ip_reass.c revision 193502
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 193502 2009-06-05 13:44:30Z luigi $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40#include "opt_mac.h"
41#include "opt_carp.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/callout.h>
46#include <sys/mbuf.h>
47#include <sys/malloc.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/time.h>
52#include <sys/kernel.h>
53#include <sys/lock.h>
54#include <sys/rwlock.h>
55#include <sys/syslog.h>
56#include <sys/sysctl.h>
57#include <sys/vimage.h>
58
59#include <net/pfil.h>
60#include <net/if.h>
61#include <net/if_types.h>
62#include <net/if_var.h>
63#include <net/if_dl.h>
64#include <net/route.h>
65#include <net/netisr.h>
66#include <net/vnet.h>
67#include <net/flowtable.h>
68
69#include <netinet/in.h>
70#include <netinet/in_systm.h>
71#include <netinet/in_var.h>
72#include <netinet/ip.h>
73#include <netinet/in_pcb.h>
74#include <netinet/ip_var.h>
75#include <netinet/ip_icmp.h>
76#include <netinet/ip_options.h>
77#include <machine/in_cksum.h>
78#include <netinet/vinet.h>
79#ifdef DEV_CARP
80#include <netinet/ip_carp.h>
81#endif
82#ifdef IPSEC
83#include <netinet/ip_ipsec.h>
84#endif /* IPSEC */
85
86#include <sys/socketvar.h>
87
88#include <security/mac/mac_framework.h>
89
90#ifdef CTASSERT
91CTASSERT(sizeof(struct ip) == 20);
92#endif
93
94#ifndef VIMAGE
95#ifndef VIMAGE_GLOBALS
96struct vnet_inet vnet_inet_0;
97#endif
98#endif
99
100#ifdef VIMAGE_GLOBALS
101static int	ipsendredirects;
102static int	ip_checkinterface;
103static int	ip_keepfaith;
104static int	ip_sendsourcequench;
105int	ip_defttl;
106int	ip_do_randomid;
107int	ipforwarding;
108struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
109struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
110u_long 	in_ifaddrhmask;				/* mask for hash table */
111struct ipstat ipstat;
112static int ip_rsvp_on;
113struct socket *ip_rsvpd;
114int	rsvp_on;
115static struct ipqhead ipq[IPREASS_NHASH];
116static int	maxnipq;	/* Administrative limit on # reass queues. */
117static int	maxfragsperpacket;
118int	ipstealth;
119static int	nipq;	/* Total # of reass queues */
120#endif
121
122SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_FORWARDING,
123    forwarding, CTLFLAG_RW, ipforwarding, 0,
124    "Enable IP forwarding between interfaces");
125
126SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_SENDREDIRECTS,
127    redirect, CTLFLAG_RW, ipsendredirects, 0,
128    "Enable sending IP redirects");
129
130SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_DEFTTL,
131    ttl, CTLFLAG_RW, ip_defttl, 0, "Maximum TTL on IP packets");
132
133SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_KEEPFAITH,
134    keepfaith, CTLFLAG_RW, ip_keepfaith,	0,
135    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
136
137SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
138    sendsourcequench, CTLFLAG_RW, ip_sendsourcequench, 0,
139    "Enable the transmission of source quench packets");
140
141SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, random_id,
142    CTLFLAG_RW, ip_do_randomid, 0, "Assign random ip_id values");
143
144/*
145 * XXX - Setting ip_checkinterface mostly implements the receive side of
146 * the Strong ES model described in RFC 1122, but since the routing table
147 * and transmit implementation do not implement the Strong ES model,
148 * setting this to 1 results in an odd hybrid.
149 *
150 * XXX - ip_checkinterface currently must be disabled if you use ipnat
151 * to translate the destination address to another local interface.
152 *
153 * XXX - ip_checkinterface must be disabled if you add IP aliases
154 * to the loopback interface instead of the interface where the
155 * packets for those addresses are received.
156 */
157SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
158    check_interface, CTLFLAG_RW, ip_checkinterface, 0,
159    "Verify packet arrives on correct interface");
160
161struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
162
163static struct netisr_handler ip_nh = {
164	.nh_name = "ip",
165	.nh_handler = ip_input,
166	.nh_proto = NETISR_IP,
167	.nh_policy = NETISR_POLICY_FLOW,
168};
169
170extern	struct domain inetdomain;
171extern	struct protosw inetsw[];
172u_char	ip_protox[IPPROTO_MAX];
173
174
175SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
176    ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
177
178#ifdef VIMAGE_GLOBALS
179static uma_zone_t ipq_zone;
180#endif
181static struct mtx ipqlock;
182
183#define	IPQ_LOCK()	mtx_lock(&ipqlock)
184#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
185#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
186#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
187
188static void	maxnipq_update(void);
189static void	ipq_zone_change(void *);
190
191SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, fragpackets,
192    CTLFLAG_RD, nipq, 0,
193    "Current number of IPv4 fragment reassembly queue entries");
194
195SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, maxfragsperpacket,
196    CTLFLAG_RW, maxfragsperpacket, 0,
197    "Maximum number of IPv4 fragments allowed per packet");
198
199struct callout	ipport_tick_callout;
200
201#ifdef IPCTL_DEFMTU
202SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
203    &ip_mtu, 0, "Default MTU");
204#endif
205
206#ifdef IPSTEALTH
207SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
208    ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
209#endif
210static int ip_output_flowtable_size = 2048;
211TUNABLE_INT("net.inet.ip.output_flowtable_size", &ip_output_flowtable_size);
212SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, output_flowtable_size,
213    CTLFLAG_RDTUN, ip_output_flowtable_size, 2048,
214    "number of entries in the per-cpu output flow caches");
215
216#ifdef VIMAGE_GLOBALS
217int fw_one_pass;
218#endif
219struct flowtable *ip_ft;
220
221static void	ip_freef(struct ipqhead *, struct ipq *);
222
223#ifndef VIMAGE_GLOBALS
224static void vnet_inet_register(void);
225
226static const vnet_modinfo_t vnet_inet_modinfo = {
227	.vmi_id		= VNET_MOD_INET,
228	.vmi_name	= "inet",
229	.vmi_size	= sizeof(struct vnet_inet)
230};
231
232static void vnet_inet_register()
233{
234
235	vnet_mod_register(&vnet_inet_modinfo);
236}
237
238SYSINIT(inet, SI_SUB_PROTO_BEGIN, SI_ORDER_FIRST, vnet_inet_register, 0);
239#endif
240
241static int
242sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
243{
244	int error, qlimit;
245
246	netisr_getqlimit(&ip_nh, &qlimit);
247	error = sysctl_handle_int(oidp, &qlimit, 0, req);
248	if (error || !req->newptr)
249		return (error);
250	if (qlimit < 1)
251		return (EINVAL);
252	return (netisr_setqlimit(&ip_nh, qlimit));
253}
254SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
255    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
256    "Maximum size of the IP input queue");
257
258static int
259sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
260{
261	u_int64_t qdrops_long;
262	int error, qdrops;
263
264	netisr_getqdrops(&ip_nh, &qdrops_long);
265	qdrops = qdrops_long;
266	error = sysctl_handle_int(oidp, &qdrops, 0, req);
267	if (error || !req->newptr)
268		return (error);
269	if (qdrops != 0)
270		return (EINVAL);
271	netisr_clearqdrops(&ip_nh);
272	return (0);
273}
274
275SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
276    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
277    "Number of packets dropped from the IP input queue");
278
279/*
280 * IP initialization: fill in IP protocol switch table.
281 * All protocols not implemented in kernel go to raw IP protocol handler.
282 */
283void
284ip_init(void)
285{
286	INIT_VNET_INET(curvnet);
287	struct protosw *pr;
288	int i;
289
290	V_ipsendredirects = 1; /* XXX */
291	V_ip_checkinterface = 0;
292	V_ip_keepfaith = 0;
293	V_ip_sendsourcequench = 0;
294	V_rsvp_on = 0;
295	V_ip_defttl = IPDEFTTL;
296	V_ip_do_randomid = 0;
297	V_ip_id = time_second & 0xffff;
298	V_ipforwarding = 0;
299	V_ipstealth = 0;
300	V_nipq = 0;	/* Total # of reass queues */
301
302	V_ipport_lowfirstauto = IPPORT_RESERVED - 1;	/* 1023 */
303	V_ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
304	V_ipport_firstauto = IPPORT_EPHEMERALFIRST;	/* 10000 */
305	V_ipport_lastauto = IPPORT_EPHEMERALLAST;	/* 65535 */
306	V_ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
307	V_ipport_hilastauto = IPPORT_HILASTAUTO;	/* 65535 */
308	V_ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
309	V_ipport_reservedlow = 0;
310	V_ipport_randomized = 1;	/* user controlled via sysctl */
311	V_ipport_randomcps = 10;	/* user controlled via sysctl */
312	V_ipport_randomtime = 45;	/* user controlled via sysctl */
313	V_ipport_stoprandom = 0;	/* toggled by ipport_tick */
314
315	V_fw_one_pass = 1;
316
317#ifdef NOTYET
318	/* XXX global static but not instantiated in this file */
319	V_ipfastforward_active = 0;
320	V_subnetsarelocal = 0;
321	V_sameprefixcarponly = 0;
322#endif
323
324	TAILQ_INIT(&V_in_ifaddrhead);
325	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
326
327	/* Initialize IP reassembly queue. */
328	for (i = 0; i < IPREASS_NHASH; i++)
329		TAILQ_INIT(&V_ipq[i]);
330	V_maxnipq = nmbclusters / 32;
331	V_maxfragsperpacket = 16;
332	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
333	    NULL, UMA_ALIGN_PTR, 0);
334	maxnipq_update();
335
336	/* Skip initialization of globals for non-default instances. */
337	if (!IS_DEFAULT_VNET(curvnet))
338		return;
339
340	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
341	if (pr == NULL)
342		panic("ip_init: PF_INET not found");
343
344	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
345	for (i = 0; i < IPPROTO_MAX; i++)
346		ip_protox[i] = pr - inetsw;
347	/*
348	 * Cycle through IP protocols and put them into the appropriate place
349	 * in ip_protox[].
350	 */
351	for (pr = inetdomain.dom_protosw;
352	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
353		if (pr->pr_domain->dom_family == PF_INET &&
354		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
355			/* Be careful to only index valid IP protocols. */
356			if (pr->pr_protocol < IPPROTO_MAX)
357				ip_protox[pr->pr_protocol] = pr - inetsw;
358		}
359
360	/* Initialize packet filter hooks. */
361	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
362	inet_pfil_hook.ph_af = AF_INET;
363	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
364		printf("%s: WARNING: unable to register pfil hook, "
365			"error %d\n", __func__, i);
366
367	/* Start ipport_tick. */
368	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
369	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
370	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
371		SHUTDOWN_PRI_DEFAULT);
372	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
373		NULL, EVENTHANDLER_PRI_ANY);
374
375	/* Initialize various other remaining things. */
376	IPQ_LOCK_INIT();
377	netisr_register(&ip_nh);
378	ip_ft = flowtable_alloc(ip_output_flowtable_size, FL_PCPU);
379}
380
381void
382ip_fini(void *xtp)
383{
384
385	callout_stop(&ipport_tick_callout);
386}
387
388/*
389 * Ip input routine.  Checksum and byte swap header.  If fragmented
390 * try to reassemble.  Process options.  Pass to next level.
391 */
392void
393ip_input(struct mbuf *m)
394{
395	INIT_VNET_INET(curvnet);
396	struct ip *ip = NULL;
397	struct in_ifaddr *ia = NULL;
398	struct ifaddr *ifa;
399	struct ifnet *ifp;
400	int    checkif, hlen = 0;
401	u_short sum;
402	int dchg = 0;				/* dest changed after fw */
403	struct in_addr odst;			/* original dst address */
404
405	M_ASSERTPKTHDR(m);
406
407	if (m->m_flags & M_FASTFWD_OURS) {
408		/*
409		 * Firewall or NAT changed destination to local.
410		 * We expect ip_len and ip_off to be in host byte order.
411		 */
412		m->m_flags &= ~M_FASTFWD_OURS;
413		/* Set up some basics that will be used later. */
414		ip = mtod(m, struct ip *);
415		hlen = ip->ip_hl << 2;
416		goto ours;
417	}
418
419	IPSTAT_INC(ips_total);
420
421	if (m->m_pkthdr.len < sizeof(struct ip))
422		goto tooshort;
423
424	if (m->m_len < sizeof (struct ip) &&
425	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
426		IPSTAT_INC(ips_toosmall);
427		return;
428	}
429	ip = mtod(m, struct ip *);
430
431	if (ip->ip_v != IPVERSION) {
432		IPSTAT_INC(ips_badvers);
433		goto bad;
434	}
435
436	hlen = ip->ip_hl << 2;
437	if (hlen < sizeof(struct ip)) {	/* minimum header length */
438		IPSTAT_INC(ips_badhlen);
439		goto bad;
440	}
441	if (hlen > m->m_len) {
442		if ((m = m_pullup(m, hlen)) == NULL) {
443			IPSTAT_INC(ips_badhlen);
444			return;
445		}
446		ip = mtod(m, struct ip *);
447	}
448
449	/* 127/8 must not appear on wire - RFC1122 */
450	ifp = m->m_pkthdr.rcvif;
451	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
452	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
453		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
454			IPSTAT_INC(ips_badaddr);
455			goto bad;
456		}
457	}
458
459	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
460		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
461	} else {
462		if (hlen == sizeof(struct ip)) {
463			sum = in_cksum_hdr(ip);
464		} else {
465			sum = in_cksum(m, hlen);
466		}
467	}
468	if (sum) {
469		IPSTAT_INC(ips_badsum);
470		goto bad;
471	}
472
473#ifdef ALTQ
474	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
475		/* packet is dropped by traffic conditioner */
476		return;
477#endif
478
479	/*
480	 * Convert fields to host representation.
481	 */
482	ip->ip_len = ntohs(ip->ip_len);
483	if (ip->ip_len < hlen) {
484		IPSTAT_INC(ips_badlen);
485		goto bad;
486	}
487	ip->ip_off = ntohs(ip->ip_off);
488
489	/*
490	 * Check that the amount of data in the buffers
491	 * is as at least much as the IP header would have us expect.
492	 * Trim mbufs if longer than we expect.
493	 * Drop packet if shorter than we expect.
494	 */
495	if (m->m_pkthdr.len < ip->ip_len) {
496tooshort:
497		IPSTAT_INC(ips_tooshort);
498		goto bad;
499	}
500	if (m->m_pkthdr.len > ip->ip_len) {
501		if (m->m_len == m->m_pkthdr.len) {
502			m->m_len = ip->ip_len;
503			m->m_pkthdr.len = ip->ip_len;
504		} else
505			m_adj(m, ip->ip_len - m->m_pkthdr.len);
506	}
507#ifdef IPSEC
508	/*
509	 * Bypass packet filtering for packets from a tunnel (gif).
510	 */
511	if (ip_ipsec_filtertunnel(m))
512		goto passin;
513#endif /* IPSEC */
514
515	/*
516	 * Run through list of hooks for input packets.
517	 *
518	 * NB: Beware of the destination address changing (e.g.
519	 *     by NAT rewriting).  When this happens, tell
520	 *     ip_forward to do the right thing.
521	 */
522
523	/* Jump over all PFIL processing if hooks are not active. */
524	if (!PFIL_HOOKED(&inet_pfil_hook))
525		goto passin;
526
527	odst = ip->ip_dst;
528	if (pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
529		return;
530	if (m == NULL)			/* consumed by filter */
531		return;
532
533	ip = mtod(m, struct ip *);
534	dchg = (odst.s_addr != ip->ip_dst.s_addr);
535	ifp = m->m_pkthdr.rcvif;
536
537#ifdef IPFIREWALL_FORWARD
538	if (m->m_flags & M_FASTFWD_OURS) {
539		m->m_flags &= ~M_FASTFWD_OURS;
540		goto ours;
541	}
542	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
543		/*
544		 * Directly ship on the packet.  This allows to forward packets
545		 * that were destined for us to some other directly connected
546		 * host.
547		 */
548		ip_forward(m, dchg);
549		return;
550	}
551#endif /* IPFIREWALL_FORWARD */
552
553passin:
554	/*
555	 * Process options and, if not destined for us,
556	 * ship it on.  ip_dooptions returns 1 when an
557	 * error was detected (causing an icmp message
558	 * to be sent and the original packet to be freed).
559	 */
560	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
561		return;
562
563        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
564         * matter if it is destined to another node, or whether it is
565         * a multicast one, RSVP wants it! and prevents it from being forwarded
566         * anywhere else. Also checks if the rsvp daemon is running before
567	 * grabbing the packet.
568         */
569	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
570		goto ours;
571
572	/*
573	 * Check our list of addresses, to see if the packet is for us.
574	 * If we don't have any addresses, assume any unicast packet
575	 * we receive might be for us (and let the upper layers deal
576	 * with it).
577	 */
578	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
579	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
580		goto ours;
581
582	/*
583	 * Enable a consistency check between the destination address
584	 * and the arrival interface for a unicast packet (the RFC 1122
585	 * strong ES model) if IP forwarding is disabled and the packet
586	 * is not locally generated and the packet is not subject to
587	 * 'ipfw fwd'.
588	 *
589	 * XXX - Checking also should be disabled if the destination
590	 * address is ipnat'ed to a different interface.
591	 *
592	 * XXX - Checking is incompatible with IP aliases added
593	 * to the loopback interface instead of the interface where
594	 * the packets are received.
595	 *
596	 * XXX - This is the case for carp vhost IPs as well so we
597	 * insert a workaround. If the packet got here, we already
598	 * checked with carp_iamatch() and carp_forus().
599	 */
600	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
601	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
602#ifdef DEV_CARP
603	    !ifp->if_carp &&
604#endif
605	    (dchg == 0);
606
607	/*
608	 * Check for exact addresses in the hash bucket.
609	 */
610	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
611		/*
612		 * If the address matches, verify that the packet
613		 * arrived via the correct interface if checking is
614		 * enabled.
615		 */
616		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
617		    (!checkif || ia->ia_ifp == ifp))
618			goto ours;
619	}
620	/*
621	 * Check for broadcast addresses.
622	 *
623	 * Only accept broadcast packets that arrive via the matching
624	 * interface.  Reception of forwarded directed broadcasts would
625	 * be handled via ip_forward() and ether_output() with the loopback
626	 * into the stack for SIMPLEX interfaces handled by ether_output().
627	 */
628	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
629		IF_ADDR_LOCK(ifp);
630	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
631			if (ifa->ifa_addr->sa_family != AF_INET)
632				continue;
633			ia = ifatoia(ifa);
634			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
635			    ip->ip_dst.s_addr) {
636				IF_ADDR_UNLOCK(ifp);
637				goto ours;
638			}
639			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
640				IF_ADDR_UNLOCK(ifp);
641				goto ours;
642			}
643#ifdef BOOTP_COMPAT
644			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
645				IF_ADDR_UNLOCK(ifp);
646				goto ours;
647			}
648#endif
649		}
650		IF_ADDR_UNLOCK(ifp);
651	}
652	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
653	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
654		IPSTAT_INC(ips_cantforward);
655		m_freem(m);
656		return;
657	}
658	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
659		if (V_ip_mrouter) {
660			/*
661			 * If we are acting as a multicast router, all
662			 * incoming multicast packets are passed to the
663			 * kernel-level multicast forwarding function.
664			 * The packet is returned (relatively) intact; if
665			 * ip_mforward() returns a non-zero value, the packet
666			 * must be discarded, else it may be accepted below.
667			 */
668			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
669				IPSTAT_INC(ips_cantforward);
670				m_freem(m);
671				return;
672			}
673
674			/*
675			 * The process-level routing daemon needs to receive
676			 * all multicast IGMP packets, whether or not this
677			 * host belongs to their destination groups.
678			 */
679			if (ip->ip_p == IPPROTO_IGMP)
680				goto ours;
681			IPSTAT_INC(ips_forward);
682		}
683		/*
684		 * Assume the packet is for us, to avoid prematurely taking
685		 * a lock on the in_multi hash. Protocols must perform
686		 * their own filtering and update statistics accordingly.
687		 */
688		goto ours;
689	}
690	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
691		goto ours;
692	if (ip->ip_dst.s_addr == INADDR_ANY)
693		goto ours;
694
695	/*
696	 * FAITH(Firewall Aided Internet Translator)
697	 */
698	if (ifp && ifp->if_type == IFT_FAITH) {
699		if (V_ip_keepfaith) {
700			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
701				goto ours;
702		}
703		m_freem(m);
704		return;
705	}
706
707	/*
708	 * Not for us; forward if possible and desirable.
709	 */
710	if (V_ipforwarding == 0) {
711		IPSTAT_INC(ips_cantforward);
712		m_freem(m);
713	} else {
714#ifdef IPSEC
715		if (ip_ipsec_fwd(m))
716			goto bad;
717#endif /* IPSEC */
718		ip_forward(m, dchg);
719	}
720	return;
721
722ours:
723#ifdef IPSTEALTH
724	/*
725	 * IPSTEALTH: Process non-routing options only
726	 * if the packet is destined for us.
727	 */
728	if (V_ipstealth && hlen > sizeof (struct ip) &&
729	    ip_dooptions(m, 1))
730		return;
731#endif /* IPSTEALTH */
732
733	/* Count the packet in the ip address stats */
734	if (ia != NULL) {
735		ia->ia_ifa.if_ipackets++;
736		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
737	}
738
739	/*
740	 * Attempt reassembly; if it succeeds, proceed.
741	 * ip_reass() will return a different mbuf.
742	 */
743	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
744		m = ip_reass(m);
745		if (m == NULL)
746			return;
747		ip = mtod(m, struct ip *);
748		/* Get the header length of the reassembled packet */
749		hlen = ip->ip_hl << 2;
750	}
751
752	/*
753	 * Further protocols expect the packet length to be w/o the
754	 * IP header.
755	 */
756	ip->ip_len -= hlen;
757
758#ifdef IPSEC
759	/*
760	 * enforce IPsec policy checking if we are seeing last header.
761	 * note that we do not visit this with protocols with pcb layer
762	 * code - like udp/tcp/raw ip.
763	 */
764	if (ip_ipsec_input(m))
765		goto bad;
766#endif /* IPSEC */
767
768	/*
769	 * Switch out to protocol's input routine.
770	 */
771	IPSTAT_INC(ips_delivered);
772
773	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
774	return;
775bad:
776	m_freem(m);
777}
778
779/*
780 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
781 * max has slightly different semantics than the sysctl, for historical
782 * reasons.
783 */
784static void
785maxnipq_update(void)
786{
787	INIT_VNET_INET(curvnet);
788
789	/*
790	 * -1 for unlimited allocation.
791	 */
792	if (V_maxnipq < 0)
793		uma_zone_set_max(V_ipq_zone, 0);
794	/*
795	 * Positive number for specific bound.
796	 */
797	if (V_maxnipq > 0)
798		uma_zone_set_max(V_ipq_zone, V_maxnipq);
799	/*
800	 * Zero specifies no further fragment queue allocation -- set the
801	 * bound very low, but rely on implementation elsewhere to actually
802	 * prevent allocation and reclaim current queues.
803	 */
804	if (V_maxnipq == 0)
805		uma_zone_set_max(V_ipq_zone, 1);
806}
807
808static void
809ipq_zone_change(void *tag)
810{
811	INIT_VNET_INET(curvnet);
812
813	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
814		V_maxnipq = nmbclusters / 32;
815		maxnipq_update();
816	}
817}
818
819static int
820sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
821{
822	INIT_VNET_INET(curvnet);
823	int error, i;
824
825	i = V_maxnipq;
826	error = sysctl_handle_int(oidp, &i, 0, req);
827	if (error || !req->newptr)
828		return (error);
829
830	/*
831	 * XXXRW: Might be a good idea to sanity check the argument and place
832	 * an extreme upper bound.
833	 */
834	if (i < -1)
835		return (EINVAL);
836	V_maxnipq = i;
837	maxnipq_update();
838	return (0);
839}
840
841SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
842    NULL, 0, sysctl_maxnipq, "I",
843    "Maximum number of IPv4 fragment reassembly queue entries");
844
845/*
846 * Take incoming datagram fragment and try to reassemble it into
847 * whole datagram.  If the argument is the first fragment or one
848 * in between the function will return NULL and store the mbuf
849 * in the fragment chain.  If the argument is the last fragment
850 * the packet will be reassembled and the pointer to the new
851 * mbuf returned for further processing.  Only m_tags attached
852 * to the first packet/fragment are preserved.
853 * The IP header is *NOT* adjusted out of iplen.
854 */
855struct mbuf *
856ip_reass(struct mbuf *m)
857{
858	INIT_VNET_INET(curvnet);
859	struct ip *ip;
860	struct mbuf *p, *q, *nq, *t;
861	struct ipq *fp = NULL;
862	struct ipqhead *head;
863	int i, hlen, next;
864	u_int8_t ecn, ecn0;
865	u_short hash;
866
867	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
868	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
869		IPSTAT_INC(ips_fragments);
870		IPSTAT_INC(ips_fragdropped);
871		m_freem(m);
872		return (NULL);
873	}
874
875	ip = mtod(m, struct ip *);
876	hlen = ip->ip_hl << 2;
877
878	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
879	head = &V_ipq[hash];
880	IPQ_LOCK();
881
882	/*
883	 * Look for queue of fragments
884	 * of this datagram.
885	 */
886	TAILQ_FOREACH(fp, head, ipq_list)
887		if (ip->ip_id == fp->ipq_id &&
888		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
889		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
890#ifdef MAC
891		    mac_ipq_match(m, fp) &&
892#endif
893		    ip->ip_p == fp->ipq_p)
894			goto found;
895
896	fp = NULL;
897
898	/*
899	 * Attempt to trim the number of allocated fragment queues if it
900	 * exceeds the administrative limit.
901	 */
902	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
903		/*
904		 * drop something from the tail of the current queue
905		 * before proceeding further
906		 */
907		struct ipq *q = TAILQ_LAST(head, ipqhead);
908		if (q == NULL) {   /* gak */
909			for (i = 0; i < IPREASS_NHASH; i++) {
910				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
911				if (r) {
912					IPSTAT_ADD(ips_fragtimeout,
913					    r->ipq_nfrags);
914					ip_freef(&V_ipq[i], r);
915					break;
916				}
917			}
918		} else {
919			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
920			ip_freef(head, q);
921		}
922	}
923
924found:
925	/*
926	 * Adjust ip_len to not reflect header,
927	 * convert offset of this to bytes.
928	 */
929	ip->ip_len -= hlen;
930	if (ip->ip_off & IP_MF) {
931		/*
932		 * Make sure that fragments have a data length
933		 * that's a non-zero multiple of 8 bytes.
934		 */
935		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
936			IPSTAT_INC(ips_toosmall); /* XXX */
937			goto dropfrag;
938		}
939		m->m_flags |= M_FRAG;
940	} else
941		m->m_flags &= ~M_FRAG;
942	ip->ip_off <<= 3;
943
944
945	/*
946	 * Attempt reassembly; if it succeeds, proceed.
947	 * ip_reass() will return a different mbuf.
948	 */
949	IPSTAT_INC(ips_fragments);
950	m->m_pkthdr.header = ip;
951
952	/* Previous ip_reass() started here. */
953	/*
954	 * Presence of header sizes in mbufs
955	 * would confuse code below.
956	 */
957	m->m_data += hlen;
958	m->m_len -= hlen;
959
960	/*
961	 * If first fragment to arrive, create a reassembly queue.
962	 */
963	if (fp == NULL) {
964		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
965		if (fp == NULL)
966			goto dropfrag;
967#ifdef MAC
968		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
969			uma_zfree(V_ipq_zone, fp);
970			fp = NULL;
971			goto dropfrag;
972		}
973		mac_ipq_create(m, fp);
974#endif
975		TAILQ_INSERT_HEAD(head, fp, ipq_list);
976		V_nipq++;
977		fp->ipq_nfrags = 1;
978		fp->ipq_ttl = IPFRAGTTL;
979		fp->ipq_p = ip->ip_p;
980		fp->ipq_id = ip->ip_id;
981		fp->ipq_src = ip->ip_src;
982		fp->ipq_dst = ip->ip_dst;
983		fp->ipq_frags = m;
984		m->m_nextpkt = NULL;
985		goto done;
986	} else {
987		fp->ipq_nfrags++;
988#ifdef MAC
989		mac_ipq_update(m, fp);
990#endif
991	}
992
993#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
994
995	/*
996	 * Handle ECN by comparing this segment with the first one;
997	 * if CE is set, do not lose CE.
998	 * drop if CE and not-ECT are mixed for the same packet.
999	 */
1000	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1001	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1002	if (ecn == IPTOS_ECN_CE) {
1003		if (ecn0 == IPTOS_ECN_NOTECT)
1004			goto dropfrag;
1005		if (ecn0 != IPTOS_ECN_CE)
1006			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1007	}
1008	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1009		goto dropfrag;
1010
1011	/*
1012	 * Find a segment which begins after this one does.
1013	 */
1014	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1015		if (GETIP(q)->ip_off > ip->ip_off)
1016			break;
1017
1018	/*
1019	 * If there is a preceding segment, it may provide some of
1020	 * our data already.  If so, drop the data from the incoming
1021	 * segment.  If it provides all of our data, drop us, otherwise
1022	 * stick new segment in the proper place.
1023	 *
1024	 * If some of the data is dropped from the the preceding
1025	 * segment, then it's checksum is invalidated.
1026	 */
1027	if (p) {
1028		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1029		if (i > 0) {
1030			if (i >= ip->ip_len)
1031				goto dropfrag;
1032			m_adj(m, i);
1033			m->m_pkthdr.csum_flags = 0;
1034			ip->ip_off += i;
1035			ip->ip_len -= i;
1036		}
1037		m->m_nextpkt = p->m_nextpkt;
1038		p->m_nextpkt = m;
1039	} else {
1040		m->m_nextpkt = fp->ipq_frags;
1041		fp->ipq_frags = m;
1042	}
1043
1044	/*
1045	 * While we overlap succeeding segments trim them or,
1046	 * if they are completely covered, dequeue them.
1047	 */
1048	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1049	     q = nq) {
1050		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1051		if (i < GETIP(q)->ip_len) {
1052			GETIP(q)->ip_len -= i;
1053			GETIP(q)->ip_off += i;
1054			m_adj(q, i);
1055			q->m_pkthdr.csum_flags = 0;
1056			break;
1057		}
1058		nq = q->m_nextpkt;
1059		m->m_nextpkt = nq;
1060		IPSTAT_INC(ips_fragdropped);
1061		fp->ipq_nfrags--;
1062		m_freem(q);
1063	}
1064
1065	/*
1066	 * Check for complete reassembly and perform frag per packet
1067	 * limiting.
1068	 *
1069	 * Frag limiting is performed here so that the nth frag has
1070	 * a chance to complete the packet before we drop the packet.
1071	 * As a result, n+1 frags are actually allowed per packet, but
1072	 * only n will ever be stored. (n = maxfragsperpacket.)
1073	 *
1074	 */
1075	next = 0;
1076	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1077		if (GETIP(q)->ip_off != next) {
1078			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1079				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1080				ip_freef(head, fp);
1081			}
1082			goto done;
1083		}
1084		next += GETIP(q)->ip_len;
1085	}
1086	/* Make sure the last packet didn't have the IP_MF flag */
1087	if (p->m_flags & M_FRAG) {
1088		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1089			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1090			ip_freef(head, fp);
1091		}
1092		goto done;
1093	}
1094
1095	/*
1096	 * Reassembly is complete.  Make sure the packet is a sane size.
1097	 */
1098	q = fp->ipq_frags;
1099	ip = GETIP(q);
1100	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1101		IPSTAT_INC(ips_toolong);
1102		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1103		ip_freef(head, fp);
1104		goto done;
1105	}
1106
1107	/*
1108	 * Concatenate fragments.
1109	 */
1110	m = q;
1111	t = m->m_next;
1112	m->m_next = NULL;
1113	m_cat(m, t);
1114	nq = q->m_nextpkt;
1115	q->m_nextpkt = NULL;
1116	for (q = nq; q != NULL; q = nq) {
1117		nq = q->m_nextpkt;
1118		q->m_nextpkt = NULL;
1119		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1120		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1121		m_cat(m, q);
1122	}
1123	/*
1124	 * In order to do checksumming faster we do 'end-around carry' here
1125	 * (and not in for{} loop), though it implies we are not going to
1126	 * reassemble more than 64k fragments.
1127	 */
1128	m->m_pkthdr.csum_data =
1129	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1130#ifdef MAC
1131	mac_ipq_reassemble(fp, m);
1132	mac_ipq_destroy(fp);
1133#endif
1134
1135	/*
1136	 * Create header for new ip packet by modifying header of first
1137	 * packet;  dequeue and discard fragment reassembly header.
1138	 * Make header visible.
1139	 */
1140	ip->ip_len = (ip->ip_hl << 2) + next;
1141	ip->ip_src = fp->ipq_src;
1142	ip->ip_dst = fp->ipq_dst;
1143	TAILQ_REMOVE(head, fp, ipq_list);
1144	V_nipq--;
1145	uma_zfree(V_ipq_zone, fp);
1146	m->m_len += (ip->ip_hl << 2);
1147	m->m_data -= (ip->ip_hl << 2);
1148	/* some debugging cruft by sklower, below, will go away soon */
1149	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1150		m_fixhdr(m);
1151	IPSTAT_INC(ips_reassembled);
1152	IPQ_UNLOCK();
1153	return (m);
1154
1155dropfrag:
1156	IPSTAT_INC(ips_fragdropped);
1157	if (fp != NULL)
1158		fp->ipq_nfrags--;
1159	m_freem(m);
1160done:
1161	IPQ_UNLOCK();
1162	return (NULL);
1163
1164#undef GETIP
1165}
1166
1167/*
1168 * Free a fragment reassembly header and all
1169 * associated datagrams.
1170 */
1171static void
1172ip_freef(struct ipqhead *fhp, struct ipq *fp)
1173{
1174	INIT_VNET_INET(curvnet);
1175	struct mbuf *q;
1176
1177	IPQ_LOCK_ASSERT();
1178
1179	while (fp->ipq_frags) {
1180		q = fp->ipq_frags;
1181		fp->ipq_frags = q->m_nextpkt;
1182		m_freem(q);
1183	}
1184	TAILQ_REMOVE(fhp, fp, ipq_list);
1185	uma_zfree(V_ipq_zone, fp);
1186	V_nipq--;
1187}
1188
1189/*
1190 * IP timer processing;
1191 * if a timer expires on a reassembly
1192 * queue, discard it.
1193 */
1194void
1195ip_slowtimo(void)
1196{
1197	VNET_ITERATOR_DECL(vnet_iter);
1198	struct ipq *fp;
1199	int i;
1200
1201	IPQ_LOCK();
1202	VNET_LIST_RLOCK();
1203	VNET_FOREACH(vnet_iter) {
1204		CURVNET_SET(vnet_iter);
1205		INIT_VNET_INET(vnet_iter);
1206		for (i = 0; i < IPREASS_NHASH; i++) {
1207			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1208				struct ipq *fpp;
1209
1210				fpp = fp;
1211				fp = TAILQ_NEXT(fp, ipq_list);
1212				if(--fpp->ipq_ttl == 0) {
1213					IPSTAT_ADD(ips_fragtimeout,
1214					    fpp->ipq_nfrags);
1215					ip_freef(&V_ipq[i], fpp);
1216				}
1217			}
1218		}
1219		/*
1220		 * If we are over the maximum number of fragments
1221		 * (due to the limit being lowered), drain off
1222		 * enough to get down to the new limit.
1223		 */
1224		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1225			for (i = 0; i < IPREASS_NHASH; i++) {
1226				while (V_nipq > V_maxnipq &&
1227				    !TAILQ_EMPTY(&V_ipq[i])) {
1228					IPSTAT_ADD(ips_fragdropped,
1229					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1230					ip_freef(&V_ipq[i],
1231					    TAILQ_FIRST(&V_ipq[i]));
1232				}
1233			}
1234		}
1235		CURVNET_RESTORE();
1236	}
1237	VNET_LIST_RUNLOCK();
1238	IPQ_UNLOCK();
1239}
1240
1241/*
1242 * Drain off all datagram fragments.
1243 */
1244void
1245ip_drain(void)
1246{
1247	VNET_ITERATOR_DECL(vnet_iter);
1248	int     i;
1249
1250	IPQ_LOCK();
1251	VNET_LIST_RLOCK();
1252	VNET_FOREACH(vnet_iter) {
1253		CURVNET_SET(vnet_iter);
1254		INIT_VNET_INET(vnet_iter);
1255		for (i = 0; i < IPREASS_NHASH; i++) {
1256			while(!TAILQ_EMPTY(&V_ipq[i])) {
1257				IPSTAT_ADD(ips_fragdropped,
1258				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1259				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1260			}
1261		}
1262		CURVNET_RESTORE();
1263	}
1264	VNET_LIST_RUNLOCK();
1265	IPQ_UNLOCK();
1266	in_rtqdrain();
1267}
1268
1269/*
1270 * The protocol to be inserted into ip_protox[] must be already registered
1271 * in inetsw[], either statically or through pf_proto_register().
1272 */
1273int
1274ipproto_register(u_char ipproto)
1275{
1276	struct protosw *pr;
1277
1278	/* Sanity checks. */
1279	if (ipproto == 0)
1280		return (EPROTONOSUPPORT);
1281
1282	/*
1283	 * The protocol slot must not be occupied by another protocol
1284	 * already.  An index pointing to IPPROTO_RAW is unused.
1285	 */
1286	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1287	if (pr == NULL)
1288		return (EPFNOSUPPORT);
1289	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1290		return (EEXIST);
1291
1292	/* Find the protocol position in inetsw[] and set the index. */
1293	for (pr = inetdomain.dom_protosw;
1294	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1295		if (pr->pr_domain->dom_family == PF_INET &&
1296		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1297			/* Be careful to only index valid IP protocols. */
1298			if (pr->pr_protocol < IPPROTO_MAX) {
1299				ip_protox[pr->pr_protocol] = pr - inetsw;
1300				return (0);
1301			} else
1302				return (EINVAL);
1303		}
1304	}
1305	return (EPROTONOSUPPORT);
1306}
1307
1308int
1309ipproto_unregister(u_char ipproto)
1310{
1311	struct protosw *pr;
1312
1313	/* Sanity checks. */
1314	if (ipproto == 0)
1315		return (EPROTONOSUPPORT);
1316
1317	/* Check if the protocol was indeed registered. */
1318	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1319	if (pr == NULL)
1320		return (EPFNOSUPPORT);
1321	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1322		return (ENOENT);
1323
1324	/* Reset the protocol slot to IPPROTO_RAW. */
1325	ip_protox[ipproto] = pr - inetsw;
1326	return (0);
1327}
1328
1329/*
1330 * Given address of next destination (final or next hop),
1331 * return internet address info of interface to be used to get there.
1332 */
1333struct in_ifaddr *
1334ip_rtaddr(struct in_addr dst, u_int fibnum)
1335{
1336	struct route sro;
1337	struct sockaddr_in *sin;
1338	struct in_ifaddr *ifa;
1339
1340	bzero(&sro, sizeof(sro));
1341	sin = (struct sockaddr_in *)&sro.ro_dst;
1342	sin->sin_family = AF_INET;
1343	sin->sin_len = sizeof(*sin);
1344	sin->sin_addr = dst;
1345	in_rtalloc_ign(&sro, 0, fibnum);
1346
1347	if (sro.ro_rt == NULL)
1348		return (NULL);
1349
1350	ifa = ifatoia(sro.ro_rt->rt_ifa);
1351	RTFREE(sro.ro_rt);
1352	return (ifa);
1353}
1354
1355u_char inetctlerrmap[PRC_NCMDS] = {
1356	0,		0,		0,		0,
1357	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1358	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1359	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1360	0,		0,		EHOSTUNREACH,	0,
1361	ENOPROTOOPT,	ECONNREFUSED
1362};
1363
1364/*
1365 * Forward a packet.  If some error occurs return the sender
1366 * an icmp packet.  Note we can't always generate a meaningful
1367 * icmp message because icmp doesn't have a large enough repertoire
1368 * of codes and types.
1369 *
1370 * If not forwarding, just drop the packet.  This could be confusing
1371 * if ipforwarding was zero but some routing protocol was advancing
1372 * us as a gateway to somewhere.  However, we must let the routing
1373 * protocol deal with that.
1374 *
1375 * The srcrt parameter indicates whether the packet is being forwarded
1376 * via a source route.
1377 */
1378void
1379ip_forward(struct mbuf *m, int srcrt)
1380{
1381	INIT_VNET_INET(curvnet);
1382	struct ip *ip = mtod(m, struct ip *);
1383	struct in_ifaddr *ia;
1384	struct mbuf *mcopy;
1385	struct in_addr dest;
1386	struct route ro;
1387	int error, type = 0, code = 0, mtu = 0;
1388
1389	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1390		IPSTAT_INC(ips_cantforward);
1391		m_freem(m);
1392		return;
1393	}
1394#ifdef IPSTEALTH
1395	if (!V_ipstealth) {
1396#endif
1397		if (ip->ip_ttl <= IPTTLDEC) {
1398			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1399			    0, 0);
1400			return;
1401		}
1402#ifdef IPSTEALTH
1403	}
1404#endif
1405
1406	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1407#ifndef IPSEC
1408	/*
1409	 * 'ia' may be NULL if there is no route for this destination.
1410	 * In case of IPsec, Don't discard it just yet, but pass it to
1411	 * ip_output in case of outgoing IPsec policy.
1412	 */
1413	if (!srcrt && ia == NULL) {
1414		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1415		return;
1416	}
1417#endif
1418
1419	/*
1420	 * Save the IP header and at most 8 bytes of the payload,
1421	 * in case we need to generate an ICMP message to the src.
1422	 *
1423	 * XXX this can be optimized a lot by saving the data in a local
1424	 * buffer on the stack (72 bytes at most), and only allocating the
1425	 * mbuf if really necessary. The vast majority of the packets
1426	 * are forwarded without having to send an ICMP back (either
1427	 * because unnecessary, or because rate limited), so we are
1428	 * really we are wasting a lot of work here.
1429	 *
1430	 * We don't use m_copy() because it might return a reference
1431	 * to a shared cluster. Both this function and ip_output()
1432	 * assume exclusive access to the IP header in `m', so any
1433	 * data in a cluster may change before we reach icmp_error().
1434	 */
1435	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1436	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1437		/*
1438		 * It's probably ok if the pkthdr dup fails (because
1439		 * the deep copy of the tag chain failed), but for now
1440		 * be conservative and just discard the copy since
1441		 * code below may some day want the tags.
1442		 */
1443		m_free(mcopy);
1444		mcopy = NULL;
1445	}
1446	if (mcopy != NULL) {
1447		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1448		mcopy->m_pkthdr.len = mcopy->m_len;
1449		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1450	}
1451
1452#ifdef IPSTEALTH
1453	if (!V_ipstealth) {
1454#endif
1455		ip->ip_ttl -= IPTTLDEC;
1456#ifdef IPSTEALTH
1457	}
1458#endif
1459
1460	/*
1461	 * If forwarding packet using same interface that it came in on,
1462	 * perhaps should send a redirect to sender to shortcut a hop.
1463	 * Only send redirect if source is sending directly to us,
1464	 * and if packet was not source routed (or has any options).
1465	 * Also, don't send redirect if forwarding using a default route
1466	 * or a route modified by a redirect.
1467	 */
1468	dest.s_addr = 0;
1469	if (!srcrt && V_ipsendredirects &&
1470	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1471		struct sockaddr_in *sin;
1472		struct rtentry *rt;
1473
1474		bzero(&ro, sizeof(ro));
1475		sin = (struct sockaddr_in *)&ro.ro_dst;
1476		sin->sin_family = AF_INET;
1477		sin->sin_len = sizeof(*sin);
1478		sin->sin_addr = ip->ip_dst;
1479		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1480
1481		rt = ro.ro_rt;
1482
1483		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1484		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1485#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1486			u_long src = ntohl(ip->ip_src.s_addr);
1487
1488			if (RTA(rt) &&
1489			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1490				if (rt->rt_flags & RTF_GATEWAY)
1491					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1492				else
1493					dest.s_addr = ip->ip_dst.s_addr;
1494				/* Router requirements says to only send host redirects */
1495				type = ICMP_REDIRECT;
1496				code = ICMP_REDIRECT_HOST;
1497			}
1498		}
1499		if (rt)
1500			RTFREE(rt);
1501	}
1502
1503	/*
1504	 * Try to cache the route MTU from ip_output so we can consider it for
1505	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1506	 */
1507	bzero(&ro, sizeof(ro));
1508
1509	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1510
1511	if (error == EMSGSIZE && ro.ro_rt)
1512		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1513	if (ro.ro_rt)
1514		RTFREE(ro.ro_rt);
1515
1516	if (error)
1517		IPSTAT_INC(ips_cantforward);
1518	else {
1519		IPSTAT_INC(ips_forward);
1520		if (type)
1521			IPSTAT_INC(ips_redirectsent);
1522		else {
1523			if (mcopy)
1524				m_freem(mcopy);
1525			return;
1526		}
1527	}
1528	if (mcopy == NULL)
1529		return;
1530
1531	switch (error) {
1532
1533	case 0:				/* forwarded, but need redirect */
1534		/* type, code set above */
1535		break;
1536
1537	case ENETUNREACH:
1538	case EHOSTUNREACH:
1539	case ENETDOWN:
1540	case EHOSTDOWN:
1541	default:
1542		type = ICMP_UNREACH;
1543		code = ICMP_UNREACH_HOST;
1544		break;
1545
1546	case EMSGSIZE:
1547		type = ICMP_UNREACH;
1548		code = ICMP_UNREACH_NEEDFRAG;
1549
1550#ifdef IPSEC
1551		/*
1552		 * If IPsec is configured for this path,
1553		 * override any possibly mtu value set by ip_output.
1554		 */
1555		mtu = ip_ipsec_mtu(m, mtu);
1556#endif /* IPSEC */
1557		/*
1558		 * If the MTU was set before make sure we are below the
1559		 * interface MTU.
1560		 * If the MTU wasn't set before use the interface mtu or
1561		 * fall back to the next smaller mtu step compared to the
1562		 * current packet size.
1563		 */
1564		if (mtu != 0) {
1565			if (ia != NULL)
1566				mtu = min(mtu, ia->ia_ifp->if_mtu);
1567		} else {
1568			if (ia != NULL)
1569				mtu = ia->ia_ifp->if_mtu;
1570			else
1571				mtu = ip_next_mtu(ip->ip_len, 0);
1572		}
1573		IPSTAT_INC(ips_cantfrag);
1574		break;
1575
1576	case ENOBUFS:
1577		/*
1578		 * A router should not generate ICMP_SOURCEQUENCH as
1579		 * required in RFC1812 Requirements for IP Version 4 Routers.
1580		 * Source quench could be a big problem under DoS attacks,
1581		 * or if the underlying interface is rate-limited.
1582		 * Those who need source quench packets may re-enable them
1583		 * via the net.inet.ip.sendsourcequench sysctl.
1584		 */
1585		if (V_ip_sendsourcequench == 0) {
1586			m_freem(mcopy);
1587			return;
1588		} else {
1589			type = ICMP_SOURCEQUENCH;
1590			code = 0;
1591		}
1592		break;
1593
1594	case EACCES:			/* ipfw denied packet */
1595		m_freem(mcopy);
1596		return;
1597	}
1598	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1599}
1600
1601void
1602ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1603    struct mbuf *m)
1604{
1605	INIT_VNET_NET(inp->inp_vnet);
1606
1607	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1608		struct bintime bt;
1609
1610		bintime(&bt);
1611		if (inp->inp_socket->so_options & SO_BINTIME) {
1612			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1613			SCM_BINTIME, SOL_SOCKET);
1614			if (*mp)
1615				mp = &(*mp)->m_next;
1616		}
1617		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1618			struct timeval tv;
1619
1620			bintime2timeval(&bt, &tv);
1621			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1622				SCM_TIMESTAMP, SOL_SOCKET);
1623			if (*mp)
1624				mp = &(*mp)->m_next;
1625		}
1626	}
1627	if (inp->inp_flags & INP_RECVDSTADDR) {
1628		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1629		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1630		if (*mp)
1631			mp = &(*mp)->m_next;
1632	}
1633	if (inp->inp_flags & INP_RECVTTL) {
1634		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1635		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1636		if (*mp)
1637			mp = &(*mp)->m_next;
1638	}
1639#ifdef notyet
1640	/* XXX
1641	 * Moving these out of udp_input() made them even more broken
1642	 * than they already were.
1643	 */
1644	/* options were tossed already */
1645	if (inp->inp_flags & INP_RECVOPTS) {
1646		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1647		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1648		if (*mp)
1649			mp = &(*mp)->m_next;
1650	}
1651	/* ip_srcroute doesn't do what we want here, need to fix */
1652	if (inp->inp_flags & INP_RECVRETOPTS) {
1653		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1654		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1655		if (*mp)
1656			mp = &(*mp)->m_next;
1657	}
1658#endif
1659	if (inp->inp_flags & INP_RECVIF) {
1660		struct ifnet *ifp;
1661		struct sdlbuf {
1662			struct sockaddr_dl sdl;
1663			u_char	pad[32];
1664		} sdlbuf;
1665		struct sockaddr_dl *sdp;
1666		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1667
1668		if (((ifp = m->m_pkthdr.rcvif))
1669		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1670			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1671			/*
1672			 * Change our mind and don't try copy.
1673			 */
1674			if ((sdp->sdl_family != AF_LINK)
1675			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1676				goto makedummy;
1677			}
1678			bcopy(sdp, sdl2, sdp->sdl_len);
1679		} else {
1680makedummy:
1681			sdl2->sdl_len
1682				= offsetof(struct sockaddr_dl, sdl_data[0]);
1683			sdl2->sdl_family = AF_LINK;
1684			sdl2->sdl_index = 0;
1685			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1686		}
1687		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1688			IP_RECVIF, IPPROTO_IP);
1689		if (*mp)
1690			mp = &(*mp)->m_next;
1691	}
1692}
1693
1694/*
1695 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1696 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1697 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1698 * compiled.
1699 */
1700int
1701ip_rsvp_init(struct socket *so)
1702{
1703	INIT_VNET_INET(so->so_vnet);
1704
1705	if (so->so_type != SOCK_RAW ||
1706	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1707		return EOPNOTSUPP;
1708
1709	if (V_ip_rsvpd != NULL)
1710		return EADDRINUSE;
1711
1712	V_ip_rsvpd = so;
1713	/*
1714	 * This may seem silly, but we need to be sure we don't over-increment
1715	 * the RSVP counter, in case something slips up.
1716	 */
1717	if (!V_ip_rsvp_on) {
1718		V_ip_rsvp_on = 1;
1719		V_rsvp_on++;
1720	}
1721
1722	return 0;
1723}
1724
1725int
1726ip_rsvp_done(void)
1727{
1728	INIT_VNET_INET(curvnet);
1729
1730	V_ip_rsvpd = NULL;
1731	/*
1732	 * This may seem silly, but we need to be sure we don't over-decrement
1733	 * the RSVP counter, in case something slips up.
1734	 */
1735	if (V_ip_rsvp_on) {
1736		V_ip_rsvp_on = 0;
1737		V_rsvp_on--;
1738	}
1739	return 0;
1740}
1741
1742void
1743rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1744{
1745	INIT_VNET_INET(curvnet);
1746
1747	if (rsvp_input_p) { /* call the real one if loaded */
1748		rsvp_input_p(m, off);
1749		return;
1750	}
1751
1752	/* Can still get packets with rsvp_on = 0 if there is a local member
1753	 * of the group to which the RSVP packet is addressed.  But in this
1754	 * case we want to throw the packet away.
1755	 */
1756
1757	if (!V_rsvp_on) {
1758		m_freem(m);
1759		return;
1760	}
1761
1762	if (V_ip_rsvpd != NULL) {
1763		rip_input(m, off);
1764		return;
1765	}
1766	/* Drop the packet */
1767	m_freem(m);
1768}
1769