ip_reass.c revision 131814
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 131814 2004-07-08 13:40:33Z brian $
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipdn.h"
35#include "opt_ipdivert.h"
36#include "opt_ipfilter.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40#include "opt_pfil_hooks.h"
41#include "opt_random_ip_id.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/mac.h>
46#include <sys/mbuf.h>
47#include <sys/malloc.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/time.h>
52#include <sys/kernel.h>
53#include <sys/syslog.h>
54#include <sys/sysctl.h>
55
56#include <net/pfil.h>
57#include <net/if.h>
58#include <net/if_types.h>
59#include <net/if_var.h>
60#include <net/if_dl.h>
61#include <net/route.h>
62#include <net/netisr.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/in_var.h>
67#include <netinet/ip.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip_var.h>
70#include <netinet/ip_icmp.h>
71#include <machine/in_cksum.h>
72
73#include <sys/socketvar.h>
74
75#include <netinet/ip_fw.h>
76#include <netinet/ip_divert.h>
77#include <netinet/ip_dummynet.h>
78
79#ifdef IPSEC
80#include <netinet6/ipsec.h>
81#include <netkey/key.h>
82#endif
83
84#ifdef FAST_IPSEC
85#include <netipsec/ipsec.h>
86#include <netipsec/key.h>
87#endif
88
89int rsvp_on = 0;
90
91int	ipforwarding = 0;
92SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
93    &ipforwarding, 0, "Enable IP forwarding between interfaces");
94
95static int	ipsendredirects = 1; /* XXX */
96SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
97    &ipsendredirects, 0, "Enable sending IP redirects");
98
99int	ip_defttl = IPDEFTTL;
100SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
101    &ip_defttl, 0, "Maximum TTL on IP packets");
102
103static int	ip_dosourceroute = 0;
104SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
105    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
106
107static int	ip_acceptsourceroute = 0;
108SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
109    CTLFLAG_RW, &ip_acceptsourceroute, 0,
110    "Enable accepting source routed IP packets");
111
112int		ip_doopts = 1;	/* 0 = ignore, 1 = process, 2 = reject */
113SYSCTL_INT(_net_inet_ip, OID_AUTO, process_options, CTLFLAG_RW,
114    &ip_doopts, 0, "Enable IP options processing ([LS]SRR, RR, TS)");
115
116static int	ip_keepfaith = 0;
117SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
118	&ip_keepfaith,	0,
119	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
120
121static int    nipq = 0;         /* total # of reass queues */
122static int    maxnipq;
123SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
124	&maxnipq, 0,
125	"Maximum number of IPv4 fragment reassembly queue entries");
126
127static int    maxfragsperpacket;
128SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
129	&maxfragsperpacket, 0,
130	"Maximum number of IPv4 fragments allowed per packet");
131
132static int	ip_sendsourcequench = 0;
133SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
134	&ip_sendsourcequench, 0,
135	"Enable the transmission of source quench packets");
136
137/*
138 * XXX - Setting ip_checkinterface mostly implements the receive side of
139 * the Strong ES model described in RFC 1122, but since the routing table
140 * and transmit implementation do not implement the Strong ES model,
141 * setting this to 1 results in an odd hybrid.
142 *
143 * XXX - ip_checkinterface currently must be disabled if you use ipnat
144 * to translate the destination address to another local interface.
145 *
146 * XXX - ip_checkinterface must be disabled if you add IP aliases
147 * to the loopback interface instead of the interface where the
148 * packets for those addresses are received.
149 */
150static int	ip_checkinterface = 1;
151SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
152    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
153
154#ifdef DIAGNOSTIC
155static int	ipprintfs = 0;
156#endif
157#ifdef PFIL_HOOKS
158struct pfil_head inet_pfil_hook;
159#endif
160
161static struct	ifqueue ipintrq;
162static int	ipqmaxlen = IFQ_MAXLEN;
163
164extern	struct domain inetdomain;
165extern	struct protosw inetsw[];
166u_char	ip_protox[IPPROTO_MAX];
167struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
168struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
169u_long 	in_ifaddrhmask;				/* mask for hash table */
170
171SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
172    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
173SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
174    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
175
176struct ipstat ipstat;
177SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
178    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
179
180/* Packet reassembly stuff */
181#define IPREASS_NHASH_LOG2      6
182#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
183#define IPREASS_HMASK           (IPREASS_NHASH - 1)
184#define IPREASS_HASH(x,y) \
185	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
186
187static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
188struct mtx ipqlock;
189
190#define	IPQ_LOCK()	mtx_lock(&ipqlock)
191#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
192#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
193#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
194
195#ifdef IPCTL_DEFMTU
196SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
197    &ip_mtu, 0, "Default MTU");
198#endif
199
200#ifdef IPSTEALTH
201int	ipstealth = 0;
202SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
203    &ipstealth, 0, "");
204#endif
205
206
207/* Firewall hooks */
208ip_fw_chk_t *ip_fw_chk_ptr;
209int fw_enable = 1 ;
210int fw_one_pass = 1;
211
212/* Dummynet hooks */
213ip_dn_io_t *ip_dn_io_ptr;
214
215/*
216 * XXX this is ugly -- the following two global variables are
217 * used to store packet state while it travels through the stack.
218 * Note that the code even makes assumptions on the size and
219 * alignment of fields inside struct ip_srcrt so e.g. adding some
220 * fields will break the code. This needs to be fixed.
221 *
222 * We need to save the IP options in case a protocol wants to respond
223 * to an incoming packet over the same route if the packet got here
224 * using IP source routing.  This allows connection establishment and
225 * maintenance when the remote end is on a network that is not known
226 * to us.
227 */
228static int	ip_nhops = 0;
229static	struct ip_srcrt {
230	struct	in_addr dst;			/* final destination */
231	char	nop;				/* one NOP to align */
232	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
233	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
234} ip_srcrt;
235
236static void	save_rte(u_char *, struct in_addr);
237static int	ip_dooptions(struct mbuf *m, int,
238			struct sockaddr_in *next_hop);
239static void	ip_forward(struct mbuf *m, int srcrt,
240			struct sockaddr_in *next_hop);
241static void	ip_freef(struct ipqhead *, struct ipq *);
242static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *, struct ipq *);
243
244/*
245 * IP initialization: fill in IP protocol switch table.
246 * All protocols not implemented in kernel go to raw IP protocol handler.
247 */
248void
249ip_init()
250{
251	register struct protosw *pr;
252	register int i;
253
254	TAILQ_INIT(&in_ifaddrhead);
255	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
256	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
257	if (pr == 0)
258		panic("ip_init");
259	for (i = 0; i < IPPROTO_MAX; i++)
260		ip_protox[i] = pr - inetsw;
261	for (pr = inetdomain.dom_protosw;
262	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
263		if (pr->pr_domain->dom_family == PF_INET &&
264		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
265			ip_protox[pr->pr_protocol] = pr - inetsw;
266
267#ifdef PFIL_HOOKS
268	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
269	inet_pfil_hook.ph_af = AF_INET;
270	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
271		printf("%s: WARNING: unable to register pfil hook, "
272			"error %d\n", __func__, i);
273#endif /* PFIL_HOOKS */
274
275	IPQ_LOCK_INIT();
276	for (i = 0; i < IPREASS_NHASH; i++)
277	    TAILQ_INIT(&ipq[i]);
278
279	maxnipq = nmbclusters / 32;
280	maxfragsperpacket = 16;
281
282#ifndef RANDOM_IP_ID
283	ip_id = time_second & 0xffff;
284#endif
285	ipintrq.ifq_maxlen = ipqmaxlen;
286	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
287	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
288}
289
290/*
291 * Ip input routine.  Checksum and byte swap header.  If fragmented
292 * try to reassemble.  Process options.  Pass to next level.
293 */
294void
295ip_input(struct mbuf *m)
296{
297	struct ip *ip = NULL;
298	struct ipq *fp;
299	struct in_ifaddr *ia = NULL;
300	struct ifaddr *ifa;
301	char   *cp;
302	int    i, checkif, hlen = 0;
303	u_short sum;
304	struct in_addr pkt_dst;
305#ifdef IPDIVERT
306	u_int32_t divert_info;			/* packet divert/tee info */
307#endif
308	struct ip_fw_args args;
309	int dchg = 0;				/* dest changed after fw */
310#ifdef PFIL_HOOKS
311	struct in_addr odst;			/* original dst address */
312#endif
313#ifdef FAST_IPSEC
314	struct m_tag *mtag;
315	struct tdb_ident *tdbi;
316	struct secpolicy *sp;
317	int s, error;
318#endif /* FAST_IPSEC */
319
320	args.eh = NULL;
321	args.oif = NULL;
322
323  	M_ASSERTPKTHDR(m);
324
325	args.next_hop = m_claim_next(m, PACKET_TAG_IPFORWARD);
326	args.rule = ip_dn_claim_rule(m);
327
328	if (m->m_flags & M_FASTFWD_OURS) {
329		/* ip_fastforward firewall changed dest to local */
330		m->m_flags &= ~M_FASTFWD_OURS;	/* for reflected mbufs */
331  		goto ours;
332  	}
333
334  	if (args.rule) {	/* dummynet already filtered us */
335  		ip = mtod(m, struct ip *);
336  		hlen = ip->ip_hl << 2;
337		goto iphack ;
338	}
339
340	ipstat.ips_total++;
341
342	if (m->m_pkthdr.len < sizeof(struct ip))
343		goto tooshort;
344
345	if (m->m_len < sizeof (struct ip) &&
346	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
347		ipstat.ips_toosmall++;
348		return;
349	}
350	ip = mtod(m, struct ip *);
351
352	if (ip->ip_v != IPVERSION) {
353		ipstat.ips_badvers++;
354		goto bad;
355	}
356
357	hlen = ip->ip_hl << 2;
358	if (hlen < sizeof(struct ip)) {	/* minimum header length */
359		ipstat.ips_badhlen++;
360		goto bad;
361	}
362	if (hlen > m->m_len) {
363		if ((m = m_pullup(m, hlen)) == 0) {
364			ipstat.ips_badhlen++;
365			return;
366		}
367		ip = mtod(m, struct ip *);
368	}
369
370	/* 127/8 must not appear on wire - RFC1122 */
371	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
372	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
373		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
374			ipstat.ips_badaddr++;
375			goto bad;
376		}
377	}
378
379	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
380		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
381	} else {
382		if (hlen == sizeof(struct ip)) {
383			sum = in_cksum_hdr(ip);
384		} else {
385			sum = in_cksum(m, hlen);
386		}
387	}
388	if (sum) {
389		ipstat.ips_badsum++;
390		goto bad;
391	}
392
393#ifdef ALTQ
394	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
395		/* packet is dropped by traffic conditioner */
396		return;
397#endif
398
399	/*
400	 * Convert fields to host representation.
401	 */
402	ip->ip_len = ntohs(ip->ip_len);
403	if (ip->ip_len < hlen) {
404		ipstat.ips_badlen++;
405		goto bad;
406	}
407	ip->ip_off = ntohs(ip->ip_off);
408
409	/*
410	 * Check that the amount of data in the buffers
411	 * is as at least much as the IP header would have us expect.
412	 * Trim mbufs if longer than we expect.
413	 * Drop packet if shorter than we expect.
414	 */
415	if (m->m_pkthdr.len < ip->ip_len) {
416tooshort:
417		ipstat.ips_tooshort++;
418		goto bad;
419	}
420	if (m->m_pkthdr.len > ip->ip_len) {
421		if (m->m_len == m->m_pkthdr.len) {
422			m->m_len = ip->ip_len;
423			m->m_pkthdr.len = ip->ip_len;
424		} else
425			m_adj(m, ip->ip_len - m->m_pkthdr.len);
426	}
427#if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
428	/*
429	 * Bypass packet filtering for packets from a tunnel (gif).
430	 */
431	if (ipsec_getnhist(m))
432		goto pass;
433#endif
434#if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
435	/*
436	 * Bypass packet filtering for packets from a tunnel (gif).
437	 */
438	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
439		goto pass;
440#endif
441
442	/*
443	 * IpHack's section.
444	 * Right now when no processing on packet has done
445	 * and it is still fresh out of network we do our black
446	 * deals with it.
447	 * - Firewall: deny/allow/divert
448	 * - Xlate: translate packet's addr/port (NAT).
449	 * - Pipe: pass pkt through dummynet.
450	 * - Wrap: fake packet's addr/port <unimpl.>
451	 * - Encapsulate: put it in another IP and send out. <unimp.>
452 	 */
453
454iphack:
455
456#ifdef PFIL_HOOKS
457	/*
458	 * Run through list of hooks for input packets.
459	 *
460	 * NB: Beware of the destination address changing (e.g.
461	 *     by NAT rewriting).  When this happens, tell
462	 *     ip_forward to do the right thing.
463	 */
464	odst = ip->ip_dst;
465	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
466	    PFIL_IN) != 0)
467		return;
468	if (m == NULL)			/* consumed by filter */
469		return;
470	ip = mtod(m, struct ip *);
471	dchg = (odst.s_addr != ip->ip_dst.s_addr);
472#endif /* PFIL_HOOKS */
473
474	if (fw_enable && IPFW_LOADED) {
475		/*
476		 * If we've been forwarded from the output side, then
477		 * skip the firewall a second time
478		 */
479		if (args.next_hop)
480			goto ours;
481
482		args.m = m;
483		i = ip_fw_chk_ptr(&args);
484		m = args.m;
485
486		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
487			if (m)
488				m_freem(m);
489			return;
490		}
491		ip = mtod(m, struct ip *); /* just in case m changed */
492		if (i == 0 && args.next_hop == NULL)	/* common case */
493			goto pass;
494                if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
495			/* Send packet to the appropriate pipe */
496			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
497			return;
498		}
499#ifdef IPDIVERT
500		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
501			/* Divert or tee packet */
502			goto ours;
503		}
504#endif
505		if (i == 0 && args.next_hop != NULL)
506			goto pass;
507		/*
508		 * if we get here, the packet must be dropped
509		 */
510		m_freem(m);
511		return;
512	}
513pass:
514
515	/*
516	 * Process options and, if not destined for us,
517	 * ship it on.  ip_dooptions returns 1 when an
518	 * error was detected (causing an icmp message
519	 * to be sent and the original packet to be freed).
520	 */
521	ip_nhops = 0;		/* for source routed packets */
522	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
523		return;
524
525        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
526         * matter if it is destined to another node, or whether it is
527         * a multicast one, RSVP wants it! and prevents it from being forwarded
528         * anywhere else. Also checks if the rsvp daemon is running before
529	 * grabbing the packet.
530         */
531	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
532		goto ours;
533
534	/*
535	 * Check our list of addresses, to see if the packet is for us.
536	 * If we don't have any addresses, assume any unicast packet
537	 * we receive might be for us (and let the upper layers deal
538	 * with it).
539	 */
540	if (TAILQ_EMPTY(&in_ifaddrhead) &&
541	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
542		goto ours;
543
544	/*
545	 * Cache the destination address of the packet; this may be
546	 * changed by use of 'ipfw fwd'.
547	 */
548	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
549
550	/*
551	 * Enable a consistency check between the destination address
552	 * and the arrival interface for a unicast packet (the RFC 1122
553	 * strong ES model) if IP forwarding is disabled and the packet
554	 * is not locally generated and the packet is not subject to
555	 * 'ipfw fwd'.
556	 *
557	 * XXX - Checking also should be disabled if the destination
558	 * address is ipnat'ed to a different interface.
559	 *
560	 * XXX - Checking is incompatible with IP aliases added
561	 * to the loopback interface instead of the interface where
562	 * the packets are received.
563	 */
564	checkif = ip_checkinterface && (ipforwarding == 0) &&
565	    m->m_pkthdr.rcvif != NULL &&
566	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
567	    (args.next_hop == NULL) && (dchg == 0);
568
569	/*
570	 * Check for exact addresses in the hash bucket.
571	 */
572	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
573		/*
574		 * If the address matches, verify that the packet
575		 * arrived via the correct interface if checking is
576		 * enabled.
577		 */
578		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
579		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
580			goto ours;
581	}
582	/*
583	 * Check for broadcast addresses.
584	 *
585	 * Only accept broadcast packets that arrive via the matching
586	 * interface.  Reception of forwarded directed broadcasts would
587	 * be handled via ip_forward() and ether_output() with the loopback
588	 * into the stack for SIMPLEX interfaces handled by ether_output().
589	 */
590	if (m->m_pkthdr.rcvif != NULL &&
591	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
592	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
593			if (ifa->ifa_addr->sa_family != AF_INET)
594				continue;
595			ia = ifatoia(ifa);
596			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
597			    pkt_dst.s_addr)
598				goto ours;
599			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
600				goto ours;
601			if ((cp = getenv("bootp.compat")) != NULL) {
602				freeenv(cp);
603				if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
604					goto ours;
605			}
606		}
607	}
608	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
609		struct in_multi *inm;
610		if (ip_mrouter) {
611			/*
612			 * If we are acting as a multicast router, all
613			 * incoming multicast packets are passed to the
614			 * kernel-level multicast forwarding function.
615			 * The packet is returned (relatively) intact; if
616			 * ip_mforward() returns a non-zero value, the packet
617			 * must be discarded, else it may be accepted below.
618			 */
619			if (ip_mforward &&
620			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
621				ipstat.ips_cantforward++;
622				m_freem(m);
623				return;
624			}
625
626			/*
627			 * The process-level routing daemon needs to receive
628			 * all multicast IGMP packets, whether or not this
629			 * host belongs to their destination groups.
630			 */
631			if (ip->ip_p == IPPROTO_IGMP)
632				goto ours;
633			ipstat.ips_forward++;
634		}
635		/*
636		 * See if we belong to the destination multicast group on the
637		 * arrival interface.
638		 */
639		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
640		if (inm == NULL) {
641			ipstat.ips_notmember++;
642			m_freem(m);
643			return;
644		}
645		goto ours;
646	}
647	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
648		goto ours;
649	if (ip->ip_dst.s_addr == INADDR_ANY)
650		goto ours;
651
652	/*
653	 * FAITH(Firewall Aided Internet Translator)
654	 */
655	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
656		if (ip_keepfaith) {
657			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
658				goto ours;
659		}
660		m_freem(m);
661		return;
662	}
663
664	/*
665	 * Not for us; forward if possible and desirable.
666	 */
667	if (ipforwarding == 0) {
668		ipstat.ips_cantforward++;
669		m_freem(m);
670	} else {
671#ifdef IPSEC
672		/*
673		 * Enforce inbound IPsec SPD.
674		 */
675		if (ipsec4_in_reject(m, NULL)) {
676			ipsecstat.in_polvio++;
677			goto bad;
678		}
679#endif /* IPSEC */
680#ifdef FAST_IPSEC
681		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
682		s = splnet();
683		if (mtag != NULL) {
684			tdbi = (struct tdb_ident *)(mtag + 1);
685			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
686		} else {
687			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
688						   IP_FORWARDING, &error);
689		}
690		if (sp == NULL) {	/* NB: can happen if error */
691			splx(s);
692			/*XXX error stat???*/
693			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
694			goto bad;
695		}
696
697		/*
698		 * Check security policy against packet attributes.
699		 */
700		error = ipsec_in_reject(sp, m);
701		KEY_FREESP(&sp);
702		splx(s);
703		if (error) {
704			ipstat.ips_cantforward++;
705			goto bad;
706		}
707#endif /* FAST_IPSEC */
708		ip_forward(m, dchg, args.next_hop);
709	}
710	return;
711
712ours:
713#ifdef IPSTEALTH
714	/*
715	 * IPSTEALTH: Process non-routing options only
716	 * if the packet is destined for us.
717	 */
718	if (ipstealth && hlen > sizeof (struct ip) &&
719	    ip_dooptions(m, 1, args.next_hop))
720		return;
721#endif /* IPSTEALTH */
722
723	/* Count the packet in the ip address stats */
724	if (ia != NULL) {
725		ia->ia_ifa.if_ipackets++;
726		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
727	}
728
729	/*
730	 * If offset or IP_MF are set, must reassemble.
731	 * Otherwise, nothing need be done.
732	 * (We could look in the reassembly queue to see
733	 * if the packet was previously fragmented,
734	 * but it's not worth the time; just let them time out.)
735	 */
736	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
737
738		/* If maxnipq is 0, never accept fragments. */
739		if (maxnipq == 0) {
740                	ipstat.ips_fragments++;
741			ipstat.ips_fragdropped++;
742			goto bad;
743		}
744
745		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
746		IPQ_LOCK();
747		/*
748		 * Look for queue of fragments
749		 * of this datagram.
750		 */
751		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
752			if (ip->ip_id == fp->ipq_id &&
753			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
754			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
755#ifdef MAC
756			    mac_fragment_match(m, fp) &&
757#endif
758			    ip->ip_p == fp->ipq_p)
759				goto found;
760
761		fp = NULL;
762
763		/*
764		 * Enforce upper bound on number of fragmented packets
765		 * for which we attempt reassembly;
766		 * If maxnipq is -1, accept all fragments without limitation.
767		 */
768		if ((nipq > maxnipq) && (maxnipq > 0)) {
769		    /*
770		     * drop something from the tail of the current queue
771		     * before proceeding further
772		     */
773		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
774		    if (q == NULL) {   /* gak */
775			for (i = 0; i < IPREASS_NHASH; i++) {
776			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
777			    if (r) {
778				ipstat.ips_fragtimeout += r->ipq_nfrags;
779				ip_freef(&ipq[i], r);
780				break;
781			    }
782			}
783		    } else {
784			ipstat.ips_fragtimeout += q->ipq_nfrags;
785			ip_freef(&ipq[sum], q);
786		    }
787		}
788found:
789		/*
790		 * Adjust ip_len to not reflect header,
791		 * convert offset of this to bytes.
792		 */
793		ip->ip_len -= hlen;
794		if (ip->ip_off & IP_MF) {
795		        /*
796		         * Make sure that fragments have a data length
797			 * that's a non-zero multiple of 8 bytes.
798		         */
799			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
800				IPQ_UNLOCK();
801				ipstat.ips_toosmall++; /* XXX */
802				goto bad;
803			}
804			m->m_flags |= M_FRAG;
805		} else
806			m->m_flags &= ~M_FRAG;
807		ip->ip_off <<= 3;
808
809		/*
810		 * Attempt reassembly; if it succeeds, proceed.
811		 * ip_reass() will return a different mbuf.
812		 */
813		ipstat.ips_fragments++;
814		m->m_pkthdr.header = ip;
815		m = ip_reass(m, &ipq[sum], fp);
816		IPQ_UNLOCK();
817		if (m == 0)
818			return;
819		ipstat.ips_reassembled++;
820		ip = mtod(m, struct ip *);
821		/* Get the header length of the reassembled packet */
822		hlen = ip->ip_hl << 2;
823#ifdef IPDIVERT
824		/* Restore original checksum before diverting packet */
825		if (divert_find_info(m) != 0) {
826			ip->ip_len += hlen;
827			ip->ip_len = htons(ip->ip_len);
828			ip->ip_off = htons(ip->ip_off);
829			ip->ip_sum = 0;
830			if (hlen == sizeof(struct ip))
831				ip->ip_sum = in_cksum_hdr(ip);
832			else
833				ip->ip_sum = in_cksum(m, hlen);
834			ip->ip_off = ntohs(ip->ip_off);
835			ip->ip_len = ntohs(ip->ip_len);
836			ip->ip_len -= hlen;
837		}
838#endif
839	} else
840		ip->ip_len -= hlen;
841
842#ifdef IPDIVERT
843	/*
844	 * Divert or tee packet to the divert protocol if required.
845	 */
846	divert_info = divert_find_info(m);
847	if (divert_info != 0) {
848		struct mbuf *clone;
849
850		/* Clone packet if we're doing a 'tee' */
851		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
852			clone = divert_clone(m);
853		else
854			clone = NULL;
855
856		/* Restore packet header fields to original values */
857		ip->ip_len += hlen;
858		ip->ip_len = htons(ip->ip_len);
859		ip->ip_off = htons(ip->ip_off);
860
861		/* Deliver packet to divert input routine */
862		divert_packet(m, 1);
863		ipstat.ips_delivered++;
864
865		/* If 'tee', continue with original packet */
866		if (clone == NULL)
867			return;
868		m = clone;
869		ip = mtod(m, struct ip *);
870		ip->ip_len += hlen;
871		/*
872		 * Jump backwards to complete processing of the
873		 * packet.  We do not need to clear args.next_hop
874		 * as that will not be used again and the cloned packet
875		 * doesn't contain a divert packet tag so we won't
876		 * re-entry this block.
877		 */
878		goto pass;
879	}
880#endif
881
882#ifdef IPSEC
883	/*
884	 * enforce IPsec policy checking if we are seeing last header.
885	 * note that we do not visit this with protocols with pcb layer
886	 * code - like udp/tcp/raw ip.
887	 */
888	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
889	    ipsec4_in_reject(m, NULL)) {
890		ipsecstat.in_polvio++;
891		goto bad;
892	}
893#endif
894#if FAST_IPSEC
895	/*
896	 * enforce IPsec policy checking if we are seeing last header.
897	 * note that we do not visit this with protocols with pcb layer
898	 * code - like udp/tcp/raw ip.
899	 */
900	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
901		/*
902		 * Check if the packet has already had IPsec processing
903		 * done.  If so, then just pass it along.  This tag gets
904		 * set during AH, ESP, etc. input handling, before the
905		 * packet is returned to the ip input queue for delivery.
906		 */
907		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
908		s = splnet();
909		if (mtag != NULL) {
910			tdbi = (struct tdb_ident *)(mtag + 1);
911			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
912		} else {
913			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
914						   IP_FORWARDING, &error);
915		}
916		if (sp != NULL) {
917			/*
918			 * Check security policy against packet attributes.
919			 */
920			error = ipsec_in_reject(sp, m);
921			KEY_FREESP(&sp);
922		} else {
923			/* XXX error stat??? */
924			error = EINVAL;
925DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
926			goto bad;
927		}
928		splx(s);
929		if (error)
930			goto bad;
931	}
932#endif /* FAST_IPSEC */
933
934	/*
935	 * Switch out to protocol's input routine.
936	 */
937	ipstat.ips_delivered++;
938	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
939		/* attach next hop info for TCP */
940		struct m_tag *mtag = m_tag_get(PACKET_TAG_IPFORWARD,
941		    sizeof(struct sockaddr_in *), M_NOWAIT);
942		if (mtag == NULL)
943			goto bad;
944		*(struct sockaddr_in **)(mtag+1) = args.next_hop;
945		m_tag_prepend(m, mtag);
946	}
947	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
948	return;
949bad:
950	m_freem(m);
951}
952
953/*
954 * Take incoming datagram fragment and try to reassemble it into
955 * whole datagram.  If a chain for reassembly of this datagram already
956 * exists, then it is given as fp; otherwise have to make a chain.
957 *
958 * When IPDIVERT enabled, keep additional state with each packet that
959 * tells us if we need to divert or tee the packet we're building.
960 * In particular, *divinfo includes the port and TEE flag,
961 * *divert_rule is the number of the matching rule.
962 */
963
964static struct mbuf *
965ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp)
966{
967	struct ip *ip = mtod(m, struct ip *);
968	register struct mbuf *p, *q, *nq;
969	struct mbuf *t;
970	int hlen = ip->ip_hl << 2;
971	int i, next;
972	u_int8_t ecn, ecn0;
973
974	IPQ_LOCK_ASSERT();
975
976	/*
977	 * Presence of header sizes in mbufs
978	 * would confuse code below.
979	 */
980	m->m_data += hlen;
981	m->m_len -= hlen;
982
983	/*
984	 * If first fragment to arrive, create a reassembly queue.
985	 */
986	if (fp == NULL) {
987		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
988			goto dropfrag;
989		fp = mtod(t, struct ipq *);
990#ifdef MAC
991		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
992			m_free(t);
993			goto dropfrag;
994		}
995		mac_create_ipq(m, fp);
996#endif
997		TAILQ_INSERT_HEAD(head, fp, ipq_list);
998		nipq++;
999		fp->ipq_nfrags = 1;
1000		fp->ipq_ttl = IPFRAGTTL;
1001		fp->ipq_p = ip->ip_p;
1002		fp->ipq_id = ip->ip_id;
1003		fp->ipq_src = ip->ip_src;
1004		fp->ipq_dst = ip->ip_dst;
1005		fp->ipq_frags = m;
1006		m->m_nextpkt = NULL;
1007		goto inserted;
1008	} else {
1009		fp->ipq_nfrags++;
1010#ifdef MAC
1011		mac_update_ipq(m, fp);
1012#endif
1013	}
1014
1015#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1016
1017	/*
1018	 * Handle ECN by comparing this segment with the first one;
1019	 * if CE is set, do not lose CE.
1020	 * drop if CE and not-ECT are mixed for the same packet.
1021	 */
1022	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1023	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1024	if (ecn == IPTOS_ECN_CE) {
1025		if (ecn0 == IPTOS_ECN_NOTECT)
1026			goto dropfrag;
1027		if (ecn0 != IPTOS_ECN_CE)
1028			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1029	}
1030	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1031		goto dropfrag;
1032
1033	/*
1034	 * Find a segment which begins after this one does.
1035	 */
1036	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1037		if (GETIP(q)->ip_off > ip->ip_off)
1038			break;
1039
1040	/*
1041	 * If there is a preceding segment, it may provide some of
1042	 * our data already.  If so, drop the data from the incoming
1043	 * segment.  If it provides all of our data, drop us, otherwise
1044	 * stick new segment in the proper place.
1045	 *
1046	 * If some of the data is dropped from the the preceding
1047	 * segment, then it's checksum is invalidated.
1048	 */
1049	if (p) {
1050		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1051		if (i > 0) {
1052			if (i >= ip->ip_len)
1053				goto dropfrag;
1054			m_adj(m, i);
1055			m->m_pkthdr.csum_flags = 0;
1056			ip->ip_off += i;
1057			ip->ip_len -= i;
1058		}
1059		m->m_nextpkt = p->m_nextpkt;
1060		p->m_nextpkt = m;
1061	} else {
1062		m->m_nextpkt = fp->ipq_frags;
1063		fp->ipq_frags = m;
1064	}
1065
1066	/*
1067	 * While we overlap succeeding segments trim them or,
1068	 * if they are completely covered, dequeue them.
1069	 */
1070	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1071	     q = nq) {
1072		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1073		if (i < GETIP(q)->ip_len) {
1074			GETIP(q)->ip_len -= i;
1075			GETIP(q)->ip_off += i;
1076			m_adj(q, i);
1077			q->m_pkthdr.csum_flags = 0;
1078			break;
1079		}
1080		nq = q->m_nextpkt;
1081		m->m_nextpkt = nq;
1082		ipstat.ips_fragdropped++;
1083		fp->ipq_nfrags--;
1084		m_freem(q);
1085	}
1086
1087inserted:
1088
1089#ifdef IPDIVERT
1090	if (ip->ip_off != 0) {
1091		/*
1092		 * Strip any divert information; only the info
1093		 * on the first fragment is used/kept.
1094		 */
1095		struct m_tag *mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
1096		if (mtag)
1097			m_tag_delete(m, mtag);
1098	}
1099#endif
1100
1101	/*
1102	 * Check for complete reassembly and perform frag per packet
1103	 * limiting.
1104	 *
1105	 * Frag limiting is performed here so that the nth frag has
1106	 * a chance to complete the packet before we drop the packet.
1107	 * As a result, n+1 frags are actually allowed per packet, but
1108	 * only n will ever be stored. (n = maxfragsperpacket.)
1109	 *
1110	 */
1111	next = 0;
1112	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1113		if (GETIP(q)->ip_off != next) {
1114			if (fp->ipq_nfrags > maxfragsperpacket) {
1115				ipstat.ips_fragdropped += fp->ipq_nfrags;
1116				ip_freef(head, fp);
1117			}
1118			return (0);
1119		}
1120		next += GETIP(q)->ip_len;
1121	}
1122	/* Make sure the last packet didn't have the IP_MF flag */
1123	if (p->m_flags & M_FRAG) {
1124		if (fp->ipq_nfrags > maxfragsperpacket) {
1125			ipstat.ips_fragdropped += fp->ipq_nfrags;
1126			ip_freef(head, fp);
1127		}
1128		return (0);
1129	}
1130
1131	/*
1132	 * Reassembly is complete.  Make sure the packet is a sane size.
1133	 */
1134	q = fp->ipq_frags;
1135	ip = GETIP(q);
1136	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1137		ipstat.ips_toolong++;
1138		ipstat.ips_fragdropped += fp->ipq_nfrags;
1139		ip_freef(head, fp);
1140		return (0);
1141	}
1142
1143	/*
1144	 * Concatenate fragments.
1145	 */
1146	m = q;
1147	t = m->m_next;
1148	m->m_next = 0;
1149	m_cat(m, t);
1150	nq = q->m_nextpkt;
1151	q->m_nextpkt = 0;
1152	for (q = nq; q != NULL; q = nq) {
1153		nq = q->m_nextpkt;
1154		q->m_nextpkt = NULL;
1155		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1156		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1157		m_cat(m, q);
1158	}
1159#ifdef MAC
1160	mac_create_datagram_from_ipq(fp, m);
1161	mac_destroy_ipq(fp);
1162#endif
1163
1164	/*
1165	 * Create header for new ip packet by
1166	 * modifying header of first packet;
1167	 * dequeue and discard fragment reassembly header.
1168	 * Make header visible.
1169	 */
1170	ip->ip_len = next;
1171	ip->ip_src = fp->ipq_src;
1172	ip->ip_dst = fp->ipq_dst;
1173	TAILQ_REMOVE(head, fp, ipq_list);
1174	nipq--;
1175	(void) m_free(dtom(fp));
1176	m->m_len += (ip->ip_hl << 2);
1177	m->m_data -= (ip->ip_hl << 2);
1178	/* some debugging cruft by sklower, below, will go away soon */
1179	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1180		m_fixhdr(m);
1181	return (m);
1182
1183dropfrag:
1184	ipstat.ips_fragdropped++;
1185	if (fp != NULL)
1186		fp->ipq_nfrags--;
1187	m_freem(m);
1188	return (0);
1189
1190#undef GETIP
1191}
1192
1193/*
1194 * Free a fragment reassembly header and all
1195 * associated datagrams.
1196 */
1197static void
1198ip_freef(fhp, fp)
1199	struct ipqhead *fhp;
1200	struct ipq *fp;
1201{
1202	register struct mbuf *q;
1203
1204	IPQ_LOCK_ASSERT();
1205
1206	while (fp->ipq_frags) {
1207		q = fp->ipq_frags;
1208		fp->ipq_frags = q->m_nextpkt;
1209		m_freem(q);
1210	}
1211	TAILQ_REMOVE(fhp, fp, ipq_list);
1212	(void) m_free(dtom(fp));
1213	nipq--;
1214}
1215
1216/*
1217 * IP timer processing;
1218 * if a timer expires on a reassembly
1219 * queue, discard it.
1220 */
1221void
1222ip_slowtimo()
1223{
1224	register struct ipq *fp;
1225	int s = splnet();
1226	int i;
1227
1228	IPQ_LOCK();
1229	for (i = 0; i < IPREASS_NHASH; i++) {
1230		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1231			struct ipq *fpp;
1232
1233			fpp = fp;
1234			fp = TAILQ_NEXT(fp, ipq_list);
1235			if(--fpp->ipq_ttl == 0) {
1236				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1237				ip_freef(&ipq[i], fpp);
1238			}
1239		}
1240	}
1241	/*
1242	 * If we are over the maximum number of fragments
1243	 * (due to the limit being lowered), drain off
1244	 * enough to get down to the new limit.
1245	 */
1246	if (maxnipq >= 0 && nipq > maxnipq) {
1247		for (i = 0; i < IPREASS_NHASH; i++) {
1248			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1249				ipstat.ips_fragdropped +=
1250				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1251				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1252			}
1253		}
1254	}
1255	IPQ_UNLOCK();
1256	splx(s);
1257}
1258
1259/*
1260 * Drain off all datagram fragments.
1261 */
1262void
1263ip_drain()
1264{
1265	int     i;
1266
1267	IPQ_LOCK();
1268	for (i = 0; i < IPREASS_NHASH; i++) {
1269		while(!TAILQ_EMPTY(&ipq[i])) {
1270			ipstat.ips_fragdropped +=
1271			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1272			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1273		}
1274	}
1275	IPQ_UNLOCK();
1276	in_rtqdrain();
1277}
1278
1279/*
1280 * Do option processing on a datagram,
1281 * possibly discarding it if bad options are encountered,
1282 * or forwarding it if source-routed.
1283 * The pass argument is used when operating in the IPSTEALTH
1284 * mode to tell what options to process:
1285 * [LS]SRR (pass 0) or the others (pass 1).
1286 * The reason for as many as two passes is that when doing IPSTEALTH,
1287 * non-routing options should be processed only if the packet is for us.
1288 * Returns 1 if packet has been forwarded/freed,
1289 * 0 if the packet should be processed further.
1290 */
1291static int
1292ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1293{
1294	struct ip *ip = mtod(m, struct ip *);
1295	u_char *cp;
1296	struct in_ifaddr *ia;
1297	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1298	struct in_addr *sin, dst;
1299	n_time ntime;
1300	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1301
1302	/* ignore or reject packets with IP options */
1303	if (ip_doopts == 0)
1304		return 0;
1305	else if (ip_doopts == 2) {
1306		type = ICMP_UNREACH;
1307		code = ICMP_UNREACH_FILTER_PROHIB;
1308		goto bad;
1309	}
1310
1311	dst = ip->ip_dst;
1312	cp = (u_char *)(ip + 1);
1313	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1314	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1315		opt = cp[IPOPT_OPTVAL];
1316		if (opt == IPOPT_EOL)
1317			break;
1318		if (opt == IPOPT_NOP)
1319			optlen = 1;
1320		else {
1321			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1322				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1323				goto bad;
1324			}
1325			optlen = cp[IPOPT_OLEN];
1326			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1327				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1328				goto bad;
1329			}
1330		}
1331		switch (opt) {
1332
1333		default:
1334			break;
1335
1336		/*
1337		 * Source routing with record.
1338		 * Find interface with current destination address.
1339		 * If none on this machine then drop if strictly routed,
1340		 * or do nothing if loosely routed.
1341		 * Record interface address and bring up next address
1342		 * component.  If strictly routed make sure next
1343		 * address is on directly accessible net.
1344		 */
1345		case IPOPT_LSRR:
1346		case IPOPT_SSRR:
1347#ifdef IPSTEALTH
1348			if (ipstealth && pass > 0)
1349				break;
1350#endif
1351			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1352				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1353				goto bad;
1354			}
1355			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1356				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1357				goto bad;
1358			}
1359			ipaddr.sin_addr = ip->ip_dst;
1360			ia = (struct in_ifaddr *)
1361				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1362			if (ia == 0) {
1363				if (opt == IPOPT_SSRR) {
1364					type = ICMP_UNREACH;
1365					code = ICMP_UNREACH_SRCFAIL;
1366					goto bad;
1367				}
1368				if (!ip_dosourceroute)
1369					goto nosourcerouting;
1370				/*
1371				 * Loose routing, and not at next destination
1372				 * yet; nothing to do except forward.
1373				 */
1374				break;
1375			}
1376			off--;			/* 0 origin */
1377			if (off > optlen - (int)sizeof(struct in_addr)) {
1378				/*
1379				 * End of source route.  Should be for us.
1380				 */
1381				if (!ip_acceptsourceroute)
1382					goto nosourcerouting;
1383				save_rte(cp, ip->ip_src);
1384				break;
1385			}
1386#ifdef IPSTEALTH
1387			if (ipstealth)
1388				goto dropit;
1389#endif
1390			if (!ip_dosourceroute) {
1391				if (ipforwarding) {
1392					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1393					/*
1394					 * Acting as a router, so generate ICMP
1395					 */
1396nosourcerouting:
1397					strcpy(buf, inet_ntoa(ip->ip_dst));
1398					log(LOG_WARNING,
1399					    "attempted source route from %s to %s\n",
1400					    inet_ntoa(ip->ip_src), buf);
1401					type = ICMP_UNREACH;
1402					code = ICMP_UNREACH_SRCFAIL;
1403					goto bad;
1404				} else {
1405					/*
1406					 * Not acting as a router, so silently drop.
1407					 */
1408#ifdef IPSTEALTH
1409dropit:
1410#endif
1411					ipstat.ips_cantforward++;
1412					m_freem(m);
1413					return (1);
1414				}
1415			}
1416
1417			/*
1418			 * locate outgoing interface
1419			 */
1420			(void)memcpy(&ipaddr.sin_addr, cp + off,
1421			    sizeof(ipaddr.sin_addr));
1422
1423			if (opt == IPOPT_SSRR) {
1424#define	INA	struct in_ifaddr *
1425#define	SA	struct sockaddr *
1426			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1427				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1428			} else
1429				ia = ip_rtaddr(ipaddr.sin_addr);
1430			if (ia == 0) {
1431				type = ICMP_UNREACH;
1432				code = ICMP_UNREACH_SRCFAIL;
1433				goto bad;
1434			}
1435			ip->ip_dst = ipaddr.sin_addr;
1436			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1437			    sizeof(struct in_addr));
1438			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1439			/*
1440			 * Let ip_intr's mcast routing check handle mcast pkts
1441			 */
1442			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1443			break;
1444
1445		case IPOPT_RR:
1446#ifdef IPSTEALTH
1447			if (ipstealth && pass == 0)
1448				break;
1449#endif
1450			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1451				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1452				goto bad;
1453			}
1454			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1455				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1456				goto bad;
1457			}
1458			/*
1459			 * If no space remains, ignore.
1460			 */
1461			off--;			/* 0 origin */
1462			if (off > optlen - (int)sizeof(struct in_addr))
1463				break;
1464			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1465			    sizeof(ipaddr.sin_addr));
1466			/*
1467			 * locate outgoing interface; if we're the destination,
1468			 * use the incoming interface (should be same).
1469			 */
1470			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1471			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1472				type = ICMP_UNREACH;
1473				code = ICMP_UNREACH_HOST;
1474				goto bad;
1475			}
1476			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1477			    sizeof(struct in_addr));
1478			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1479			break;
1480
1481		case IPOPT_TS:
1482#ifdef IPSTEALTH
1483			if (ipstealth && pass == 0)
1484				break;
1485#endif
1486			code = cp - (u_char *)ip;
1487			if (optlen < 4 || optlen > 40) {
1488				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1489				goto bad;
1490			}
1491			if ((off = cp[IPOPT_OFFSET]) < 5) {
1492				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1493				goto bad;
1494			}
1495			if (off > optlen - (int)sizeof(int32_t)) {
1496				cp[IPOPT_OFFSET + 1] += (1 << 4);
1497				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1498					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1499					goto bad;
1500				}
1501				break;
1502			}
1503			off--;				/* 0 origin */
1504			sin = (struct in_addr *)(cp + off);
1505			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1506
1507			case IPOPT_TS_TSONLY:
1508				break;
1509
1510			case IPOPT_TS_TSANDADDR:
1511				if (off + sizeof(n_time) +
1512				    sizeof(struct in_addr) > optlen) {
1513					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1514					goto bad;
1515				}
1516				ipaddr.sin_addr = dst;
1517				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1518							    m->m_pkthdr.rcvif);
1519				if (ia == 0)
1520					continue;
1521				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1522				    sizeof(struct in_addr));
1523				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1524				off += sizeof(struct in_addr);
1525				break;
1526
1527			case IPOPT_TS_PRESPEC:
1528				if (off + sizeof(n_time) +
1529				    sizeof(struct in_addr) > optlen) {
1530					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1531					goto bad;
1532				}
1533				(void)memcpy(&ipaddr.sin_addr, sin,
1534				    sizeof(struct in_addr));
1535				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1536					continue;
1537				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1538				off += sizeof(struct in_addr);
1539				break;
1540
1541			default:
1542				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1543				goto bad;
1544			}
1545			ntime = iptime();
1546			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1547			cp[IPOPT_OFFSET] += sizeof(n_time);
1548		}
1549	}
1550	if (forward && ipforwarding) {
1551		ip_forward(m, 1, next_hop);
1552		return (1);
1553	}
1554	return (0);
1555bad:
1556	icmp_error(m, type, code, 0, 0);
1557	ipstat.ips_badoptions++;
1558	return (1);
1559}
1560
1561/*
1562 * Given address of next destination (final or next hop),
1563 * return internet address info of interface to be used to get there.
1564 */
1565struct in_ifaddr *
1566ip_rtaddr(dst)
1567	struct in_addr dst;
1568{
1569	struct route sro;
1570	struct sockaddr_in *sin;
1571	struct in_ifaddr *ifa;
1572
1573	bzero(&sro, sizeof(sro));
1574	sin = (struct sockaddr_in *)&sro.ro_dst;
1575	sin->sin_family = AF_INET;
1576	sin->sin_len = sizeof(*sin);
1577	sin->sin_addr = dst;
1578	rtalloc_ign(&sro, RTF_CLONING);
1579
1580	if (sro.ro_rt == NULL)
1581		return ((struct in_ifaddr *)0);
1582
1583	ifa = ifatoia(sro.ro_rt->rt_ifa);
1584	RTFREE(sro.ro_rt);
1585	return ifa;
1586}
1587
1588/*
1589 * Save incoming source route for use in replies,
1590 * to be picked up later by ip_srcroute if the receiver is interested.
1591 */
1592static void
1593save_rte(option, dst)
1594	u_char *option;
1595	struct in_addr dst;
1596{
1597	unsigned olen;
1598
1599	olen = option[IPOPT_OLEN];
1600#ifdef DIAGNOSTIC
1601	if (ipprintfs)
1602		printf("save_rte: olen %d\n", olen);
1603#endif
1604	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1605		return;
1606	bcopy(option, ip_srcrt.srcopt, olen);
1607	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1608	ip_srcrt.dst = dst;
1609}
1610
1611/*
1612 * Retrieve incoming source route for use in replies,
1613 * in the same form used by setsockopt.
1614 * The first hop is placed before the options, will be removed later.
1615 */
1616struct mbuf *
1617ip_srcroute()
1618{
1619	register struct in_addr *p, *q;
1620	register struct mbuf *m;
1621
1622	if (ip_nhops == 0)
1623		return ((struct mbuf *)0);
1624	m = m_get(M_DONTWAIT, MT_HEADER);
1625	if (m == 0)
1626		return ((struct mbuf *)0);
1627
1628#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1629
1630	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1631	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1632	    OPTSIZ;
1633#ifdef DIAGNOSTIC
1634	if (ipprintfs)
1635		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1636#endif
1637
1638	/*
1639	 * First save first hop for return route
1640	 */
1641	p = &ip_srcrt.route[ip_nhops - 1];
1642	*(mtod(m, struct in_addr *)) = *p--;
1643#ifdef DIAGNOSTIC
1644	if (ipprintfs)
1645		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1646#endif
1647
1648	/*
1649	 * Copy option fields and padding (nop) to mbuf.
1650	 */
1651	ip_srcrt.nop = IPOPT_NOP;
1652	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1653	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1654	    &ip_srcrt.nop, OPTSIZ);
1655	q = (struct in_addr *)(mtod(m, caddr_t) +
1656	    sizeof(struct in_addr) + OPTSIZ);
1657#undef OPTSIZ
1658	/*
1659	 * Record return path as an IP source route,
1660	 * reversing the path (pointers are now aligned).
1661	 */
1662	while (p >= ip_srcrt.route) {
1663#ifdef DIAGNOSTIC
1664		if (ipprintfs)
1665			printf(" %lx", (u_long)ntohl(q->s_addr));
1666#endif
1667		*q++ = *p--;
1668	}
1669	/*
1670	 * Last hop goes to final destination.
1671	 */
1672	*q = ip_srcrt.dst;
1673#ifdef DIAGNOSTIC
1674	if (ipprintfs)
1675		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1676#endif
1677	return (m);
1678}
1679
1680/*
1681 * Strip out IP options, at higher
1682 * level protocol in the kernel.
1683 * Second argument is buffer to which options
1684 * will be moved, and return value is their length.
1685 * XXX should be deleted; last arg currently ignored.
1686 */
1687void
1688ip_stripoptions(m, mopt)
1689	register struct mbuf *m;
1690	struct mbuf *mopt;
1691{
1692	register int i;
1693	struct ip *ip = mtod(m, struct ip *);
1694	register caddr_t opts;
1695	int olen;
1696
1697	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1698	opts = (caddr_t)(ip + 1);
1699	i = m->m_len - (sizeof (struct ip) + olen);
1700	bcopy(opts + olen, opts, (unsigned)i);
1701	m->m_len -= olen;
1702	if (m->m_flags & M_PKTHDR)
1703		m->m_pkthdr.len -= olen;
1704	ip->ip_v = IPVERSION;
1705	ip->ip_hl = sizeof(struct ip) >> 2;
1706}
1707
1708u_char inetctlerrmap[PRC_NCMDS] = {
1709	0,		0,		0,		0,
1710	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1711	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1712	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1713	0,		0,		EHOSTUNREACH,	0,
1714	ENOPROTOOPT,	ECONNREFUSED
1715};
1716
1717/*
1718 * Forward a packet.  If some error occurs return the sender
1719 * an icmp packet.  Note we can't always generate a meaningful
1720 * icmp message because icmp doesn't have a large enough repertoire
1721 * of codes and types.
1722 *
1723 * If not forwarding, just drop the packet.  This could be confusing
1724 * if ipforwarding was zero but some routing protocol was advancing
1725 * us as a gateway to somewhere.  However, we must let the routing
1726 * protocol deal with that.
1727 *
1728 * The srcrt parameter indicates whether the packet is being forwarded
1729 * via a source route.
1730 */
1731static void
1732ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1733{
1734	struct ip *ip = mtod(m, struct ip *);
1735	struct in_ifaddr *ia;
1736	int error, type = 0, code = 0;
1737	struct mbuf *mcopy;
1738	n_long dest;
1739	struct in_addr pkt_dst;
1740	struct ifnet *destifp;
1741#if defined(IPSEC) || defined(FAST_IPSEC)
1742	struct ifnet dummyifp;
1743#endif
1744
1745	/*
1746	 * Cache the destination address of the packet; this may be
1747	 * changed by use of 'ipfw fwd'.
1748	 */
1749	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1750
1751#ifdef DIAGNOSTIC
1752	if (ipprintfs)
1753		printf("forward: src %lx dst %lx ttl %x\n",
1754		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1755		    ip->ip_ttl);
1756#endif
1757
1758
1759	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1760		ipstat.ips_cantforward++;
1761		m_freem(m);
1762		return;
1763	}
1764#ifdef IPSTEALTH
1765	if (!ipstealth) {
1766#endif
1767		if (ip->ip_ttl <= IPTTLDEC) {
1768			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1769			    0, 0);
1770			return;
1771		}
1772#ifdef IPSTEALTH
1773	}
1774#endif
1775
1776	if ((ia = ip_rtaddr(pkt_dst)) == 0) {
1777		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1778		return;
1779	}
1780
1781	/*
1782	 * Save the IP header and at most 8 bytes of the payload,
1783	 * in case we need to generate an ICMP message to the src.
1784	 *
1785	 * XXX this can be optimized a lot by saving the data in a local
1786	 * buffer on the stack (72 bytes at most), and only allocating the
1787	 * mbuf if really necessary. The vast majority of the packets
1788	 * are forwarded without having to send an ICMP back (either
1789	 * because unnecessary, or because rate limited), so we are
1790	 * really we are wasting a lot of work here.
1791	 *
1792	 * We don't use m_copy() because it might return a reference
1793	 * to a shared cluster. Both this function and ip_output()
1794	 * assume exclusive access to the IP header in `m', so any
1795	 * data in a cluster may change before we reach icmp_error().
1796	 */
1797	MGET(mcopy, M_DONTWAIT, m->m_type);
1798	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1799		/*
1800		 * It's probably ok if the pkthdr dup fails (because
1801		 * the deep copy of the tag chain failed), but for now
1802		 * be conservative and just discard the copy since
1803		 * code below may some day want the tags.
1804		 */
1805		m_free(mcopy);
1806		mcopy = NULL;
1807	}
1808	if (mcopy != NULL) {
1809		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1810		    (int)ip->ip_len);
1811		mcopy->m_pkthdr.len = mcopy->m_len;
1812		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1813	}
1814
1815#ifdef IPSTEALTH
1816	if (!ipstealth) {
1817#endif
1818		ip->ip_ttl -= IPTTLDEC;
1819#ifdef IPSTEALTH
1820	}
1821#endif
1822
1823	/*
1824	 * If forwarding packet using same interface that it came in on,
1825	 * perhaps should send a redirect to sender to shortcut a hop.
1826	 * Only send redirect if source is sending directly to us,
1827	 * and if packet was not source routed (or has any options).
1828	 * Also, don't send redirect if forwarding using a default route
1829	 * or a route modified by a redirect.
1830	 */
1831	dest = 0;
1832	if (ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1833		struct sockaddr_in *sin;
1834		struct route ro;
1835		struct rtentry *rt;
1836
1837		bzero(&ro, sizeof(ro));
1838		sin = (struct sockaddr_in *)&ro.ro_dst;
1839		sin->sin_family = AF_INET;
1840		sin->sin_len = sizeof(*sin);
1841		sin->sin_addr = pkt_dst;
1842		rtalloc_ign(&ro, RTF_CLONING);
1843
1844		rt = ro.ro_rt;
1845
1846		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1847		    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1848		    ipsendredirects && !srcrt && !next_hop) {
1849#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1850			u_long src = ntohl(ip->ip_src.s_addr);
1851
1852			if (RTA(rt) &&
1853			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1854				if (rt->rt_flags & RTF_GATEWAY)
1855					dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1856				else
1857					dest = pkt_dst.s_addr;
1858				/* Router requirements says to only send host redirects */
1859				type = ICMP_REDIRECT;
1860				code = ICMP_REDIRECT_HOST;
1861#ifdef DIAGNOSTIC
1862				if (ipprintfs)
1863					printf("redirect (%d) to %lx\n", code, (u_long)dest);
1864#endif
1865			}
1866		}
1867		if (rt)
1868			RTFREE(rt);
1869	}
1870
1871	if (next_hop) {
1872		struct m_tag *mtag = m_tag_get(PACKET_TAG_IPFORWARD,
1873		    sizeof(struct sockaddr_in *), M_NOWAIT);
1874		if (mtag == NULL) {
1875			m_freem(m);
1876			return;
1877		}
1878		*(struct sockaddr_in **)(mtag+1) = next_hop;
1879		m_tag_prepend(m, mtag);
1880	}
1881	error = ip_output(m, (struct mbuf *)0, NULL, IP_FORWARDING, 0, NULL);
1882	if (error)
1883		ipstat.ips_cantforward++;
1884	else {
1885		ipstat.ips_forward++;
1886		if (type)
1887			ipstat.ips_redirectsent++;
1888		else {
1889			if (mcopy)
1890				m_freem(mcopy);
1891			return;
1892		}
1893	}
1894	if (mcopy == NULL)
1895		return;
1896	destifp = NULL;
1897
1898	switch (error) {
1899
1900	case 0:				/* forwarded, but need redirect */
1901		/* type, code set above */
1902		break;
1903
1904	case ENETUNREACH:		/* shouldn't happen, checked above */
1905	case EHOSTUNREACH:
1906	case ENETDOWN:
1907	case EHOSTDOWN:
1908	default:
1909		type = ICMP_UNREACH;
1910		code = ICMP_UNREACH_HOST;
1911		break;
1912
1913	case EMSGSIZE:
1914		type = ICMP_UNREACH;
1915		code = ICMP_UNREACH_NEEDFRAG;
1916#if defined(IPSEC) || defined(FAST_IPSEC)
1917		/*
1918		 * If the packet is routed over IPsec tunnel, tell the
1919		 * originator the tunnel MTU.
1920		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1921		 * XXX quickhack!!!
1922		 */
1923		{
1924			struct secpolicy *sp = NULL;
1925			int ipsecerror;
1926			int ipsechdr;
1927			struct route *ro;
1928
1929#ifdef IPSEC
1930			sp = ipsec4_getpolicybyaddr(mcopy,
1931						    IPSEC_DIR_OUTBOUND,
1932						    IP_FORWARDING,
1933						    &ipsecerror);
1934#else /* FAST_IPSEC */
1935			sp = ipsec_getpolicybyaddr(mcopy,
1936						   IPSEC_DIR_OUTBOUND,
1937						   IP_FORWARDING,
1938						   &ipsecerror);
1939#endif
1940			if (sp != NULL) {
1941				/* count IPsec header size */
1942				ipsechdr = ipsec4_hdrsiz(mcopy,
1943							 IPSEC_DIR_OUTBOUND,
1944							 NULL);
1945
1946				/*
1947				 * find the correct route for outer IPv4
1948				 * header, compute tunnel MTU.
1949				 *
1950				 * XXX BUG ALERT
1951				 * The "dummyifp" code relies upon the fact
1952				 * that icmp_error() touches only ifp->if_mtu.
1953				 */
1954				/*XXX*/
1955				destifp = NULL;
1956				if (sp->req != NULL
1957				 && sp->req->sav != NULL
1958				 && sp->req->sav->sah != NULL) {
1959					ro = &sp->req->sav->sah->sa_route;
1960					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1961						dummyifp.if_mtu =
1962						    ro->ro_rt->rt_rmx.rmx_mtu ?
1963						    ro->ro_rt->rt_rmx.rmx_mtu :
1964						    ro->ro_rt->rt_ifp->if_mtu;
1965						dummyifp.if_mtu -= ipsechdr;
1966						destifp = &dummyifp;
1967					}
1968				}
1969
1970#ifdef IPSEC
1971				key_freesp(sp);
1972#else /* FAST_IPSEC */
1973				KEY_FREESP(&sp);
1974#endif
1975				ipstat.ips_cantfrag++;
1976				break;
1977			} else
1978#endif /*IPSEC || FAST_IPSEC*/
1979		destifp = ia->ia_ifp;
1980#if defined(IPSEC) || defined(FAST_IPSEC)
1981		}
1982#endif /*IPSEC || FAST_IPSEC*/
1983		ipstat.ips_cantfrag++;
1984		break;
1985
1986	case ENOBUFS:
1987		/*
1988		 * A router should not generate ICMP_SOURCEQUENCH as
1989		 * required in RFC1812 Requirements for IP Version 4 Routers.
1990		 * Source quench could be a big problem under DoS attacks,
1991		 * or if the underlying interface is rate-limited.
1992		 * Those who need source quench packets may re-enable them
1993		 * via the net.inet.ip.sendsourcequench sysctl.
1994		 */
1995		if (ip_sendsourcequench == 0) {
1996			m_freem(mcopy);
1997			return;
1998		} else {
1999			type = ICMP_SOURCEQUENCH;
2000			code = 0;
2001		}
2002		break;
2003
2004	case EACCES:			/* ipfw denied packet */
2005		m_freem(mcopy);
2006		return;
2007	}
2008	icmp_error(mcopy, type, code, dest, destifp);
2009}
2010
2011void
2012ip_savecontrol(inp, mp, ip, m)
2013	register struct inpcb *inp;
2014	register struct mbuf **mp;
2015	register struct ip *ip;
2016	register struct mbuf *m;
2017{
2018	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
2019		struct bintime bt;
2020
2021		bintime(&bt);
2022		if (inp->inp_socket->so_options & SO_BINTIME) {
2023			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
2024			SCM_BINTIME, SOL_SOCKET);
2025			if (*mp)
2026				mp = &(*mp)->m_next;
2027		}
2028		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2029			struct timeval tv;
2030
2031			bintime2timeval(&bt, &tv);
2032			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2033				SCM_TIMESTAMP, SOL_SOCKET);
2034			if (*mp)
2035				mp = &(*mp)->m_next;
2036		}
2037	}
2038	if (inp->inp_flags & INP_RECVDSTADDR) {
2039		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2040		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2041		if (*mp)
2042			mp = &(*mp)->m_next;
2043	}
2044	if (inp->inp_flags & INP_RECVTTL) {
2045		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2046		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2047		if (*mp)
2048			mp = &(*mp)->m_next;
2049	}
2050#ifdef notyet
2051	/* XXX
2052	 * Moving these out of udp_input() made them even more broken
2053	 * than they already were.
2054	 */
2055	/* options were tossed already */
2056	if (inp->inp_flags & INP_RECVOPTS) {
2057		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2058		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2059		if (*mp)
2060			mp = &(*mp)->m_next;
2061	}
2062	/* ip_srcroute doesn't do what we want here, need to fix */
2063	if (inp->inp_flags & INP_RECVRETOPTS) {
2064		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2065		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2066		if (*mp)
2067			mp = &(*mp)->m_next;
2068	}
2069#endif
2070	if (inp->inp_flags & INP_RECVIF) {
2071		struct ifnet *ifp;
2072		struct sdlbuf {
2073			struct sockaddr_dl sdl;
2074			u_char	pad[32];
2075		} sdlbuf;
2076		struct sockaddr_dl *sdp;
2077		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2078
2079		if (((ifp = m->m_pkthdr.rcvif))
2080		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2081			sdp = (struct sockaddr_dl *)
2082			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2083			/*
2084			 * Change our mind and don't try copy.
2085			 */
2086			if ((sdp->sdl_family != AF_LINK)
2087			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2088				goto makedummy;
2089			}
2090			bcopy(sdp, sdl2, sdp->sdl_len);
2091		} else {
2092makedummy:
2093			sdl2->sdl_len
2094				= offsetof(struct sockaddr_dl, sdl_data[0]);
2095			sdl2->sdl_family = AF_LINK;
2096			sdl2->sdl_index = 0;
2097			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2098		}
2099		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2100			IP_RECVIF, IPPROTO_IP);
2101		if (*mp)
2102			mp = &(*mp)->m_next;
2103	}
2104}
2105
2106/*
2107 * XXX these routines are called from the upper part of the kernel.
2108 * They need to be locked when we remove Giant.
2109 *
2110 * They could also be moved to ip_mroute.c, since all the RSVP
2111 *  handling is done there already.
2112 */
2113static int ip_rsvp_on;
2114struct socket *ip_rsvpd;
2115int
2116ip_rsvp_init(struct socket *so)
2117{
2118	if (so->so_type != SOCK_RAW ||
2119	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2120		return EOPNOTSUPP;
2121
2122	if (ip_rsvpd != NULL)
2123		return EADDRINUSE;
2124
2125	ip_rsvpd = so;
2126	/*
2127	 * This may seem silly, but we need to be sure we don't over-increment
2128	 * the RSVP counter, in case something slips up.
2129	 */
2130	if (!ip_rsvp_on) {
2131		ip_rsvp_on = 1;
2132		rsvp_on++;
2133	}
2134
2135	return 0;
2136}
2137
2138int
2139ip_rsvp_done(void)
2140{
2141	ip_rsvpd = NULL;
2142	/*
2143	 * This may seem silly, but we need to be sure we don't over-decrement
2144	 * the RSVP counter, in case something slips up.
2145	 */
2146	if (ip_rsvp_on) {
2147		ip_rsvp_on = 0;
2148		rsvp_on--;
2149	}
2150	return 0;
2151}
2152
2153void
2154rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2155{
2156	if (rsvp_input_p) { /* call the real one if loaded */
2157		rsvp_input_p(m, off);
2158		return;
2159	}
2160
2161	/* Can still get packets with rsvp_on = 0 if there is a local member
2162	 * of the group to which the RSVP packet is addressed.  But in this
2163	 * case we want to throw the packet away.
2164	 */
2165
2166	if (!rsvp_on) {
2167		m_freem(m);
2168		return;
2169	}
2170
2171	if (ip_rsvpd != NULL) {
2172		rip_input(m, off);
2173		return;
2174	}
2175	/* Drop the packet */
2176	m_freem(m);
2177}
2178