstauto = IPPORT_RESERVED - 1;	/* 1023 */
308	V_ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
309	V_ipport_firstauto = IPPORT_EPHEMERALFIRST;	/* 10000 */
310	V_ipport_lastauto = IPPORT_EPHEMERALLAST;	/* 65535 */
311	V_ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
312	V_ipport_hilastauto = IPPORT_HILASTAUTO;	/* 65535 */
313	V_ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
314	V_ipport_reservedlow = 0;
315	V_ipport_randomized = 1;	/* user controlled via sysctl */
316	V_ipport_randomcps = 10;	/* user controlled via sysctl */
317	V_ipport_randomtime = 45;	/* user controlled via sysctl */
318	V_ipport_stoprandom = 0;	/* toggled by ipport_tick */
319
320	V_fw_one_pass = 1;
321
322#ifdef NOTYET
323	/* XXX global static but not instantiated in this file */
324	V_ipfastforward_active = 0;
325	V_subnetsarelocal = 0;
326	V_sameprefixcarponly = 0;
327#endif
328
329	TAILQ_INIT(&V_in_ifaddrhead);
330	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
331
332	/* Initialize IP reassembly queue. */
333	for (i = 0; i < IPREASS_NHASH; i++)
334		TAILQ_INIT(&V_ipq[i]);
335	V_maxnipq = nmbclusters / 32;
336	V_maxfragsperpacket = 16;
337	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
338	    NULL, UMA_ALIGN_PTR, 0);
339	maxnipq_update();
340
341#ifdef FLOWTABLE
342	V_ip_output_flowtable_size = 2048;
343	TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
344	    &V_ip_output_flowtable_size);
345	V_ip_ft = flowtable_alloc(V_ip_output_flowtable_size, FL_PCPU);
346#endif
347
348	/* Skip initialization of globals for non-default instances. */
349	if (!IS_DEFAULT_VNET(curvnet))
350		return;
351
352	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
353	if (pr == NULL)
354		panic("ip_init: PF_INET not found");
355
356	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
357	for (i = 0; i < IPPROTO_MAX; i++)
358		ip_protox[i] = pr - inetsw;
359	/*
360	 * Cycle through IP protocols and put them into the appropriate place
361	 * in ip_protox[].
362	 */
363	for (pr = inetdomain.dom_protosw;
364	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
365		if (pr->pr_domain->dom_family == PF_INET &&
366		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
367			/* Be careful to only index valid IP protocols. */
368			if (pr->pr_protocol < IPPROTO_MAX)
369				ip_protox[pr->pr_protocol] = pr - inetsw;
370		}
371
372	/* Initialize packet filter hooks. */
373	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
374	inet_pfil_hook.ph_af = AF_INET;
375	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
376		printf("%s: WARNING: unable to register pfil hook, "
377			"error %d\n", __func__, i);
378
379	/* Start ipport_tick. */
380	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
381	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
382	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
383		SHUTDOWN_PRI_DEFAULT);
384	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
385		NULL, EVENTHANDLER_PRI_ANY);
386
387	/* Initialize various other remaining things. */
388	IPQ_LOCK_INIT();
389	netisr_register(&ip_nh);
390}
391
392void
393ip_fini(void *xtp)
394{
395
396	callout_stop(&ipport_tick_callout);
397}
398
399/*
400 * Ip input routine.  Checksum and byte swap header.  If fragmented
401 * try to reassemble.  Process options.  Pass to next level.
402 */
403void
404ip_input(struct mbuf *m)
405{
406	INIT_VNET_INET(curvnet);
407	struct ip *ip = NULL;
408	struct in_ifaddr *ia = NULL;
409	struct ifaddr *ifa;
410	struct ifnet *ifp;
411	int    checkif, hlen = 0;
412	u_short sum;
413	int dchg = 0;				/* dest changed after fw */
414	struct in_addr odst;			/* original dst address */
415
416	M_ASSERTPKTHDR(m);
417
418	if (m->m_flags & M_FASTFWD_OURS) {
419		/*
420		 * Firewall or NAT changed destination to local.
421		 * We expect ip_len and ip_off to be in host byte order.
422		 */
423		m->m_flags &= ~M_FASTFWD_OURS;
424		/* Set up some basics that will be used later. */
425		ip = mtod(m, struct ip *);
426		hlen = ip->ip_hl << 2;
427		goto ours;
428	}
429
430	IPSTAT_INC(ips_total);
431
432	if (m->m_pkthdr.len < sizeof(struct ip))
433		goto tooshort;
434
435	if (m->m_len < sizeof (struct ip) &&
436	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
437		IPSTAT_INC(ips_toosmall);
438		return;
439	}
440	ip = mtod(m, struct ip *);
441
442	if (ip->ip_v != IPVERSION) {
443		IPSTAT_INC(ips_badvers);
444		goto bad;
445	}
446
447	hlen = ip->ip_hl << 2;
448	if (hlen < sizeof(struct ip)) {	/* minimum header length */
449		IPSTAT_INC(ips_badhlen);
450		goto bad;
451	}
452	if (hlen > m->m_len) {
453		if ((m = m_pullup(m, hlen)) == NULL) {
454			IPSTAT_INC(ips_badhlen);
455			return;
456		}
457		ip = mtod(m, struct ip *);
458	}
459
460	/* 127/8 must not appear on wire - RFC1122 */
461	ifp = m->m_pkthdr.rcvif;
462	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
463	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
464		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
465			IPSTAT_INC(ips_badaddr);
466			goto bad;
467		}
468	}
469
470	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
471		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
472	} else {
473		if (hlen == sizeof(struct ip)) {
474			sum = in_cksum_hdr(ip);
475		} else {
476			sum = in_cksum(m, hlen);
477		}
478	}
479	if (sum) {
480		IPSTAT_INC(ips_badsum);
481		goto bad;
482	}
483
484#ifdef ALTQ
485	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
486		/* packet is dropped by traffic conditioner */
487		return;
488#endif
489
490	/*
491	 * Convert fields to host representation.
492	 */
493	ip->ip_len = ntohs(ip->ip_len);
494	if (ip->ip_len < hlen) {
495		IPSTAT_INC(ips_badlen);
496		goto bad;
497	}
498	ip->ip_off = ntohs(ip->ip_off);
499
500	/*
501	 * Check that the amount of data in the buffers
502	 * is as at least much as the IP header would have us expect.
503	 * Trim mbufs if longer than we expect.
504	 * Drop packet if shorter than we expect.
505	 */
506	if (m->m_pkthdr.len < ip->ip_len) {
507tooshort:
508		IPSTAT_INC(ips_tooshort);
509		goto bad;
510	}
511	if (m->m_pkthdr.len > ip->ip_len) {
512		if (m->m_len == m->m_pkthdr.len) {
513			m->m_len = ip->ip_len;
514			m->m_pkthdr.len = ip->ip_len;
515		} else
516			m_adj(m, ip->ip_len - m->m_pkthdr.len);
517	}
518#ifdef IPSEC
519	/*
520	 * Bypass packet filtering for packets from a tunnel (gif).
521	 */
522	if (ip_ipsec_filtertunnel(m))
523		goto passin;
524#endif /* IPSEC */
525
526	/*
527	 * Run through list of hooks for input packets.
528	 *
529	 * NB: Beware of the destination address changing (e.g.
530	 *     by NAT rewriting).  When this happens, tell
531	 *     ip_forward to do the right thing.
532	 */
533
534	/* Jump over all PFIL processing if hooks are not active. */
535	if (!PFIL_HOOKED(&inet_pfil_hook))
536		goto passin;
537
538	odst = ip->ip_dst;
539	if (pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
540		return;
541	if (m == NULL)			/* consumed by filter */
542		return;
543
544	ip = mtod(m, struct ip *);
545	dchg = (odst.s_addr != ip->ip_dst.s_addr);
546	ifp = m->m_pkthdr.rcvif;
547
548#ifdef IPFIREWALL_FORWARD
549	if (m->m_flags & M_FASTFWD_OURS) {
550		m->m_flags &= ~M_FASTFWD_OURS;
551		goto ours;
552	}
553	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
554		/*
555		 * Directly ship on the packet.  This allows to forward packets
556		 * that were destined for us to some other directly connected
557		 * host.
558		 */
559		ip_forward(m, dchg);
560		return;
561	}
562#endif /* IPFIREWALL_FORWARD */
563
564passin:
565	/*
566	 * Process options and, if not destined for us,
567	 * ship it on.  ip_dooptions returns 1 when an
568	 * error was detected (causing an icmp message
569	 * to be sent and the original packet to be freed).
570	 */
571	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
572		return;
573
574        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
575         * matter if it is destined to another node, or whether it is
576         * a multicast one, RSVP wants it! and prevents it from being forwarded
577         * anywhere else. Also checks if the rsvp daemon is running before
578	 * grabbing the packet.
579         */
580	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
581		goto ours;
582
583	/*
584	 * Check our list of addresses, to see if the packet is for us.
585	 * If we don't have any addresses, assume any unicast packet
586	 * we receive might be for us (and let the upper layers deal
587	 * with it).
588	 */
589	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
590	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
591		goto ours;
592
593	/*
594	 * Enable a consistency check between the destination address
595	 * and the arrival interface for a unicast packet (the RFC 1122
596	 * strong ES model) if IP forwarding is disabled and the packet
597	 * is not locally generated and the packet is not subject to
598	 * 'ipfw fwd'.
599	 *
600	 * XXX - Checking also should be disabled if the destination
601	 * address is ipnat'ed to a different interface.
602	 *
603	 * XXX - Checking is incompatible with IP aliases added
604	 * to the loopback interface instead of the interface where
605	 * the packets are received.
606	 *
607	 * XXX - This is the case for carp vhost IPs as well so we
608	 * insert a workaround. If the packet got here, we already
609	 * checked with carp_iamatch() and carp_forus().
610	 */
611	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
612	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
613#ifdef DEV_CARP
614	    !ifp->if_carp &&
615#endif
616	    (dchg == 0);
617
618	/*
619	 * Check for exact addresses in the hash bucket.
620	 */
621	/* IN_IFADDR_RLOCK(); */
622	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
623		/*
624		 * If the address matches, verify that the packet
625		 * arrived via the correct interface if checking is
626		 * enabled.
627		 */
628		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
629		    (!checkif || ia->ia_ifp == ifp)) {
630			ifa_ref(&ia->ia_ifa);
631			/* IN_IFADDR_RUNLOCK(); */
632			goto ours;
633		}
634	}
635	/* IN_IFADDR_RUNLOCK(); */
636
637	/*
638	 * Check for broadcast addresses.
639	 *
640	 * Only accept broadcast packets that arrive via the matching
641	 * interface.  Reception of forwarded directed broadcasts would
642	 * be handled via ip_forward() and ether_output() with the loopback
643	 * into the stack for SIMPLEX interfaces handled by ether_output().
644	 */
645	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
646		IF_ADDR_LOCK(ifp);
647	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
648			if (ifa->ifa_addr->sa_family != AF_INET)
649				continue;
650			ia = ifatoia(ifa);
651			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
652			    ip->ip_dst.s_addr) {
653				ifa_ref(ifa);
654				IF_ADDR_UNLOCK(ifp);
655				goto ours;
656			}
657			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
658				ifa_ref(ifa);
659				IF_ADDR_UNLOCK(ifp);
660				goto ours;
661			}
662#ifdef BOOTP_COMPAT
663			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
664				ifa_ref(ifa);
665				IF_ADDR_UNLOCK(ifp);
666				goto ours;
667			}
668#endif
669		}
670		IF_ADDR_UNLOCK(ifp);
671		ia = NULL;
672	}
673	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
674	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
675		IPSTAT_INC(ips_cantforward);
676		m_freem(m);
677		return;
678	}
679	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
680		if (V_ip_mrouter) {
681			/*
682			 * If we are acting as a multicast router, all
683			 * incoming multicast packets are passed to the
684			 * kernel-level multicast forwarding function.
685			 * The packet is returned (relatively) intact; if
686			 * ip_mforward() returns a non-zero value, the packet
687			 * must be discarded, else it may be accepted below.
688			 */
689			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
690				IPSTAT_INC(ips_cantforward);
691				m_freem(m);
692				return;
693			}
694
695			/*
696			 * The process-level routing daemon needs to receive
697			 * all multicast IGMP packets, whether or not this
698			 * host belongs to their destination groups.
699			 */
700			if (ip->ip_p == IPPROTO_IGMP)
701				goto ours;
702			IPSTAT_INC(ips_forward);
703		}
704		/*
705		 * Assume the packet is for us, to avoid prematurely taking
706		 * a lock on the in_multi hash. Protocols must perform
707		 * their own filtering and update statistics accordingly.
708		 */
709		goto ours;
710	}
711	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
712		goto ours;
713	if (ip->ip_dst.s_addr == INADDR_ANY)
714		goto ours;
715
716	/*
717	 * FAITH(Firewall Aided Internet Translator)
718	 */
719	if (ifp && ifp->if_type == IFT_FAITH) {
720		if (V_ip_keepfaith) {
721			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
722				goto ours;
723		}
724		m_freem(m);
725		return;
726	}
727
728	/*
729	 * Not for us; forward if possible and desirable.
730	 */
731	if (V_ipforwarding == 0) {
732		IPSTAT_INC(ips_cantforward);
733		m_freem(m);
734	} else {
735#ifdef IPSEC
736		if (ip_ipsec_fwd(m))
737			goto bad;
738#endif /* IPSEC */
739		ip_forward(m, dchg);
740	}
741	return;
742
743ours:
744#ifdef IPSTEALTH
745	/*
746	 * IPSTEALTH: Process non-routing options only
747	 * if the packet is destined for us.
748	 */
749	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
750		if (ia != NULL)
751			ifa_free(&ia->ia_ifa);
752		return;
753	}
754#endif /* IPSTEALTH */
755
756	/* Count the packet in the ip address stats */
757	if (ia != NULL) {
758		ia->ia_ifa.if_ipackets++;
759		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
760		ifa_free(&ia->ia_ifa);
761	}
762
763	/*
764	 * Attempt reassembly; if it succeeds, proceed.
765	 * ip_reass() will return a different mbuf.
766	 */
767	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
768		m = ip_reass(m);
769		if (m == NULL)
770			return;
771		ip = mtod(m, struct ip *);
772		/* Get the header length of the reassembled packet */
773		hlen = ip->ip_hl << 2;
774	}
775
776	/*
777	 * Further protocols expect the packet length to be w/o the
778	 * IP header.
779	 */
780	ip->ip_len -= hlen;
781
782#ifdef IPSEC
783	/*
784	 * enforce IPsec policy checking if we are seeing last header.
785	 * note that we do not visit this with protocols with pcb layer
786	 * code - like udp/tcp/raw ip.
787	 */
788	if (ip_ipsec_input(m))
789		goto bad;
790#endif /* IPSEC */
791
792	/*
793	 * Switch out to protocol's input routine.
794	 */
795	IPSTAT_INC(ips_delivered);
796
797	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
798	return;
799bad:
800	m_freem(m);
801}
802
803/*
804 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
805 * max has slightly different semantics than the sysctl, for historical
806 * reasons.
807 */
808static void
809maxnipq_update(void)
810{
811	INIT_VNET_INET(curvnet);
812
813	/*
814	 * -1 for unlimited allocation.
815	 */
816	if (V_maxnipq < 0)
817		uma_zone_set_max(V_ipq_zone, 0);
818	/*
819	 * Positive number for specific bound.
820	 */
821	if (V_maxnipq > 0)
822		uma_zone_set_max(V_ipq_zone, V_maxnipq);
823	/*
824	 * Zero specifies no further fragment queue allocation -- set the
825	 * bound very low, but rely on implementation elsewhere to actually
826	 * prevent allocation and reclaim current queues.
827	 */
828	if (V_maxnipq == 0)
829		uma_zone_set_max(V_ipq_zone, 1);
830}
831
832static void
833ipq_zone_change(void *tag)
834{
835	INIT_VNET_INET(curvnet);
836
837	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
838		V_maxnipq = nmbclusters / 32;
839		maxnipq_update();
840	}
841}
842
843static int
844sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
845{
846	INIT_VNET_INET(curvnet);
847	int error, i;
848
849	i = V_maxnipq;
850	error = sysctl_handle_int(oidp, &i, 0, req);
851	if (error || !req->newptr)
852		return (error);
853
854	/*
855	 * XXXRW: Might be a good idea to sanity check the argument and place
856	 * an extreme upper bound.
857	 */
858	if (i < -1)
859		return (EINVAL);
860	V_maxnipq = i;
861	maxnipq_update();
862	return (0);
863}
864
865SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
866    NULL, 0, sysctl_maxnipq, "I",
867    "Maximum number of IPv4 fragment reassembly queue entries");
868
869/*
870 * Take incoming datagram fragment and try to reassemble it into
871 * whole datagram.  If the argument is the first fragment or one
872 * in between the function will return NULL and store the mbuf
873 * in the fragment chain.  If the argument is the last fragment
874 * the packet will be reassembled and the pointer to the new
875 * mbuf returned for further processing.  Only m_tags attached
876 * to the first packet/fragment are preserved.
877 * The IP header is *NOT* adjusted out of iplen.
878 */
879struct mbuf *
880ip_reass(struct mbuf *m)
881{
882	INIT_VNET_INET(curvnet);
883	struct ip *ip;
884	struct mbuf *p, *q, *nq, *t;
885	struct ipq *fp = NULL;
886	struct ipqhead *head;
887	int i, hlen, next;
888	u_int8_t ecn, ecn0;
889	u_short hash;
890
891	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
892	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
893		IPSTAT_INC(ips_fragments);
894		IPSTAT_INC(ips_fragdropped);
895		m_freem(m);
896		return (NULL);
897	}
898
899	ip = mtod(m, struct ip *);
900	hlen = ip->ip_hl << 2;
901
902	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
903	head = &V_ipq[hash];
904	IPQ_LOCK();
905
906	/*
907	 * Look for queue of fragments
908	 * of this datagram.
909	 */
910	TAILQ_FOREACH(fp, head, ipq_list)
911		if (ip->ip_id == fp->ipq_id &&
912		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
913		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
914#ifdef MAC
915		    mac_ipq_match(m, fp) &&
916#endif
917		    ip->ip_p == fp->ipq_p)
918			goto found;
919
920	fp = NULL;
921
922	/*
923	 * Attempt to trim the number of allocated fragment queues if it
924	 * exceeds the administrative limit.
925	 */
926	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
927		/*
928		 * drop something from the tail of the current queue
929		 * before proceeding further
930		 */
931		struct ipq *q = TAILQ_LAST(head, ipqhead);
932		if (q == NULL) {   /* gak */
933			for (i = 0; i < IPREASS_NHASH; i++) {
934				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
935				if (r) {
936					IPSTAT_ADD(ips_fragtimeout,
937					    r->ipq_nfrags);
938					ip_freef(&V_ipq[i], r);
939					break;
940				}
941			}
942		} else {
943			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
944			ip_freef(head, q);
945		}
946	}
947
948found:
949	/*
950	 * Adjust ip_len to not reflect header,
951	 * convert offset of this to bytes.
952	 */
953	ip->ip_len -= hlen;
954	if (ip->ip_off & IP_MF) {
955		/*
956		 * Make sure that fragments have a data length
957		 * that's a non-zero multiple of 8 bytes.
958		 */
959		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
960			IPSTAT_INC(ips_toosmall); /* XXX */
961			goto dropfrag;
962		}
963		m->m_flags |= M_FRAG;
964	} else
965		m->m_flags &= ~M_FRAG;
966	ip->ip_off <<= 3;
967
968
969	/*
970	 * Attempt reassembly; if it succeeds, proceed.
971	 * ip_reass() will return a different mbuf.
972	 */
973	IPSTAT_INC(ips_fragments);
974	m->m_pkthdr.header = ip;
975
976	/* Previous ip_reass() started here. */
977	/*
978	 * Presence of header sizes in mbufs
979	 * would confuse code below.
980	 */
981	m->m_data += hlen;
982	m->m_len -= hlen;
983
984	/*
985	 * If first fragment to arrive, create a reassembly queue.
986	 */
987	if (fp == NULL) {
988		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
989		if (fp == NULL)
990			goto dropfrag;
991#ifdef MAC
992		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
993			uma_zfree(V_ipq_zone, fp);
994			fp = NULL;
995			goto dropfrag;
996		}
997		mac_ipq_create(m, fp);
998#endif
999		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1000		V_nipq++;
1001		fp->ipq_nfrags = 1;
1002		fp->ipq_ttl = IPFRAGTTL;
1003		fp->ipq_p = ip->ip_p;
1004		fp->ipq_id = ip->ip_id;
1005		fp->ipq_src = ip->ip_src;
1006		fp->ipq_dst = ip->ip_dst;
1007		fp->ipq_frags = m;
1008		m->m_nextpkt = NULL;
1009		goto done;
1010	} else {
1011		fp->ipq_nfrags++;
1012#ifdef MAC
1013		mac_ipq_update(m, fp);
1014#endif
1015	}
1016
1017#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1018
1019	/*
1020	 * Handle ECN by comparing this segment with the first one;
1021	 * if CE is set, do not lose CE.
1022	 * drop if CE and not-ECT are mixed for the same packet.
1023	 */
1024	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1025	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1026	if (ecn == IPTOS_ECN_CE) {
1027		if (ecn0 == IPTOS_ECN_NOTECT)
1028			goto dropfrag;
1029		if (ecn0 != IPTOS_ECN_CE)
1030			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1031	}
1032	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1033		goto dropfrag;
1034
1035	/*
1036	 * Find a segment which begins after this one does.
1037	 */
1038	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1039		if (GETIP(q)->ip_off > ip->ip_off)
1040			break;
1041
1042	/*
1043	 * If there is a preceding segment, it may provide some of
1044	 * our data already.  If so, drop the data from the incoming
1045	 * segment.  If it provides all of our data, drop us, otherwise
1046	 * stick new segment in the proper place.
1047	 *
1048	 * If some of the data is dropped from the the preceding
1049	 * segment, then it's checksum is invalidated.
1050	 */
1051	if (p) {
1052		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1053		if (i > 0) {
1054			if (i >= ip->ip_len)
1055				goto dropfrag;
1056			m_adj(m, i);
1057			m->m_pkthdr.csum_flags = 0;
1058			ip->ip_off += i;
1059			ip->ip_len -= i;
1060		}
1061		m->m_nextpkt = p->m_nextpkt;
1062		p->m_nextpkt = m;
1063	} else {
1064		m->m_nextpkt = fp->ipq_frags;
1065		fp->ipq_frags = m;
1066	}
1067
1068	/*
1069	 * While we overlap succeeding segments trim them or,
1070	 * if they are completely covered, dequeue them.
1071	 */
1072	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1073	     q = nq) {
1074		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1075		if (i < GETIP(q)->ip_len) {
1076			GETIP(q)->ip_len -= i;
1077			GETIP(q)->ip_off += i;
1078			m_adj(q, i);
1079			q->m_pkthdr.csum_flags = 0;
1080			break;
1081		}
1082		nq = q->m_nextpkt;
1083		m->m_nextpkt = nq;
1084		IPSTAT_INC(ips_fragdropped);
1085		fp->ipq_nfrags--;
1086		m_freem(q);
1087	}
1088
1089	/*
1090	 * Check for complete reassembly and perform frag per packet
1091	 * limiting.
1092	 *
1093	 * Frag limiting is performed here so that the nth frag has
1094	 * a chance to complete the packet before we drop the packet.
1095	 * As a result, n+1 frags are actually allowed per packet, but
1096	 * only n will ever be stored. (n = maxfragsperpacket.)
1097	 *
1098	 */
1099	next = 0;
1100	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1101		if (GETIP(q)->ip_off != next) {
1102			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1103				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1104				ip_freef(head, fp);
1105			}
1106			goto done;
1107		}
1108		next += GETIP(q)->ip_len;
1109	}
1110	/* Make sure the last packet didn't have the IP_MF flag */
1111	if (p->m_flags & M_FRAG) {
1112		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1113			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1114			ip_freef(head, fp);
1115		}
1116		goto done;
1117	}
1118
1119	/*
1120	 * Reassembly is complete.  Make sure the packet is a sane size.
1121	 */
1122	q = fp->ipq_frags;
1123	ip = GETIP(q);
1124	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1125		IPSTAT_INC(ips_toolong);
1126		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1127		ip_freef(head, fp);
1128		goto done;
1129	}
1130
1131	/*
1132	 * Concatenate fragments.
1133	 */
1134	m = q;
1135	t = m->m_next;
1136	m->m_next = NULL;
1137	m_cat(m, t);
1138	nq = q->m_nextpkt;
1139	q->m_nextpkt = NULL;
1140	for (q = nq; q != NULL; q = nq) {
1141		nq = q->m_nextpkt;
1142		q->m_nextpkt = NULL;
1143		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1144		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1145		m_cat(m, q);
1146	}
1147	/*
1148	 * In order to do checksumming faster we do 'end-around carry' here
1149	 * (and not in for{} loop), though it implies we are not going to
1150	 * reassemble more than 64k fragments.
1151	 */
1152	m->m_pkthdr.csum_data =
1153	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1154#ifdef MAC
1155	mac_ipq_reassemble(fp, m);
1156	mac_ipq_destroy(fp);
1157#endif
1158
1159	/*
1160	 * Create header for new ip packet by modifying header of first
1161	 * packet;  dequeue and discard fragment reassembly header.
1162	 * Make header visible.
1163	 */
1164	ip->ip_len = (ip->ip_hl << 2) + next;
1165	ip->ip_src = fp->ipq_src;
1166	ip->ip_dst = fp->ipq_dst;
1167	TAILQ_REMOVE(head, fp, ipq_list);
1168	V_nipq--;
1169	uma_zfree(V_ipq_zone, fp);
1170	m->m_len += (ip->ip_hl << 2);
1171	m->m_data -= (ip->ip_hl << 2);
1172	/* some debugging cruft by sklower, below, will go away soon */
1173	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1174		m_fixhdr(m);
1175	IPSTAT_INC(ips_reassembled);
1176	IPQ_UNLOCK();
1177	return (m);
1178
1179dropfrag:
1180	IPSTAT_INC(ips_fragdropped);
1181	if (fp != NULL)
1182		fp->ipq_nfrags--;
1183	m_freem(m);
1184done:
1185	IPQ_UNLOCK();
1186	return (NULL);
1187
1188#undef GETIP
1189}
1190
1191/*
1192 * Free a fragment reassembly header and all
1193 * associated datagrams.
1194 */
1195static void
1196ip_freef(struct ipqhead *fhp, struct ipq *fp)
1197{
1198	INIT_VNET_INET(curvnet);
1199	struct mbuf *q;
1200
1201	IPQ_LOCK_ASSERT();
1202
1203	while (fp->ipq_frags) {
1204		q = fp->ipq_frags;
1205		fp->ipq_frags = q->m_nextpkt;
1206		m_freem(q);
1207	}
1208	TAILQ_REMOVE(fhp, fp, ipq_list);
1209	uma_zfree(V_ipq_zone, fp);
1210	V_nipq--;
1211}
1212
1213/*
1214 * IP timer processing;
1215 * if a timer expires on a reassembly
1216 * queue, discard it.
1217 */
1218void
1219ip_slowtimo(void)
1220{
1221	VNET_ITERATOR_DECL(vnet_iter);
1222	struct ipq *fp;
1223	int i;
1224
1225	IPQ_LOCK();
1226	VNET_LIST_RLOCK();
1227	VNET_FOREACH(vnet_iter) {
1228		CURVNET_SET(vnet_iter);
1229		INIT_VNET_INET(vnet_iter);
1230		for (i = 0; i < IPREASS_NHASH; i++) {
1231			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1232				struct ipq *fpp;
1233
1234				fpp = fp;
1235				fp = TAILQ_NEXT(fp, ipq_list);
1236				if(--fpp->ipq_ttl == 0) {
1237					IPSTAT_ADD(ips_fragtimeout,
1238					    fpp->ipq_nfrags);
1239					ip_freef(&V_ipq[i], fpp);
1240				}
1241			}
1242		}
1243		/*
1244		 * If we are over the maximum number of fragments
1245		 * (due to the limit being lowered), drain off
1246		 * enough to get down to the new limit.
1247		 */
1248		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1249			for (i = 0; i < IPREASS_NHASH; i++) {
1250				while (V_nipq > V_maxnipq &&
1251				    !TAILQ_EMPTY(&V_ipq[i])) {
1252					IPSTAT_ADD(ips_fragdropped,
1253					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1254					ip_freef(&V_ipq[i],
1255					    TAILQ_FIRST(&V_ipq[i]));
1256				}
1257			}
1258		}
1259		CURVNET_RESTORE();
1260	}
1261	VNET_LIST_RUNLOCK();
1262	IPQ_UNLOCK();
1263}
1264
1265/*
1266 * Drain off all datagram fragments.
1267 */
1268void
1269ip_drain(void)
1270{
1271	VNET_ITERATOR_DECL(vnet_iter);
1272	int     i;
1273
1274	IPQ_LOCK();
1275	VNET_LIST_RLOCK();
1276	VNET_FOREACH(vnet_iter) {
1277		CURVNET_SET(vnet_iter);
1278		INIT_VNET_INET(vnet_iter);
1279		for (i = 0; i < IPREASS_NHASH; i++) {
1280			while(!TAILQ_EMPTY(&V_ipq[i])) {
1281				IPSTAT_ADD(ips_fragdropped,
1282				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1283				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1284			}
1285		}
1286		CURVNET_RESTORE();
1287	}
1288	VNET_LIST_RUNLOCK();
1289	IPQ_UNLOCK();
1290	in_rtqdrain();
1291}
1292
1293/*
1294 * The protocol to be inserted into ip_protox[] must be already registered
1295 * in inetsw[], either statically or through pf_proto_register().
1296 */
1297int
1298ipproto_register(u_char ipproto)
1299{
1300	struct protosw *pr;
1301
1302	/* Sanity checks. */
1303	if (ipproto == 0)
1304		return (EPROTONOSUPPORT);
1305
1306	/*
1307	 * The protocol slot must not be occupied by another protocol
1308	 * already.  An index pointing to IPPROTO_RAW is unused.
1309	 */
1310	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1311	if (pr == NULL)
1312		return (EPFNOSUPPORT);
1313	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1314		return (EEXIST);
1315
1316	/* Find the protocol position in inetsw[] and set the index. */
1317	for (pr = inetdomain.dom_protosw;
1318	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1319		if (pr->pr_domain->dom_family == PF_INET &&
1320		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1321			/* Be careful to only index valid IP protocols. */
1322			if (pr->pr_protocol < IPPROTO_MAX) {
1323				ip_protox[pr->pr_protocol] = pr - inetsw;
1324				return (0);
1325			} else
1326				return (EINVAL);
1327		}
1328	}
1329	return (EPROTONOSUPPORT);
1330}
1331
1332int
1333ipproto_unregister(u_char ipproto)
1334{
1335	struct protosw *pr;
1336
1337	/* Sanity checks. */
1338	if (ipproto == 0)
1339		return (EPROTONOSUPPORT);
1340
1341	/* Check if the protocol was indeed registered. */
1342	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1343	if (pr == NULL)
1344		return (EPFNOSUPPORT);
1345	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1346		return (ENOENT);
1347
1348	/* Reset the protocol slot to IPPROTO_RAW. */
1349	ip_protox[ipproto] = pr - inetsw;
1350	return (0);
1351}
1352
1353/*
1354 * Given address of next destination (final or next hop), return (referenced)
1355 * internet address info of interface to be used to get there.
1356 */
1357struct in_ifaddr *
1358ip_rtaddr(struct in_addr dst, u_int fibnum)
1359{
1360	struct route sro;
1361	struct sockaddr_in *sin;
1362	struct in_ifaddr *ia;
1363
1364	bzero(&sro, sizeof(sro));
1365	sin = (struct sockaddr_in *)&sro.ro_dst;
1366	sin->sin_family = AF_INET;
1367	sin->sin_len = sizeof(*sin);
1368	sin->sin_addr = dst;
1369	in_rtalloc_ign(&sro, 0, fibnum);
1370
1371	if (sro.ro_rt == NULL)
1372		return (NULL);
1373
1374	ia = ifatoia(sro.ro_rt->rt_ifa);
1375	ifa_ref(&ia->ia_ifa);
1376	RTFREE(sro.ro_rt);
1377	return (ia);
1378}
1379
1380u_char inetctlerrmap[PRC_NCMDS] = {
1381	0,		0,		0,		0,
1382	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1383	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1384	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1385	0,		0,		EHOSTUNREACH,	0,
1386	ENOPROTOOPT,	ECONNREFUSED
1387};
1388
1389/*
1390 * Forward a packet.  If some error occurs return the sender
1391 * an icmp packet.  Note we can't always generate a meaningful
1392 * icmp message because icmp doesn't have a large enough repertoire
1393 * of codes and types.
1394 *
1395 * If not forwarding, just drop the packet.  This could be confusing
1396 * if ipforwarding was zero but some routing protocol was advancing
1397 * us as a gateway to somewhere.  However, we must let the routing
1398 * protocol deal with that.
1399 *
1400 * The srcrt parameter indicates whether the packet is being forwarded
1401 * via a source route.
1402 */
1403void
1404ip_forward(struct mbuf *m, int srcrt)
1405{
1406	INIT_VNET_INET(curvnet);
1407	struct ip *ip = mtod(m, struct ip *);
1408	struct in_ifaddr *ia;
1409	struct mbuf *mcopy;
1410	struct in_addr dest;
1411	struct route ro;
1412	int error, type = 0, code = 0, mtu = 0;
1413
1414	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1415		IPSTAT_INC(ips_cantforward);
1416		m_freem(m);
1417		return;
1418	}
1419#ifdef IPSTEALTH
1420	if (!V_ipstealth) {
1421#endif
1422		if (ip->ip_ttl <= IPTTLDEC) {
1423			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1424			    0, 0);
1425			return;
1426		}
1427#ifdef IPSTEALTH
1428	}
1429#endif
1430
1431	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1432#ifndef IPSEC
1433	/*
1434	 * 'ia' may be NULL if there is no route for this destination.
1435	 * In case of IPsec, Don't discard it just yet, but pass it to
1436	 * ip_output in case of outgoing IPsec policy.
1437	 */
1438	if (!srcrt && ia == NULL) {
1439		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1440		return;
1441	}
1442#endif
1443
1444	/*
1445	 * Save the IP header and at most 8 bytes of the payload,
1446	 * in case we need to generate an ICMP message to the src.
1447	 *
1448	 * XXX this can be optimized a lot by saving the data in a local
1449	 * buffer on the stack (72 bytes at most), and only allocating the
1450	 * mbuf if really necessary. The vast majority of the packets
1451	 * are forwarded without having to send an ICMP back (either
1452	 * because unnecessary, or because rate limited), so we are
1453	 * really we are wasting a lot of work here.
1454	 *
1455	 * We don't use m_copy() because it might return a reference
1456	 * to a shared cluster. Both this function and ip_output()
1457	 * assume exclusive access to the IP header in `m', so any
1458	 * data in a cluster may change before we reach icmp_error().
1459	 */
1460	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1461	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1462		/*
1463		 * It's probably ok if the pkthdr dup fails (because
1464		 * the deep copy of the tag chain failed), but for now
1465		 * be conservative and just discard the copy since
1466		 * code below may some day want the tags.
1467		 */
1468		m_free(mcopy);
1469		mcopy = NULL;
1470	}
1471	if (mcopy != NULL) {
1472		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1473		mcopy->m_pkthdr.len = mcopy->m_len;
1474		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1475	}
1476
1477#ifdef IPSTEALTH
1478	if (!V_ipstealth) {
1479#endif
1480		ip->ip_ttl -= IPTTLDEC;
1481#ifdef IPSTEALTH
1482	}
1483#endif
1484
1485	/*
1486	 * If forwarding packet using same interface that it came in on,
1487	 * perhaps should send a redirect to sender to shortcut a hop.
1488	 * Only send redirect if source is sending directly to us,
1489	 * and if packet was not source routed (or has any options).
1490	 * Also, don't send redirect if forwarding using a default route
1491	 * or a route modified by a redirect.
1492	 */
1493	dest.s_addr = 0;
1494	if (!srcrt && V_ipsendredirects &&
1495	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1496		struct sockaddr_in *sin;
1497		struct rtentry *rt;
1498
1499		bzero(&ro, sizeof(ro));
1500		sin = (struct sockaddr_in *)&ro.ro_dst;
1501		sin->sin_family = AF_INET;
1502		sin->sin_len = sizeof(*sin);
1503		sin->sin_addr = ip->ip_dst;
1504		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1505
1506		rt = ro.ro_rt;
1507
1508		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1509		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1510#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1511			u_long src = ntohl(ip->ip_src.s_addr);
1512
1513			if (RTA(rt) &&
1514			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1515				if (rt->rt_flags & RTF_GATEWAY)
1516					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1517				else
1518					dest.s_addr = ip->ip_dst.s_addr;
1519				/* Router requirements says to only send host redirects */
1520				type = ICMP_REDIRECT;
1521				code = ICMP_REDIRECT_HOST;
1522			}
1523		}
1524		if (rt)
1525			RTFREE(rt);
1526	}
1527
1528	/*
1529	 * Try to cache the route MTU from ip_output so we can consider it for
1530	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1531	 */
1532	bzero(&ro, sizeof(ro));
1533
1534	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1535
1536	if (error == EMSGSIZE && ro.ro_rt)
1537		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1538	if (ro.ro_rt)
1539		RTFREE(ro.ro_rt);
1540
1541	if (error)
1542		IPSTAT_INC(ips_cantforward);
1543	else {
1544		IPSTAT_INC(ips_forward);
1545		if (type)
1546			IPSTAT_INC(ips_redirectsent);
1547		else {
1548			if (mcopy)
1549				m_freem(mcopy);
1550			if (ia != NULL)
1551				ifa_free(&ia->ia_ifa);
1552			return;
1553		}
1554	}
1555	if (mcopy == NULL) {
1556		if (ia != NULL)
1557			ifa_free(&ia->ia_ifa);
1558		return;
1559	}
1560
1561	switch (error) {
1562
1563	case 0:				/* forwarded, but need redirect */
1564		/* type, code set above */
1565		break;
1566
1567	case ENETUNREACH:
1568	case EHOSTUNREACH:
1569	case ENETDOWN:
1570	case EHOSTDOWN:
1571	default:
1572		type = ICMP_UNREACH;
1573		code = ICMP_UNREACH_HOST;
1574		break;
1575
1576	case EMSGSIZE:
1577		type = ICMP_UNREACH;
1578		code = ICMP_UNREACH_NEEDFRAG;
1579
1580#ifdef IPSEC
1581		/*
1582		 * If IPsec is configured for this path,
1583		 * override any possibly mtu value set by ip_output.
1584		 */
1585		mtu = ip_ipsec_mtu(m, mtu);
1586#endif /* IPSEC */
1587		/*
1588		 * If the MTU was set before make sure we are below the
1589		 * interface MTU.
1590		 * If the MTU wasn't set before use the interface mtu or
1591		 * fall back to the next smaller mtu step compared to the
1592		 * current packet size.
1593		 */
1594		if (mtu != 0) {
1595			if (ia != NULL)
1596				mtu = min(mtu, ia->ia_ifp->if_mtu);
1597		} else {
1598			if (ia != NULL)
1599				mtu = ia->ia_ifp->if_mtu;
1600			else
1601				mtu = ip_next_mtu(ip->ip_len, 0);
1602		}
1603		IPSTAT_INC(ips_cantfrag);
1604		break;
1605
1606	case ENOBUFS:
1607		/*
1608		 * A router should not generate ICMP_SOURCEQUENCH as
1609		 * required in RFC1812 Requirements for IP Version 4 Routers.
1610		 * Source quench could be a big problem under DoS attacks,
1611		 * or if the underlying interface is rate-limited.
1612		 * Those who need source quench packets may re-enable them
1613		 * via the net.inet.ip.sendsourcequench sysctl.
1614		 */
1615		if (V_ip_sendsourcequench == 0) {
1616			m_freem(mcopy);
1617			if (ia != NULL)
1618				ifa_free(&ia->ia_ifa);
1619			return;
1620		} else {
1621			type = ICMP_SOURCEQUENCH;
1622			code = 0;
1623		}
1624		break;
1625
1626	case EACCES:			/* ipfw denied packet */
1627		m_freem(mcopy);
1628		if (ia != NULL)
1629			ifa_free(&ia->ia_ifa);
1630		return;
1631	}
1632	if (ia != NULL)
1633		ifa_free(&ia->ia_ifa);
1634	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1635}
1636
1637void
1638ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1639    struct mbuf *m)
1640{
1641	INIT_VNET_NET(inp->inp_vnet);
1642
1643	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1644		struct bintime bt;
1645
1646		bintime(&bt);
1647		if (inp->inp_socket->so_options & SO_BINTIME) {
1648			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1649			SCM_BINTIME, SOL_SOCKET);
1650			if (*mp)
1651				mp = &(*mp)->m_next;
1652		}
1653		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1654			struct timeval tv;
1655
1656			bintime2timeval(&bt, &tv);
1657			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1658				SCM_TIMESTAMP, SOL_SOCKET);
1659			if (*mp)
1660				mp = &(*mp)->m_next;
1661		}
1662	}
1663	if (inp->inp_flags & INP_RECVDSTADDR) {
1664		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1665		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1666		if (*mp)
1667			mp = &(*mp)->m_next;
1668	}
1669	if (inp->inp_flags & INP_RECVTTL) {
1670		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1671		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1672		if (*mp)
1673			mp = &(*mp)->m_next;
1674	}
1675#ifdef notyet
1676	/* XXX
1677	 * Moving these out of udp_input() made them even more broken
1678	 * than they already were.
1679	 */
1680	/* options were tossed already */
1681	if (inp->inp_flags & INP_RECVOPTS) {
1682		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1683		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1684		if (*mp)
1685			mp = &(*mp)->m_next;
1686	}
1687	/* ip_srcroute doesn't do what we want here, need to fix */
1688	if (inp->inp_flags & INP_RECVRETOPTS) {
1689		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1690		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1691		if (*mp)
1692			mp = &(*mp)->m_next;
1693	}
1694#endif
1695	if (inp->inp_flags & INP_RECVIF) {
1696		struct ifnet *ifp;
1697		struct sdlbuf {
1698			struct sockaddr_dl sdl;
1699			u_char	pad[32];
1700		} sdlbuf;
1701		struct sockaddr_dl *sdp;
1702		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1703
1704		if (((ifp = m->m_pkthdr.rcvif))
1705		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1706			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1707			/*
1708			 * Change our mind and don't try copy.
1709			 */
1710			if ((sdp->sdl_family != AF_LINK)
1711			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1712				goto makedummy;
1713			}
1714			bcopy(sdp, sdl2, sdp->sdl_len);
1715		} else {
1716makedummy:
1717			sdl2->sdl_len
1718				= offsetof(struct sockaddr_dl, sdl_data[0]);
1719			sdl2->sdl_family = AF_LINK;
1720			sdl2->sdl_index = 0;
1721			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1722		}
1723		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1724			IP_RECVIF, IPPROTO_IP);
1725		if (*mp)
1726			mp = &(*mp)->m_next;
1727	}
1728}
1729
1730/*
1731 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1732 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1733 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1734 * compiled.
1735 */
1736int
1737ip_rsvp_init(struct socket *so)
1738{
1739	INIT_VNET_INET(so->so_vnet);
1740
1741	if (so->so_type != SOCK_RAW ||
1742	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1743		return EOPNOTSUPP;
1744
1745	if (V_ip_rsvpd != NULL)
1746		return EADDRINUSE;
1747
1748	V_ip_rsvpd = so;
1749	/*
1750	 * This may seem silly, but we need to be sure we don't over-increment
1751	 * the RSVP counter, in case something slips up.
1752	 */
1753	if (!V_ip_rsvp_on) {
1754		V_ip_rsvp_on = 1;
1755		V_rsvp_on++;
1756	}
1757
1758	return 0;
1759}
1760
1761int
1762ip_rsvp_done(void)
1763{
1764	INIT_VNET_INET(curvnet);
1765
1766	V_ip_rsvpd = NULL;
1767	/*
1768	 * This may seem silly, but we need to be sure we don't over-decrement
1769	 * the RSVP counter, in case something slips up.
1770	 */
1771	if (V_ip_rsvp_on) {
1772		V_ip_rsvp_on = 0;
1773		V_rsvp_on--;
1774	}
1775	return 0;
1776}
1777
1778void
1779rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1780{
1781	INIT_VNET_INET(curvnet);
1782
1783	if (rsvp_input_p) { /* call the real one if loaded */
1784		rsvp_input_p(m, off);
1785		return;
1786	}
1787
1788	/* Can still get packets with rsvp_on = 0 if there is a local member
1789	 * of the group to which the RSVP packet is addressed.  But in this
1790	 * case we want to throw the packet away.
1791	 */
1792
1793	if (!V_rsvp_on) {
1794		m_freem(m);
1795		return;
1796	}
1797
1798	if (V_ip_rsvpd != NULL) {
1799		rip_input(m, off);
1800		return;
1801	}
1802	/* Drop the packet */
1803	m_freem(m);
1804}
1805