ip_reass.c revision 154400
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 154400 2006-01-15 18:58:21Z rwatson $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipstealth.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_carp.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/mac.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/domain.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/time.h>
50#include <sys/kernel.h>
51#include <sys/syslog.h>
52#include <sys/sysctl.h>
53
54#include <net/pfil.h>
55#include <net/if.h>
56#include <net/if_types.h>
57#include <net/if_var.h>
58#include <net/if_dl.h>
59#include <net/route.h>
60#include <net/netisr.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/in_var.h>
65#include <netinet/ip.h>
66#include <netinet/in_pcb.h>
67#include <netinet/ip_var.h>
68#include <netinet/ip_icmp.h>
69#include <netinet/ip_options.h>
70#include <machine/in_cksum.h>
71#ifdef DEV_CARP
72#include <netinet/ip_carp.h>
73#endif
74
75#include <sys/socketvar.h>
76
77/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
78#include <netinet/ip_fw.h>
79#include <netinet/ip_dummynet.h>
80
81#ifdef IPSEC
82#include <netinet6/ipsec.h>
83#include <netkey/key.h>
84#endif
85
86#ifdef FAST_IPSEC
87#include <netipsec/ipsec.h>
88#include <netipsec/key.h>
89#endif
90
91int rsvp_on = 0;
92
93int	ipforwarding = 0;
94SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95    &ipforwarding, 0, "Enable IP forwarding between interfaces");
96
97static int	ipsendredirects = 1; /* XXX */
98SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
99    &ipsendredirects, 0, "Enable sending IP redirects");
100
101int	ip_defttl = IPDEFTTL;
102SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
103    &ip_defttl, 0, "Maximum TTL on IP packets");
104
105static int	ip_keepfaith = 0;
106SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
107	&ip_keepfaith,	0,
108	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
109
110static int	ip_sendsourcequench = 0;
111SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
112	&ip_sendsourcequench, 0,
113	"Enable the transmission of source quench packets");
114
115int	ip_do_randomid = 0;
116SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
117	&ip_do_randomid, 0,
118	"Assign random ip_id values");
119
120/*
121 * XXX - Setting ip_checkinterface mostly implements the receive side of
122 * the Strong ES model described in RFC 1122, but since the routing table
123 * and transmit implementation do not implement the Strong ES model,
124 * setting this to 1 results in an odd hybrid.
125 *
126 * XXX - ip_checkinterface currently must be disabled if you use ipnat
127 * to translate the destination address to another local interface.
128 *
129 * XXX - ip_checkinterface must be disabled if you add IP aliases
130 * to the loopback interface instead of the interface where the
131 * packets for those addresses are received.
132 */
133static int	ip_checkinterface = 0;
134SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
135    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
136
137struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
138
139static struct	ifqueue ipintrq;
140static int	ipqmaxlen = IFQ_MAXLEN;
141
142extern	struct domain inetdomain;
143extern	struct protosw inetsw[];
144u_char	ip_protox[IPPROTO_MAX];
145struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
146struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
147u_long 	in_ifaddrhmask;				/* mask for hash table */
148
149SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
150    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
151SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
152    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
153
154struct ipstat ipstat;
155SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
156    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
157
158/*
159 * IP datagram reassembly.
160 */
161#define IPREASS_NHASH_LOG2      6
162#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
163#define IPREASS_HMASK           (IPREASS_NHASH - 1)
164#define IPREASS_HASH(x,y) \
165	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
166
167static uma_zone_t ipq_zone;
168static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
169static struct mtx ipqlock;
170
171#define	IPQ_LOCK()	mtx_lock(&ipqlock)
172#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
173#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
174#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
175
176static void	maxnipq_update(void);
177
178static int	maxnipq;	/* Administrative limit on # reass queues. */
179static int	nipq = 0;	/* Total # of reass queues */
180SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD, &nipq, 0,
181	"Current number of IPv4 fragment reassembly queue entries");
182
183static int	maxfragsperpacket;
184SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
185	&maxfragsperpacket, 0,
186	"Maximum number of IPv4 fragments allowed per packet");
187
188struct callout	ipport_tick_callout;
189
190#ifdef IPCTL_DEFMTU
191SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
192    &ip_mtu, 0, "Default MTU");
193#endif
194
195#ifdef IPSTEALTH
196int	ipstealth = 0;
197SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
198    &ipstealth, 0, "");
199#endif
200
201/*
202 * ipfw_ether and ipfw_bridge hooks.
203 * XXX: Temporary until those are converted to pfil_hooks as well.
204 */
205ip_fw_chk_t *ip_fw_chk_ptr = NULL;
206ip_dn_io_t *ip_dn_io_ptr = NULL;
207int fw_enable = 1;
208int fw_one_pass = 1;
209
210static void	ip_freef(struct ipqhead *, struct ipq *);
211
212/*
213 * IP initialization: fill in IP protocol switch table.
214 * All protocols not implemented in kernel go to raw IP protocol handler.
215 */
216void
217ip_init()
218{
219	register struct protosw *pr;
220	register int i;
221
222	TAILQ_INIT(&in_ifaddrhead);
223	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
224	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
225	if (pr == NULL)
226		panic("ip_init: PF_INET not found");
227
228	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
229	for (i = 0; i < IPPROTO_MAX; i++)
230		ip_protox[i] = pr - inetsw;
231	/*
232	 * Cycle through IP protocols and put them into the appropriate place
233	 * in ip_protox[].
234	 */
235	for (pr = inetdomain.dom_protosw;
236	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
237		if (pr->pr_domain->dom_family == PF_INET &&
238		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
239			/* Be careful to only index valid IP protocols. */
240			if (pr->pr_protocol < IPPROTO_MAX)
241				ip_protox[pr->pr_protocol] = pr - inetsw;
242		}
243
244	/* Initialize packet filter hooks. */
245	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
246	inet_pfil_hook.ph_af = AF_INET;
247	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
248		printf("%s: WARNING: unable to register pfil hook, "
249			"error %d\n", __func__, i);
250
251	/* Initialize IP reassembly queue. */
252	IPQ_LOCK_INIT();
253	for (i = 0; i < IPREASS_NHASH; i++)
254	    TAILQ_INIT(&ipq[i]);
255	maxnipq = nmbclusters / 32;
256	maxfragsperpacket = 16;
257	ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
258	    NULL, UMA_ALIGN_PTR, 0);
259	maxnipq_update();
260
261	/* Start ipport_tick. */
262	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
263	ipport_tick(NULL);
264	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
265		SHUTDOWN_PRI_DEFAULT);
266
267	/* Initialize various other remaining things. */
268	ip_id = time_second & 0xffff;
269	ipintrq.ifq_maxlen = ipqmaxlen;
270	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
271	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
272}
273
274void ip_fini(xtp)
275	void *xtp;
276{
277	callout_stop(&ipport_tick_callout);
278}
279
280/*
281 * Ip input routine.  Checksum and byte swap header.  If fragmented
282 * try to reassemble.  Process options.  Pass to next level.
283 */
284void
285ip_input(struct mbuf *m)
286{
287	struct ip *ip = NULL;
288	struct in_ifaddr *ia = NULL;
289	struct ifaddr *ifa;
290	int    checkif, hlen = 0;
291	u_short sum;
292	int dchg = 0;				/* dest changed after fw */
293	struct in_addr odst;			/* original dst address */
294#ifdef FAST_IPSEC
295	struct m_tag *mtag;
296	struct tdb_ident *tdbi;
297	struct secpolicy *sp;
298	int s, error;
299#endif /* FAST_IPSEC */
300
301  	M_ASSERTPKTHDR(m);
302
303	if (m->m_flags & M_FASTFWD_OURS) {
304		/*
305		 * Firewall or NAT changed destination to local.
306		 * We expect ip_len and ip_off to be in host byte order.
307		 */
308		m->m_flags &= ~M_FASTFWD_OURS;
309		/* Set up some basics that will be used later. */
310		ip = mtod(m, struct ip *);
311		hlen = ip->ip_hl << 2;
312  		goto ours;
313  	}
314
315	ipstat.ips_total++;
316
317	if (m->m_pkthdr.len < sizeof(struct ip))
318		goto tooshort;
319
320	if (m->m_len < sizeof (struct ip) &&
321	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
322		ipstat.ips_toosmall++;
323		return;
324	}
325	ip = mtod(m, struct ip *);
326
327	if (ip->ip_v != IPVERSION) {
328		ipstat.ips_badvers++;
329		goto bad;
330	}
331
332	hlen = ip->ip_hl << 2;
333	if (hlen < sizeof(struct ip)) {	/* minimum header length */
334		ipstat.ips_badhlen++;
335		goto bad;
336	}
337	if (hlen > m->m_len) {
338		if ((m = m_pullup(m, hlen)) == NULL) {
339			ipstat.ips_badhlen++;
340			return;
341		}
342		ip = mtod(m, struct ip *);
343	}
344
345	/* 127/8 must not appear on wire - RFC1122 */
346	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
347	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
348		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
349			ipstat.ips_badaddr++;
350			goto bad;
351		}
352	}
353
354	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
355		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
356	} else {
357		if (hlen == sizeof(struct ip)) {
358			sum = in_cksum_hdr(ip);
359		} else {
360			sum = in_cksum(m, hlen);
361		}
362	}
363	if (sum) {
364		ipstat.ips_badsum++;
365		goto bad;
366	}
367
368#ifdef ALTQ
369	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
370		/* packet is dropped by traffic conditioner */
371		return;
372#endif
373
374	/*
375	 * Convert fields to host representation.
376	 */
377	ip->ip_len = ntohs(ip->ip_len);
378	if (ip->ip_len < hlen) {
379		ipstat.ips_badlen++;
380		goto bad;
381	}
382	ip->ip_off = ntohs(ip->ip_off);
383
384	/*
385	 * Check that the amount of data in the buffers
386	 * is as at least much as the IP header would have us expect.
387	 * Trim mbufs if longer than we expect.
388	 * Drop packet if shorter than we expect.
389	 */
390	if (m->m_pkthdr.len < ip->ip_len) {
391tooshort:
392		ipstat.ips_tooshort++;
393		goto bad;
394	}
395	if (m->m_pkthdr.len > ip->ip_len) {
396		if (m->m_len == m->m_pkthdr.len) {
397			m->m_len = ip->ip_len;
398			m->m_pkthdr.len = ip->ip_len;
399		} else
400			m_adj(m, ip->ip_len - m->m_pkthdr.len);
401	}
402#if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
403	/*
404	 * Bypass packet filtering for packets from a tunnel (gif).
405	 */
406	if (ipsec_getnhist(m))
407		goto passin;
408#endif
409#if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
410	/*
411	 * Bypass packet filtering for packets from a tunnel (gif).
412	 */
413	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
414		goto passin;
415#endif
416
417	/*
418	 * Run through list of hooks for input packets.
419	 *
420	 * NB: Beware of the destination address changing (e.g.
421	 *     by NAT rewriting).  When this happens, tell
422	 *     ip_forward to do the right thing.
423	 */
424
425	/* Jump over all PFIL processing if hooks are not active. */
426	if (inet_pfil_hook.ph_busy_count == -1)
427		goto passin;
428
429	odst = ip->ip_dst;
430	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
431	    PFIL_IN, NULL) != 0)
432		return;
433	if (m == NULL)			/* consumed by filter */
434		return;
435
436	ip = mtod(m, struct ip *);
437	dchg = (odst.s_addr != ip->ip_dst.s_addr);
438
439#ifdef IPFIREWALL_FORWARD
440	if (m->m_flags & M_FASTFWD_OURS) {
441		m->m_flags &= ~M_FASTFWD_OURS;
442		goto ours;
443	}
444#ifndef IPFIREWALL_FORWARD_EXTENDED
445	dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
446#else
447	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
448		/*
449		 * Directly ship on the packet.  This allows to forward packets
450		 * that were destined for us to some other directly connected
451		 * host.
452		 */
453		ip_forward(m, dchg);
454		return;
455	}
456#endif /* IPFIREWALL_FORWARD_EXTENDED */
457#endif /* IPFIREWALL_FORWARD */
458
459passin:
460	/*
461	 * Process options and, if not destined for us,
462	 * ship it on.  ip_dooptions returns 1 when an
463	 * error was detected (causing an icmp message
464	 * to be sent and the original packet to be freed).
465	 */
466	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
467		return;
468
469        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
470         * matter if it is destined to another node, or whether it is
471         * a multicast one, RSVP wants it! and prevents it from being forwarded
472         * anywhere else. Also checks if the rsvp daemon is running before
473	 * grabbing the packet.
474         */
475	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
476		goto ours;
477
478	/*
479	 * Check our list of addresses, to see if the packet is for us.
480	 * If we don't have any addresses, assume any unicast packet
481	 * we receive might be for us (and let the upper layers deal
482	 * with it).
483	 */
484	if (TAILQ_EMPTY(&in_ifaddrhead) &&
485	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
486		goto ours;
487
488	/*
489	 * Enable a consistency check between the destination address
490	 * and the arrival interface for a unicast packet (the RFC 1122
491	 * strong ES model) if IP forwarding is disabled and the packet
492	 * is not locally generated and the packet is not subject to
493	 * 'ipfw fwd'.
494	 *
495	 * XXX - Checking also should be disabled if the destination
496	 * address is ipnat'ed to a different interface.
497	 *
498	 * XXX - Checking is incompatible with IP aliases added
499	 * to the loopback interface instead of the interface where
500	 * the packets are received.
501	 *
502	 * XXX - This is the case for carp vhost IPs as well so we
503	 * insert a workaround. If the packet got here, we already
504	 * checked with carp_iamatch() and carp_forus().
505	 */
506	checkif = ip_checkinterface && (ipforwarding == 0) &&
507	    m->m_pkthdr.rcvif != NULL &&
508	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
509#ifdef DEV_CARP
510	    !m->m_pkthdr.rcvif->if_carp &&
511#endif
512	    (dchg == 0);
513
514	/*
515	 * Check for exact addresses in the hash bucket.
516	 */
517	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
518		/*
519		 * If the address matches, verify that the packet
520		 * arrived via the correct interface if checking is
521		 * enabled.
522		 */
523		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
524		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
525			goto ours;
526	}
527	/*
528	 * Check for broadcast addresses.
529	 *
530	 * Only accept broadcast packets that arrive via the matching
531	 * interface.  Reception of forwarded directed broadcasts would
532	 * be handled via ip_forward() and ether_output() with the loopback
533	 * into the stack for SIMPLEX interfaces handled by ether_output().
534	 */
535	if (m->m_pkthdr.rcvif != NULL &&
536	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
537	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
538			if (ifa->ifa_addr->sa_family != AF_INET)
539				continue;
540			ia = ifatoia(ifa);
541			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
542			    ip->ip_dst.s_addr)
543				goto ours;
544			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
545				goto ours;
546#ifdef BOOTP_COMPAT
547			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
548				goto ours;
549#endif
550		}
551	}
552	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
553		struct in_multi *inm;
554		if (ip_mrouter) {
555			/*
556			 * If we are acting as a multicast router, all
557			 * incoming multicast packets are passed to the
558			 * kernel-level multicast forwarding function.
559			 * The packet is returned (relatively) intact; if
560			 * ip_mforward() returns a non-zero value, the packet
561			 * must be discarded, else it may be accepted below.
562			 */
563			if (ip_mforward &&
564			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
565				ipstat.ips_cantforward++;
566				m_freem(m);
567				return;
568			}
569
570			/*
571			 * The process-level routing daemon needs to receive
572			 * all multicast IGMP packets, whether or not this
573			 * host belongs to their destination groups.
574			 */
575			if (ip->ip_p == IPPROTO_IGMP)
576				goto ours;
577			ipstat.ips_forward++;
578		}
579		/*
580		 * See if we belong to the destination multicast group on the
581		 * arrival interface.
582		 */
583		IN_MULTI_LOCK();
584		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
585		IN_MULTI_UNLOCK();
586		if (inm == NULL) {
587			ipstat.ips_notmember++;
588			m_freem(m);
589			return;
590		}
591		goto ours;
592	}
593	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
594		goto ours;
595	if (ip->ip_dst.s_addr == INADDR_ANY)
596		goto ours;
597
598	/*
599	 * FAITH(Firewall Aided Internet Translator)
600	 */
601	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
602		if (ip_keepfaith) {
603			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
604				goto ours;
605		}
606		m_freem(m);
607		return;
608	}
609
610	/*
611	 * Not for us; forward if possible and desirable.
612	 */
613	if (ipforwarding == 0) {
614		ipstat.ips_cantforward++;
615		m_freem(m);
616	} else {
617#ifdef IPSEC
618		/*
619		 * Enforce inbound IPsec SPD.
620		 */
621		if (ipsec4_in_reject(m, NULL)) {
622			ipsecstat.in_polvio++;
623			goto bad;
624		}
625#endif /* IPSEC */
626#ifdef FAST_IPSEC
627		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
628		s = splnet();
629		if (mtag != NULL) {
630			tdbi = (struct tdb_ident *)(mtag + 1);
631			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
632		} else {
633			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
634						   IP_FORWARDING, &error);
635		}
636		if (sp == NULL) {	/* NB: can happen if error */
637			splx(s);
638			/*XXX error stat???*/
639			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
640			goto bad;
641		}
642
643		/*
644		 * Check security policy against packet attributes.
645		 */
646		error = ipsec_in_reject(sp, m);
647		KEY_FREESP(&sp);
648		splx(s);
649		if (error) {
650			ipstat.ips_cantforward++;
651			goto bad;
652		}
653#endif /* FAST_IPSEC */
654		ip_forward(m, dchg);
655	}
656	return;
657
658ours:
659#ifdef IPSTEALTH
660	/*
661	 * IPSTEALTH: Process non-routing options only
662	 * if the packet is destined for us.
663	 */
664	if (ipstealth && hlen > sizeof (struct ip) &&
665	    ip_dooptions(m, 1))
666		return;
667#endif /* IPSTEALTH */
668
669	/* Count the packet in the ip address stats */
670	if (ia != NULL) {
671		ia->ia_ifa.if_ipackets++;
672		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
673	}
674
675	/*
676	 * Attempt reassembly; if it succeeds, proceed.
677	 * ip_reass() will return a different mbuf.
678	 */
679	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
680		m = ip_reass(m);
681		if (m == NULL)
682			return;
683		ip = mtod(m, struct ip *);
684		/* Get the header length of the reassembled packet */
685		hlen = ip->ip_hl << 2;
686	}
687
688	/*
689	 * Further protocols expect the packet length to be w/o the
690	 * IP header.
691	 */
692	ip->ip_len -= hlen;
693
694#ifdef IPSEC
695	/*
696	 * enforce IPsec policy checking if we are seeing last header.
697	 * note that we do not visit this with protocols with pcb layer
698	 * code - like udp/tcp/raw ip.
699	 */
700	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
701	    ipsec4_in_reject(m, NULL)) {
702		ipsecstat.in_polvio++;
703		goto bad;
704	}
705#endif
706#ifdef FAST_IPSEC
707	/*
708	 * enforce IPsec policy checking if we are seeing last header.
709	 * note that we do not visit this with protocols with pcb layer
710	 * code - like udp/tcp/raw ip.
711	 */
712	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
713		/*
714		 * Check if the packet has already had IPsec processing
715		 * done.  If so, then just pass it along.  This tag gets
716		 * set during AH, ESP, etc. input handling, before the
717		 * packet is returned to the ip input queue for delivery.
718		 */
719		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
720		s = splnet();
721		if (mtag != NULL) {
722			tdbi = (struct tdb_ident *)(mtag + 1);
723			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
724		} else {
725			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
726						   IP_FORWARDING, &error);
727		}
728		if (sp != NULL) {
729			/*
730			 * Check security policy against packet attributes.
731			 */
732			error = ipsec_in_reject(sp, m);
733			KEY_FREESP(&sp);
734		} else {
735			/* XXX error stat??? */
736			error = EINVAL;
737DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
738			goto bad;
739		}
740		splx(s);
741		if (error)
742			goto bad;
743	}
744#endif /* FAST_IPSEC */
745
746	/*
747	 * Switch out to protocol's input routine.
748	 */
749	ipstat.ips_delivered++;
750
751	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
752	return;
753bad:
754	m_freem(m);
755}
756
757/*
758 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
759 * max has slightly different semantics than the sysctl, for historical
760 * reasons.
761 */
762static void
763maxnipq_update(void)
764{
765
766	/*
767	 * -1 for unlimited allocation.
768	 */
769	if (maxnipq < 0)
770		uma_zone_set_max(ipq_zone, 0);
771	/*
772	 * Positive number for specific bound.
773	 */
774	if (maxnipq > 0)
775		uma_zone_set_max(ipq_zone, maxnipq);
776	/*
777	 * Zero specifies no further fragment queue allocation -- set the
778	 * bound very low, but rely on implementation elsewhere to actually
779	 * prevent allocation and reclaim current queues.
780	 */
781	if (maxnipq == 0)
782		uma_zone_set_max(ipq_zone, 1);
783}
784
785static int
786sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
787{
788	int error, i;
789
790	i = maxnipq;
791	error = sysctl_handle_int(oidp, &i, 0, req);
792	if (error || !req->newptr)
793		return (error);
794
795	/*
796	 * XXXRW: Might be a good idea to sanity check the argument and place
797	 * an extreme upper bound.
798	 */
799	if (i < -1)
800		return (EINVAL);
801	maxnipq = i;
802	maxnipq_update();
803	return (0);
804}
805
806SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
807    NULL, 0, sysctl_maxnipq, "I",
808    "Maximum number of IPv4 fragment reassembly queue entries");
809
810/*
811 * Take incoming datagram fragment and try to reassemble it into
812 * whole datagram.  If the argument is the first fragment or one
813 * in between the function will return NULL and store the mbuf
814 * in the fragment chain.  If the argument is the last fragment
815 * the packet will be reassembled and the pointer to the new
816 * mbuf returned for further processing.  Only m_tags attached
817 * to the first packet/fragment are preserved.
818 * The IP header is *NOT* adjusted out of iplen.
819 */
820
821struct mbuf *
822ip_reass(struct mbuf *m)
823{
824	struct ip *ip;
825	struct mbuf *p, *q, *nq, *t;
826	struct ipq *fp = NULL;
827	struct ipqhead *head;
828	int i, hlen, next;
829	u_int8_t ecn, ecn0;
830	u_short hash;
831
832	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
833	if (maxnipq == 0 || maxfragsperpacket == 0) {
834		ipstat.ips_fragments++;
835		ipstat.ips_fragdropped++;
836		m_freem(m);
837		return (NULL);
838	}
839
840	ip = mtod(m, struct ip *);
841	hlen = ip->ip_hl << 2;
842
843	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
844	head = &ipq[hash];
845	IPQ_LOCK();
846
847	/*
848	 * Look for queue of fragments
849	 * of this datagram.
850	 */
851	TAILQ_FOREACH(fp, head, ipq_list)
852		if (ip->ip_id == fp->ipq_id &&
853		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
854		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
855#ifdef MAC
856		    mac_fragment_match(m, fp) &&
857#endif
858		    ip->ip_p == fp->ipq_p)
859			goto found;
860
861	fp = NULL;
862
863	/*
864	 * Attempt to trim the number of allocated fragment queues if it
865	 * exceeds the administrative limit.
866	 */
867	if ((nipq > maxnipq) && (maxnipq > 0)) {
868		/*
869		 * drop something from the tail of the current queue
870		 * before proceeding further
871		 */
872		struct ipq *q = TAILQ_LAST(head, ipqhead);
873		if (q == NULL) {   /* gak */
874			for (i = 0; i < IPREASS_NHASH; i++) {
875				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
876				if (r) {
877					ipstat.ips_fragtimeout += r->ipq_nfrags;
878					ip_freef(&ipq[i], r);
879					break;
880				}
881			}
882		} else {
883			ipstat.ips_fragtimeout += q->ipq_nfrags;
884			ip_freef(head, q);
885		}
886	}
887
888found:
889	/*
890	 * Adjust ip_len to not reflect header,
891	 * convert offset of this to bytes.
892	 */
893	ip->ip_len -= hlen;
894	if (ip->ip_off & IP_MF) {
895		/*
896		 * Make sure that fragments have a data length
897		 * that's a non-zero multiple of 8 bytes.
898		 */
899		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
900			ipstat.ips_toosmall++; /* XXX */
901			goto dropfrag;
902		}
903		m->m_flags |= M_FRAG;
904	} else
905		m->m_flags &= ~M_FRAG;
906	ip->ip_off <<= 3;
907
908
909	/*
910	 * Attempt reassembly; if it succeeds, proceed.
911	 * ip_reass() will return a different mbuf.
912	 */
913	ipstat.ips_fragments++;
914	m->m_pkthdr.header = ip;
915
916	/* Previous ip_reass() started here. */
917	/*
918	 * Presence of header sizes in mbufs
919	 * would confuse code below.
920	 */
921	m->m_data += hlen;
922	m->m_len -= hlen;
923
924	/*
925	 * If first fragment to arrive, create a reassembly queue.
926	 */
927	if (fp == NULL) {
928		fp = uma_zalloc(ipq_zone, M_NOWAIT);
929		if (fp == NULL)
930			goto dropfrag;
931#ifdef MAC
932		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
933			uma_zfree(ipq_zone, fp);
934			goto dropfrag;
935		}
936		mac_create_ipq(m, fp);
937#endif
938		TAILQ_INSERT_HEAD(head, fp, ipq_list);
939		nipq++;
940		fp->ipq_nfrags = 1;
941		fp->ipq_ttl = IPFRAGTTL;
942		fp->ipq_p = ip->ip_p;
943		fp->ipq_id = ip->ip_id;
944		fp->ipq_src = ip->ip_src;
945		fp->ipq_dst = ip->ip_dst;
946		fp->ipq_frags = m;
947		m->m_nextpkt = NULL;
948		goto done;
949	} else {
950		fp->ipq_nfrags++;
951#ifdef MAC
952		mac_update_ipq(m, fp);
953#endif
954	}
955
956#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
957
958	/*
959	 * Handle ECN by comparing this segment with the first one;
960	 * if CE is set, do not lose CE.
961	 * drop if CE and not-ECT are mixed for the same packet.
962	 */
963	ecn = ip->ip_tos & IPTOS_ECN_MASK;
964	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
965	if (ecn == IPTOS_ECN_CE) {
966		if (ecn0 == IPTOS_ECN_NOTECT)
967			goto dropfrag;
968		if (ecn0 != IPTOS_ECN_CE)
969			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
970	}
971	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
972		goto dropfrag;
973
974	/*
975	 * Find a segment which begins after this one does.
976	 */
977	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
978		if (GETIP(q)->ip_off > ip->ip_off)
979			break;
980
981	/*
982	 * If there is a preceding segment, it may provide some of
983	 * our data already.  If so, drop the data from the incoming
984	 * segment.  If it provides all of our data, drop us, otherwise
985	 * stick new segment in the proper place.
986	 *
987	 * If some of the data is dropped from the the preceding
988	 * segment, then it's checksum is invalidated.
989	 */
990	if (p) {
991		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
992		if (i > 0) {
993			if (i >= ip->ip_len)
994				goto dropfrag;
995			m_adj(m, i);
996			m->m_pkthdr.csum_flags = 0;
997			ip->ip_off += i;
998			ip->ip_len -= i;
999		}
1000		m->m_nextpkt = p->m_nextpkt;
1001		p->m_nextpkt = m;
1002	} else {
1003		m->m_nextpkt = fp->ipq_frags;
1004		fp->ipq_frags = m;
1005	}
1006
1007	/*
1008	 * While we overlap succeeding segments trim them or,
1009	 * if they are completely covered, dequeue them.
1010	 */
1011	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1012	     q = nq) {
1013		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1014		if (i < GETIP(q)->ip_len) {
1015			GETIP(q)->ip_len -= i;
1016			GETIP(q)->ip_off += i;
1017			m_adj(q, i);
1018			q->m_pkthdr.csum_flags = 0;
1019			break;
1020		}
1021		nq = q->m_nextpkt;
1022		m->m_nextpkt = nq;
1023		ipstat.ips_fragdropped++;
1024		fp->ipq_nfrags--;
1025		m_freem(q);
1026	}
1027
1028	/*
1029	 * Check for complete reassembly and perform frag per packet
1030	 * limiting.
1031	 *
1032	 * Frag limiting is performed here so that the nth frag has
1033	 * a chance to complete the packet before we drop the packet.
1034	 * As a result, n+1 frags are actually allowed per packet, but
1035	 * only n will ever be stored. (n = maxfragsperpacket.)
1036	 *
1037	 */
1038	next = 0;
1039	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1040		if (GETIP(q)->ip_off != next) {
1041			if (fp->ipq_nfrags > maxfragsperpacket) {
1042				ipstat.ips_fragdropped += fp->ipq_nfrags;
1043				ip_freef(head, fp);
1044			}
1045			goto done;
1046		}
1047		next += GETIP(q)->ip_len;
1048	}
1049	/* Make sure the last packet didn't have the IP_MF flag */
1050	if (p->m_flags & M_FRAG) {
1051		if (fp->ipq_nfrags > maxfragsperpacket) {
1052			ipstat.ips_fragdropped += fp->ipq_nfrags;
1053			ip_freef(head, fp);
1054		}
1055		goto done;
1056	}
1057
1058	/*
1059	 * Reassembly is complete.  Make sure the packet is a sane size.
1060	 */
1061	q = fp->ipq_frags;
1062	ip = GETIP(q);
1063	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1064		ipstat.ips_toolong++;
1065		ipstat.ips_fragdropped += fp->ipq_nfrags;
1066		ip_freef(head, fp);
1067		goto done;
1068	}
1069
1070	/*
1071	 * Concatenate fragments.
1072	 */
1073	m = q;
1074	t = m->m_next;
1075	m->m_next = NULL;
1076	m_cat(m, t);
1077	nq = q->m_nextpkt;
1078	q->m_nextpkt = NULL;
1079	for (q = nq; q != NULL; q = nq) {
1080		nq = q->m_nextpkt;
1081		q->m_nextpkt = NULL;
1082		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1083		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1084		m_cat(m, q);
1085	}
1086#ifdef MAC
1087	mac_create_datagram_from_ipq(fp, m);
1088	mac_destroy_ipq(fp);
1089#endif
1090
1091	/*
1092	 * Create header for new ip packet by modifying header of first
1093	 * packet;  dequeue and discard fragment reassembly header.
1094	 * Make header visible.
1095	 */
1096	ip->ip_len = (ip->ip_hl << 2) + next;
1097	ip->ip_src = fp->ipq_src;
1098	ip->ip_dst = fp->ipq_dst;
1099	TAILQ_REMOVE(head, fp, ipq_list);
1100	nipq--;
1101	uma_zfree(ipq_zone, fp);
1102	m->m_len += (ip->ip_hl << 2);
1103	m->m_data -= (ip->ip_hl << 2);
1104	/* some debugging cruft by sklower, below, will go away soon */
1105	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1106		m_fixhdr(m);
1107	ipstat.ips_reassembled++;
1108	IPQ_UNLOCK();
1109	return (m);
1110
1111dropfrag:
1112	ipstat.ips_fragdropped++;
1113	if (fp != NULL)
1114		fp->ipq_nfrags--;
1115	m_freem(m);
1116done:
1117	IPQ_UNLOCK();
1118	return (NULL);
1119
1120#undef GETIP
1121}
1122
1123/*
1124 * Free a fragment reassembly header and all
1125 * associated datagrams.
1126 */
1127static void
1128ip_freef(fhp, fp)
1129	struct ipqhead *fhp;
1130	struct ipq *fp;
1131{
1132	register struct mbuf *q;
1133
1134	IPQ_LOCK_ASSERT();
1135
1136	while (fp->ipq_frags) {
1137		q = fp->ipq_frags;
1138		fp->ipq_frags = q->m_nextpkt;
1139		m_freem(q);
1140	}
1141	TAILQ_REMOVE(fhp, fp, ipq_list);
1142	uma_zfree(ipq_zone, fp);
1143	nipq--;
1144}
1145
1146/*
1147 * IP timer processing;
1148 * if a timer expires on a reassembly
1149 * queue, discard it.
1150 */
1151void
1152ip_slowtimo()
1153{
1154	register struct ipq *fp;
1155	int i;
1156
1157	IPQ_LOCK();
1158	for (i = 0; i < IPREASS_NHASH; i++) {
1159		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1160			struct ipq *fpp;
1161
1162			fpp = fp;
1163			fp = TAILQ_NEXT(fp, ipq_list);
1164			if(--fpp->ipq_ttl == 0) {
1165				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1166				ip_freef(&ipq[i], fpp);
1167			}
1168		}
1169	}
1170	/*
1171	 * If we are over the maximum number of fragments
1172	 * (due to the limit being lowered), drain off
1173	 * enough to get down to the new limit.
1174	 */
1175	if (maxnipq >= 0 && nipq > maxnipq) {
1176		for (i = 0; i < IPREASS_NHASH; i++) {
1177			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1178				ipstat.ips_fragdropped +=
1179				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1180				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1181			}
1182		}
1183	}
1184	IPQ_UNLOCK();
1185}
1186
1187/*
1188 * Drain off all datagram fragments.
1189 */
1190void
1191ip_drain()
1192{
1193	int     i;
1194
1195	IPQ_LOCK();
1196	for (i = 0; i < IPREASS_NHASH; i++) {
1197		while(!TAILQ_EMPTY(&ipq[i])) {
1198			ipstat.ips_fragdropped +=
1199			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1200			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1201		}
1202	}
1203	IPQ_UNLOCK();
1204	in_rtqdrain();
1205}
1206
1207/*
1208 * The protocol to be inserted into ip_protox[] must be already registered
1209 * in inetsw[], either statically or through pf_proto_register().
1210 */
1211int
1212ipproto_register(u_char ipproto)
1213{
1214	struct protosw *pr;
1215
1216	/* Sanity checks. */
1217	if (ipproto == 0)
1218		return (EPROTONOSUPPORT);
1219
1220	/*
1221	 * The protocol slot must not be occupied by another protocol
1222	 * already.  An index pointing to IPPROTO_RAW is unused.
1223	 */
1224	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1225	if (pr == NULL)
1226		return (EPFNOSUPPORT);
1227	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1228		return (EEXIST);
1229
1230	/* Find the protocol position in inetsw[] and set the index. */
1231	for (pr = inetdomain.dom_protosw;
1232	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1233		if (pr->pr_domain->dom_family == PF_INET &&
1234		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1235			/* Be careful to only index valid IP protocols. */
1236			if (pr->pr_protocol < IPPROTO_MAX) {
1237				ip_protox[pr->pr_protocol] = pr - inetsw;
1238				return (0);
1239			} else
1240				return (EINVAL);
1241		}
1242	}
1243	return (EPROTONOSUPPORT);
1244}
1245
1246int
1247ipproto_unregister(u_char ipproto)
1248{
1249	struct protosw *pr;
1250
1251	/* Sanity checks. */
1252	if (ipproto == 0)
1253		return (EPROTONOSUPPORT);
1254
1255	/* Check if the protocol was indeed registered. */
1256	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1257	if (pr == NULL)
1258		return (EPFNOSUPPORT);
1259	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1260		return (ENOENT);
1261
1262	/* Reset the protocol slot to IPPROTO_RAW. */
1263	ip_protox[ipproto] = pr - inetsw;
1264	return (0);
1265}
1266
1267/*
1268 * Given address of next destination (final or next hop),
1269 * return internet address info of interface to be used to get there.
1270 */
1271struct in_ifaddr *
1272ip_rtaddr(dst)
1273	struct in_addr dst;
1274{
1275	struct route sro;
1276	struct sockaddr_in *sin;
1277	struct in_ifaddr *ifa;
1278
1279	bzero(&sro, sizeof(sro));
1280	sin = (struct sockaddr_in *)&sro.ro_dst;
1281	sin->sin_family = AF_INET;
1282	sin->sin_len = sizeof(*sin);
1283	sin->sin_addr = dst;
1284	rtalloc_ign(&sro, RTF_CLONING);
1285
1286	if (sro.ro_rt == NULL)
1287		return (NULL);
1288
1289	ifa = ifatoia(sro.ro_rt->rt_ifa);
1290	RTFREE(sro.ro_rt);
1291	return (ifa);
1292}
1293
1294u_char inetctlerrmap[PRC_NCMDS] = {
1295	0,		0,		0,		0,
1296	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1297	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1298	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1299	0,		0,		EHOSTUNREACH,	0,
1300	ENOPROTOOPT,	ECONNREFUSED
1301};
1302
1303/*
1304 * Forward a packet.  If some error occurs return the sender
1305 * an icmp packet.  Note we can't always generate a meaningful
1306 * icmp message because icmp doesn't have a large enough repertoire
1307 * of codes and types.
1308 *
1309 * If not forwarding, just drop the packet.  This could be confusing
1310 * if ipforwarding was zero but some routing protocol was advancing
1311 * us as a gateway to somewhere.  However, we must let the routing
1312 * protocol deal with that.
1313 *
1314 * The srcrt parameter indicates whether the packet is being forwarded
1315 * via a source route.
1316 */
1317void
1318ip_forward(struct mbuf *m, int srcrt)
1319{
1320	struct ip *ip = mtod(m, struct ip *);
1321	struct in_ifaddr *ia = NULL;
1322	struct mbuf *mcopy;
1323	struct in_addr dest;
1324	int error, type = 0, code = 0, mtu = 0;
1325
1326	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1327		ipstat.ips_cantforward++;
1328		m_freem(m);
1329		return;
1330	}
1331#ifdef IPSTEALTH
1332	if (!ipstealth) {
1333#endif
1334		if (ip->ip_ttl <= IPTTLDEC) {
1335			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1336			    0, 0);
1337			return;
1338		}
1339#ifdef IPSTEALTH
1340	}
1341#endif
1342
1343	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1344		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1345		return;
1346	}
1347
1348	/*
1349	 * Save the IP header and at most 8 bytes of the payload,
1350	 * in case we need to generate an ICMP message to the src.
1351	 *
1352	 * XXX this can be optimized a lot by saving the data in a local
1353	 * buffer on the stack (72 bytes at most), and only allocating the
1354	 * mbuf if really necessary. The vast majority of the packets
1355	 * are forwarded without having to send an ICMP back (either
1356	 * because unnecessary, or because rate limited), so we are
1357	 * really we are wasting a lot of work here.
1358	 *
1359	 * We don't use m_copy() because it might return a reference
1360	 * to a shared cluster. Both this function and ip_output()
1361	 * assume exclusive access to the IP header in `m', so any
1362	 * data in a cluster may change before we reach icmp_error().
1363	 */
1364	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1365	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1366		/*
1367		 * It's probably ok if the pkthdr dup fails (because
1368		 * the deep copy of the tag chain failed), but for now
1369		 * be conservative and just discard the copy since
1370		 * code below may some day want the tags.
1371		 */
1372		m_free(mcopy);
1373		mcopy = NULL;
1374	}
1375	if (mcopy != NULL) {
1376		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1377		mcopy->m_pkthdr.len = mcopy->m_len;
1378		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1379	}
1380
1381#ifdef IPSTEALTH
1382	if (!ipstealth) {
1383#endif
1384		ip->ip_ttl -= IPTTLDEC;
1385#ifdef IPSTEALTH
1386	}
1387#endif
1388
1389	/*
1390	 * If forwarding packet using same interface that it came in on,
1391	 * perhaps should send a redirect to sender to shortcut a hop.
1392	 * Only send redirect if source is sending directly to us,
1393	 * and if packet was not source routed (or has any options).
1394	 * Also, don't send redirect if forwarding using a default route
1395	 * or a route modified by a redirect.
1396	 */
1397	dest.s_addr = 0;
1398	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1399		struct sockaddr_in *sin;
1400		struct route ro;
1401		struct rtentry *rt;
1402
1403		bzero(&ro, sizeof(ro));
1404		sin = (struct sockaddr_in *)&ro.ro_dst;
1405		sin->sin_family = AF_INET;
1406		sin->sin_len = sizeof(*sin);
1407		sin->sin_addr = ip->ip_dst;
1408		rtalloc_ign(&ro, RTF_CLONING);
1409
1410		rt = ro.ro_rt;
1411
1412		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1413		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1414#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1415			u_long src = ntohl(ip->ip_src.s_addr);
1416
1417			if (RTA(rt) &&
1418			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1419				if (rt->rt_flags & RTF_GATEWAY)
1420					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1421				else
1422					dest.s_addr = ip->ip_dst.s_addr;
1423				/* Router requirements says to only send host redirects */
1424				type = ICMP_REDIRECT;
1425				code = ICMP_REDIRECT_HOST;
1426			}
1427		}
1428		if (rt)
1429			RTFREE(rt);
1430	}
1431
1432	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1433	if (error)
1434		ipstat.ips_cantforward++;
1435	else {
1436		ipstat.ips_forward++;
1437		if (type)
1438			ipstat.ips_redirectsent++;
1439		else {
1440			if (mcopy)
1441				m_freem(mcopy);
1442			return;
1443		}
1444	}
1445	if (mcopy == NULL)
1446		return;
1447
1448	switch (error) {
1449
1450	case 0:				/* forwarded, but need redirect */
1451		/* type, code set above */
1452		break;
1453
1454	case ENETUNREACH:		/* shouldn't happen, checked above */
1455	case EHOSTUNREACH:
1456	case ENETDOWN:
1457	case EHOSTDOWN:
1458	default:
1459		type = ICMP_UNREACH;
1460		code = ICMP_UNREACH_HOST;
1461		break;
1462
1463	case EMSGSIZE:
1464		type = ICMP_UNREACH;
1465		code = ICMP_UNREACH_NEEDFRAG;
1466#if defined(IPSEC) || defined(FAST_IPSEC)
1467		/*
1468		 * If the packet is routed over IPsec tunnel, tell the
1469		 * originator the tunnel MTU.
1470		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1471		 * XXX quickhack!!!
1472		 */
1473		{
1474			struct secpolicy *sp = NULL;
1475			int ipsecerror;
1476			int ipsechdr;
1477			struct route *ro;
1478
1479#ifdef IPSEC
1480			sp = ipsec4_getpolicybyaddr(mcopy,
1481						    IPSEC_DIR_OUTBOUND,
1482						    IP_FORWARDING,
1483						    &ipsecerror);
1484#else /* FAST_IPSEC */
1485			sp = ipsec_getpolicybyaddr(mcopy,
1486						   IPSEC_DIR_OUTBOUND,
1487						   IP_FORWARDING,
1488						   &ipsecerror);
1489#endif
1490			if (sp != NULL) {
1491				/* count IPsec header size */
1492				ipsechdr = ipsec4_hdrsiz(mcopy,
1493							 IPSEC_DIR_OUTBOUND,
1494							 NULL);
1495
1496				/*
1497				 * find the correct route for outer IPv4
1498				 * header, compute tunnel MTU.
1499				 */
1500				if (sp->req != NULL
1501				 && sp->req->sav != NULL
1502				 && sp->req->sav->sah != NULL) {
1503					ro = &sp->req->sav->sah->sa_route;
1504					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1505						mtu =
1506						    ro->ro_rt->rt_rmx.rmx_mtu ?
1507						    ro->ro_rt->rt_rmx.rmx_mtu :
1508						    ro->ro_rt->rt_ifp->if_mtu;
1509						mtu -= ipsechdr;
1510					}
1511				}
1512
1513#ifdef IPSEC
1514				key_freesp(sp);
1515#else /* FAST_IPSEC */
1516				KEY_FREESP(&sp);
1517#endif
1518				ipstat.ips_cantfrag++;
1519				break;
1520			} else
1521#endif /*IPSEC || FAST_IPSEC*/
1522		/*
1523		 * When doing source routing 'ia' can be NULL.  Fall back
1524		 * to the minimum guaranteed routeable packet size and use
1525		 * the same hack as IPSEC to setup a dummyifp for icmp.
1526		 */
1527		if (ia == NULL)
1528			mtu = IP_MSS;
1529		else
1530			mtu = ia->ia_ifp->if_mtu;
1531#if defined(IPSEC) || defined(FAST_IPSEC)
1532		}
1533#endif /*IPSEC || FAST_IPSEC*/
1534		ipstat.ips_cantfrag++;
1535		break;
1536
1537	case ENOBUFS:
1538		/*
1539		 * A router should not generate ICMP_SOURCEQUENCH as
1540		 * required in RFC1812 Requirements for IP Version 4 Routers.
1541		 * Source quench could be a big problem under DoS attacks,
1542		 * or if the underlying interface is rate-limited.
1543		 * Those who need source quench packets may re-enable them
1544		 * via the net.inet.ip.sendsourcequench sysctl.
1545		 */
1546		if (ip_sendsourcequench == 0) {
1547			m_freem(mcopy);
1548			return;
1549		} else {
1550			type = ICMP_SOURCEQUENCH;
1551			code = 0;
1552		}
1553		break;
1554
1555	case EACCES:			/* ipfw denied packet */
1556		m_freem(mcopy);
1557		return;
1558	}
1559	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1560}
1561
1562void
1563ip_savecontrol(inp, mp, ip, m)
1564	register struct inpcb *inp;
1565	register struct mbuf **mp;
1566	register struct ip *ip;
1567	register struct mbuf *m;
1568{
1569	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1570		struct bintime bt;
1571
1572		bintime(&bt);
1573		if (inp->inp_socket->so_options & SO_BINTIME) {
1574			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1575			SCM_BINTIME, SOL_SOCKET);
1576			if (*mp)
1577				mp = &(*mp)->m_next;
1578		}
1579		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1580			struct timeval tv;
1581
1582			bintime2timeval(&bt, &tv);
1583			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1584				SCM_TIMESTAMP, SOL_SOCKET);
1585			if (*mp)
1586				mp = &(*mp)->m_next;
1587		}
1588	}
1589	if (inp->inp_flags & INP_RECVDSTADDR) {
1590		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1591		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1592		if (*mp)
1593			mp = &(*mp)->m_next;
1594	}
1595	if (inp->inp_flags & INP_RECVTTL) {
1596		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1597		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1598		if (*mp)
1599			mp = &(*mp)->m_next;
1600	}
1601#ifdef notyet
1602	/* XXX
1603	 * Moving these out of udp_input() made them even more broken
1604	 * than they already were.
1605	 */
1606	/* options were tossed already */
1607	if (inp->inp_flags & INP_RECVOPTS) {
1608		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1609		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1610		if (*mp)
1611			mp = &(*mp)->m_next;
1612	}
1613	/* ip_srcroute doesn't do what we want here, need to fix */
1614	if (inp->inp_flags & INP_RECVRETOPTS) {
1615		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1616		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1617		if (*mp)
1618			mp = &(*mp)->m_next;
1619	}
1620#endif
1621	if (inp->inp_flags & INP_RECVIF) {
1622		struct ifnet *ifp;
1623		struct sdlbuf {
1624			struct sockaddr_dl sdl;
1625			u_char	pad[32];
1626		} sdlbuf;
1627		struct sockaddr_dl *sdp;
1628		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1629
1630		if (((ifp = m->m_pkthdr.rcvif))
1631		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1632			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1633			/*
1634			 * Change our mind and don't try copy.
1635			 */
1636			if ((sdp->sdl_family != AF_LINK)
1637			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1638				goto makedummy;
1639			}
1640			bcopy(sdp, sdl2, sdp->sdl_len);
1641		} else {
1642makedummy:
1643			sdl2->sdl_len
1644				= offsetof(struct sockaddr_dl, sdl_data[0]);
1645			sdl2->sdl_family = AF_LINK;
1646			sdl2->sdl_index = 0;
1647			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1648		}
1649		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1650			IP_RECVIF, IPPROTO_IP);
1651		if (*mp)
1652			mp = &(*mp)->m_next;
1653	}
1654}
1655
1656/*
1657 * XXX these routines are called from the upper part of the kernel.
1658 * They need to be locked when we remove Giant.
1659 *
1660 * They could also be moved to ip_mroute.c, since all the RSVP
1661 *  handling is done there already.
1662 */
1663static int ip_rsvp_on;
1664struct socket *ip_rsvpd;
1665int
1666ip_rsvp_init(struct socket *so)
1667{
1668	if (so->so_type != SOCK_RAW ||
1669	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1670		return EOPNOTSUPP;
1671
1672	if (ip_rsvpd != NULL)
1673		return EADDRINUSE;
1674
1675	ip_rsvpd = so;
1676	/*
1677	 * This may seem silly, but we need to be sure we don't over-increment
1678	 * the RSVP counter, in case something slips up.
1679	 */
1680	if (!ip_rsvp_on) {
1681		ip_rsvp_on = 1;
1682		rsvp_on++;
1683	}
1684
1685	return 0;
1686}
1687
1688int
1689ip_rsvp_done(void)
1690{
1691	ip_rsvpd = NULL;
1692	/*
1693	 * This may seem silly, but we need to be sure we don't over-decrement
1694	 * the RSVP counter, in case something slips up.
1695	 */
1696	if (ip_rsvp_on) {
1697		ip_rsvp_on = 0;
1698		rsvp_on--;
1699	}
1700	return 0;
1701}
1702
1703void
1704rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1705{
1706	if (rsvp_input_p) { /* call the real one if loaded */
1707		rsvp_input_p(m, off);
1708		return;
1709	}
1710
1711	/* Can still get packets with rsvp_on = 0 if there is a local member
1712	 * of the group to which the RSVP packet is addressed.  But in this
1713	 * case we want to throw the packet away.
1714	 */
1715
1716	if (!rsvp_on) {
1717		m_freem(m);
1718		return;
1719	}
1720
1721	if (ip_rsvpd != NULL) {
1722		rip_input(m, off);
1723		return;
1724	}
1725	/* Drop the packet */
1726	m_freem(m);
1727}
1728