ip_reass.c revision 171133
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 171133 2007-07-01 11:41:27Z gnn $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipstealth.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_carp.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/domain.h>
46#include <sys/protosw.h>
47#include <sys/socket.h>
48#include <sys/time.h>
49#include <sys/kernel.h>
50#include <sys/syslog.h>
51#include <sys/sysctl.h>
52
53#include <net/pfil.h>
54#include <net/if.h>
55#include <net/if_types.h>
56#include <net/if_var.h>
57#include <net/if_dl.h>
58#include <net/route.h>
59#include <net/netisr.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/in_var.h>
64#include <netinet/ip.h>
65#include <netinet/in_pcb.h>
66#include <netinet/ip_var.h>
67#include <netinet/ip_icmp.h>
68#include <netinet/ip_options.h>
69#include <machine/in_cksum.h>
70#ifdef DEV_CARP
71#include <netinet/ip_carp.h>
72#endif
73#ifdef FAST_IPSEC
74#include <netinet/ip_ipsec.h>
75#endif /* FAST_IPSEC */
76
77#include <sys/socketvar.h>
78
79/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
80#include <netinet/ip_fw.h>
81#include <netinet/ip_dummynet.h>
82
83#include <security/mac/mac_framework.h>
84
85int rsvp_on = 0;
86
87int	ipforwarding = 0;
88SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
89    &ipforwarding, 0, "Enable IP forwarding between interfaces");
90
91static int	ipsendredirects = 1; /* XXX */
92SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
93    &ipsendredirects, 0, "Enable sending IP redirects");
94
95int	ip_defttl = IPDEFTTL;
96SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
97    &ip_defttl, 0, "Maximum TTL on IP packets");
98
99static int	ip_keepfaith = 0;
100SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
101    &ip_keepfaith,	0,
102    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
103
104static int	ip_sendsourcequench = 0;
105SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
106    &ip_sendsourcequench, 0,
107    "Enable the transmission of source quench packets");
108
109int	ip_do_randomid = 0;
110SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
111    &ip_do_randomid, 0,
112    "Assign random ip_id values");
113
114/*
115 * XXX - Setting ip_checkinterface mostly implements the receive side of
116 * the Strong ES model described in RFC 1122, but since the routing table
117 * and transmit implementation do not implement the Strong ES model,
118 * setting this to 1 results in an odd hybrid.
119 *
120 * XXX - ip_checkinterface currently must be disabled if you use ipnat
121 * to translate the destination address to another local interface.
122 *
123 * XXX - ip_checkinterface must be disabled if you add IP aliases
124 * to the loopback interface instead of the interface where the
125 * packets for those addresses are received.
126 */
127static int	ip_checkinterface = 0;
128SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
129    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
130
131struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
132
133static struct	ifqueue ipintrq;
134static int	ipqmaxlen = IFQ_MAXLEN;
135
136extern	struct domain inetdomain;
137extern	struct protosw inetsw[];
138u_char	ip_protox[IPPROTO_MAX];
139struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
140struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
141u_long 	in_ifaddrhmask;				/* mask for hash table */
142
143SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
144    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
145SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
146    &ipintrq.ifq_drops, 0,
147    "Number of packets dropped from the IP input queue");
148
149struct ipstat ipstat;
150SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
151    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
152
153/*
154 * IP datagram reassembly.
155 */
156#define IPREASS_NHASH_LOG2      6
157#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
158#define IPREASS_HMASK           (IPREASS_NHASH - 1)
159#define IPREASS_HASH(x,y) \
160	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
161
162static uma_zone_t ipq_zone;
163static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
164static struct mtx ipqlock;
165
166#define	IPQ_LOCK()	mtx_lock(&ipqlock)
167#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
168#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
169#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
170
171static void	maxnipq_update(void);
172static void	ipq_zone_change(void *);
173
174static int	maxnipq;	/* Administrative limit on # reass queues. */
175static int	nipq = 0;	/* Total # of reass queues */
176SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
177    &nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
178
179static int	maxfragsperpacket;
180SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
181    &maxfragsperpacket, 0,
182    "Maximum number of IPv4 fragments allowed per packet");
183
184struct callout	ipport_tick_callout;
185
186#ifdef IPCTL_DEFMTU
187SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
188    &ip_mtu, 0, "Default MTU");
189#endif
190
191#ifdef IPSTEALTH
192int	ipstealth = 0;
193SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
194    &ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
195#endif
196
197/*
198 * ipfw_ether and ipfw_bridge hooks.
199 * XXX: Temporary until those are converted to pfil_hooks as well.
200 */
201ip_fw_chk_t *ip_fw_chk_ptr = NULL;
202ip_dn_io_t *ip_dn_io_ptr = NULL;
203int fw_one_pass = 1;
204
205static void	ip_freef(struct ipqhead *, struct ipq *);
206
207/*
208 * IP initialization: fill in IP protocol switch table.
209 * All protocols not implemented in kernel go to raw IP protocol handler.
210 */
211void
212ip_init(void)
213{
214	struct protosw *pr;
215	int i;
216
217	TAILQ_INIT(&in_ifaddrhead);
218	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
219	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
220	if (pr == NULL)
221		panic("ip_init: PF_INET not found");
222
223	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
224	for (i = 0; i < IPPROTO_MAX; i++)
225		ip_protox[i] = pr - inetsw;
226	/*
227	 * Cycle through IP protocols and put them into the appropriate place
228	 * in ip_protox[].
229	 */
230	for (pr = inetdomain.dom_protosw;
231	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
232		if (pr->pr_domain->dom_family == PF_INET &&
233		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
234			/* Be careful to only index valid IP protocols. */
235			if (pr->pr_protocol < IPPROTO_MAX)
236				ip_protox[pr->pr_protocol] = pr - inetsw;
237		}
238
239	/* Initialize packet filter hooks. */
240	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
241	inet_pfil_hook.ph_af = AF_INET;
242	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
243		printf("%s: WARNING: unable to register pfil hook, "
244			"error %d\n", __func__, i);
245
246	/* Initialize IP reassembly queue. */
247	IPQ_LOCK_INIT();
248	for (i = 0; i < IPREASS_NHASH; i++)
249	    TAILQ_INIT(&ipq[i]);
250	maxnipq = nmbclusters / 32;
251	maxfragsperpacket = 16;
252	ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
253	    NULL, UMA_ALIGN_PTR, 0);
254	maxnipq_update();
255
256	/* Start ipport_tick. */
257	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
258	ipport_tick(NULL);
259	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
260		SHUTDOWN_PRI_DEFAULT);
261	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
262		NULL, EVENTHANDLER_PRI_ANY);
263
264	/* Initialize various other remaining things. */
265	ip_id = time_second & 0xffff;
266	ipintrq.ifq_maxlen = ipqmaxlen;
267	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
268	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
269}
270
271void
272ip_fini(void *xtp)
273{
274
275	callout_stop(&ipport_tick_callout);
276}
277
278/*
279 * Ip input routine.  Checksum and byte swap header.  If fragmented
280 * try to reassemble.  Process options.  Pass to next level.
281 */
282void
283ip_input(struct mbuf *m)
284{
285	struct ip *ip = NULL;
286	struct in_ifaddr *ia = NULL;
287	struct ifaddr *ifa;
288	int    checkif, hlen = 0;
289	u_short sum;
290	int dchg = 0;				/* dest changed after fw */
291	struct in_addr odst;			/* original dst address */
292
293	M_ASSERTPKTHDR(m);
294
295	if (m->m_flags & M_FASTFWD_OURS) {
296		/*
297		 * Firewall or NAT changed destination to local.
298		 * We expect ip_len and ip_off to be in host byte order.
299		 */
300		m->m_flags &= ~M_FASTFWD_OURS;
301		/* Set up some basics that will be used later. */
302		ip = mtod(m, struct ip *);
303		hlen = ip->ip_hl << 2;
304		goto ours;
305	}
306
307	ipstat.ips_total++;
308
309	if (m->m_pkthdr.len < sizeof(struct ip))
310		goto tooshort;
311
312	if (m->m_len < sizeof (struct ip) &&
313	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
314		ipstat.ips_toosmall++;
315		return;
316	}
317	ip = mtod(m, struct ip *);
318
319	if (ip->ip_v != IPVERSION) {
320		ipstat.ips_badvers++;
321		goto bad;
322	}
323
324	hlen = ip->ip_hl << 2;
325	if (hlen < sizeof(struct ip)) {	/* minimum header length */
326		ipstat.ips_badhlen++;
327		goto bad;
328	}
329	if (hlen > m->m_len) {
330		if ((m = m_pullup(m, hlen)) == NULL) {
331			ipstat.ips_badhlen++;
332			return;
333		}
334		ip = mtod(m, struct ip *);
335	}
336
337	/* 127/8 must not appear on wire - RFC1122 */
338	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
339	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
340		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
341			ipstat.ips_badaddr++;
342			goto bad;
343		}
344	}
345
346	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
347		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
348	} else {
349		if (hlen == sizeof(struct ip)) {
350			sum = in_cksum_hdr(ip);
351		} else {
352			sum = in_cksum(m, hlen);
353		}
354	}
355	if (sum) {
356		ipstat.ips_badsum++;
357		goto bad;
358	}
359
360#ifdef ALTQ
361	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
362		/* packet is dropped by traffic conditioner */
363		return;
364#endif
365
366	/*
367	 * Convert fields to host representation.
368	 */
369	ip->ip_len = ntohs(ip->ip_len);
370	if (ip->ip_len < hlen) {
371		ipstat.ips_badlen++;
372		goto bad;
373	}
374	ip->ip_off = ntohs(ip->ip_off);
375
376	/*
377	 * Check that the amount of data in the buffers
378	 * is as at least much as the IP header would have us expect.
379	 * Trim mbufs if longer than we expect.
380	 * Drop packet if shorter than we expect.
381	 */
382	if (m->m_pkthdr.len < ip->ip_len) {
383tooshort:
384		ipstat.ips_tooshort++;
385		goto bad;
386	}
387	if (m->m_pkthdr.len > ip->ip_len) {
388		if (m->m_len == m->m_pkthdr.len) {
389			m->m_len = ip->ip_len;
390			m->m_pkthdr.len = ip->ip_len;
391		} else
392			m_adj(m, ip->ip_len - m->m_pkthdr.len);
393	}
394#ifdef FAST_IPSEC
395	/*
396	 * Bypass packet filtering for packets from a tunnel (gif).
397	 */
398	if (ip_ipsec_filtergif(m))
399		goto passin;
400#endif /* FAST_IPSEC */
401
402	/*
403	 * Run through list of hooks for input packets.
404	 *
405	 * NB: Beware of the destination address changing (e.g.
406	 *     by NAT rewriting).  When this happens, tell
407	 *     ip_forward to do the right thing.
408	 */
409
410	/* Jump over all PFIL processing if hooks are not active. */
411	if (!PFIL_HOOKED(&inet_pfil_hook))
412		goto passin;
413
414	odst = ip->ip_dst;
415	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
416	    PFIL_IN, NULL) != 0)
417		return;
418	if (m == NULL)			/* consumed by filter */
419		return;
420
421	ip = mtod(m, struct ip *);
422	dchg = (odst.s_addr != ip->ip_dst.s_addr);
423
424#ifdef IPFIREWALL_FORWARD
425	if (m->m_flags & M_FASTFWD_OURS) {
426		m->m_flags &= ~M_FASTFWD_OURS;
427		goto ours;
428	}
429	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
430		/*
431		 * Directly ship on the packet.  This allows to forward packets
432		 * that were destined for us to some other directly connected
433		 * host.
434		 */
435		ip_forward(m, dchg);
436		return;
437	}
438#endif /* IPFIREWALL_FORWARD */
439
440passin:
441	/*
442	 * Process options and, if not destined for us,
443	 * ship it on.  ip_dooptions returns 1 when an
444	 * error was detected (causing an icmp message
445	 * to be sent and the original packet to be freed).
446	 */
447	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
448		return;
449
450        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
451         * matter if it is destined to another node, or whether it is
452         * a multicast one, RSVP wants it! and prevents it from being forwarded
453         * anywhere else. Also checks if the rsvp daemon is running before
454	 * grabbing the packet.
455         */
456	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
457		goto ours;
458
459	/*
460	 * Check our list of addresses, to see if the packet is for us.
461	 * If we don't have any addresses, assume any unicast packet
462	 * we receive might be for us (and let the upper layers deal
463	 * with it).
464	 */
465	if (TAILQ_EMPTY(&in_ifaddrhead) &&
466	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
467		goto ours;
468
469	/*
470	 * Enable a consistency check between the destination address
471	 * and the arrival interface for a unicast packet (the RFC 1122
472	 * strong ES model) if IP forwarding is disabled and the packet
473	 * is not locally generated and the packet is not subject to
474	 * 'ipfw fwd'.
475	 *
476	 * XXX - Checking also should be disabled if the destination
477	 * address is ipnat'ed to a different interface.
478	 *
479	 * XXX - Checking is incompatible with IP aliases added
480	 * to the loopback interface instead of the interface where
481	 * the packets are received.
482	 *
483	 * XXX - This is the case for carp vhost IPs as well so we
484	 * insert a workaround. If the packet got here, we already
485	 * checked with carp_iamatch() and carp_forus().
486	 */
487	checkif = ip_checkinterface && (ipforwarding == 0) &&
488	    m->m_pkthdr.rcvif != NULL &&
489	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
490#ifdef DEV_CARP
491	    !m->m_pkthdr.rcvif->if_carp &&
492#endif
493	    (dchg == 0);
494
495	/*
496	 * Check for exact addresses in the hash bucket.
497	 */
498	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
499		/*
500		 * If the address matches, verify that the packet
501		 * arrived via the correct interface if checking is
502		 * enabled.
503		 */
504		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
505		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
506			goto ours;
507	}
508	/*
509	 * Check for broadcast addresses.
510	 *
511	 * Only accept broadcast packets that arrive via the matching
512	 * interface.  Reception of forwarded directed broadcasts would
513	 * be handled via ip_forward() and ether_output() with the loopback
514	 * into the stack for SIMPLEX interfaces handled by ether_output().
515	 */
516	if (m->m_pkthdr.rcvif != NULL &&
517	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
518	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
519			if (ifa->ifa_addr->sa_family != AF_INET)
520				continue;
521			ia = ifatoia(ifa);
522			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
523			    ip->ip_dst.s_addr)
524				goto ours;
525			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
526				goto ours;
527#ifdef BOOTP_COMPAT
528			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
529				goto ours;
530#endif
531		}
532	}
533	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
534	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
535		ipstat.ips_cantforward++;
536		m_freem(m);
537		return;
538	}
539	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
540		struct in_multi *inm;
541		if (ip_mrouter) {
542			/*
543			 * If we are acting as a multicast router, all
544			 * incoming multicast packets are passed to the
545			 * kernel-level multicast forwarding function.
546			 * The packet is returned (relatively) intact; if
547			 * ip_mforward() returns a non-zero value, the packet
548			 * must be discarded, else it may be accepted below.
549			 */
550			if (ip_mforward &&
551			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
552				ipstat.ips_cantforward++;
553				m_freem(m);
554				return;
555			}
556
557			/*
558			 * The process-level routing daemon needs to receive
559			 * all multicast IGMP packets, whether or not this
560			 * host belongs to their destination groups.
561			 */
562			if (ip->ip_p == IPPROTO_IGMP)
563				goto ours;
564			ipstat.ips_forward++;
565		}
566		/*
567		 * See if we belong to the destination multicast group on the
568		 * arrival interface.
569		 */
570		IN_MULTI_LOCK();
571		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
572		IN_MULTI_UNLOCK();
573		if (inm == NULL) {
574			ipstat.ips_notmember++;
575			m_freem(m);
576			return;
577		}
578		goto ours;
579	}
580	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
581		goto ours;
582	if (ip->ip_dst.s_addr == INADDR_ANY)
583		goto ours;
584
585	/*
586	 * FAITH(Firewall Aided Internet Translator)
587	 */
588	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
589		if (ip_keepfaith) {
590			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
591				goto ours;
592		}
593		m_freem(m);
594		return;
595	}
596
597	/*
598	 * Not for us; forward if possible and desirable.
599	 */
600	if (ipforwarding == 0) {
601		ipstat.ips_cantforward++;
602		m_freem(m);
603	} else {
604#ifdef FAST_IPSEC
605		if (ip_ipsec_fwd(m))
606			goto bad;
607#endif /* FAST_IPSEC */
608		ip_forward(m, dchg);
609	}
610	return;
611
612ours:
613#ifdef IPSTEALTH
614	/*
615	 * IPSTEALTH: Process non-routing options only
616	 * if the packet is destined for us.
617	 */
618	if (ipstealth && hlen > sizeof (struct ip) &&
619	    ip_dooptions(m, 1))
620		return;
621#endif /* IPSTEALTH */
622
623	/* Count the packet in the ip address stats */
624	if (ia != NULL) {
625		ia->ia_ifa.if_ipackets++;
626		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
627	}
628
629	/*
630	 * Attempt reassembly; if it succeeds, proceed.
631	 * ip_reass() will return a different mbuf.
632	 */
633	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
634		m = ip_reass(m);
635		if (m == NULL)
636			return;
637		ip = mtod(m, struct ip *);
638		/* Get the header length of the reassembled packet */
639		hlen = ip->ip_hl << 2;
640	}
641
642	/*
643	 * Further protocols expect the packet length to be w/o the
644	 * IP header.
645	 */
646	ip->ip_len -= hlen;
647
648#ifdef FAST_IPSEC
649	/*
650	 * enforce IPsec policy checking if we are seeing last header.
651	 * note that we do not visit this with protocols with pcb layer
652	 * code - like udp/tcp/raw ip.
653	 */
654	if (ip_ipsec_input(m))
655		goto bad;
656#endif /* FAST_IPSEC */
657
658	/*
659	 * Switch out to protocol's input routine.
660	 */
661	ipstat.ips_delivered++;
662
663	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
664	return;
665bad:
666	m_freem(m);
667}
668
669/*
670 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
671 * max has slightly different semantics than the sysctl, for historical
672 * reasons.
673 */
674static void
675maxnipq_update(void)
676{
677
678	/*
679	 * -1 for unlimited allocation.
680	 */
681	if (maxnipq < 0)
682		uma_zone_set_max(ipq_zone, 0);
683	/*
684	 * Positive number for specific bound.
685	 */
686	if (maxnipq > 0)
687		uma_zone_set_max(ipq_zone, maxnipq);
688	/*
689	 * Zero specifies no further fragment queue allocation -- set the
690	 * bound very low, but rely on implementation elsewhere to actually
691	 * prevent allocation and reclaim current queues.
692	 */
693	if (maxnipq == 0)
694		uma_zone_set_max(ipq_zone, 1);
695}
696
697static void
698ipq_zone_change(void *tag)
699{
700
701	if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
702		maxnipq = nmbclusters / 32;
703		maxnipq_update();
704	}
705}
706
707static int
708sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
709{
710	int error, i;
711
712	i = maxnipq;
713	error = sysctl_handle_int(oidp, &i, 0, req);
714	if (error || !req->newptr)
715		return (error);
716
717	/*
718	 * XXXRW: Might be a good idea to sanity check the argument and place
719	 * an extreme upper bound.
720	 */
721	if (i < -1)
722		return (EINVAL);
723	maxnipq = i;
724	maxnipq_update();
725	return (0);
726}
727
728SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
729    NULL, 0, sysctl_maxnipq, "I",
730    "Maximum number of IPv4 fragment reassembly queue entries");
731
732/*
733 * Take incoming datagram fragment and try to reassemble it into
734 * whole datagram.  If the argument is the first fragment or one
735 * in between the function will return NULL and store the mbuf
736 * in the fragment chain.  If the argument is the last fragment
737 * the packet will be reassembled and the pointer to the new
738 * mbuf returned for further processing.  Only m_tags attached
739 * to the first packet/fragment are preserved.
740 * The IP header is *NOT* adjusted out of iplen.
741 */
742struct mbuf *
743ip_reass(struct mbuf *m)
744{
745	struct ip *ip;
746	struct mbuf *p, *q, *nq, *t;
747	struct ipq *fp = NULL;
748	struct ipqhead *head;
749	int i, hlen, next;
750	u_int8_t ecn, ecn0;
751	u_short hash;
752
753	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
754	if (maxnipq == 0 || maxfragsperpacket == 0) {
755		ipstat.ips_fragments++;
756		ipstat.ips_fragdropped++;
757		m_freem(m);
758		return (NULL);
759	}
760
761	ip = mtod(m, struct ip *);
762	hlen = ip->ip_hl << 2;
763
764	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
765	head = &ipq[hash];
766	IPQ_LOCK();
767
768	/*
769	 * Look for queue of fragments
770	 * of this datagram.
771	 */
772	TAILQ_FOREACH(fp, head, ipq_list)
773		if (ip->ip_id == fp->ipq_id &&
774		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
775		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
776#ifdef MAC
777		    mac_fragment_match(m, fp) &&
778#endif
779		    ip->ip_p == fp->ipq_p)
780			goto found;
781
782	fp = NULL;
783
784	/*
785	 * Attempt to trim the number of allocated fragment queues if it
786	 * exceeds the administrative limit.
787	 */
788	if ((nipq > maxnipq) && (maxnipq > 0)) {
789		/*
790		 * drop something from the tail of the current queue
791		 * before proceeding further
792		 */
793		struct ipq *q = TAILQ_LAST(head, ipqhead);
794		if (q == NULL) {   /* gak */
795			for (i = 0; i < IPREASS_NHASH; i++) {
796				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
797				if (r) {
798					ipstat.ips_fragtimeout += r->ipq_nfrags;
799					ip_freef(&ipq[i], r);
800					break;
801				}
802			}
803		} else {
804			ipstat.ips_fragtimeout += q->ipq_nfrags;
805			ip_freef(head, q);
806		}
807	}
808
809found:
810	/*
811	 * Adjust ip_len to not reflect header,
812	 * convert offset of this to bytes.
813	 */
814	ip->ip_len -= hlen;
815	if (ip->ip_off & IP_MF) {
816		/*
817		 * Make sure that fragments have a data length
818		 * that's a non-zero multiple of 8 bytes.
819		 */
820		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
821			ipstat.ips_toosmall++; /* XXX */
822			goto dropfrag;
823		}
824		m->m_flags |= M_FRAG;
825	} else
826		m->m_flags &= ~M_FRAG;
827	ip->ip_off <<= 3;
828
829
830	/*
831	 * Attempt reassembly; if it succeeds, proceed.
832	 * ip_reass() will return a different mbuf.
833	 */
834	ipstat.ips_fragments++;
835	m->m_pkthdr.header = ip;
836
837	/* Previous ip_reass() started here. */
838	/*
839	 * Presence of header sizes in mbufs
840	 * would confuse code below.
841	 */
842	m->m_data += hlen;
843	m->m_len -= hlen;
844
845	/*
846	 * If first fragment to arrive, create a reassembly queue.
847	 */
848	if (fp == NULL) {
849		fp = uma_zalloc(ipq_zone, M_NOWAIT);
850		if (fp == NULL)
851			goto dropfrag;
852#ifdef MAC
853		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
854			uma_zfree(ipq_zone, fp);
855			fp = NULL;
856			goto dropfrag;
857		}
858		mac_create_ipq(m, fp);
859#endif
860		TAILQ_INSERT_HEAD(head, fp, ipq_list);
861		nipq++;
862		fp->ipq_nfrags = 1;
863		fp->ipq_ttl = IPFRAGTTL;
864		fp->ipq_p = ip->ip_p;
865		fp->ipq_id = ip->ip_id;
866		fp->ipq_src = ip->ip_src;
867		fp->ipq_dst = ip->ip_dst;
868		fp->ipq_frags = m;
869		m->m_nextpkt = NULL;
870		goto done;
871	} else {
872		fp->ipq_nfrags++;
873#ifdef MAC
874		mac_update_ipq(m, fp);
875#endif
876	}
877
878#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
879
880	/*
881	 * Handle ECN by comparing this segment with the first one;
882	 * if CE is set, do not lose CE.
883	 * drop if CE and not-ECT are mixed for the same packet.
884	 */
885	ecn = ip->ip_tos & IPTOS_ECN_MASK;
886	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
887	if (ecn == IPTOS_ECN_CE) {
888		if (ecn0 == IPTOS_ECN_NOTECT)
889			goto dropfrag;
890		if (ecn0 != IPTOS_ECN_CE)
891			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
892	}
893	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
894		goto dropfrag;
895
896	/*
897	 * Find a segment which begins after this one does.
898	 */
899	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
900		if (GETIP(q)->ip_off > ip->ip_off)
901			break;
902
903	/*
904	 * If there is a preceding segment, it may provide some of
905	 * our data already.  If so, drop the data from the incoming
906	 * segment.  If it provides all of our data, drop us, otherwise
907	 * stick new segment in the proper place.
908	 *
909	 * If some of the data is dropped from the the preceding
910	 * segment, then it's checksum is invalidated.
911	 */
912	if (p) {
913		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
914		if (i > 0) {
915			if (i >= ip->ip_len)
916				goto dropfrag;
917			m_adj(m, i);
918			m->m_pkthdr.csum_flags = 0;
919			ip->ip_off += i;
920			ip->ip_len -= i;
921		}
922		m->m_nextpkt = p->m_nextpkt;
923		p->m_nextpkt = m;
924	} else {
925		m->m_nextpkt = fp->ipq_frags;
926		fp->ipq_frags = m;
927	}
928
929	/*
930	 * While we overlap succeeding segments trim them or,
931	 * if they are completely covered, dequeue them.
932	 */
933	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
934	     q = nq) {
935		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
936		if (i < GETIP(q)->ip_len) {
937			GETIP(q)->ip_len -= i;
938			GETIP(q)->ip_off += i;
939			m_adj(q, i);
940			q->m_pkthdr.csum_flags = 0;
941			break;
942		}
943		nq = q->m_nextpkt;
944		m->m_nextpkt = nq;
945		ipstat.ips_fragdropped++;
946		fp->ipq_nfrags--;
947		m_freem(q);
948	}
949
950	/*
951	 * Check for complete reassembly and perform frag per packet
952	 * limiting.
953	 *
954	 * Frag limiting is performed here so that the nth frag has
955	 * a chance to complete the packet before we drop the packet.
956	 * As a result, n+1 frags are actually allowed per packet, but
957	 * only n will ever be stored. (n = maxfragsperpacket.)
958	 *
959	 */
960	next = 0;
961	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
962		if (GETIP(q)->ip_off != next) {
963			if (fp->ipq_nfrags > maxfragsperpacket) {
964				ipstat.ips_fragdropped += fp->ipq_nfrags;
965				ip_freef(head, fp);
966			}
967			goto done;
968		}
969		next += GETIP(q)->ip_len;
970	}
971	/* Make sure the last packet didn't have the IP_MF flag */
972	if (p->m_flags & M_FRAG) {
973		if (fp->ipq_nfrags > maxfragsperpacket) {
974			ipstat.ips_fragdropped += fp->ipq_nfrags;
975			ip_freef(head, fp);
976		}
977		goto done;
978	}
979
980	/*
981	 * Reassembly is complete.  Make sure the packet is a sane size.
982	 */
983	q = fp->ipq_frags;
984	ip = GETIP(q);
985	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
986		ipstat.ips_toolong++;
987		ipstat.ips_fragdropped += fp->ipq_nfrags;
988		ip_freef(head, fp);
989		goto done;
990	}
991
992	/*
993	 * Concatenate fragments.
994	 */
995	m = q;
996	t = m->m_next;
997	m->m_next = NULL;
998	m_cat(m, t);
999	nq = q->m_nextpkt;
1000	q->m_nextpkt = NULL;
1001	for (q = nq; q != NULL; q = nq) {
1002		nq = q->m_nextpkt;
1003		q->m_nextpkt = NULL;
1004		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1005		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1006		m_cat(m, q);
1007	}
1008	/*
1009	 * In order to do checksumming faster we do 'end-around carry' here
1010	 * (and not in for{} loop), though it implies we are not going to
1011	 * reassemble more than 64k fragments.
1012	 */
1013	m->m_pkthdr.csum_data =
1014	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1015#ifdef MAC
1016	mac_create_datagram_from_ipq(fp, m);
1017	mac_destroy_ipq(fp);
1018#endif
1019
1020	/*
1021	 * Create header for new ip packet by modifying header of first
1022	 * packet;  dequeue and discard fragment reassembly header.
1023	 * Make header visible.
1024	 */
1025	ip->ip_len = (ip->ip_hl << 2) + next;
1026	ip->ip_src = fp->ipq_src;
1027	ip->ip_dst = fp->ipq_dst;
1028	TAILQ_REMOVE(head, fp, ipq_list);
1029	nipq--;
1030	uma_zfree(ipq_zone, fp);
1031	m->m_len += (ip->ip_hl << 2);
1032	m->m_data -= (ip->ip_hl << 2);
1033	/* some debugging cruft by sklower, below, will go away soon */
1034	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1035		m_fixhdr(m);
1036	ipstat.ips_reassembled++;
1037	IPQ_UNLOCK();
1038	return (m);
1039
1040dropfrag:
1041	ipstat.ips_fragdropped++;
1042	if (fp != NULL)
1043		fp->ipq_nfrags--;
1044	m_freem(m);
1045done:
1046	IPQ_UNLOCK();
1047	return (NULL);
1048
1049#undef GETIP
1050}
1051
1052/*
1053 * Free a fragment reassembly header and all
1054 * associated datagrams.
1055 */
1056static void
1057ip_freef(struct ipqhead *fhp, struct ipq *fp)
1058{
1059	struct mbuf *q;
1060
1061	IPQ_LOCK_ASSERT();
1062
1063	while (fp->ipq_frags) {
1064		q = fp->ipq_frags;
1065		fp->ipq_frags = q->m_nextpkt;
1066		m_freem(q);
1067	}
1068	TAILQ_REMOVE(fhp, fp, ipq_list);
1069	uma_zfree(ipq_zone, fp);
1070	nipq--;
1071}
1072
1073/*
1074 * IP timer processing;
1075 * if a timer expires on a reassembly
1076 * queue, discard it.
1077 */
1078void
1079ip_slowtimo(void)
1080{
1081	struct ipq *fp;
1082	int i;
1083
1084	IPQ_LOCK();
1085	for (i = 0; i < IPREASS_NHASH; i++) {
1086		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1087			struct ipq *fpp;
1088
1089			fpp = fp;
1090			fp = TAILQ_NEXT(fp, ipq_list);
1091			if(--fpp->ipq_ttl == 0) {
1092				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1093				ip_freef(&ipq[i], fpp);
1094			}
1095		}
1096	}
1097	/*
1098	 * If we are over the maximum number of fragments
1099	 * (due to the limit being lowered), drain off
1100	 * enough to get down to the new limit.
1101	 */
1102	if (maxnipq >= 0 && nipq > maxnipq) {
1103		for (i = 0; i < IPREASS_NHASH; i++) {
1104			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1105				ipstat.ips_fragdropped +=
1106				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1107				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1108			}
1109		}
1110	}
1111	IPQ_UNLOCK();
1112}
1113
1114/*
1115 * Drain off all datagram fragments.
1116 */
1117void
1118ip_drain(void)
1119{
1120	int     i;
1121
1122	IPQ_LOCK();
1123	for (i = 0; i < IPREASS_NHASH; i++) {
1124		while(!TAILQ_EMPTY(&ipq[i])) {
1125			ipstat.ips_fragdropped +=
1126			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1127			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1128		}
1129	}
1130	IPQ_UNLOCK();
1131	in_rtqdrain();
1132}
1133
1134/*
1135 * The protocol to be inserted into ip_protox[] must be already registered
1136 * in inetsw[], either statically or through pf_proto_register().
1137 */
1138int
1139ipproto_register(u_char ipproto)
1140{
1141	struct protosw *pr;
1142
1143	/* Sanity checks. */
1144	if (ipproto == 0)
1145		return (EPROTONOSUPPORT);
1146
1147	/*
1148	 * The protocol slot must not be occupied by another protocol
1149	 * already.  An index pointing to IPPROTO_RAW is unused.
1150	 */
1151	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1152	if (pr == NULL)
1153		return (EPFNOSUPPORT);
1154	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1155		return (EEXIST);
1156
1157	/* Find the protocol position in inetsw[] and set the index. */
1158	for (pr = inetdomain.dom_protosw;
1159	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1160		if (pr->pr_domain->dom_family == PF_INET &&
1161		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1162			/* Be careful to only index valid IP protocols. */
1163			if (pr->pr_protocol < IPPROTO_MAX) {
1164				ip_protox[pr->pr_protocol] = pr - inetsw;
1165				return (0);
1166			} else
1167				return (EINVAL);
1168		}
1169	}
1170	return (EPROTONOSUPPORT);
1171}
1172
1173int
1174ipproto_unregister(u_char ipproto)
1175{
1176	struct protosw *pr;
1177
1178	/* Sanity checks. */
1179	if (ipproto == 0)
1180		return (EPROTONOSUPPORT);
1181
1182	/* Check if the protocol was indeed registered. */
1183	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1184	if (pr == NULL)
1185		return (EPFNOSUPPORT);
1186	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1187		return (ENOENT);
1188
1189	/* Reset the protocol slot to IPPROTO_RAW. */
1190	ip_protox[ipproto] = pr - inetsw;
1191	return (0);
1192}
1193
1194/*
1195 * Given address of next destination (final or next hop),
1196 * return internet address info of interface to be used to get there.
1197 */
1198struct in_ifaddr *
1199ip_rtaddr(struct in_addr dst)
1200{
1201	struct route sro;
1202	struct sockaddr_in *sin;
1203	struct in_ifaddr *ifa;
1204
1205	bzero(&sro, sizeof(sro));
1206	sin = (struct sockaddr_in *)&sro.ro_dst;
1207	sin->sin_family = AF_INET;
1208	sin->sin_len = sizeof(*sin);
1209	sin->sin_addr = dst;
1210	rtalloc_ign(&sro, RTF_CLONING);
1211
1212	if (sro.ro_rt == NULL)
1213		return (NULL);
1214
1215	ifa = ifatoia(sro.ro_rt->rt_ifa);
1216	RTFREE(sro.ro_rt);
1217	return (ifa);
1218}
1219
1220u_char inetctlerrmap[PRC_NCMDS] = {
1221	0,		0,		0,		0,
1222	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1223	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1224	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1225	0,		0,		EHOSTUNREACH,	0,
1226	ENOPROTOOPT,	ECONNREFUSED
1227};
1228
1229/*
1230 * Forward a packet.  If some error occurs return the sender
1231 * an icmp packet.  Note we can't always generate a meaningful
1232 * icmp message because icmp doesn't have a large enough repertoire
1233 * of codes and types.
1234 *
1235 * If not forwarding, just drop the packet.  This could be confusing
1236 * if ipforwarding was zero but some routing protocol was advancing
1237 * us as a gateway to somewhere.  However, we must let the routing
1238 * protocol deal with that.
1239 *
1240 * The srcrt parameter indicates whether the packet is being forwarded
1241 * via a source route.
1242 */
1243void
1244ip_forward(struct mbuf *m, int srcrt)
1245{
1246	struct ip *ip = mtod(m, struct ip *);
1247	struct in_ifaddr *ia = NULL;
1248	struct mbuf *mcopy;
1249	struct in_addr dest;
1250	int error, type = 0, code = 0, mtu = 0;
1251
1252	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1253		ipstat.ips_cantforward++;
1254		m_freem(m);
1255		return;
1256	}
1257#ifdef IPSTEALTH
1258	if (!ipstealth) {
1259#endif
1260		if (ip->ip_ttl <= IPTTLDEC) {
1261			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1262			    0, 0);
1263			return;
1264		}
1265#ifdef IPSTEALTH
1266	}
1267#endif
1268
1269	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1270		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1271		return;
1272	}
1273
1274	/*
1275	 * Save the IP header and at most 8 bytes of the payload,
1276	 * in case we need to generate an ICMP message to the src.
1277	 *
1278	 * XXX this can be optimized a lot by saving the data in a local
1279	 * buffer on the stack (72 bytes at most), and only allocating the
1280	 * mbuf if really necessary. The vast majority of the packets
1281	 * are forwarded without having to send an ICMP back (either
1282	 * because unnecessary, or because rate limited), so we are
1283	 * really we are wasting a lot of work here.
1284	 *
1285	 * We don't use m_copy() because it might return a reference
1286	 * to a shared cluster. Both this function and ip_output()
1287	 * assume exclusive access to the IP header in `m', so any
1288	 * data in a cluster may change before we reach icmp_error().
1289	 */
1290	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1291	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1292		/*
1293		 * It's probably ok if the pkthdr dup fails (because
1294		 * the deep copy of the tag chain failed), but for now
1295		 * be conservative and just discard the copy since
1296		 * code below may some day want the tags.
1297		 */
1298		m_free(mcopy);
1299		mcopy = NULL;
1300	}
1301	if (mcopy != NULL) {
1302		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1303		mcopy->m_pkthdr.len = mcopy->m_len;
1304		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1305	}
1306
1307#ifdef IPSTEALTH
1308	if (!ipstealth) {
1309#endif
1310		ip->ip_ttl -= IPTTLDEC;
1311#ifdef IPSTEALTH
1312	}
1313#endif
1314
1315	/*
1316	 * If forwarding packet using same interface that it came in on,
1317	 * perhaps should send a redirect to sender to shortcut a hop.
1318	 * Only send redirect if source is sending directly to us,
1319	 * and if packet was not source routed (or has any options).
1320	 * Also, don't send redirect if forwarding using a default route
1321	 * or a route modified by a redirect.
1322	 */
1323	dest.s_addr = 0;
1324	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1325		struct sockaddr_in *sin;
1326		struct route ro;
1327		struct rtentry *rt;
1328
1329		bzero(&ro, sizeof(ro));
1330		sin = (struct sockaddr_in *)&ro.ro_dst;
1331		sin->sin_family = AF_INET;
1332		sin->sin_len = sizeof(*sin);
1333		sin->sin_addr = ip->ip_dst;
1334		rtalloc_ign(&ro, RTF_CLONING);
1335
1336		rt = ro.ro_rt;
1337
1338		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1339		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1340#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1341			u_long src = ntohl(ip->ip_src.s_addr);
1342
1343			if (RTA(rt) &&
1344			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1345				if (rt->rt_flags & RTF_GATEWAY)
1346					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1347				else
1348					dest.s_addr = ip->ip_dst.s_addr;
1349				/* Router requirements says to only send host redirects */
1350				type = ICMP_REDIRECT;
1351				code = ICMP_REDIRECT_HOST;
1352			}
1353		}
1354		if (rt)
1355			RTFREE(rt);
1356	}
1357
1358	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1359	if (error)
1360		ipstat.ips_cantforward++;
1361	else {
1362		ipstat.ips_forward++;
1363		if (type)
1364			ipstat.ips_redirectsent++;
1365		else {
1366			if (mcopy)
1367				m_freem(mcopy);
1368			return;
1369		}
1370	}
1371	if (mcopy == NULL)
1372		return;
1373
1374	switch (error) {
1375
1376	case 0:				/* forwarded, but need redirect */
1377		/* type, code set above */
1378		break;
1379
1380	case ENETUNREACH:		/* shouldn't happen, checked above */
1381	case EHOSTUNREACH:
1382	case ENETDOWN:
1383	case EHOSTDOWN:
1384	default:
1385		type = ICMP_UNREACH;
1386		code = ICMP_UNREACH_HOST;
1387		break;
1388
1389	case EMSGSIZE:
1390		type = ICMP_UNREACH;
1391		code = ICMP_UNREACH_NEEDFRAG;
1392
1393#ifdef FAST_IPSEC
1394		mtu = ip_ipsec_mtu(m);
1395#endif /* FAST_IPSEC */
1396		/*
1397		 * If the MTU wasn't set before use the interface mtu or
1398		 * fall back to the next smaller mtu step compared to the
1399		 * current packet size.
1400		 */
1401		if (mtu == 0) {
1402			if (ia != NULL)
1403				mtu = ia->ia_ifp->if_mtu;
1404			else
1405				mtu = ip_next_mtu(ip->ip_len, 0);
1406		}
1407		ipstat.ips_cantfrag++;
1408		break;
1409
1410	case ENOBUFS:
1411		/*
1412		 * A router should not generate ICMP_SOURCEQUENCH as
1413		 * required in RFC1812 Requirements for IP Version 4 Routers.
1414		 * Source quench could be a big problem under DoS attacks,
1415		 * or if the underlying interface is rate-limited.
1416		 * Those who need source quench packets may re-enable them
1417		 * via the net.inet.ip.sendsourcequench sysctl.
1418		 */
1419		if (ip_sendsourcequench == 0) {
1420			m_freem(mcopy);
1421			return;
1422		} else {
1423			type = ICMP_SOURCEQUENCH;
1424			code = 0;
1425		}
1426		break;
1427
1428	case EACCES:			/* ipfw denied packet */
1429		m_freem(mcopy);
1430		return;
1431	}
1432	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1433}
1434
1435void
1436ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1437    struct mbuf *m)
1438{
1439	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1440		struct bintime bt;
1441
1442		bintime(&bt);
1443		if (inp->inp_socket->so_options & SO_BINTIME) {
1444			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1445			SCM_BINTIME, SOL_SOCKET);
1446			if (*mp)
1447				mp = &(*mp)->m_next;
1448		}
1449		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1450			struct timeval tv;
1451
1452			bintime2timeval(&bt, &tv);
1453			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1454				SCM_TIMESTAMP, SOL_SOCKET);
1455			if (*mp)
1456				mp = &(*mp)->m_next;
1457		}
1458	}
1459	if (inp->inp_flags & INP_RECVDSTADDR) {
1460		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1461		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1462		if (*mp)
1463			mp = &(*mp)->m_next;
1464	}
1465	if (inp->inp_flags & INP_RECVTTL) {
1466		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1467		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1468		if (*mp)
1469			mp = &(*mp)->m_next;
1470	}
1471#ifdef notyet
1472	/* XXX
1473	 * Moving these out of udp_input() made them even more broken
1474	 * than they already were.
1475	 */
1476	/* options were tossed already */
1477	if (inp->inp_flags & INP_RECVOPTS) {
1478		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1479		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1480		if (*mp)
1481			mp = &(*mp)->m_next;
1482	}
1483	/* ip_srcroute doesn't do what we want here, need to fix */
1484	if (inp->inp_flags & INP_RECVRETOPTS) {
1485		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1486		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1487		if (*mp)
1488			mp = &(*mp)->m_next;
1489	}
1490#endif
1491	if (inp->inp_flags & INP_RECVIF) {
1492		struct ifnet *ifp;
1493		struct sdlbuf {
1494			struct sockaddr_dl sdl;
1495			u_char	pad[32];
1496		} sdlbuf;
1497		struct sockaddr_dl *sdp;
1498		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1499
1500		if (((ifp = m->m_pkthdr.rcvif))
1501		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1502			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1503			/*
1504			 * Change our mind and don't try copy.
1505			 */
1506			if ((sdp->sdl_family != AF_LINK)
1507			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1508				goto makedummy;
1509			}
1510			bcopy(sdp, sdl2, sdp->sdl_len);
1511		} else {
1512makedummy:
1513			sdl2->sdl_len
1514				= offsetof(struct sockaddr_dl, sdl_data[0]);
1515			sdl2->sdl_family = AF_LINK;
1516			sdl2->sdl_index = 0;
1517			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1518		}
1519		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1520			IP_RECVIF, IPPROTO_IP);
1521		if (*mp)
1522			mp = &(*mp)->m_next;
1523	}
1524}
1525
1526/*
1527 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1528 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1529 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1530 * compiled.
1531 */
1532static int ip_rsvp_on;
1533struct socket *ip_rsvpd;
1534int
1535ip_rsvp_init(struct socket *so)
1536{
1537	if (so->so_type != SOCK_RAW ||
1538	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1539		return EOPNOTSUPP;
1540
1541	if (ip_rsvpd != NULL)
1542		return EADDRINUSE;
1543
1544	ip_rsvpd = so;
1545	/*
1546	 * This may seem silly, but we need to be sure we don't over-increment
1547	 * the RSVP counter, in case something slips up.
1548	 */
1549	if (!ip_rsvp_on) {
1550		ip_rsvp_on = 1;
1551		rsvp_on++;
1552	}
1553
1554	return 0;
1555}
1556
1557int
1558ip_rsvp_done(void)
1559{
1560	ip_rsvpd = NULL;
1561	/*
1562	 * This may seem silly, but we need to be sure we don't over-decrement
1563	 * the RSVP counter, in case something slips up.
1564	 */
1565	if (ip_rsvp_on) {
1566		ip_rsvp_on = 0;
1567		rsvp_on--;
1568	}
1569	return 0;
1570}
1571
1572void
1573rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1574{
1575	if (rsvp_input_p) { /* call the real one if loaded */
1576		rsvp_input_p(m, off);
1577		return;
1578	}
1579
1580	/* Can still get packets with rsvp_on = 0 if there is a local member
1581	 * of the group to which the RSVP packet is addressed.  But in this
1582	 * case we want to throw the packet away.
1583	 */
1584
1585	if (!rsvp_on) {
1586		m_freem(m);
1587		return;
1588	}
1589
1590	if (ip_rsvpd != NULL) {
1591		rip_input(m, off);
1592		return;
1593	}
1594	/* Drop the packet */
1595	m_freem(m);
1596}
1597