ip_reass.c revision 130581
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 130581 2004-06-16 08:33:09Z bms $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipdn.h"
36#include "opt_ipdivert.h"
37#include "opt_ipfilter.h"
38#include "opt_ipstealth.h"
39#include "opt_ipsec.h"
40#include "opt_mac.h"
41#include "opt_pfil_hooks.h"
42#include "opt_random_ip_id.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/mac.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/domain.h>
50#include <sys/protosw.h>
51#include <sys/socket.h>
52#include <sys/time.h>
53#include <sys/kernel.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56
57#include <net/pfil.h>
58#include <net/if.h>
59#include <net/if_types.h>
60#include <net/if_var.h>
61#include <net/if_dl.h>
62#include <net/route.h>
63#include <net/netisr.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/in_var.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_icmp.h>
72#include <machine/in_cksum.h>
73
74#include <sys/socketvar.h>
75
76#include <netinet/ip_fw.h>
77#include <netinet/ip_divert.h>
78#include <netinet/ip_dummynet.h>
79
80#ifdef IPSEC
81#include <netinet6/ipsec.h>
82#include <netkey/key.h>
83#endif
84
85#ifdef FAST_IPSEC
86#include <netipsec/ipsec.h>
87#include <netipsec/key.h>
88#endif
89
90int rsvp_on = 0;
91
92int	ipforwarding = 0;
93SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
94    &ipforwarding, 0, "Enable IP forwarding between interfaces");
95
96static int	ipsendredirects = 1; /* XXX */
97SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
98    &ipsendredirects, 0, "Enable sending IP redirects");
99
100int	ip_defttl = IPDEFTTL;
101SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
102    &ip_defttl, 0, "Maximum TTL on IP packets");
103
104static int	ip_dosourceroute = 0;
105SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
106    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
107
108static int	ip_acceptsourceroute = 0;
109SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
110    CTLFLAG_RW, &ip_acceptsourceroute, 0,
111    "Enable accepting source routed IP packets");
112
113int		ip_doopts = 1;	/* 0 = ignore, 1 = process, 2 = reject */
114SYSCTL_INT(_net_inet_ip, OID_AUTO, process_options, CTLFLAG_RW,
115    &ip_doopts, 0, "Enable IP options processing ([LS]SRR, RR, TS)");
116
117static int	ip_keepfaith = 0;
118SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119	&ip_keepfaith,	0,
120	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121
122static int    nipq = 0;         /* total # of reass queues */
123static int    maxnipq;
124SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125	&maxnipq, 0,
126	"Maximum number of IPv4 fragment reassembly queue entries");
127
128static int    maxfragsperpacket;
129SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
130	&maxfragsperpacket, 0,
131	"Maximum number of IPv4 fragments allowed per packet");
132
133static int	ip_sendsourcequench = 0;
134SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
135	&ip_sendsourcequench, 0,
136	"Enable the transmission of source quench packets");
137
138/*
139 * XXX - Setting ip_checkinterface mostly implements the receive side of
140 * the Strong ES model described in RFC 1122, but since the routing table
141 * and transmit implementation do not implement the Strong ES model,
142 * setting this to 1 results in an odd hybrid.
143 *
144 * XXX - ip_checkinterface currently must be disabled if you use ipnat
145 * to translate the destination address to another local interface.
146 *
147 * XXX - ip_checkinterface must be disabled if you add IP aliases
148 * to the loopback interface instead of the interface where the
149 * packets for those addresses are received.
150 */
151static int	ip_checkinterface = 1;
152SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
153    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
154
155#ifdef DIAGNOSTIC
156static int	ipprintfs = 0;
157#endif
158#ifdef PFIL_HOOKS
159struct pfil_head inet_pfil_hook;
160#endif
161
162static struct	ifqueue ipintrq;
163static int	ipqmaxlen = IFQ_MAXLEN;
164
165extern	struct domain inetdomain;
166extern	struct protosw inetsw[];
167u_char	ip_protox[IPPROTO_MAX];
168struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
169struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
170u_long 	in_ifaddrhmask;				/* mask for hash table */
171
172SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
173    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
174SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
175    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
176
177struct ipstat ipstat;
178SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
179    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
180
181/* Packet reassembly stuff */
182#define IPREASS_NHASH_LOG2      6
183#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
184#define IPREASS_HMASK           (IPREASS_NHASH - 1)
185#define IPREASS_HASH(x,y) \
186	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
187
188static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
189struct mtx ipqlock;
190
191#define	IPQ_LOCK()	mtx_lock(&ipqlock)
192#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
193#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
194#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
195
196#ifdef IPCTL_DEFMTU
197SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
198    &ip_mtu, 0, "Default MTU");
199#endif
200
201#ifdef IPSTEALTH
202int	ipstealth = 0;
203SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
204    &ipstealth, 0, "");
205#endif
206
207
208/* Firewall hooks */
209ip_fw_chk_t *ip_fw_chk_ptr;
210int fw_enable = 1 ;
211int fw_one_pass = 1;
212
213/* Dummynet hooks */
214ip_dn_io_t *ip_dn_io_ptr;
215
216/*
217 * XXX this is ugly -- the following two global variables are
218 * used to store packet state while it travels through the stack.
219 * Note that the code even makes assumptions on the size and
220 * alignment of fields inside struct ip_srcrt so e.g. adding some
221 * fields will break the code. This needs to be fixed.
222 *
223 * We need to save the IP options in case a protocol wants to respond
224 * to an incoming packet over the same route if the packet got here
225 * using IP source routing.  This allows connection establishment and
226 * maintenance when the remote end is on a network that is not known
227 * to us.
228 */
229static int	ip_nhops = 0;
230static	struct ip_srcrt {
231	struct	in_addr dst;			/* final destination */
232	char	nop;				/* one NOP to align */
233	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
234	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
235} ip_srcrt;
236
237static void	save_rte(u_char *, struct in_addr);
238static int	ip_dooptions(struct mbuf *m, int,
239			struct sockaddr_in *next_hop);
240static void	ip_forward(struct mbuf *m, int srcrt,
241			struct sockaddr_in *next_hop);
242static void	ip_freef(struct ipqhead *, struct ipq *);
243static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *, struct ipq *);
244
245/*
246 * IP initialization: fill in IP protocol switch table.
247 * All protocols not implemented in kernel go to raw IP protocol handler.
248 */
249void
250ip_init()
251{
252	register struct protosw *pr;
253	register int i;
254
255	TAILQ_INIT(&in_ifaddrhead);
256	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
257	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
258	if (pr == 0)
259		panic("ip_init");
260	for (i = 0; i < IPPROTO_MAX; i++)
261		ip_protox[i] = pr - inetsw;
262	for (pr = inetdomain.dom_protosw;
263	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
264		if (pr->pr_domain->dom_family == PF_INET &&
265		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
266			ip_protox[pr->pr_protocol] = pr - inetsw;
267
268#ifdef PFIL_HOOKS
269	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
270	inet_pfil_hook.ph_af = AF_INET;
271	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
272		printf("%s: WARNING: unable to register pfil hook, "
273			"error %d\n", __func__, i);
274#endif /* PFIL_HOOKS */
275
276	IPQ_LOCK_INIT();
277	for (i = 0; i < IPREASS_NHASH; i++)
278	    TAILQ_INIT(&ipq[i]);
279
280	maxnipq = nmbclusters / 32;
281	maxfragsperpacket = 16;
282
283#ifndef RANDOM_IP_ID
284	ip_id = time_second & 0xffff;
285#endif
286	ipintrq.ifq_maxlen = ipqmaxlen;
287	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
288	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
289}
290
291/*
292 * Ip input routine.  Checksum and byte swap header.  If fragmented
293 * try to reassemble.  Process options.  Pass to next level.
294 */
295void
296ip_input(struct mbuf *m)
297{
298	struct ip *ip = NULL;
299	struct ipq *fp;
300	struct in_ifaddr *ia = NULL;
301	struct ifaddr *ifa;
302	int    i, checkif, hlen = 0;
303	u_short sum;
304	struct in_addr pkt_dst;
305#ifdef IPDIVERT
306	u_int32_t divert_info;			/* packet divert/tee info */
307#endif
308	struct ip_fw_args args;
309	int dchg = 0;				/* dest changed after fw */
310#ifdef PFIL_HOOKS
311	struct in_addr odst;			/* original dst address */
312#endif
313#ifdef FAST_IPSEC
314	struct m_tag *mtag;
315	struct tdb_ident *tdbi;
316	struct secpolicy *sp;
317	int s, error;
318#endif /* FAST_IPSEC */
319
320	args.eh = NULL;
321	args.oif = NULL;
322
323  	M_ASSERTPKTHDR(m);
324
325	args.next_hop = m_claim_next(m, PACKET_TAG_IPFORWARD);
326	args.rule = ip_dn_claim_rule(m);
327
328	if (m->m_flags & M_FASTFWD_OURS) {
329		/* ip_fastforward firewall changed dest to local */
330		m->m_flags &= ~M_FASTFWD_OURS;	/* for reflected mbufs */
331  		goto ours;
332  	}
333
334  	if (args.rule) {	/* dummynet already filtered us */
335  		ip = mtod(m, struct ip *);
336  		hlen = ip->ip_hl << 2;
337		goto iphack ;
338	}
339
340	ipstat.ips_total++;
341
342	if (m->m_pkthdr.len < sizeof(struct ip))
343		goto tooshort;
344
345	if (m->m_len < sizeof (struct ip) &&
346	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
347		ipstat.ips_toosmall++;
348		return;
349	}
350	ip = mtod(m, struct ip *);
351
352	if (ip->ip_v != IPVERSION) {
353		ipstat.ips_badvers++;
354		goto bad;
355	}
356
357	hlen = ip->ip_hl << 2;
358	if (hlen < sizeof(struct ip)) {	/* minimum header length */
359		ipstat.ips_badhlen++;
360		goto bad;
361	}
362	if (hlen > m->m_len) {
363		if ((m = m_pullup(m, hlen)) == 0) {
364			ipstat.ips_badhlen++;
365			return;
366		}
367		ip = mtod(m, struct ip *);
368	}
369
370	/* 127/8 must not appear on wire - RFC1122 */
371	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
372	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
373		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
374			ipstat.ips_badaddr++;
375			goto bad;
376		}
377	}
378
379	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
380		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
381	} else {
382		if (hlen == sizeof(struct ip)) {
383			sum = in_cksum_hdr(ip);
384		} else {
385			sum = in_cksum(m, hlen);
386		}
387	}
388	if (sum) {
389		ipstat.ips_badsum++;
390		goto bad;
391	}
392
393#ifdef ALTQ
394	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
395		/* packet is dropped by traffic conditioner */
396		return;
397#endif
398
399	/*
400	 * Convert fields to host representation.
401	 */
402	ip->ip_len = ntohs(ip->ip_len);
403	if (ip->ip_len < hlen) {
404		ipstat.ips_badlen++;
405		goto bad;
406	}
407	ip->ip_off = ntohs(ip->ip_off);
408
409	/*
410	 * Check that the amount of data in the buffers
411	 * is as at least much as the IP header would have us expect.
412	 * Trim mbufs if longer than we expect.
413	 * Drop packet if shorter than we expect.
414	 */
415	if (m->m_pkthdr.len < ip->ip_len) {
416tooshort:
417		ipstat.ips_tooshort++;
418		goto bad;
419	}
420	if (m->m_pkthdr.len > ip->ip_len) {
421		if (m->m_len == m->m_pkthdr.len) {
422			m->m_len = ip->ip_len;
423			m->m_pkthdr.len = ip->ip_len;
424		} else
425			m_adj(m, ip->ip_len - m->m_pkthdr.len);
426	}
427#if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
428	/*
429	 * Bypass packet filtering for packets from a tunnel (gif).
430	 */
431	if (ipsec_getnhist(m))
432		goto pass;
433#endif
434#if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
435	/*
436	 * Bypass packet filtering for packets from a tunnel (gif).
437	 */
438	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
439		goto pass;
440#endif
441
442	/*
443	 * IpHack's section.
444	 * Right now when no processing on packet has done
445	 * and it is still fresh out of network we do our black
446	 * deals with it.
447	 * - Firewall: deny/allow/divert
448	 * - Xlate: translate packet's addr/port (NAT).
449	 * - Pipe: pass pkt through dummynet.
450	 * - Wrap: fake packet's addr/port <unimpl.>
451	 * - Encapsulate: put it in another IP and send out. <unimp.>
452 	 */
453
454iphack:
455
456#ifdef PFIL_HOOKS
457	/*
458	 * Run through list of hooks for input packets.
459	 *
460	 * NB: Beware of the destination address changing (e.g.
461	 *     by NAT rewriting).  When this happens, tell
462	 *     ip_forward to do the right thing.
463	 */
464	odst = ip->ip_dst;
465	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
466	    PFIL_IN) != 0)
467		return;
468	if (m == NULL)			/* consumed by filter */
469		return;
470	ip = mtod(m, struct ip *);
471	dchg = (odst.s_addr != ip->ip_dst.s_addr);
472#endif /* PFIL_HOOKS */
473
474	if (fw_enable && IPFW_LOADED) {
475		/*
476		 * If we've been forwarded from the output side, then
477		 * skip the firewall a second time
478		 */
479		if (args.next_hop)
480			goto ours;
481
482		args.m = m;
483		i = ip_fw_chk_ptr(&args);
484		m = args.m;
485
486		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
487			if (m)
488				m_freem(m);
489			return;
490		}
491		ip = mtod(m, struct ip *); /* just in case m changed */
492		if (i == 0 && args.next_hop == NULL)	/* common case */
493			goto pass;
494                if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
495			/* Send packet to the appropriate pipe */
496			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
497			return;
498		}
499#ifdef IPDIVERT
500		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
501			/* Divert or tee packet */
502			goto ours;
503		}
504#endif
505		if (i == 0 && args.next_hop != NULL)
506			goto pass;
507		/*
508		 * if we get here, the packet must be dropped
509		 */
510		m_freem(m);
511		return;
512	}
513pass:
514
515	/*
516	 * Process options and, if not destined for us,
517	 * ship it on.  ip_dooptions returns 1 when an
518	 * error was detected (causing an icmp message
519	 * to be sent and the original packet to be freed).
520	 */
521	ip_nhops = 0;		/* for source routed packets */
522	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
523		return;
524
525        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
526         * matter if it is destined to another node, or whether it is
527         * a multicast one, RSVP wants it! and prevents it from being forwarded
528         * anywhere else. Also checks if the rsvp daemon is running before
529	 * grabbing the packet.
530         */
531	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
532		goto ours;
533
534	/*
535	 * Check our list of addresses, to see if the packet is for us.
536	 * If we don't have any addresses, assume any unicast packet
537	 * we receive might be for us (and let the upper layers deal
538	 * with it).
539	 */
540	if (TAILQ_EMPTY(&in_ifaddrhead) &&
541	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
542		goto ours;
543
544	/*
545	 * Cache the destination address of the packet; this may be
546	 * changed by use of 'ipfw fwd'.
547	 */
548	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
549
550	/*
551	 * Enable a consistency check between the destination address
552	 * and the arrival interface for a unicast packet (the RFC 1122
553	 * strong ES model) if IP forwarding is disabled and the packet
554	 * is not locally generated and the packet is not subject to
555	 * 'ipfw fwd'.
556	 *
557	 * XXX - Checking also should be disabled if the destination
558	 * address is ipnat'ed to a different interface.
559	 *
560	 * XXX - Checking is incompatible with IP aliases added
561	 * to the loopback interface instead of the interface where
562	 * the packets are received.
563	 */
564	checkif = ip_checkinterface && (ipforwarding == 0) &&
565	    m->m_pkthdr.rcvif != NULL &&
566	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
567	    (args.next_hop == NULL) && (dchg == 0);
568
569	/*
570	 * Check for exact addresses in the hash bucket.
571	 */
572	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
573		/*
574		 * If the address matches, verify that the packet
575		 * arrived via the correct interface if checking is
576		 * enabled.
577		 */
578		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
579		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
580			goto ours;
581	}
582	/*
583	 * Check for broadcast addresses.
584	 *
585	 * Only accept broadcast packets that arrive via the matching
586	 * interface.  Reception of forwarded directed broadcasts would
587	 * be handled via ip_forward() and ether_output() with the loopback
588	 * into the stack for SIMPLEX interfaces handled by ether_output().
589	 */
590	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
591	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
592			if (ifa->ifa_addr->sa_family != AF_INET)
593				continue;
594			ia = ifatoia(ifa);
595			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
596			    pkt_dst.s_addr)
597				goto ours;
598			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
599				goto ours;
600#ifdef BOOTP_COMPAT
601			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
602				goto ours;
603#endif
604		}
605	}
606	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
607		struct in_multi *inm;
608		if (ip_mrouter) {
609			/*
610			 * If we are acting as a multicast router, all
611			 * incoming multicast packets are passed to the
612			 * kernel-level multicast forwarding function.
613			 * The packet is returned (relatively) intact; if
614			 * ip_mforward() returns a non-zero value, the packet
615			 * must be discarded, else it may be accepted below.
616			 */
617			if (ip_mforward &&
618			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
619				ipstat.ips_cantforward++;
620				m_freem(m);
621				return;
622			}
623
624			/*
625			 * The process-level routing daemon needs to receive
626			 * all multicast IGMP packets, whether or not this
627			 * host belongs to their destination groups.
628			 */
629			if (ip->ip_p == IPPROTO_IGMP)
630				goto ours;
631			ipstat.ips_forward++;
632		}
633		/*
634		 * See if we belong to the destination multicast group on the
635		 * arrival interface.
636		 */
637		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
638		if (inm == NULL) {
639			ipstat.ips_notmember++;
640			m_freem(m);
641			return;
642		}
643		goto ours;
644	}
645	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
646		goto ours;
647	if (ip->ip_dst.s_addr == INADDR_ANY)
648		goto ours;
649
650	/*
651	 * FAITH(Firewall Aided Internet Translator)
652	 */
653	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
654		if (ip_keepfaith) {
655			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
656				goto ours;
657		}
658		m_freem(m);
659		return;
660	}
661
662	/*
663	 * Not for us; forward if possible and desirable.
664	 */
665	if (ipforwarding == 0) {
666		ipstat.ips_cantforward++;
667		m_freem(m);
668	} else {
669#ifdef IPSEC
670		/*
671		 * Enforce inbound IPsec SPD.
672		 */
673		if (ipsec4_in_reject(m, NULL)) {
674			ipsecstat.in_polvio++;
675			goto bad;
676		}
677#endif /* IPSEC */
678#ifdef FAST_IPSEC
679		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
680		s = splnet();
681		if (mtag != NULL) {
682			tdbi = (struct tdb_ident *)(mtag + 1);
683			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
684		} else {
685			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
686						   IP_FORWARDING, &error);
687		}
688		if (sp == NULL) {	/* NB: can happen if error */
689			splx(s);
690			/*XXX error stat???*/
691			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
692			goto bad;
693		}
694
695		/*
696		 * Check security policy against packet attributes.
697		 */
698		error = ipsec_in_reject(sp, m);
699		KEY_FREESP(&sp);
700		splx(s);
701		if (error) {
702			ipstat.ips_cantforward++;
703			goto bad;
704		}
705#endif /* FAST_IPSEC */
706		ip_forward(m, dchg, args.next_hop);
707	}
708	return;
709
710ours:
711#ifdef IPSTEALTH
712	/*
713	 * IPSTEALTH: Process non-routing options only
714	 * if the packet is destined for us.
715	 */
716	if (ipstealth && hlen > sizeof (struct ip) &&
717	    ip_dooptions(m, 1, args.next_hop))
718		return;
719#endif /* IPSTEALTH */
720
721	/* Count the packet in the ip address stats */
722	if (ia != NULL) {
723		ia->ia_ifa.if_ipackets++;
724		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
725	}
726
727	/*
728	 * If offset or IP_MF are set, must reassemble.
729	 * Otherwise, nothing need be done.
730	 * (We could look in the reassembly queue to see
731	 * if the packet was previously fragmented,
732	 * but it's not worth the time; just let them time out.)
733	 */
734	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
735
736		/* If maxnipq is 0, never accept fragments. */
737		if (maxnipq == 0) {
738                	ipstat.ips_fragments++;
739			ipstat.ips_fragdropped++;
740			goto bad;
741		}
742
743		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
744		IPQ_LOCK();
745		/*
746		 * Look for queue of fragments
747		 * of this datagram.
748		 */
749		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
750			if (ip->ip_id == fp->ipq_id &&
751			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
752			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
753#ifdef MAC
754			    mac_fragment_match(m, fp) &&
755#endif
756			    ip->ip_p == fp->ipq_p)
757				goto found;
758
759		fp = NULL;
760
761		/*
762		 * Enforce upper bound on number of fragmented packets
763		 * for which we attempt reassembly;
764		 * If maxnipq is -1, accept all fragments without limitation.
765		 */
766		if ((nipq > maxnipq) && (maxnipq > 0)) {
767		    /*
768		     * drop something from the tail of the current queue
769		     * before proceeding further
770		     */
771		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
772		    if (q == NULL) {   /* gak */
773			for (i = 0; i < IPREASS_NHASH; i++) {
774			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
775			    if (r) {
776				ipstat.ips_fragtimeout += r->ipq_nfrags;
777				ip_freef(&ipq[i], r);
778				break;
779			    }
780			}
781		    } else {
782			ipstat.ips_fragtimeout += q->ipq_nfrags;
783			ip_freef(&ipq[sum], q);
784		    }
785		}
786found:
787		/*
788		 * Adjust ip_len to not reflect header,
789		 * convert offset of this to bytes.
790		 */
791		ip->ip_len -= hlen;
792		if (ip->ip_off & IP_MF) {
793		        /*
794		         * Make sure that fragments have a data length
795			 * that's a non-zero multiple of 8 bytes.
796		         */
797			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
798				IPQ_UNLOCK();
799				ipstat.ips_toosmall++; /* XXX */
800				goto bad;
801			}
802			m->m_flags |= M_FRAG;
803		} else
804			m->m_flags &= ~M_FRAG;
805		ip->ip_off <<= 3;
806
807		/*
808		 * Attempt reassembly; if it succeeds, proceed.
809		 * ip_reass() will return a different mbuf.
810		 */
811		ipstat.ips_fragments++;
812		m->m_pkthdr.header = ip;
813		m = ip_reass(m, &ipq[sum], fp);
814		IPQ_UNLOCK();
815		if (m == 0)
816			return;
817		ipstat.ips_reassembled++;
818		ip = mtod(m, struct ip *);
819		/* Get the header length of the reassembled packet */
820		hlen = ip->ip_hl << 2;
821#ifdef IPDIVERT
822		/* Restore original checksum before diverting packet */
823		if (divert_find_info(m) != 0) {
824			ip->ip_len += hlen;
825			ip->ip_len = htons(ip->ip_len);
826			ip->ip_off = htons(ip->ip_off);
827			ip->ip_sum = 0;
828			if (hlen == sizeof(struct ip))
829				ip->ip_sum = in_cksum_hdr(ip);
830			else
831				ip->ip_sum = in_cksum(m, hlen);
832			ip->ip_off = ntohs(ip->ip_off);
833			ip->ip_len = ntohs(ip->ip_len);
834			ip->ip_len -= hlen;
835		}
836#endif
837	} else
838		ip->ip_len -= hlen;
839
840#ifdef IPDIVERT
841	/*
842	 * Divert or tee packet to the divert protocol if required.
843	 */
844	divert_info = divert_find_info(m);
845	if (divert_info != 0) {
846		struct mbuf *clone;
847
848		/* Clone packet if we're doing a 'tee' */
849		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
850			clone = divert_clone(m);
851		else
852			clone = NULL;
853
854		/* Restore packet header fields to original values */
855		ip->ip_len += hlen;
856		ip->ip_len = htons(ip->ip_len);
857		ip->ip_off = htons(ip->ip_off);
858
859		/* Deliver packet to divert input routine */
860		divert_packet(m, 1);
861		ipstat.ips_delivered++;
862
863		/* If 'tee', continue with original packet */
864		if (clone == NULL)
865			return;
866		m = clone;
867		ip = mtod(m, struct ip *);
868		ip->ip_len += hlen;
869		/*
870		 * Jump backwards to complete processing of the
871		 * packet.  We do not need to clear args.next_hop
872		 * as that will not be used again and the cloned packet
873		 * doesn't contain a divert packet tag so we won't
874		 * re-entry this block.
875		 */
876		goto pass;
877	}
878#endif
879
880#ifdef IPSEC
881	/*
882	 * enforce IPsec policy checking if we are seeing last header.
883	 * note that we do not visit this with protocols with pcb layer
884	 * code - like udp/tcp/raw ip.
885	 */
886	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
887	    ipsec4_in_reject(m, NULL)) {
888		ipsecstat.in_polvio++;
889		goto bad;
890	}
891#endif
892#if FAST_IPSEC
893	/*
894	 * enforce IPsec policy checking if we are seeing last header.
895	 * note that we do not visit this with protocols with pcb layer
896	 * code - like udp/tcp/raw ip.
897	 */
898	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
899		/*
900		 * Check if the packet has already had IPsec processing
901		 * done.  If so, then just pass it along.  This tag gets
902		 * set during AH, ESP, etc. input handling, before the
903		 * packet is returned to the ip input queue for delivery.
904		 */
905		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
906		s = splnet();
907		if (mtag != NULL) {
908			tdbi = (struct tdb_ident *)(mtag + 1);
909			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
910		} else {
911			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
912						   IP_FORWARDING, &error);
913		}
914		if (sp != NULL) {
915			/*
916			 * Check security policy against packet attributes.
917			 */
918			error = ipsec_in_reject(sp, m);
919			KEY_FREESP(&sp);
920		} else {
921			/* XXX error stat??? */
922			error = EINVAL;
923DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
924			goto bad;
925		}
926		splx(s);
927		if (error)
928			goto bad;
929	}
930#endif /* FAST_IPSEC */
931
932	/*
933	 * Switch out to protocol's input routine.
934	 */
935	ipstat.ips_delivered++;
936	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
937		/* attach next hop info for TCP */
938		struct m_tag *mtag = m_tag_get(PACKET_TAG_IPFORWARD,
939		    sizeof(struct sockaddr_in *), M_NOWAIT);
940		if (mtag == NULL)
941			goto bad;
942		*(struct sockaddr_in **)(mtag+1) = args.next_hop;
943		m_tag_prepend(m, mtag);
944	}
945	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
946	return;
947bad:
948	m_freem(m);
949}
950
951/*
952 * Take incoming datagram fragment and try to reassemble it into
953 * whole datagram.  If a chain for reassembly of this datagram already
954 * exists, then it is given as fp; otherwise have to make a chain.
955 *
956 * When IPDIVERT enabled, keep additional state with each packet that
957 * tells us if we need to divert or tee the packet we're building.
958 * In particular, *divinfo includes the port and TEE flag,
959 * *divert_rule is the number of the matching rule.
960 */
961
962static struct mbuf *
963ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp)
964{
965	struct ip *ip = mtod(m, struct ip *);
966	register struct mbuf *p, *q, *nq;
967	struct mbuf *t;
968	int hlen = ip->ip_hl << 2;
969	int i, next;
970	u_int8_t ecn, ecn0;
971
972	IPQ_LOCK_ASSERT();
973
974	/*
975	 * Presence of header sizes in mbufs
976	 * would confuse code below.
977	 */
978	m->m_data += hlen;
979	m->m_len -= hlen;
980
981	/*
982	 * If first fragment to arrive, create a reassembly queue.
983	 */
984	if (fp == NULL) {
985		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
986			goto dropfrag;
987		fp = mtod(t, struct ipq *);
988#ifdef MAC
989		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
990			m_free(t);
991			goto dropfrag;
992		}
993		mac_create_ipq(m, fp);
994#endif
995		TAILQ_INSERT_HEAD(head, fp, ipq_list);
996		nipq++;
997		fp->ipq_nfrags = 1;
998		fp->ipq_ttl = IPFRAGTTL;
999		fp->ipq_p = ip->ip_p;
1000		fp->ipq_id = ip->ip_id;
1001		fp->ipq_src = ip->ip_src;
1002		fp->ipq_dst = ip->ip_dst;
1003		fp->ipq_frags = m;
1004		m->m_nextpkt = NULL;
1005		goto inserted;
1006	} else {
1007		fp->ipq_nfrags++;
1008#ifdef MAC
1009		mac_update_ipq(m, fp);
1010#endif
1011	}
1012
1013#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1014
1015	/*
1016	 * Handle ECN by comparing this segment with the first one;
1017	 * if CE is set, do not lose CE.
1018	 * drop if CE and not-ECT are mixed for the same packet.
1019	 */
1020	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1021	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1022	if (ecn == IPTOS_ECN_CE) {
1023		if (ecn0 == IPTOS_ECN_NOTECT)
1024			goto dropfrag;
1025		if (ecn0 != IPTOS_ECN_CE)
1026			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1027	}
1028	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1029		goto dropfrag;
1030
1031	/*
1032	 * Find a segment which begins after this one does.
1033	 */
1034	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1035		if (GETIP(q)->ip_off > ip->ip_off)
1036			break;
1037
1038	/*
1039	 * If there is a preceding segment, it may provide some of
1040	 * our data already.  If so, drop the data from the incoming
1041	 * segment.  If it provides all of our data, drop us, otherwise
1042	 * stick new segment in the proper place.
1043	 *
1044	 * If some of the data is dropped from the the preceding
1045	 * segment, then it's checksum is invalidated.
1046	 */
1047	if (p) {
1048		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1049		if (i > 0) {
1050			if (i >= ip->ip_len)
1051				goto dropfrag;
1052			m_adj(m, i);
1053			m->m_pkthdr.csum_flags = 0;
1054			ip->ip_off += i;
1055			ip->ip_len -= i;
1056		}
1057		m->m_nextpkt = p->m_nextpkt;
1058		p->m_nextpkt = m;
1059	} else {
1060		m->m_nextpkt = fp->ipq_frags;
1061		fp->ipq_frags = m;
1062	}
1063
1064	/*
1065	 * While we overlap succeeding segments trim them or,
1066	 * if they are completely covered, dequeue them.
1067	 */
1068	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1069	     q = nq) {
1070		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1071		if (i < GETIP(q)->ip_len) {
1072			GETIP(q)->ip_len -= i;
1073			GETIP(q)->ip_off += i;
1074			m_adj(q, i);
1075			q->m_pkthdr.csum_flags = 0;
1076			break;
1077		}
1078		nq = q->m_nextpkt;
1079		m->m_nextpkt = nq;
1080		ipstat.ips_fragdropped++;
1081		fp->ipq_nfrags--;
1082		m_freem(q);
1083	}
1084
1085inserted:
1086
1087#ifdef IPDIVERT
1088	if (ip->ip_off != 0) {
1089		/*
1090		 * Strip any divert information; only the info
1091		 * on the first fragment is used/kept.
1092		 */
1093		struct m_tag *mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
1094		if (mtag)
1095			m_tag_delete(m, mtag);
1096	}
1097#endif
1098
1099	/*
1100	 * Check for complete reassembly and perform frag per packet
1101	 * limiting.
1102	 *
1103	 * Frag limiting is performed here so that the nth frag has
1104	 * a chance to complete the packet before we drop the packet.
1105	 * As a result, n+1 frags are actually allowed per packet, but
1106	 * only n will ever be stored. (n = maxfragsperpacket.)
1107	 *
1108	 */
1109	next = 0;
1110	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1111		if (GETIP(q)->ip_off != next) {
1112			if (fp->ipq_nfrags > maxfragsperpacket) {
1113				ipstat.ips_fragdropped += fp->ipq_nfrags;
1114				ip_freef(head, fp);
1115			}
1116			return (0);
1117		}
1118		next += GETIP(q)->ip_len;
1119	}
1120	/* Make sure the last packet didn't have the IP_MF flag */
1121	if (p->m_flags & M_FRAG) {
1122		if (fp->ipq_nfrags > maxfragsperpacket) {
1123			ipstat.ips_fragdropped += fp->ipq_nfrags;
1124			ip_freef(head, fp);
1125		}
1126		return (0);
1127	}
1128
1129	/*
1130	 * Reassembly is complete.  Make sure the packet is a sane size.
1131	 */
1132	q = fp->ipq_frags;
1133	ip = GETIP(q);
1134	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1135		ipstat.ips_toolong++;
1136		ipstat.ips_fragdropped += fp->ipq_nfrags;
1137		ip_freef(head, fp);
1138		return (0);
1139	}
1140
1141	/*
1142	 * Concatenate fragments.
1143	 */
1144	m = q;
1145	t = m->m_next;
1146	m->m_next = 0;
1147	m_cat(m, t);
1148	nq = q->m_nextpkt;
1149	q->m_nextpkt = 0;
1150	for (q = nq; q != NULL; q = nq) {
1151		nq = q->m_nextpkt;
1152		q->m_nextpkt = NULL;
1153		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1154		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1155		m_cat(m, q);
1156	}
1157#ifdef MAC
1158	mac_create_datagram_from_ipq(fp, m);
1159	mac_destroy_ipq(fp);
1160#endif
1161
1162	/*
1163	 * Create header for new ip packet by
1164	 * modifying header of first packet;
1165	 * dequeue and discard fragment reassembly header.
1166	 * Make header visible.
1167	 */
1168	ip->ip_len = next;
1169	ip->ip_src = fp->ipq_src;
1170	ip->ip_dst = fp->ipq_dst;
1171	TAILQ_REMOVE(head, fp, ipq_list);
1172	nipq--;
1173	(void) m_free(dtom(fp));
1174	m->m_len += (ip->ip_hl << 2);
1175	m->m_data -= (ip->ip_hl << 2);
1176	/* some debugging cruft by sklower, below, will go away soon */
1177	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1178		m_fixhdr(m);
1179	return (m);
1180
1181dropfrag:
1182	ipstat.ips_fragdropped++;
1183	if (fp != NULL)
1184		fp->ipq_nfrags--;
1185	m_freem(m);
1186	return (0);
1187
1188#undef GETIP
1189}
1190
1191/*
1192 * Free a fragment reassembly header and all
1193 * associated datagrams.
1194 */
1195static void
1196ip_freef(fhp, fp)
1197	struct ipqhead *fhp;
1198	struct ipq *fp;
1199{
1200	register struct mbuf *q;
1201
1202	IPQ_LOCK_ASSERT();
1203
1204	while (fp->ipq_frags) {
1205		q = fp->ipq_frags;
1206		fp->ipq_frags = q->m_nextpkt;
1207		m_freem(q);
1208	}
1209	TAILQ_REMOVE(fhp, fp, ipq_list);
1210	(void) m_free(dtom(fp));
1211	nipq--;
1212}
1213
1214/*
1215 * IP timer processing;
1216 * if a timer expires on a reassembly
1217 * queue, discard it.
1218 */
1219void
1220ip_slowtimo()
1221{
1222	register struct ipq *fp;
1223	int s = splnet();
1224	int i;
1225
1226	IPQ_LOCK();
1227	for (i = 0; i < IPREASS_NHASH; i++) {
1228		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1229			struct ipq *fpp;
1230
1231			fpp = fp;
1232			fp = TAILQ_NEXT(fp, ipq_list);
1233			if(--fpp->ipq_ttl == 0) {
1234				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1235				ip_freef(&ipq[i], fpp);
1236			}
1237		}
1238	}
1239	/*
1240	 * If we are over the maximum number of fragments
1241	 * (due to the limit being lowered), drain off
1242	 * enough to get down to the new limit.
1243	 */
1244	if (maxnipq >= 0 && nipq > maxnipq) {
1245		for (i = 0; i < IPREASS_NHASH; i++) {
1246			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1247				ipstat.ips_fragdropped +=
1248				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1249				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1250			}
1251		}
1252	}
1253	IPQ_UNLOCK();
1254	splx(s);
1255}
1256
1257/*
1258 * Drain off all datagram fragments.
1259 */
1260void
1261ip_drain()
1262{
1263	int     i;
1264
1265	IPQ_LOCK();
1266	for (i = 0; i < IPREASS_NHASH; i++) {
1267		while(!TAILQ_EMPTY(&ipq[i])) {
1268			ipstat.ips_fragdropped +=
1269			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1270			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1271		}
1272	}
1273	IPQ_UNLOCK();
1274	in_rtqdrain();
1275}
1276
1277/*
1278 * Do option processing on a datagram,
1279 * possibly discarding it if bad options are encountered,
1280 * or forwarding it if source-routed.
1281 * The pass argument is used when operating in the IPSTEALTH
1282 * mode to tell what options to process:
1283 * [LS]SRR (pass 0) or the others (pass 1).
1284 * The reason for as many as two passes is that when doing IPSTEALTH,
1285 * non-routing options should be processed only if the packet is for us.
1286 * Returns 1 if packet has been forwarded/freed,
1287 * 0 if the packet should be processed further.
1288 */
1289static int
1290ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1291{
1292	struct ip *ip = mtod(m, struct ip *);
1293	u_char *cp;
1294	struct in_ifaddr *ia;
1295	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1296	struct in_addr *sin, dst;
1297	n_time ntime;
1298	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1299
1300	/* ignore or reject packets with IP options */
1301	if (ip_doopts == 0)
1302		return 0;
1303	else if (ip_doopts == 2) {
1304		type = ICMP_UNREACH;
1305		code = ICMP_UNREACH_FILTER_PROHIB;
1306		goto bad;
1307	}
1308
1309	dst = ip->ip_dst;
1310	cp = (u_char *)(ip + 1);
1311	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1312	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1313		opt = cp[IPOPT_OPTVAL];
1314		if (opt == IPOPT_EOL)
1315			break;
1316		if (opt == IPOPT_NOP)
1317			optlen = 1;
1318		else {
1319			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1320				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1321				goto bad;
1322			}
1323			optlen = cp[IPOPT_OLEN];
1324			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1325				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1326				goto bad;
1327			}
1328		}
1329		switch (opt) {
1330
1331		default:
1332			break;
1333
1334		/*
1335		 * Source routing with record.
1336		 * Find interface with current destination address.
1337		 * If none on this machine then drop if strictly routed,
1338		 * or do nothing if loosely routed.
1339		 * Record interface address and bring up next address
1340		 * component.  If strictly routed make sure next
1341		 * address is on directly accessible net.
1342		 */
1343		case IPOPT_LSRR:
1344		case IPOPT_SSRR:
1345#ifdef IPSTEALTH
1346			if (ipstealth && pass > 0)
1347				break;
1348#endif
1349			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1350				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1351				goto bad;
1352			}
1353			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1354				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1355				goto bad;
1356			}
1357			ipaddr.sin_addr = ip->ip_dst;
1358			ia = (struct in_ifaddr *)
1359				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1360			if (ia == 0) {
1361				if (opt == IPOPT_SSRR) {
1362					type = ICMP_UNREACH;
1363					code = ICMP_UNREACH_SRCFAIL;
1364					goto bad;
1365				}
1366				if (!ip_dosourceroute)
1367					goto nosourcerouting;
1368				/*
1369				 * Loose routing, and not at next destination
1370				 * yet; nothing to do except forward.
1371				 */
1372				break;
1373			}
1374			off--;			/* 0 origin */
1375			if (off > optlen - (int)sizeof(struct in_addr)) {
1376				/*
1377				 * End of source route.  Should be for us.
1378				 */
1379				if (!ip_acceptsourceroute)
1380					goto nosourcerouting;
1381				save_rte(cp, ip->ip_src);
1382				break;
1383			}
1384#ifdef IPSTEALTH
1385			if (ipstealth)
1386				goto dropit;
1387#endif
1388			if (!ip_dosourceroute) {
1389				if (ipforwarding) {
1390					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1391					/*
1392					 * Acting as a router, so generate ICMP
1393					 */
1394nosourcerouting:
1395					strcpy(buf, inet_ntoa(ip->ip_dst));
1396					log(LOG_WARNING,
1397					    "attempted source route from %s to %s\n",
1398					    inet_ntoa(ip->ip_src), buf);
1399					type = ICMP_UNREACH;
1400					code = ICMP_UNREACH_SRCFAIL;
1401					goto bad;
1402				} else {
1403					/*
1404					 * Not acting as a router, so silently drop.
1405					 */
1406#ifdef IPSTEALTH
1407dropit:
1408#endif
1409					ipstat.ips_cantforward++;
1410					m_freem(m);
1411					return (1);
1412				}
1413			}
1414
1415			/*
1416			 * locate outgoing interface
1417			 */
1418			(void)memcpy(&ipaddr.sin_addr, cp + off,
1419			    sizeof(ipaddr.sin_addr));
1420
1421			if (opt == IPOPT_SSRR) {
1422#define	INA	struct in_ifaddr *
1423#define	SA	struct sockaddr *
1424			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1425				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1426			} else
1427				ia = ip_rtaddr(ipaddr.sin_addr);
1428			if (ia == 0) {
1429				type = ICMP_UNREACH;
1430				code = ICMP_UNREACH_SRCFAIL;
1431				goto bad;
1432			}
1433			ip->ip_dst = ipaddr.sin_addr;
1434			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1435			    sizeof(struct in_addr));
1436			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1437			/*
1438			 * Let ip_intr's mcast routing check handle mcast pkts
1439			 */
1440			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1441			break;
1442
1443		case IPOPT_RR:
1444#ifdef IPSTEALTH
1445			if (ipstealth && pass == 0)
1446				break;
1447#endif
1448			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1449				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1450				goto bad;
1451			}
1452			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1453				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1454				goto bad;
1455			}
1456			/*
1457			 * If no space remains, ignore.
1458			 */
1459			off--;			/* 0 origin */
1460			if (off > optlen - (int)sizeof(struct in_addr))
1461				break;
1462			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1463			    sizeof(ipaddr.sin_addr));
1464			/*
1465			 * locate outgoing interface; if we're the destination,
1466			 * use the incoming interface (should be same).
1467			 */
1468			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1469			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1470				type = ICMP_UNREACH;
1471				code = ICMP_UNREACH_HOST;
1472				goto bad;
1473			}
1474			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1475			    sizeof(struct in_addr));
1476			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1477			break;
1478
1479		case IPOPT_TS:
1480#ifdef IPSTEALTH
1481			if (ipstealth && pass == 0)
1482				break;
1483#endif
1484			code = cp - (u_char *)ip;
1485			if (optlen < 4 || optlen > 40) {
1486				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1487				goto bad;
1488			}
1489			if ((off = cp[IPOPT_OFFSET]) < 5) {
1490				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1491				goto bad;
1492			}
1493			if (off > optlen - (int)sizeof(int32_t)) {
1494				cp[IPOPT_OFFSET + 1] += (1 << 4);
1495				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1496					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1497					goto bad;
1498				}
1499				break;
1500			}
1501			off--;				/* 0 origin */
1502			sin = (struct in_addr *)(cp + off);
1503			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1504
1505			case IPOPT_TS_TSONLY:
1506				break;
1507
1508			case IPOPT_TS_TSANDADDR:
1509				if (off + sizeof(n_time) +
1510				    sizeof(struct in_addr) > optlen) {
1511					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1512					goto bad;
1513				}
1514				ipaddr.sin_addr = dst;
1515				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1516							    m->m_pkthdr.rcvif);
1517				if (ia == 0)
1518					continue;
1519				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1520				    sizeof(struct in_addr));
1521				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1522				off += sizeof(struct in_addr);
1523				break;
1524
1525			case IPOPT_TS_PRESPEC:
1526				if (off + sizeof(n_time) +
1527				    sizeof(struct in_addr) > optlen) {
1528					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1529					goto bad;
1530				}
1531				(void)memcpy(&ipaddr.sin_addr, sin,
1532				    sizeof(struct in_addr));
1533				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1534					continue;
1535				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1536				off += sizeof(struct in_addr);
1537				break;
1538
1539			default:
1540				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1541				goto bad;
1542			}
1543			ntime = iptime();
1544			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1545			cp[IPOPT_OFFSET] += sizeof(n_time);
1546		}
1547	}
1548	if (forward && ipforwarding) {
1549		ip_forward(m, 1, next_hop);
1550		return (1);
1551	}
1552	return (0);
1553bad:
1554	icmp_error(m, type, code, 0, 0);
1555	ipstat.ips_badoptions++;
1556	return (1);
1557}
1558
1559/*
1560 * Given address of next destination (final or next hop),
1561 * return internet address info of interface to be used to get there.
1562 */
1563struct in_ifaddr *
1564ip_rtaddr(dst)
1565	struct in_addr dst;
1566{
1567	struct route sro;
1568	struct sockaddr_in *sin;
1569	struct in_ifaddr *ifa;
1570
1571	bzero(&sro, sizeof(sro));
1572	sin = (struct sockaddr_in *)&sro.ro_dst;
1573	sin->sin_family = AF_INET;
1574	sin->sin_len = sizeof(*sin);
1575	sin->sin_addr = dst;
1576	rtalloc_ign(&sro, RTF_CLONING);
1577
1578	if (sro.ro_rt == NULL)
1579		return ((struct in_ifaddr *)0);
1580
1581	ifa = ifatoia(sro.ro_rt->rt_ifa);
1582	RTFREE(sro.ro_rt);
1583	return ifa;
1584}
1585
1586/*
1587 * Save incoming source route for use in replies,
1588 * to be picked up later by ip_srcroute if the receiver is interested.
1589 */
1590static void
1591save_rte(option, dst)
1592	u_char *option;
1593	struct in_addr dst;
1594{
1595	unsigned olen;
1596
1597	olen = option[IPOPT_OLEN];
1598#ifdef DIAGNOSTIC
1599	if (ipprintfs)
1600		printf("save_rte: olen %d\n", olen);
1601#endif
1602	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1603		return;
1604	bcopy(option, ip_srcrt.srcopt, olen);
1605	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1606	ip_srcrt.dst = dst;
1607}
1608
1609/*
1610 * Retrieve incoming source route for use in replies,
1611 * in the same form used by setsockopt.
1612 * The first hop is placed before the options, will be removed later.
1613 */
1614struct mbuf *
1615ip_srcroute()
1616{
1617	register struct in_addr *p, *q;
1618	register struct mbuf *m;
1619
1620	if (ip_nhops == 0)
1621		return ((struct mbuf *)0);
1622	m = m_get(M_DONTWAIT, MT_HEADER);
1623	if (m == 0)
1624		return ((struct mbuf *)0);
1625
1626#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1627
1628	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1629	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1630	    OPTSIZ;
1631#ifdef DIAGNOSTIC
1632	if (ipprintfs)
1633		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1634#endif
1635
1636	/*
1637	 * First save first hop for return route
1638	 */
1639	p = &ip_srcrt.route[ip_nhops - 1];
1640	*(mtod(m, struct in_addr *)) = *p--;
1641#ifdef DIAGNOSTIC
1642	if (ipprintfs)
1643		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1644#endif
1645
1646	/*
1647	 * Copy option fields and padding (nop) to mbuf.
1648	 */
1649	ip_srcrt.nop = IPOPT_NOP;
1650	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1651	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1652	    &ip_srcrt.nop, OPTSIZ);
1653	q = (struct in_addr *)(mtod(m, caddr_t) +
1654	    sizeof(struct in_addr) + OPTSIZ);
1655#undef OPTSIZ
1656	/*
1657	 * Record return path as an IP source route,
1658	 * reversing the path (pointers are now aligned).
1659	 */
1660	while (p >= ip_srcrt.route) {
1661#ifdef DIAGNOSTIC
1662		if (ipprintfs)
1663			printf(" %lx", (u_long)ntohl(q->s_addr));
1664#endif
1665		*q++ = *p--;
1666	}
1667	/*
1668	 * Last hop goes to final destination.
1669	 */
1670	*q = ip_srcrt.dst;
1671#ifdef DIAGNOSTIC
1672	if (ipprintfs)
1673		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1674#endif
1675	return (m);
1676}
1677
1678/*
1679 * Strip out IP options, at higher
1680 * level protocol in the kernel.
1681 * Second argument is buffer to which options
1682 * will be moved, and return value is their length.
1683 * XXX should be deleted; last arg currently ignored.
1684 */
1685void
1686ip_stripoptions(m, mopt)
1687	register struct mbuf *m;
1688	struct mbuf *mopt;
1689{
1690	register int i;
1691	struct ip *ip = mtod(m, struct ip *);
1692	register caddr_t opts;
1693	int olen;
1694
1695	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1696	opts = (caddr_t)(ip + 1);
1697	i = m->m_len - (sizeof (struct ip) + olen);
1698	bcopy(opts + olen, opts, (unsigned)i);
1699	m->m_len -= olen;
1700	if (m->m_flags & M_PKTHDR)
1701		m->m_pkthdr.len -= olen;
1702	ip->ip_v = IPVERSION;
1703	ip->ip_hl = sizeof(struct ip) >> 2;
1704}
1705
1706u_char inetctlerrmap[PRC_NCMDS] = {
1707	0,		0,		0,		0,
1708	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1709	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1710	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1711	0,		0,		EHOSTUNREACH,	0,
1712	ENOPROTOOPT,	ECONNREFUSED
1713};
1714
1715/*
1716 * Forward a packet.  If some error occurs return the sender
1717 * an icmp packet.  Note we can't always generate a meaningful
1718 * icmp message because icmp doesn't have a large enough repertoire
1719 * of codes and types.
1720 *
1721 * If not forwarding, just drop the packet.  This could be confusing
1722 * if ipforwarding was zero but some routing protocol was advancing
1723 * us as a gateway to somewhere.  However, we must let the routing
1724 * protocol deal with that.
1725 *
1726 * The srcrt parameter indicates whether the packet is being forwarded
1727 * via a source route.
1728 */
1729static void
1730ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1731{
1732	struct ip *ip = mtod(m, struct ip *);
1733	struct in_ifaddr *ia;
1734	int error, type = 0, code = 0;
1735	struct mbuf *mcopy;
1736	n_long dest;
1737	struct in_addr pkt_dst;
1738	struct ifnet *destifp;
1739#if defined(IPSEC) || defined(FAST_IPSEC)
1740	struct ifnet dummyifp;
1741#endif
1742
1743	/*
1744	 * Cache the destination address of the packet; this may be
1745	 * changed by use of 'ipfw fwd'.
1746	 */
1747	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1748
1749#ifdef DIAGNOSTIC
1750	if (ipprintfs)
1751		printf("forward: src %lx dst %lx ttl %x\n",
1752		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1753		    ip->ip_ttl);
1754#endif
1755
1756
1757	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1758		ipstat.ips_cantforward++;
1759		m_freem(m);
1760		return;
1761	}
1762#ifdef IPSTEALTH
1763	if (!ipstealth) {
1764#endif
1765		if (ip->ip_ttl <= IPTTLDEC) {
1766			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1767			    0, 0);
1768			return;
1769		}
1770#ifdef IPSTEALTH
1771	}
1772#endif
1773
1774	if ((ia = ip_rtaddr(pkt_dst)) == 0) {
1775		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1776		return;
1777	}
1778
1779	/*
1780	 * Save the IP header and at most 8 bytes of the payload,
1781	 * in case we need to generate an ICMP message to the src.
1782	 *
1783	 * XXX this can be optimized a lot by saving the data in a local
1784	 * buffer on the stack (72 bytes at most), and only allocating the
1785	 * mbuf if really necessary. The vast majority of the packets
1786	 * are forwarded without having to send an ICMP back (either
1787	 * because unnecessary, or because rate limited), so we are
1788	 * really we are wasting a lot of work here.
1789	 *
1790	 * We don't use m_copy() because it might return a reference
1791	 * to a shared cluster. Both this function and ip_output()
1792	 * assume exclusive access to the IP header in `m', so any
1793	 * data in a cluster may change before we reach icmp_error().
1794	 */
1795	MGET(mcopy, M_DONTWAIT, m->m_type);
1796	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1797		/*
1798		 * It's probably ok if the pkthdr dup fails (because
1799		 * the deep copy of the tag chain failed), but for now
1800		 * be conservative and just discard the copy since
1801		 * code below may some day want the tags.
1802		 */
1803		m_free(mcopy);
1804		mcopy = NULL;
1805	}
1806	if (mcopy != NULL) {
1807		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1808		    (int)ip->ip_len);
1809		mcopy->m_pkthdr.len = mcopy->m_len;
1810		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1811	}
1812
1813#ifdef IPSTEALTH
1814	if (!ipstealth) {
1815#endif
1816		ip->ip_ttl -= IPTTLDEC;
1817#ifdef IPSTEALTH
1818	}
1819#endif
1820
1821	/*
1822	 * If forwarding packet using same interface that it came in on,
1823	 * perhaps should send a redirect to sender to shortcut a hop.
1824	 * Only send redirect if source is sending directly to us,
1825	 * and if packet was not source routed (or has any options).
1826	 * Also, don't send redirect if forwarding using a default route
1827	 * or a route modified by a redirect.
1828	 */
1829	dest = 0;
1830	if (ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1831		struct sockaddr_in *sin;
1832		struct route ro;
1833		struct rtentry *rt;
1834
1835		bzero(&ro, sizeof(ro));
1836		sin = (struct sockaddr_in *)&ro.ro_dst;
1837		sin->sin_family = AF_INET;
1838		sin->sin_len = sizeof(*sin);
1839		sin->sin_addr = pkt_dst;
1840		rtalloc_ign(&ro, RTF_CLONING);
1841
1842		rt = ro.ro_rt;
1843
1844		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1845		    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1846		    ipsendredirects && !srcrt && !next_hop) {
1847#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1848			u_long src = ntohl(ip->ip_src.s_addr);
1849
1850			if (RTA(rt) &&
1851			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1852				if (rt->rt_flags & RTF_GATEWAY)
1853					dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1854				else
1855					dest = pkt_dst.s_addr;
1856				/* Router requirements says to only send host redirects */
1857				type = ICMP_REDIRECT;
1858				code = ICMP_REDIRECT_HOST;
1859#ifdef DIAGNOSTIC
1860				if (ipprintfs)
1861					printf("redirect (%d) to %lx\n", code, (u_long)dest);
1862#endif
1863			}
1864		}
1865		if (rt)
1866			RTFREE(rt);
1867	}
1868
1869	if (next_hop) {
1870		struct m_tag *mtag = m_tag_get(PACKET_TAG_IPFORWARD,
1871		    sizeof(struct sockaddr_in *), M_NOWAIT);
1872		if (mtag == NULL) {
1873			m_freem(m);
1874			return;
1875		}
1876		*(struct sockaddr_in **)(mtag+1) = next_hop;
1877		m_tag_prepend(m, mtag);
1878	}
1879	error = ip_output(m, (struct mbuf *)0, NULL, IP_FORWARDING, 0, NULL);
1880	if (error)
1881		ipstat.ips_cantforward++;
1882	else {
1883		ipstat.ips_forward++;
1884		if (type)
1885			ipstat.ips_redirectsent++;
1886		else {
1887			if (mcopy)
1888				m_freem(mcopy);
1889			return;
1890		}
1891	}
1892	if (mcopy == NULL)
1893		return;
1894	destifp = NULL;
1895
1896	switch (error) {
1897
1898	case 0:				/* forwarded, but need redirect */
1899		/* type, code set above */
1900		break;
1901
1902	case ENETUNREACH:		/* shouldn't happen, checked above */
1903	case EHOSTUNREACH:
1904	case ENETDOWN:
1905	case EHOSTDOWN:
1906	default:
1907		type = ICMP_UNREACH;
1908		code = ICMP_UNREACH_HOST;
1909		break;
1910
1911	case EMSGSIZE:
1912		type = ICMP_UNREACH;
1913		code = ICMP_UNREACH_NEEDFRAG;
1914#if defined(IPSEC) || defined(FAST_IPSEC)
1915		/*
1916		 * If the packet is routed over IPsec tunnel, tell the
1917		 * originator the tunnel MTU.
1918		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1919		 * XXX quickhack!!!
1920		 */
1921		{
1922			struct secpolicy *sp = NULL;
1923			int ipsecerror;
1924			int ipsechdr;
1925			struct route *ro;
1926
1927#ifdef IPSEC
1928			sp = ipsec4_getpolicybyaddr(mcopy,
1929						    IPSEC_DIR_OUTBOUND,
1930						    IP_FORWARDING,
1931						    &ipsecerror);
1932#else /* FAST_IPSEC */
1933			sp = ipsec_getpolicybyaddr(mcopy,
1934						   IPSEC_DIR_OUTBOUND,
1935						   IP_FORWARDING,
1936						   &ipsecerror);
1937#endif
1938			if (sp != NULL) {
1939				/* count IPsec header size */
1940				ipsechdr = ipsec4_hdrsiz(mcopy,
1941							 IPSEC_DIR_OUTBOUND,
1942							 NULL);
1943
1944				/*
1945				 * find the correct route for outer IPv4
1946				 * header, compute tunnel MTU.
1947				 *
1948				 * XXX BUG ALERT
1949				 * The "dummyifp" code relies upon the fact
1950				 * that icmp_error() touches only ifp->if_mtu.
1951				 */
1952				/*XXX*/
1953				destifp = NULL;
1954				if (sp->req != NULL
1955				 && sp->req->sav != NULL
1956				 && sp->req->sav->sah != NULL) {
1957					ro = &sp->req->sav->sah->sa_route;
1958					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1959						dummyifp.if_mtu =
1960						    ro->ro_rt->rt_rmx.rmx_mtu ?
1961						    ro->ro_rt->rt_rmx.rmx_mtu :
1962						    ro->ro_rt->rt_ifp->if_mtu;
1963						dummyifp.if_mtu -= ipsechdr;
1964						destifp = &dummyifp;
1965					}
1966				}
1967
1968#ifdef IPSEC
1969				key_freesp(sp);
1970#else /* FAST_IPSEC */
1971				KEY_FREESP(&sp);
1972#endif
1973				ipstat.ips_cantfrag++;
1974				break;
1975			} else
1976#endif /*IPSEC || FAST_IPSEC*/
1977		destifp = ia->ia_ifp;
1978#if defined(IPSEC) || defined(FAST_IPSEC)
1979		}
1980#endif /*IPSEC || FAST_IPSEC*/
1981		ipstat.ips_cantfrag++;
1982		break;
1983
1984	case ENOBUFS:
1985		/*
1986		 * A router should not generate ICMP_SOURCEQUENCH as
1987		 * required in RFC1812 Requirements for IP Version 4 Routers.
1988		 * Source quench could be a big problem under DoS attacks,
1989		 * or if the underlying interface is rate-limited.
1990		 * Those who need source quench packets may re-enable them
1991		 * via the net.inet.ip.sendsourcequench sysctl.
1992		 */
1993		if (ip_sendsourcequench == 0) {
1994			m_freem(mcopy);
1995			return;
1996		} else {
1997			type = ICMP_SOURCEQUENCH;
1998			code = 0;
1999		}
2000		break;
2001
2002	case EACCES:			/* ipfw denied packet */
2003		m_freem(mcopy);
2004		return;
2005	}
2006	icmp_error(mcopy, type, code, dest, destifp);
2007}
2008
2009void
2010ip_savecontrol(inp, mp, ip, m)
2011	register struct inpcb *inp;
2012	register struct mbuf **mp;
2013	register struct ip *ip;
2014	register struct mbuf *m;
2015{
2016	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
2017		struct bintime bt;
2018
2019		bintime(&bt);
2020		if (inp->inp_socket->so_options & SO_BINTIME) {
2021			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
2022			SCM_BINTIME, SOL_SOCKET);
2023			if (*mp)
2024				mp = &(*mp)->m_next;
2025		}
2026		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2027			struct timeval tv;
2028
2029			bintime2timeval(&bt, &tv);
2030			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2031				SCM_TIMESTAMP, SOL_SOCKET);
2032			if (*mp)
2033				mp = &(*mp)->m_next;
2034		}
2035	}
2036	if (inp->inp_flags & INP_RECVDSTADDR) {
2037		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2038		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2039		if (*mp)
2040			mp = &(*mp)->m_next;
2041	}
2042	if (inp->inp_flags & INP_RECVTTL) {
2043		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2044		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2045		if (*mp)
2046			mp = &(*mp)->m_next;
2047	}
2048#ifdef notyet
2049	/* XXX
2050	 * Moving these out of udp_input() made them even more broken
2051	 * than they already were.
2052	 */
2053	/* options were tossed already */
2054	if (inp->inp_flags & INP_RECVOPTS) {
2055		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2056		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2057		if (*mp)
2058			mp = &(*mp)->m_next;
2059	}
2060	/* ip_srcroute doesn't do what we want here, need to fix */
2061	if (inp->inp_flags & INP_RECVRETOPTS) {
2062		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2063		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2064		if (*mp)
2065			mp = &(*mp)->m_next;
2066	}
2067#endif
2068	if (inp->inp_flags & INP_RECVIF) {
2069		struct ifnet *ifp;
2070		struct sdlbuf {
2071			struct sockaddr_dl sdl;
2072			u_char	pad[32];
2073		} sdlbuf;
2074		struct sockaddr_dl *sdp;
2075		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2076
2077		if (((ifp = m->m_pkthdr.rcvif))
2078		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2079			sdp = (struct sockaddr_dl *)
2080			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2081			/*
2082			 * Change our mind and don't try copy.
2083			 */
2084			if ((sdp->sdl_family != AF_LINK)
2085			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2086				goto makedummy;
2087			}
2088			bcopy(sdp, sdl2, sdp->sdl_len);
2089		} else {
2090makedummy:
2091			sdl2->sdl_len
2092				= offsetof(struct sockaddr_dl, sdl_data[0]);
2093			sdl2->sdl_family = AF_LINK;
2094			sdl2->sdl_index = 0;
2095			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2096		}
2097		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2098			IP_RECVIF, IPPROTO_IP);
2099		if (*mp)
2100			mp = &(*mp)->m_next;
2101	}
2102}
2103
2104/*
2105 * XXX these routines are called from the upper part of the kernel.
2106 * They need to be locked when we remove Giant.
2107 *
2108 * They could also be moved to ip_mroute.c, since all the RSVP
2109 *  handling is done there already.
2110 */
2111static int ip_rsvp_on;
2112struct socket *ip_rsvpd;
2113int
2114ip_rsvp_init(struct socket *so)
2115{
2116	if (so->so_type != SOCK_RAW ||
2117	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2118		return EOPNOTSUPP;
2119
2120	if (ip_rsvpd != NULL)
2121		return EADDRINUSE;
2122
2123	ip_rsvpd = so;
2124	/*
2125	 * This may seem silly, but we need to be sure we don't over-increment
2126	 * the RSVP counter, in case something slips up.
2127	 */
2128	if (!ip_rsvp_on) {
2129		ip_rsvp_on = 1;
2130		rsvp_on++;
2131	}
2132
2133	return 0;
2134}
2135
2136int
2137ip_rsvp_done(void)
2138{
2139	ip_rsvpd = NULL;
2140	/*
2141	 * This may seem silly, but we need to be sure we don't over-decrement
2142	 * the RSVP counter, in case something slips up.
2143	 */
2144	if (ip_rsvp_on) {
2145		ip_rsvp_on = 0;
2146		rsvp_on--;
2147	}
2148	return 0;
2149}
2150
2151void
2152rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2153{
2154	if (rsvp_input_p) { /* call the real one if loaded */
2155		rsvp_input_p(m, off);
2156		return;
2157	}
2158
2159	/* Can still get packets with rsvp_on = 0 if there is a local member
2160	 * of the group to which the RSVP packet is addressed.  But in this
2161	 * case we want to throw the packet away.
2162	 */
2163
2164	if (!rsvp_on) {
2165		m_freem(m);
2166		return;
2167	}
2168
2169	if (ip_rsvpd != NULL) {
2170		rip_input(m, off);
2171		return;
2172	}
2173	/* Drop the packet */
2174	m_freem(m);
2175}
2176