ip_reass.c revision 155179
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 155179 2006-02-01 13:55:03Z andre $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipstealth.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_carp.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/mac.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/domain.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/time.h>
50#include <sys/kernel.h>
51#include <sys/syslog.h>
52#include <sys/sysctl.h>
53
54#include <net/pfil.h>
55#include <net/if.h>
56#include <net/if_types.h>
57#include <net/if_var.h>
58#include <net/if_dl.h>
59#include <net/route.h>
60#include <net/netisr.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/in_var.h>
65#include <netinet/ip.h>
66#include <netinet/in_pcb.h>
67#include <netinet/ip_var.h>
68#include <netinet/ip_icmp.h>
69#include <netinet/ip_options.h>
70#include <machine/in_cksum.h>
71#ifdef DEV_CARP
72#include <netinet/ip_carp.h>
73#endif
74#if defined(IPSEC) || defined(FAST_IPSEC)
75#include <netinet/ip_ipsec.h>
76#endif /* IPSEC */
77
78#include <sys/socketvar.h>
79
80/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
81#include <netinet/ip_fw.h>
82#include <netinet/ip_dummynet.h>
83
84int rsvp_on = 0;
85
86int	ipforwarding = 0;
87SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
88    &ipforwarding, 0, "Enable IP forwarding between interfaces");
89
90static int	ipsendredirects = 1; /* XXX */
91SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
92    &ipsendredirects, 0, "Enable sending IP redirects");
93
94int	ip_defttl = IPDEFTTL;
95SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
96    &ip_defttl, 0, "Maximum TTL on IP packets");
97
98static int	ip_keepfaith = 0;
99SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
100	&ip_keepfaith,	0,
101	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
102
103static int	ip_sendsourcequench = 0;
104SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
105	&ip_sendsourcequench, 0,
106	"Enable the transmission of source quench packets");
107
108int	ip_do_randomid = 0;
109SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
110	&ip_do_randomid, 0,
111	"Assign random ip_id values");
112
113/*
114 * XXX - Setting ip_checkinterface mostly implements the receive side of
115 * the Strong ES model described in RFC 1122, but since the routing table
116 * and transmit implementation do not implement the Strong ES model,
117 * setting this to 1 results in an odd hybrid.
118 *
119 * XXX - ip_checkinterface currently must be disabled if you use ipnat
120 * to translate the destination address to another local interface.
121 *
122 * XXX - ip_checkinterface must be disabled if you add IP aliases
123 * to the loopback interface instead of the interface where the
124 * packets for those addresses are received.
125 */
126static int	ip_checkinterface = 0;
127SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
128    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
129
130struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
131
132static struct	ifqueue ipintrq;
133static int	ipqmaxlen = IFQ_MAXLEN;
134
135extern	struct domain inetdomain;
136extern	struct protosw inetsw[];
137u_char	ip_protox[IPPROTO_MAX];
138struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
139struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
140u_long 	in_ifaddrhmask;				/* mask for hash table */
141
142SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
143    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
144SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
145    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
146
147struct ipstat ipstat;
148SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
149    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
150
151/*
152 * IP datagram reassembly.
153 */
154#define IPREASS_NHASH_LOG2      6
155#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
156#define IPREASS_HMASK           (IPREASS_NHASH - 1)
157#define IPREASS_HASH(x,y) \
158	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
159
160static uma_zone_t ipq_zone;
161static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
162static struct mtx ipqlock;
163
164#define	IPQ_LOCK()	mtx_lock(&ipqlock)
165#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
166#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
167#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
168
169static void	maxnipq_update(void);
170
171static int	maxnipq;	/* Administrative limit on # reass queues. */
172static int	nipq = 0;	/* Total # of reass queues */
173SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD, &nipq, 0,
174	"Current number of IPv4 fragment reassembly queue entries");
175
176static int	maxfragsperpacket;
177SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
178	&maxfragsperpacket, 0,
179	"Maximum number of IPv4 fragments allowed per packet");
180
181struct callout	ipport_tick_callout;
182
183#ifdef IPCTL_DEFMTU
184SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
185    &ip_mtu, 0, "Default MTU");
186#endif
187
188#ifdef IPSTEALTH
189int	ipstealth = 0;
190SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
191    &ipstealth, 0, "");
192#endif
193
194/*
195 * ipfw_ether and ipfw_bridge hooks.
196 * XXX: Temporary until those are converted to pfil_hooks as well.
197 */
198ip_fw_chk_t *ip_fw_chk_ptr = NULL;
199ip_dn_io_t *ip_dn_io_ptr = NULL;
200int fw_enable = 1;
201int fw_one_pass = 1;
202
203static void	ip_freef(struct ipqhead *, struct ipq *);
204
205/*
206 * IP initialization: fill in IP protocol switch table.
207 * All protocols not implemented in kernel go to raw IP protocol handler.
208 */
209void
210ip_init()
211{
212	register struct protosw *pr;
213	register int i;
214
215	TAILQ_INIT(&in_ifaddrhead);
216	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
217	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
218	if (pr == NULL)
219		panic("ip_init: PF_INET not found");
220
221	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
222	for (i = 0; i < IPPROTO_MAX; i++)
223		ip_protox[i] = pr - inetsw;
224	/*
225	 * Cycle through IP protocols and put them into the appropriate place
226	 * in ip_protox[].
227	 */
228	for (pr = inetdomain.dom_protosw;
229	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
230		if (pr->pr_domain->dom_family == PF_INET &&
231		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
232			/* Be careful to only index valid IP protocols. */
233			if (pr->pr_protocol < IPPROTO_MAX)
234				ip_protox[pr->pr_protocol] = pr - inetsw;
235		}
236
237	/* Initialize packet filter hooks. */
238	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
239	inet_pfil_hook.ph_af = AF_INET;
240	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
241		printf("%s: WARNING: unable to register pfil hook, "
242			"error %d\n", __func__, i);
243
244	/* Initialize IP reassembly queue. */
245	IPQ_LOCK_INIT();
246	for (i = 0; i < IPREASS_NHASH; i++)
247	    TAILQ_INIT(&ipq[i]);
248	maxnipq = nmbclusters / 32;
249	maxfragsperpacket = 16;
250	ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
251	    NULL, UMA_ALIGN_PTR, 0);
252	maxnipq_update();
253
254	/* Start ipport_tick. */
255	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
256	ipport_tick(NULL);
257	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
258		SHUTDOWN_PRI_DEFAULT);
259
260	/* Initialize various other remaining things. */
261	ip_id = time_second & 0xffff;
262	ipintrq.ifq_maxlen = ipqmaxlen;
263	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
264	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
265}
266
267void ip_fini(xtp)
268	void *xtp;
269{
270	callout_stop(&ipport_tick_callout);
271}
272
273/*
274 * Ip input routine.  Checksum and byte swap header.  If fragmented
275 * try to reassemble.  Process options.  Pass to next level.
276 */
277void
278ip_input(struct mbuf *m)
279{
280	struct ip *ip = NULL;
281	struct in_ifaddr *ia = NULL;
282	struct ifaddr *ifa;
283	int    checkif, hlen = 0;
284	u_short sum;
285	int dchg = 0;				/* dest changed after fw */
286	struct in_addr odst;			/* original dst address */
287
288  	M_ASSERTPKTHDR(m);
289
290	if (m->m_flags & M_FASTFWD_OURS) {
291		/*
292		 * Firewall or NAT changed destination to local.
293		 * We expect ip_len and ip_off to be in host byte order.
294		 */
295		m->m_flags &= ~M_FASTFWD_OURS;
296		/* Set up some basics that will be used later. */
297		ip = mtod(m, struct ip *);
298		hlen = ip->ip_hl << 2;
299  		goto ours;
300  	}
301
302	ipstat.ips_total++;
303
304	if (m->m_pkthdr.len < sizeof(struct ip))
305		goto tooshort;
306
307	if (m->m_len < sizeof (struct ip) &&
308	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
309		ipstat.ips_toosmall++;
310		return;
311	}
312	ip = mtod(m, struct ip *);
313
314	if (ip->ip_v != IPVERSION) {
315		ipstat.ips_badvers++;
316		goto bad;
317	}
318
319	hlen = ip->ip_hl << 2;
320	if (hlen < sizeof(struct ip)) {	/* minimum header length */
321		ipstat.ips_badhlen++;
322		goto bad;
323	}
324	if (hlen > m->m_len) {
325		if ((m = m_pullup(m, hlen)) == NULL) {
326			ipstat.ips_badhlen++;
327			return;
328		}
329		ip = mtod(m, struct ip *);
330	}
331
332	/* 127/8 must not appear on wire - RFC1122 */
333	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
334	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
335		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
336			ipstat.ips_badaddr++;
337			goto bad;
338		}
339	}
340
341	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
342		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
343	} else {
344		if (hlen == sizeof(struct ip)) {
345			sum = in_cksum_hdr(ip);
346		} else {
347			sum = in_cksum(m, hlen);
348		}
349	}
350	if (sum) {
351		ipstat.ips_badsum++;
352		goto bad;
353	}
354
355#ifdef ALTQ
356	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
357		/* packet is dropped by traffic conditioner */
358		return;
359#endif
360
361	/*
362	 * Convert fields to host representation.
363	 */
364	ip->ip_len = ntohs(ip->ip_len);
365	if (ip->ip_len < hlen) {
366		ipstat.ips_badlen++;
367		goto bad;
368	}
369	ip->ip_off = ntohs(ip->ip_off);
370
371	/*
372	 * Check that the amount of data in the buffers
373	 * is as at least much as the IP header would have us expect.
374	 * Trim mbufs if longer than we expect.
375	 * Drop packet if shorter than we expect.
376	 */
377	if (m->m_pkthdr.len < ip->ip_len) {
378tooshort:
379		ipstat.ips_tooshort++;
380		goto bad;
381	}
382	if (m->m_pkthdr.len > ip->ip_len) {
383		if (m->m_len == m->m_pkthdr.len) {
384			m->m_len = ip->ip_len;
385			m->m_pkthdr.len = ip->ip_len;
386		} else
387			m_adj(m, ip->ip_len - m->m_pkthdr.len);
388	}
389#if defined(IPSEC) || defined(FAST_IPSEC)
390	/*
391	 * Bypass packet filtering for packets from a tunnel (gif).
392	 */
393	if (ip_ipsec_filtergif(m))
394		goto passin;
395#endif /* IPSEC */
396
397	/*
398	 * Run through list of hooks for input packets.
399	 *
400	 * NB: Beware of the destination address changing (e.g.
401	 *     by NAT rewriting).  When this happens, tell
402	 *     ip_forward to do the right thing.
403	 */
404
405	/* Jump over all PFIL processing if hooks are not active. */
406	if (inet_pfil_hook.ph_busy_count == -1)
407		goto passin;
408
409	odst = ip->ip_dst;
410	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
411	    PFIL_IN, NULL) != 0)
412		return;
413	if (m == NULL)			/* consumed by filter */
414		return;
415
416	ip = mtod(m, struct ip *);
417	dchg = (odst.s_addr != ip->ip_dst.s_addr);
418
419#ifdef IPFIREWALL_FORWARD
420	if (m->m_flags & M_FASTFWD_OURS) {
421		m->m_flags &= ~M_FASTFWD_OURS;
422		goto ours;
423	}
424#ifndef IPFIREWALL_FORWARD_EXTENDED
425	dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
426#else
427	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
428		/*
429		 * Directly ship on the packet.  This allows to forward packets
430		 * that were destined for us to some other directly connected
431		 * host.
432		 */
433		ip_forward(m, dchg);
434		return;
435	}
436#endif /* IPFIREWALL_FORWARD_EXTENDED */
437#endif /* IPFIREWALL_FORWARD */
438
439passin:
440	/*
441	 * Process options and, if not destined for us,
442	 * ship it on.  ip_dooptions returns 1 when an
443	 * error was detected (causing an icmp message
444	 * to be sent and the original packet to be freed).
445	 */
446	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
447		return;
448
449        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
450         * matter if it is destined to another node, or whether it is
451         * a multicast one, RSVP wants it! and prevents it from being forwarded
452         * anywhere else. Also checks if the rsvp daemon is running before
453	 * grabbing the packet.
454         */
455	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
456		goto ours;
457
458	/*
459	 * Check our list of addresses, to see if the packet is for us.
460	 * If we don't have any addresses, assume any unicast packet
461	 * we receive might be for us (and let the upper layers deal
462	 * with it).
463	 */
464	if (TAILQ_EMPTY(&in_ifaddrhead) &&
465	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
466		goto ours;
467
468	/*
469	 * Enable a consistency check between the destination address
470	 * and the arrival interface for a unicast packet (the RFC 1122
471	 * strong ES model) if IP forwarding is disabled and the packet
472	 * is not locally generated and the packet is not subject to
473	 * 'ipfw fwd'.
474	 *
475	 * XXX - Checking also should be disabled if the destination
476	 * address is ipnat'ed to a different interface.
477	 *
478	 * XXX - Checking is incompatible with IP aliases added
479	 * to the loopback interface instead of the interface where
480	 * the packets are received.
481	 *
482	 * XXX - This is the case for carp vhost IPs as well so we
483	 * insert a workaround. If the packet got here, we already
484	 * checked with carp_iamatch() and carp_forus().
485	 */
486	checkif = ip_checkinterface && (ipforwarding == 0) &&
487	    m->m_pkthdr.rcvif != NULL &&
488	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
489#ifdef DEV_CARP
490	    !m->m_pkthdr.rcvif->if_carp &&
491#endif
492	    (dchg == 0);
493
494	/*
495	 * Check for exact addresses in the hash bucket.
496	 */
497	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
498		/*
499		 * If the address matches, verify that the packet
500		 * arrived via the correct interface if checking is
501		 * enabled.
502		 */
503		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
504		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
505			goto ours;
506	}
507	/*
508	 * Check for broadcast addresses.
509	 *
510	 * Only accept broadcast packets that arrive via the matching
511	 * interface.  Reception of forwarded directed broadcasts would
512	 * be handled via ip_forward() and ether_output() with the loopback
513	 * into the stack for SIMPLEX interfaces handled by ether_output().
514	 */
515	if (m->m_pkthdr.rcvif != NULL &&
516	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
517	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
518			if (ifa->ifa_addr->sa_family != AF_INET)
519				continue;
520			ia = ifatoia(ifa);
521			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
522			    ip->ip_dst.s_addr)
523				goto ours;
524			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
525				goto ours;
526#ifdef BOOTP_COMPAT
527			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
528				goto ours;
529#endif
530		}
531	}
532	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
533		struct in_multi *inm;
534		if (ip_mrouter) {
535			/*
536			 * If we are acting as a multicast router, all
537			 * incoming multicast packets are passed to the
538			 * kernel-level multicast forwarding function.
539			 * The packet is returned (relatively) intact; if
540			 * ip_mforward() returns a non-zero value, the packet
541			 * must be discarded, else it may be accepted below.
542			 */
543			if (ip_mforward &&
544			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
545				ipstat.ips_cantforward++;
546				m_freem(m);
547				return;
548			}
549
550			/*
551			 * The process-level routing daemon needs to receive
552			 * all multicast IGMP packets, whether or not this
553			 * host belongs to their destination groups.
554			 */
555			if (ip->ip_p == IPPROTO_IGMP)
556				goto ours;
557			ipstat.ips_forward++;
558		}
559		/*
560		 * See if we belong to the destination multicast group on the
561		 * arrival interface.
562		 */
563		IN_MULTI_LOCK();
564		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
565		IN_MULTI_UNLOCK();
566		if (inm == NULL) {
567			ipstat.ips_notmember++;
568			m_freem(m);
569			return;
570		}
571		goto ours;
572	}
573	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
574		goto ours;
575	if (ip->ip_dst.s_addr == INADDR_ANY)
576		goto ours;
577
578	/*
579	 * FAITH(Firewall Aided Internet Translator)
580	 */
581	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
582		if (ip_keepfaith) {
583			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
584				goto ours;
585		}
586		m_freem(m);
587		return;
588	}
589
590	/*
591	 * Not for us; forward if possible and desirable.
592	 */
593	if (ipforwarding == 0) {
594		ipstat.ips_cantforward++;
595		m_freem(m);
596	} else {
597#if defined(IPSEC) || defined(FAST_IPSEC)
598		if (ip_ipsec_fwd(m))
599			goto bad;
600#endif /* IPSEC */
601		ip_forward(m, dchg);
602	}
603	return;
604
605ours:
606#ifdef IPSTEALTH
607	/*
608	 * IPSTEALTH: Process non-routing options only
609	 * if the packet is destined for us.
610	 */
611	if (ipstealth && hlen > sizeof (struct ip) &&
612	    ip_dooptions(m, 1))
613		return;
614#endif /* IPSTEALTH */
615
616	/* Count the packet in the ip address stats */
617	if (ia != NULL) {
618		ia->ia_ifa.if_ipackets++;
619		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
620	}
621
622	/*
623	 * Attempt reassembly; if it succeeds, proceed.
624	 * ip_reass() will return a different mbuf.
625	 */
626	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
627		m = ip_reass(m);
628		if (m == NULL)
629			return;
630		ip = mtod(m, struct ip *);
631		/* Get the header length of the reassembled packet */
632		hlen = ip->ip_hl << 2;
633	}
634
635	/*
636	 * Further protocols expect the packet length to be w/o the
637	 * IP header.
638	 */
639	ip->ip_len -= hlen;
640
641#if defined(IPSEC) || defined(FAST_IPSEC)
642	/*
643	 * enforce IPsec policy checking if we are seeing last header.
644	 * note that we do not visit this with protocols with pcb layer
645	 * code - like udp/tcp/raw ip.
646	 */
647	if (ip_ipsec_input(m))
648		goto bad;
649#endif /* IPSEC */
650
651	/*
652	 * Switch out to protocol's input routine.
653	 */
654	ipstat.ips_delivered++;
655
656	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
657	return;
658bad:
659	m_freem(m);
660}
661
662/*
663 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
664 * max has slightly different semantics than the sysctl, for historical
665 * reasons.
666 */
667static void
668maxnipq_update(void)
669{
670
671	/*
672	 * -1 for unlimited allocation.
673	 */
674	if (maxnipq < 0)
675		uma_zone_set_max(ipq_zone, 0);
676	/*
677	 * Positive number for specific bound.
678	 */
679	if (maxnipq > 0)
680		uma_zone_set_max(ipq_zone, maxnipq);
681	/*
682	 * Zero specifies no further fragment queue allocation -- set the
683	 * bound very low, but rely on implementation elsewhere to actually
684	 * prevent allocation and reclaim current queues.
685	 */
686	if (maxnipq == 0)
687		uma_zone_set_max(ipq_zone, 1);
688}
689
690static int
691sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
692{
693	int error, i;
694
695	i = maxnipq;
696	error = sysctl_handle_int(oidp, &i, 0, req);
697	if (error || !req->newptr)
698		return (error);
699
700	/*
701	 * XXXRW: Might be a good idea to sanity check the argument and place
702	 * an extreme upper bound.
703	 */
704	if (i < -1)
705		return (EINVAL);
706	maxnipq = i;
707	maxnipq_update();
708	return (0);
709}
710
711SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
712    NULL, 0, sysctl_maxnipq, "I",
713    "Maximum number of IPv4 fragment reassembly queue entries");
714
715/*
716 * Take incoming datagram fragment and try to reassemble it into
717 * whole datagram.  If the argument is the first fragment or one
718 * in between the function will return NULL and store the mbuf
719 * in the fragment chain.  If the argument is the last fragment
720 * the packet will be reassembled and the pointer to the new
721 * mbuf returned for further processing.  Only m_tags attached
722 * to the first packet/fragment are preserved.
723 * The IP header is *NOT* adjusted out of iplen.
724 */
725
726struct mbuf *
727ip_reass(struct mbuf *m)
728{
729	struct ip *ip;
730	struct mbuf *p, *q, *nq, *t;
731	struct ipq *fp = NULL;
732	struct ipqhead *head;
733	int i, hlen, next;
734	u_int8_t ecn, ecn0;
735	u_short hash;
736
737	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
738	if (maxnipq == 0 || maxfragsperpacket == 0) {
739		ipstat.ips_fragments++;
740		ipstat.ips_fragdropped++;
741		m_freem(m);
742		return (NULL);
743	}
744
745	ip = mtod(m, struct ip *);
746	hlen = ip->ip_hl << 2;
747
748	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
749	head = &ipq[hash];
750	IPQ_LOCK();
751
752	/*
753	 * Look for queue of fragments
754	 * of this datagram.
755	 */
756	TAILQ_FOREACH(fp, head, ipq_list)
757		if (ip->ip_id == fp->ipq_id &&
758		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
759		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
760#ifdef MAC
761		    mac_fragment_match(m, fp) &&
762#endif
763		    ip->ip_p == fp->ipq_p)
764			goto found;
765
766	fp = NULL;
767
768	/*
769	 * Attempt to trim the number of allocated fragment queues if it
770	 * exceeds the administrative limit.
771	 */
772	if ((nipq > maxnipq) && (maxnipq > 0)) {
773		/*
774		 * drop something from the tail of the current queue
775		 * before proceeding further
776		 */
777		struct ipq *q = TAILQ_LAST(head, ipqhead);
778		if (q == NULL) {   /* gak */
779			for (i = 0; i < IPREASS_NHASH; i++) {
780				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
781				if (r) {
782					ipstat.ips_fragtimeout += r->ipq_nfrags;
783					ip_freef(&ipq[i], r);
784					break;
785				}
786			}
787		} else {
788			ipstat.ips_fragtimeout += q->ipq_nfrags;
789			ip_freef(head, q);
790		}
791	}
792
793found:
794	/*
795	 * Adjust ip_len to not reflect header,
796	 * convert offset of this to bytes.
797	 */
798	ip->ip_len -= hlen;
799	if (ip->ip_off & IP_MF) {
800		/*
801		 * Make sure that fragments have a data length
802		 * that's a non-zero multiple of 8 bytes.
803		 */
804		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
805			ipstat.ips_toosmall++; /* XXX */
806			goto dropfrag;
807		}
808		m->m_flags |= M_FRAG;
809	} else
810		m->m_flags &= ~M_FRAG;
811	ip->ip_off <<= 3;
812
813
814	/*
815	 * Attempt reassembly; if it succeeds, proceed.
816	 * ip_reass() will return a different mbuf.
817	 */
818	ipstat.ips_fragments++;
819	m->m_pkthdr.header = ip;
820
821	/* Previous ip_reass() started here. */
822	/*
823	 * Presence of header sizes in mbufs
824	 * would confuse code below.
825	 */
826	m->m_data += hlen;
827	m->m_len -= hlen;
828
829	/*
830	 * If first fragment to arrive, create a reassembly queue.
831	 */
832	if (fp == NULL) {
833		fp = uma_zalloc(ipq_zone, M_NOWAIT);
834		if (fp == NULL)
835			goto dropfrag;
836#ifdef MAC
837		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
838			uma_zfree(ipq_zone, fp);
839			goto dropfrag;
840		}
841		mac_create_ipq(m, fp);
842#endif
843		TAILQ_INSERT_HEAD(head, fp, ipq_list);
844		nipq++;
845		fp->ipq_nfrags = 1;
846		fp->ipq_ttl = IPFRAGTTL;
847		fp->ipq_p = ip->ip_p;
848		fp->ipq_id = ip->ip_id;
849		fp->ipq_src = ip->ip_src;
850		fp->ipq_dst = ip->ip_dst;
851		fp->ipq_frags = m;
852		m->m_nextpkt = NULL;
853		goto done;
854	} else {
855		fp->ipq_nfrags++;
856#ifdef MAC
857		mac_update_ipq(m, fp);
858#endif
859	}
860
861#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
862
863	/*
864	 * Handle ECN by comparing this segment with the first one;
865	 * if CE is set, do not lose CE.
866	 * drop if CE and not-ECT are mixed for the same packet.
867	 */
868	ecn = ip->ip_tos & IPTOS_ECN_MASK;
869	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
870	if (ecn == IPTOS_ECN_CE) {
871		if (ecn0 == IPTOS_ECN_NOTECT)
872			goto dropfrag;
873		if (ecn0 != IPTOS_ECN_CE)
874			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
875	}
876	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
877		goto dropfrag;
878
879	/*
880	 * Find a segment which begins after this one does.
881	 */
882	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
883		if (GETIP(q)->ip_off > ip->ip_off)
884			break;
885
886	/*
887	 * If there is a preceding segment, it may provide some of
888	 * our data already.  If so, drop the data from the incoming
889	 * segment.  If it provides all of our data, drop us, otherwise
890	 * stick new segment in the proper place.
891	 *
892	 * If some of the data is dropped from the the preceding
893	 * segment, then it's checksum is invalidated.
894	 */
895	if (p) {
896		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
897		if (i > 0) {
898			if (i >= ip->ip_len)
899				goto dropfrag;
900			m_adj(m, i);
901			m->m_pkthdr.csum_flags = 0;
902			ip->ip_off += i;
903			ip->ip_len -= i;
904		}
905		m->m_nextpkt = p->m_nextpkt;
906		p->m_nextpkt = m;
907	} else {
908		m->m_nextpkt = fp->ipq_frags;
909		fp->ipq_frags = m;
910	}
911
912	/*
913	 * While we overlap succeeding segments trim them or,
914	 * if they are completely covered, dequeue them.
915	 */
916	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
917	     q = nq) {
918		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
919		if (i < GETIP(q)->ip_len) {
920			GETIP(q)->ip_len -= i;
921			GETIP(q)->ip_off += i;
922			m_adj(q, i);
923			q->m_pkthdr.csum_flags = 0;
924			break;
925		}
926		nq = q->m_nextpkt;
927		m->m_nextpkt = nq;
928		ipstat.ips_fragdropped++;
929		fp->ipq_nfrags--;
930		m_freem(q);
931	}
932
933	/*
934	 * Check for complete reassembly and perform frag per packet
935	 * limiting.
936	 *
937	 * Frag limiting is performed here so that the nth frag has
938	 * a chance to complete the packet before we drop the packet.
939	 * As a result, n+1 frags are actually allowed per packet, but
940	 * only n will ever be stored. (n = maxfragsperpacket.)
941	 *
942	 */
943	next = 0;
944	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
945		if (GETIP(q)->ip_off != next) {
946			if (fp->ipq_nfrags > maxfragsperpacket) {
947				ipstat.ips_fragdropped += fp->ipq_nfrags;
948				ip_freef(head, fp);
949			}
950			goto done;
951		}
952		next += GETIP(q)->ip_len;
953	}
954	/* Make sure the last packet didn't have the IP_MF flag */
955	if (p->m_flags & M_FRAG) {
956		if (fp->ipq_nfrags > maxfragsperpacket) {
957			ipstat.ips_fragdropped += fp->ipq_nfrags;
958			ip_freef(head, fp);
959		}
960		goto done;
961	}
962
963	/*
964	 * Reassembly is complete.  Make sure the packet is a sane size.
965	 */
966	q = fp->ipq_frags;
967	ip = GETIP(q);
968	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
969		ipstat.ips_toolong++;
970		ipstat.ips_fragdropped += fp->ipq_nfrags;
971		ip_freef(head, fp);
972		goto done;
973	}
974
975	/*
976	 * Concatenate fragments.
977	 */
978	m = q;
979	t = m->m_next;
980	m->m_next = NULL;
981	m_cat(m, t);
982	nq = q->m_nextpkt;
983	q->m_nextpkt = NULL;
984	for (q = nq; q != NULL; q = nq) {
985		nq = q->m_nextpkt;
986		q->m_nextpkt = NULL;
987		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
988		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
989		m_cat(m, q);
990	}
991#ifdef MAC
992	mac_create_datagram_from_ipq(fp, m);
993	mac_destroy_ipq(fp);
994#endif
995
996	/*
997	 * Create header for new ip packet by modifying header of first
998	 * packet;  dequeue and discard fragment reassembly header.
999	 * Make header visible.
1000	 */
1001	ip->ip_len = (ip->ip_hl << 2) + next;
1002	ip->ip_src = fp->ipq_src;
1003	ip->ip_dst = fp->ipq_dst;
1004	TAILQ_REMOVE(head, fp, ipq_list);
1005	nipq--;
1006	uma_zfree(ipq_zone, fp);
1007	m->m_len += (ip->ip_hl << 2);
1008	m->m_data -= (ip->ip_hl << 2);
1009	/* some debugging cruft by sklower, below, will go away soon */
1010	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1011		m_fixhdr(m);
1012	ipstat.ips_reassembled++;
1013	IPQ_UNLOCK();
1014	return (m);
1015
1016dropfrag:
1017	ipstat.ips_fragdropped++;
1018	if (fp != NULL)
1019		fp->ipq_nfrags--;
1020	m_freem(m);
1021done:
1022	IPQ_UNLOCK();
1023	return (NULL);
1024
1025#undef GETIP
1026}
1027
1028/*
1029 * Free a fragment reassembly header and all
1030 * associated datagrams.
1031 */
1032static void
1033ip_freef(fhp, fp)
1034	struct ipqhead *fhp;
1035	struct ipq *fp;
1036{
1037	register struct mbuf *q;
1038
1039	IPQ_LOCK_ASSERT();
1040
1041	while (fp->ipq_frags) {
1042		q = fp->ipq_frags;
1043		fp->ipq_frags = q->m_nextpkt;
1044		m_freem(q);
1045	}
1046	TAILQ_REMOVE(fhp, fp, ipq_list);
1047	uma_zfree(ipq_zone, fp);
1048	nipq--;
1049}
1050
1051/*
1052 * IP timer processing;
1053 * if a timer expires on a reassembly
1054 * queue, discard it.
1055 */
1056void
1057ip_slowtimo()
1058{
1059	register struct ipq *fp;
1060	int i;
1061
1062	IPQ_LOCK();
1063	for (i = 0; i < IPREASS_NHASH; i++) {
1064		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1065			struct ipq *fpp;
1066
1067			fpp = fp;
1068			fp = TAILQ_NEXT(fp, ipq_list);
1069			if(--fpp->ipq_ttl == 0) {
1070				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1071				ip_freef(&ipq[i], fpp);
1072			}
1073		}
1074	}
1075	/*
1076	 * If we are over the maximum number of fragments
1077	 * (due to the limit being lowered), drain off
1078	 * enough to get down to the new limit.
1079	 */
1080	if (maxnipq >= 0 && nipq > maxnipq) {
1081		for (i = 0; i < IPREASS_NHASH; i++) {
1082			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1083				ipstat.ips_fragdropped +=
1084				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1085				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1086			}
1087		}
1088	}
1089	IPQ_UNLOCK();
1090}
1091
1092/*
1093 * Drain off all datagram fragments.
1094 */
1095void
1096ip_drain()
1097{
1098	int     i;
1099
1100	IPQ_LOCK();
1101	for (i = 0; i < IPREASS_NHASH; i++) {
1102		while(!TAILQ_EMPTY(&ipq[i])) {
1103			ipstat.ips_fragdropped +=
1104			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1105			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1106		}
1107	}
1108	IPQ_UNLOCK();
1109	in_rtqdrain();
1110}
1111
1112/*
1113 * The protocol to be inserted into ip_protox[] must be already registered
1114 * in inetsw[], either statically or through pf_proto_register().
1115 */
1116int
1117ipproto_register(u_char ipproto)
1118{
1119	struct protosw *pr;
1120
1121	/* Sanity checks. */
1122	if (ipproto == 0)
1123		return (EPROTONOSUPPORT);
1124
1125	/*
1126	 * The protocol slot must not be occupied by another protocol
1127	 * already.  An index pointing to IPPROTO_RAW is unused.
1128	 */
1129	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1130	if (pr == NULL)
1131		return (EPFNOSUPPORT);
1132	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1133		return (EEXIST);
1134
1135	/* Find the protocol position in inetsw[] and set the index. */
1136	for (pr = inetdomain.dom_protosw;
1137	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1138		if (pr->pr_domain->dom_family == PF_INET &&
1139		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1140			/* Be careful to only index valid IP protocols. */
1141			if (pr->pr_protocol < IPPROTO_MAX) {
1142				ip_protox[pr->pr_protocol] = pr - inetsw;
1143				return (0);
1144			} else
1145				return (EINVAL);
1146		}
1147	}
1148	return (EPROTONOSUPPORT);
1149}
1150
1151int
1152ipproto_unregister(u_char ipproto)
1153{
1154	struct protosw *pr;
1155
1156	/* Sanity checks. */
1157	if (ipproto == 0)
1158		return (EPROTONOSUPPORT);
1159
1160	/* Check if the protocol was indeed registered. */
1161	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1162	if (pr == NULL)
1163		return (EPFNOSUPPORT);
1164	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1165		return (ENOENT);
1166
1167	/* Reset the protocol slot to IPPROTO_RAW. */
1168	ip_protox[ipproto] = pr - inetsw;
1169	return (0);
1170}
1171
1172/*
1173 * Given address of next destination (final or next hop),
1174 * return internet address info of interface to be used to get there.
1175 */
1176struct in_ifaddr *
1177ip_rtaddr(dst)
1178	struct in_addr dst;
1179{
1180	struct route sro;
1181	struct sockaddr_in *sin;
1182	struct in_ifaddr *ifa;
1183
1184	bzero(&sro, sizeof(sro));
1185	sin = (struct sockaddr_in *)&sro.ro_dst;
1186	sin->sin_family = AF_INET;
1187	sin->sin_len = sizeof(*sin);
1188	sin->sin_addr = dst;
1189	rtalloc_ign(&sro, RTF_CLONING);
1190
1191	if (sro.ro_rt == NULL)
1192		return (NULL);
1193
1194	ifa = ifatoia(sro.ro_rt->rt_ifa);
1195	RTFREE(sro.ro_rt);
1196	return (ifa);
1197}
1198
1199u_char inetctlerrmap[PRC_NCMDS] = {
1200	0,		0,		0,		0,
1201	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1202	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1203	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1204	0,		0,		EHOSTUNREACH,	0,
1205	ENOPROTOOPT,	ECONNREFUSED
1206};
1207
1208/*
1209 * Forward a packet.  If some error occurs return the sender
1210 * an icmp packet.  Note we can't always generate a meaningful
1211 * icmp message because icmp doesn't have a large enough repertoire
1212 * of codes and types.
1213 *
1214 * If not forwarding, just drop the packet.  This could be confusing
1215 * if ipforwarding was zero but some routing protocol was advancing
1216 * us as a gateway to somewhere.  However, we must let the routing
1217 * protocol deal with that.
1218 *
1219 * The srcrt parameter indicates whether the packet is being forwarded
1220 * via a source route.
1221 */
1222void
1223ip_forward(struct mbuf *m, int srcrt)
1224{
1225	struct ip *ip = mtod(m, struct ip *);
1226	struct in_ifaddr *ia = NULL;
1227	struct mbuf *mcopy;
1228	struct in_addr dest;
1229	int error, type = 0, code = 0, mtu = 0;
1230
1231	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1232		ipstat.ips_cantforward++;
1233		m_freem(m);
1234		return;
1235	}
1236#ifdef IPSTEALTH
1237	if (!ipstealth) {
1238#endif
1239		if (ip->ip_ttl <= IPTTLDEC) {
1240			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1241			    0, 0);
1242			return;
1243		}
1244#ifdef IPSTEALTH
1245	}
1246#endif
1247
1248	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1249		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1250		return;
1251	}
1252
1253	/*
1254	 * Save the IP header and at most 8 bytes of the payload,
1255	 * in case we need to generate an ICMP message to the src.
1256	 *
1257	 * XXX this can be optimized a lot by saving the data in a local
1258	 * buffer on the stack (72 bytes at most), and only allocating the
1259	 * mbuf if really necessary. The vast majority of the packets
1260	 * are forwarded without having to send an ICMP back (either
1261	 * because unnecessary, or because rate limited), so we are
1262	 * really we are wasting a lot of work here.
1263	 *
1264	 * We don't use m_copy() because it might return a reference
1265	 * to a shared cluster. Both this function and ip_output()
1266	 * assume exclusive access to the IP header in `m', so any
1267	 * data in a cluster may change before we reach icmp_error().
1268	 */
1269	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1270	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1271		/*
1272		 * It's probably ok if the pkthdr dup fails (because
1273		 * the deep copy of the tag chain failed), but for now
1274		 * be conservative and just discard the copy since
1275		 * code below may some day want the tags.
1276		 */
1277		m_free(mcopy);
1278		mcopy = NULL;
1279	}
1280	if (mcopy != NULL) {
1281		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1282		mcopy->m_pkthdr.len = mcopy->m_len;
1283		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1284	}
1285
1286#ifdef IPSTEALTH
1287	if (!ipstealth) {
1288#endif
1289		ip->ip_ttl -= IPTTLDEC;
1290#ifdef IPSTEALTH
1291	}
1292#endif
1293
1294	/*
1295	 * If forwarding packet using same interface that it came in on,
1296	 * perhaps should send a redirect to sender to shortcut a hop.
1297	 * Only send redirect if source is sending directly to us,
1298	 * and if packet was not source routed (or has any options).
1299	 * Also, don't send redirect if forwarding using a default route
1300	 * or a route modified by a redirect.
1301	 */
1302	dest.s_addr = 0;
1303	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1304		struct sockaddr_in *sin;
1305		struct route ro;
1306		struct rtentry *rt;
1307
1308		bzero(&ro, sizeof(ro));
1309		sin = (struct sockaddr_in *)&ro.ro_dst;
1310		sin->sin_family = AF_INET;
1311		sin->sin_len = sizeof(*sin);
1312		sin->sin_addr = ip->ip_dst;
1313		rtalloc_ign(&ro, RTF_CLONING);
1314
1315		rt = ro.ro_rt;
1316
1317		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1318		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1319#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1320			u_long src = ntohl(ip->ip_src.s_addr);
1321
1322			if (RTA(rt) &&
1323			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1324				if (rt->rt_flags & RTF_GATEWAY)
1325					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1326				else
1327					dest.s_addr = ip->ip_dst.s_addr;
1328				/* Router requirements says to only send host redirects */
1329				type = ICMP_REDIRECT;
1330				code = ICMP_REDIRECT_HOST;
1331			}
1332		}
1333		if (rt)
1334			RTFREE(rt);
1335	}
1336
1337	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1338	if (error)
1339		ipstat.ips_cantforward++;
1340	else {
1341		ipstat.ips_forward++;
1342		if (type)
1343			ipstat.ips_redirectsent++;
1344		else {
1345			if (mcopy)
1346				m_freem(mcopy);
1347			return;
1348		}
1349	}
1350	if (mcopy == NULL)
1351		return;
1352
1353	switch (error) {
1354
1355	case 0:				/* forwarded, but need redirect */
1356		/* type, code set above */
1357		break;
1358
1359	case ENETUNREACH:		/* shouldn't happen, checked above */
1360	case EHOSTUNREACH:
1361	case ENETDOWN:
1362	case EHOSTDOWN:
1363	default:
1364		type = ICMP_UNREACH;
1365		code = ICMP_UNREACH_HOST;
1366		break;
1367
1368	case EMSGSIZE:
1369		type = ICMP_UNREACH;
1370		code = ICMP_UNREACH_NEEDFRAG;
1371
1372#if defined(IPSEC) || defined(FAST_IPSEC)
1373		mtu = ip_ipsec_mtu(m);
1374#endif /* IPSEC */
1375		/*
1376		 * If the MTU wasn't set before use the interface mtu or
1377		 * fall back to the next smaller mtu step compared to the
1378		 * current packet size.
1379		 */
1380		if (mtu == 0) {
1381			if (ia != NULL)
1382				mtu = ia->ia_ifp->if_mtu;
1383			else
1384				mtu = ip_next_mtu(ip->ip_len, 0);
1385		}
1386		ipstat.ips_cantfrag++;
1387		break;
1388
1389	case ENOBUFS:
1390		/*
1391		 * A router should not generate ICMP_SOURCEQUENCH as
1392		 * required in RFC1812 Requirements for IP Version 4 Routers.
1393		 * Source quench could be a big problem under DoS attacks,
1394		 * or if the underlying interface is rate-limited.
1395		 * Those who need source quench packets may re-enable them
1396		 * via the net.inet.ip.sendsourcequench sysctl.
1397		 */
1398		if (ip_sendsourcequench == 0) {
1399			m_freem(mcopy);
1400			return;
1401		} else {
1402			type = ICMP_SOURCEQUENCH;
1403			code = 0;
1404		}
1405		break;
1406
1407	case EACCES:			/* ipfw denied packet */
1408		m_freem(mcopy);
1409		return;
1410	}
1411	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1412}
1413
1414void
1415ip_savecontrol(inp, mp, ip, m)
1416	register struct inpcb *inp;
1417	register struct mbuf **mp;
1418	register struct ip *ip;
1419	register struct mbuf *m;
1420{
1421	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1422		struct bintime bt;
1423
1424		bintime(&bt);
1425		if (inp->inp_socket->so_options & SO_BINTIME) {
1426			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1427			SCM_BINTIME, SOL_SOCKET);
1428			if (*mp)
1429				mp = &(*mp)->m_next;
1430		}
1431		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1432			struct timeval tv;
1433
1434			bintime2timeval(&bt, &tv);
1435			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1436				SCM_TIMESTAMP, SOL_SOCKET);
1437			if (*mp)
1438				mp = &(*mp)->m_next;
1439		}
1440	}
1441	if (inp->inp_flags & INP_RECVDSTADDR) {
1442		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1443		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1444		if (*mp)
1445			mp = &(*mp)->m_next;
1446	}
1447	if (inp->inp_flags & INP_RECVTTL) {
1448		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1449		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1450		if (*mp)
1451			mp = &(*mp)->m_next;
1452	}
1453#ifdef notyet
1454	/* XXX
1455	 * Moving these out of udp_input() made them even more broken
1456	 * than they already were.
1457	 */
1458	/* options were tossed already */
1459	if (inp->inp_flags & INP_RECVOPTS) {
1460		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1461		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1462		if (*mp)
1463			mp = &(*mp)->m_next;
1464	}
1465	/* ip_srcroute doesn't do what we want here, need to fix */
1466	if (inp->inp_flags & INP_RECVRETOPTS) {
1467		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1468		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1469		if (*mp)
1470			mp = &(*mp)->m_next;
1471	}
1472#endif
1473	if (inp->inp_flags & INP_RECVIF) {
1474		struct ifnet *ifp;
1475		struct sdlbuf {
1476			struct sockaddr_dl sdl;
1477			u_char	pad[32];
1478		} sdlbuf;
1479		struct sockaddr_dl *sdp;
1480		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1481
1482		if (((ifp = m->m_pkthdr.rcvif))
1483		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1484			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1485			/*
1486			 * Change our mind and don't try copy.
1487			 */
1488			if ((sdp->sdl_family != AF_LINK)
1489			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1490				goto makedummy;
1491			}
1492			bcopy(sdp, sdl2, sdp->sdl_len);
1493		} else {
1494makedummy:
1495			sdl2->sdl_len
1496				= offsetof(struct sockaddr_dl, sdl_data[0]);
1497			sdl2->sdl_family = AF_LINK;
1498			sdl2->sdl_index = 0;
1499			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1500		}
1501		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1502			IP_RECVIF, IPPROTO_IP);
1503		if (*mp)
1504			mp = &(*mp)->m_next;
1505	}
1506}
1507
1508/*
1509 * XXX these routines are called from the upper part of the kernel.
1510 * They need to be locked when we remove Giant.
1511 *
1512 * They could also be moved to ip_mroute.c, since all the RSVP
1513 *  handling is done there already.
1514 */
1515static int ip_rsvp_on;
1516struct socket *ip_rsvpd;
1517int
1518ip_rsvp_init(struct socket *so)
1519{
1520	if (so->so_type != SOCK_RAW ||
1521	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1522		return EOPNOTSUPP;
1523
1524	if (ip_rsvpd != NULL)
1525		return EADDRINUSE;
1526
1527	ip_rsvpd = so;
1528	/*
1529	 * This may seem silly, but we need to be sure we don't over-increment
1530	 * the RSVP counter, in case something slips up.
1531	 */
1532	if (!ip_rsvp_on) {
1533		ip_rsvp_on = 1;
1534		rsvp_on++;
1535	}
1536
1537	return 0;
1538}
1539
1540int
1541ip_rsvp_done(void)
1542{
1543	ip_rsvpd = NULL;
1544	/*
1545	 * This may seem silly, but we need to be sure we don't over-decrement
1546	 * the RSVP counter, in case something slips up.
1547	 */
1548	if (ip_rsvp_on) {
1549		ip_rsvp_on = 0;
1550		rsvp_on--;
1551	}
1552	return 0;
1553}
1554
1555void
1556rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1557{
1558	if (rsvp_input_p) { /* call the real one if loaded */
1559		rsvp_input_p(m, off);
1560		return;
1561	}
1562
1563	/* Can still get packets with rsvp_on = 0 if there is a local member
1564	 * of the group to which the RSVP packet is addressed.  But in this
1565	 * case we want to throw the packet away.
1566	 */
1567
1568	if (!rsvp_on) {
1569		m_freem(m);
1570		return;
1571	}
1572
1573	if (ip_rsvpd != NULL) {
1574		rip_input(m, off);
1575		return;
1576	}
1577	/* Drop the packet */
1578	m_freem(m);
1579}
1580