ip_reass.c revision 125785
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/netinet/ip_input.c 125785 2004-02-13 19:20:43Z mlaier $
35 */
36
37#include "opt_bootp.h"
38#include "opt_ipfw.h"
39#include "opt_ipdn.h"
40#include "opt_ipdivert.h"
41#include "opt_ipfilter.h"
42#include "opt_ipstealth.h"
43#include "opt_ipsec.h"
44#include "opt_mac.h"
45#include "opt_pfil_hooks.h"
46#include "opt_random_ip_id.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/mac.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/domain.h>
54#include <sys/protosw.h>
55#include <sys/socket.h>
56#include <sys/time.h>
57#include <sys/kernel.h>
58#include <sys/syslog.h>
59#include <sys/sysctl.h>
60
61#include <net/pfil.h>
62#include <net/if.h>
63#include <net/if_types.h>
64#include <net/if_var.h>
65#include <net/if_dl.h>
66#include <net/route.h>
67#include <net/netisr.h>
68
69#include <netinet/in.h>
70#include <netinet/in_systm.h>
71#include <netinet/in_var.h>
72#include <netinet/ip.h>
73#include <netinet/in_pcb.h>
74#include <netinet/ip_var.h>
75#include <netinet/ip_icmp.h>
76#include <machine/in_cksum.h>
77
78#include <sys/socketvar.h>
79
80#include <netinet/ip_fw.h>
81#include <netinet/ip_divert.h>
82#include <netinet/ip_dummynet.h>
83
84#ifdef IPSEC
85#include <netinet6/ipsec.h>
86#include <netkey/key.h>
87#endif
88
89#ifdef FAST_IPSEC
90#include <netipsec/ipsec.h>
91#include <netipsec/key.h>
92#endif
93
94int rsvp_on = 0;
95
96int	ipforwarding = 0;
97SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
98    &ipforwarding, 0, "Enable IP forwarding between interfaces");
99
100static int	ipsendredirects = 1; /* XXX */
101SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
102    &ipsendredirects, 0, "Enable sending IP redirects");
103
104int	ip_defttl = IPDEFTTL;
105SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
106    &ip_defttl, 0, "Maximum TTL on IP packets");
107
108static int	ip_dosourceroute = 0;
109SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
110    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
111
112static int	ip_acceptsourceroute = 0;
113SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
114    CTLFLAG_RW, &ip_acceptsourceroute, 0,
115    "Enable accepting source routed IP packets");
116
117static int	ip_keepfaith = 0;
118SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119	&ip_keepfaith,	0,
120	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121
122static int    nipq = 0;         /* total # of reass queues */
123static int    maxnipq;
124SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125	&maxnipq, 0,
126	"Maximum number of IPv4 fragment reassembly queue entries");
127
128static int    maxfragsperpacket;
129SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
130	&maxfragsperpacket, 0,
131	"Maximum number of IPv4 fragments allowed per packet");
132
133static int	ip_sendsourcequench = 0;
134SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
135	&ip_sendsourcequench, 0,
136	"Enable the transmission of source quench packets");
137
138/*
139 * XXX - Setting ip_checkinterface mostly implements the receive side of
140 * the Strong ES model described in RFC 1122, but since the routing table
141 * and transmit implementation do not implement the Strong ES model,
142 * setting this to 1 results in an odd hybrid.
143 *
144 * XXX - ip_checkinterface currently must be disabled if you use ipnat
145 * to translate the destination address to another local interface.
146 *
147 * XXX - ip_checkinterface must be disabled if you add IP aliases
148 * to the loopback interface instead of the interface where the
149 * packets for those addresses are received.
150 */
151static int	ip_checkinterface = 1;
152SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
153    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
154
155#ifdef DIAGNOSTIC
156static int	ipprintfs = 0;
157#endif
158#ifdef PFIL_HOOKS
159struct pfil_head inet_pfil_hook;
160#endif
161
162static struct	ifqueue ipintrq;
163static int	ipqmaxlen = IFQ_MAXLEN;
164
165extern	struct domain inetdomain;
166extern	struct protosw inetsw[];
167u_char	ip_protox[IPPROTO_MAX];
168struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
169struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
170u_long 	in_ifaddrhmask;				/* mask for hash table */
171
172SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
173    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
174SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
175    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
176
177struct ipstat ipstat;
178SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
179    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
180
181/* Packet reassembly stuff */
182#define IPREASS_NHASH_LOG2      6
183#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
184#define IPREASS_HMASK           (IPREASS_NHASH - 1)
185#define IPREASS_HASH(x,y) \
186	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
187
188static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
189struct mtx ipqlock;
190
191#define	IPQ_LOCK()	mtx_lock(&ipqlock)
192#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
193#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
194#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
195
196#ifdef IPCTL_DEFMTU
197SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
198    &ip_mtu, 0, "Default MTU");
199#endif
200
201#ifdef IPSTEALTH
202int	ipstealth = 0;
203SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
204    &ipstealth, 0, "");
205#endif
206
207
208/* Firewall hooks */
209ip_fw_chk_t *ip_fw_chk_ptr;
210int fw_enable = 1 ;
211int fw_one_pass = 1;
212
213/* Dummynet hooks */
214ip_dn_io_t *ip_dn_io_ptr;
215
216/*
217 * XXX this is ugly -- the following two global variables are
218 * used to store packet state while it travels through the stack.
219 * Note that the code even makes assumptions on the size and
220 * alignment of fields inside struct ip_srcrt so e.g. adding some
221 * fields will break the code. This needs to be fixed.
222 *
223 * We need to save the IP options in case a protocol wants to respond
224 * to an incoming packet over the same route if the packet got here
225 * using IP source routing.  This allows connection establishment and
226 * maintenance when the remote end is on a network that is not known
227 * to us.
228 */
229static int	ip_nhops = 0;
230static	struct ip_srcrt {
231	struct	in_addr dst;			/* final destination */
232	char	nop;				/* one NOP to align */
233	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
234	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
235} ip_srcrt;
236
237static void	save_rte(u_char *, struct in_addr);
238static int	ip_dooptions(struct mbuf *m, int,
239			struct sockaddr_in *next_hop);
240static void	ip_forward(struct mbuf *m, int srcrt,
241			struct sockaddr_in *next_hop);
242static void	ip_freef(struct ipqhead *, struct ipq *);
243static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *, struct ipq *);
244
245/*
246 * IP initialization: fill in IP protocol switch table.
247 * All protocols not implemented in kernel go to raw IP protocol handler.
248 */
249void
250ip_init()
251{
252	register struct protosw *pr;
253	register int i;
254
255	TAILQ_INIT(&in_ifaddrhead);
256	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
257	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
258	if (pr == 0)
259		panic("ip_init");
260	for (i = 0; i < IPPROTO_MAX; i++)
261		ip_protox[i] = pr - inetsw;
262	for (pr = inetdomain.dom_protosw;
263	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
264		if (pr->pr_domain->dom_family == PF_INET &&
265		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
266			ip_protox[pr->pr_protocol] = pr - inetsw;
267
268#ifdef PFIL_HOOKS
269	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
270	inet_pfil_hook.ph_af = AF_INET;
271	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
272		printf("%s: WARNING: unable to register pfil hook, "
273			"error %d\n", __func__, i);
274#endif /* PFIL_HOOKS */
275
276	IPQ_LOCK_INIT();
277	for (i = 0; i < IPREASS_NHASH; i++)
278	    TAILQ_INIT(&ipq[i]);
279
280	maxnipq = nmbclusters / 32;
281	maxfragsperpacket = 16;
282
283#ifndef RANDOM_IP_ID
284	ip_id = time_second & 0xffff;
285#endif
286	ipintrq.ifq_maxlen = ipqmaxlen;
287	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
288	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
289}
290
291/*
292 * Ip input routine.  Checksum and byte swap header.  If fragmented
293 * try to reassemble.  Process options.  Pass to next level.
294 */
295void
296ip_input(struct mbuf *m)
297{
298	struct ip *ip = NULL;
299	struct ipq *fp;
300	struct in_ifaddr *ia = NULL;
301	struct ifaddr *ifa;
302	int    i, checkif, hlen = 0;
303	u_short sum;
304	struct in_addr pkt_dst;
305	struct m_tag *mtag;
306#ifdef IPDIVERT
307	u_int32_t divert_info;			/* packet divert/tee info */
308#endif
309	struct ip_fw_args args;
310	int dchg = 0;				/* dest changed after fw */
311#ifdef PFIL_HOOKS
312	struct in_addr odst;			/* original dst address */
313#endif
314#ifdef FAST_IPSEC
315	struct tdb_ident *tdbi;
316	struct secpolicy *sp;
317	int s, error;
318#endif /* FAST_IPSEC */
319
320	args.eh = NULL;
321	args.oif = NULL;
322	args.next_hop = ip_claim_next_hop(m);
323	args.rule = ip_dn_find_rule(m);
324
325	M_ASSERTPKTHDR(m);
326
327	if (m->m_flags & M_FASTFWD_OURS) {
328		/* ip_fastforward firewall changed dest to local */
329		m->m_flags &= ~M_FASTFWD_OURS;	/* just in case... */
330		goto ours;
331	}
332	if (args.rule) {	/* dummynet already filtered us */
333		ip = mtod(m, struct ip *);
334		hlen = ip->ip_hl << 2;
335		goto iphack ;
336	}
337
338	ipstat.ips_total++;
339
340	if (m->m_pkthdr.len < sizeof(struct ip))
341		goto tooshort;
342
343	if (m->m_len < sizeof (struct ip) &&
344	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
345		ipstat.ips_toosmall++;
346		return;
347	}
348	ip = mtod(m, struct ip *);
349
350	if (ip->ip_v != IPVERSION) {
351		ipstat.ips_badvers++;
352		goto bad;
353	}
354
355	hlen = ip->ip_hl << 2;
356	if (hlen < sizeof(struct ip)) {	/* minimum header length */
357		ipstat.ips_badhlen++;
358		goto bad;
359	}
360	if (hlen > m->m_len) {
361		if ((m = m_pullup(m, hlen)) == 0) {
362			ipstat.ips_badhlen++;
363			return;
364		}
365		ip = mtod(m, struct ip *);
366	}
367
368	/* 127/8 must not appear on wire - RFC1122 */
369	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
370	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
371		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
372			ipstat.ips_badaddr++;
373			goto bad;
374		}
375	}
376
377	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
378		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
379	} else {
380		if (hlen == sizeof(struct ip)) {
381			sum = in_cksum_hdr(ip);
382		} else {
383			sum = in_cksum(m, hlen);
384		}
385	}
386	if (sum) {
387		ipstat.ips_badsum++;
388		goto bad;
389	}
390
391	/*
392	 * Convert fields to host representation.
393	 */
394	ip->ip_len = ntohs(ip->ip_len);
395	if (ip->ip_len < hlen) {
396		ipstat.ips_badlen++;
397		goto bad;
398	}
399	ip->ip_off = ntohs(ip->ip_off);
400
401	/*
402	 * Check that the amount of data in the buffers
403	 * is as at least much as the IP header would have us expect.
404	 * Trim mbufs if longer than we expect.
405	 * Drop packet if shorter than we expect.
406	 */
407	if (m->m_pkthdr.len < ip->ip_len) {
408tooshort:
409		ipstat.ips_tooshort++;
410		goto bad;
411	}
412	if (m->m_pkthdr.len > ip->ip_len) {
413		if (m->m_len == m->m_pkthdr.len) {
414			m->m_len = ip->ip_len;
415			m->m_pkthdr.len = ip->ip_len;
416		} else
417			m_adj(m, ip->ip_len - m->m_pkthdr.len);
418	}
419#if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
420	/*
421	 * Bypass packet filtering for packets from a tunnel (gif).
422	 */
423	if (ipsec_getnhist(m))
424		goto pass;
425#endif
426#if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
427	/*
428	 * Bypass packet filtering for packets from a tunnel (gif).
429	 */
430	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
431		goto pass;
432#endif
433
434	/*
435	 * IpHack's section.
436	 * Right now when no processing on packet has done
437	 * and it is still fresh out of network we do our black
438	 * deals with it.
439	 * - Firewall: deny/allow/divert
440	 * - Xlate: translate packet's addr/port (NAT).
441	 * - Pipe: pass pkt through dummynet.
442	 * - Wrap: fake packet's addr/port <unimpl.>
443	 * - Encapsulate: put it in another IP and send out. <unimp.>
444 	 */
445
446iphack:
447
448#ifdef PFIL_HOOKS
449	/*
450	 * Run through list of hooks for input packets.
451	 *
452	 * NB: Beware of the destination address changing (e.g.
453	 *     by NAT rewriting).  When this happens, tell
454	 *     ip_forward to do the right thing.
455	 */
456	odst = ip->ip_dst;
457	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
458	    PFIL_IN) != 0)
459		return;
460	if (m == NULL)			/* consumed by filter */
461		return;
462	ip = mtod(m, struct ip *);
463	dchg = (odst.s_addr != ip->ip_dst.s_addr);
464#endif /* PFIL_HOOKS */
465
466	if (fw_enable && IPFW_LOADED) {
467		/*
468		 * If we've been forwarded from the output side, then
469		 * skip the firewall a second time
470		 */
471		if (args.next_hop)
472			goto ours;
473
474		args.m = m;
475		i = ip_fw_chk_ptr(&args);
476		m = args.m;
477
478		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
479			if (m)
480				m_freem(m);
481			return;
482		}
483		ip = mtod(m, struct ip *); /* just in case m changed */
484		if (i == 0 && args.next_hop == NULL)	/* common case */
485			goto pass;
486                if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
487			/* Send packet to the appropriate pipe */
488			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
489			return;
490		}
491#ifdef IPDIVERT
492		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
493			/* Divert or tee packet */
494			goto ours;
495		}
496#endif
497		if (i == 0 && args.next_hop != NULL)
498			goto pass;
499		/*
500		 * if we get here, the packet must be dropped
501		 */
502		m_freem(m);
503		return;
504	}
505pass:
506
507	/*
508	 * Process options and, if not destined for us,
509	 * ship it on.  ip_dooptions returns 1 when an
510	 * error was detected (causing an icmp message
511	 * to be sent and the original packet to be freed).
512	 */
513	ip_nhops = 0;		/* for source routed packets */
514	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
515		return;
516
517        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
518         * matter if it is destined to another node, or whether it is
519         * a multicast one, RSVP wants it! and prevents it from being forwarded
520         * anywhere else. Also checks if the rsvp daemon is running before
521	 * grabbing the packet.
522         */
523	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
524		goto ours;
525
526	/*
527	 * Check our list of addresses, to see if the packet is for us.
528	 * If we don't have any addresses, assume any unicast packet
529	 * we receive might be for us (and let the upper layers deal
530	 * with it).
531	 */
532	if (TAILQ_EMPTY(&in_ifaddrhead) &&
533	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
534		goto ours;
535
536	/*
537	 * Cache the destination address of the packet; this may be
538	 * changed by use of 'ipfw fwd'.
539	 */
540	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
541
542	/*
543	 * Enable a consistency check between the destination address
544	 * and the arrival interface for a unicast packet (the RFC 1122
545	 * strong ES model) if IP forwarding is disabled and the packet
546	 * is not locally generated and the packet is not subject to
547	 * 'ipfw fwd'.
548	 *
549	 * XXX - Checking also should be disabled if the destination
550	 * address is ipnat'ed to a different interface.
551	 *
552	 * XXX - Checking is incompatible with IP aliases added
553	 * to the loopback interface instead of the interface where
554	 * the packets are received.
555	 */
556	checkif = ip_checkinterface && (ipforwarding == 0) &&
557	    m->m_pkthdr.rcvif != NULL &&
558	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
559	    (args.next_hop == NULL) && (dchg == 0);
560
561	/*
562	 * Check for exact addresses in the hash bucket.
563	 */
564	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
565		/*
566		 * If the address matches, verify that the packet
567		 * arrived via the correct interface if checking is
568		 * enabled.
569		 */
570		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
571		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
572			goto ours;
573	}
574	/*
575	 * Check for broadcast addresses.
576	 *
577	 * Only accept broadcast packets that arrive via the matching
578	 * interface.  Reception of forwarded directed broadcasts would
579	 * be handled via ip_forward() and ether_output() with the loopback
580	 * into the stack for SIMPLEX interfaces handled by ether_output().
581	 */
582	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
583	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
584			if (ifa->ifa_addr->sa_family != AF_INET)
585				continue;
586			ia = ifatoia(ifa);
587			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
588			    pkt_dst.s_addr)
589				goto ours;
590			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
591				goto ours;
592#ifdef BOOTP_COMPAT
593			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
594				goto ours;
595#endif
596		}
597	}
598	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
599		struct in_multi *inm;
600		if (ip_mrouter) {
601			/*
602			 * If we are acting as a multicast router, all
603			 * incoming multicast packets are passed to the
604			 * kernel-level multicast forwarding function.
605			 * The packet is returned (relatively) intact; if
606			 * ip_mforward() returns a non-zero value, the packet
607			 * must be discarded, else it may be accepted below.
608			 */
609			if (ip_mforward &&
610			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
611				ipstat.ips_cantforward++;
612				m_freem(m);
613				return;
614			}
615
616			/*
617			 * The process-level routing daemon needs to receive
618			 * all multicast IGMP packets, whether or not this
619			 * host belongs to their destination groups.
620			 */
621			if (ip->ip_p == IPPROTO_IGMP)
622				goto ours;
623			ipstat.ips_forward++;
624		}
625		/*
626		 * See if we belong to the destination multicast group on the
627		 * arrival interface.
628		 */
629		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
630		if (inm == NULL) {
631			ipstat.ips_notmember++;
632			m_freem(m);
633			return;
634		}
635		goto ours;
636	}
637	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
638		goto ours;
639	if (ip->ip_dst.s_addr == INADDR_ANY)
640		goto ours;
641
642	/*
643	 * FAITH(Firewall Aided Internet Translator)
644	 */
645	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
646		if (ip_keepfaith) {
647			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
648				goto ours;
649		}
650		m_freem(m);
651		return;
652	}
653
654	/*
655	 * Not for us; forward if possible and desirable.
656	 */
657	if (ipforwarding == 0) {
658		ipstat.ips_cantforward++;
659		m_freem(m);
660	} else {
661#ifdef IPSEC
662		/*
663		 * Enforce inbound IPsec SPD.
664		 */
665		if (ipsec4_in_reject(m, NULL)) {
666			ipsecstat.in_polvio++;
667			goto bad;
668		}
669#endif /* IPSEC */
670#ifdef FAST_IPSEC
671		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
672		s = splnet();
673		if (mtag != NULL) {
674			tdbi = (struct tdb_ident *)(mtag + 1);
675			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
676		} else {
677			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
678						   IP_FORWARDING, &error);
679		}
680		if (sp == NULL) {	/* NB: can happen if error */
681			splx(s);
682			/*XXX error stat???*/
683			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
684			goto bad;
685		}
686
687		/*
688		 * Check security policy against packet attributes.
689		 */
690		error = ipsec_in_reject(sp, m);
691		KEY_FREESP(&sp);
692		splx(s);
693		if (error) {
694			ipstat.ips_cantforward++;
695			goto bad;
696		}
697#endif /* FAST_IPSEC */
698		ip_forward(m, dchg, args.next_hop);
699	}
700	return;
701
702ours:
703#ifdef IPSTEALTH
704	/*
705	 * IPSTEALTH: Process non-routing options only
706	 * if the packet is destined for us.
707	 */
708	if (ipstealth && hlen > sizeof (struct ip) &&
709	    ip_dooptions(m, 1, args.next_hop))
710		return;
711#endif /* IPSTEALTH */
712
713	/* Count the packet in the ip address stats */
714	if (ia != NULL) {
715		ia->ia_ifa.if_ipackets++;
716		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
717	}
718
719	/*
720	 * If offset or IP_MF are set, must reassemble.
721	 * Otherwise, nothing need be done.
722	 * (We could look in the reassembly queue to see
723	 * if the packet was previously fragmented,
724	 * but it's not worth the time; just let them time out.)
725	 */
726	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
727
728		/* If maxnipq is 0, never accept fragments. */
729		if (maxnipq == 0) {
730                	ipstat.ips_fragments++;
731			ipstat.ips_fragdropped++;
732			goto bad;
733		}
734
735		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
736		IPQ_LOCK();
737		/*
738		 * Look for queue of fragments
739		 * of this datagram.
740		 */
741		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
742			if (ip->ip_id == fp->ipq_id &&
743			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
744			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
745#ifdef MAC
746			    mac_fragment_match(m, fp) &&
747#endif
748			    ip->ip_p == fp->ipq_p)
749				goto found;
750
751		fp = NULL;
752
753		/*
754		 * Enforce upper bound on number of fragmented packets
755		 * for which we attempt reassembly;
756		 * If maxnipq is -1, accept all fragments without limitation.
757		 */
758		if ((nipq > maxnipq) && (maxnipq > 0)) {
759		    /*
760		     * drop something from the tail of the current queue
761		     * before proceeding further
762		     */
763		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
764		    if (q == NULL) {   /* gak */
765			for (i = 0; i < IPREASS_NHASH; i++) {
766			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
767			    if (r) {
768				ipstat.ips_fragtimeout += r->ipq_nfrags;
769				ip_freef(&ipq[i], r);
770				break;
771			    }
772			}
773		    } else {
774			ipstat.ips_fragtimeout += q->ipq_nfrags;
775			ip_freef(&ipq[sum], q);
776		    }
777		}
778found:
779		/*
780		 * Adjust ip_len to not reflect header,
781		 * convert offset of this to bytes.
782		 */
783		ip->ip_len -= hlen;
784		if (ip->ip_off & IP_MF) {
785		        /*
786		         * Make sure that fragments have a data length
787			 * that's a non-zero multiple of 8 bytes.
788		         */
789			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
790				IPQ_UNLOCK();
791				ipstat.ips_toosmall++; /* XXX */
792				goto bad;
793			}
794			m->m_flags |= M_FRAG;
795		} else
796			m->m_flags &= ~M_FRAG;
797		ip->ip_off <<= 3;
798
799		/*
800		 * Attempt reassembly; if it succeeds, proceed.
801		 * ip_reass() will return a different mbuf.
802		 */
803		ipstat.ips_fragments++;
804		m->m_pkthdr.header = ip;
805		m = ip_reass(m, &ipq[sum], fp);
806		IPQ_UNLOCK();
807		if (m == 0)
808			return;
809		ipstat.ips_reassembled++;
810		ip = mtod(m, struct ip *);
811		/* Get the header length of the reassembled packet */
812		hlen = ip->ip_hl << 2;
813#ifdef IPDIVERT
814		/* Restore original checksum before diverting packet */
815		if (divert_find_info(m) != 0) {
816			ip->ip_len += hlen;
817			ip->ip_len = htons(ip->ip_len);
818			ip->ip_off = htons(ip->ip_off);
819			ip->ip_sum = 0;
820			if (hlen == sizeof(struct ip))
821				ip->ip_sum = in_cksum_hdr(ip);
822			else
823				ip->ip_sum = in_cksum(m, hlen);
824			ip->ip_off = ntohs(ip->ip_off);
825			ip->ip_len = ntohs(ip->ip_len);
826			ip->ip_len -= hlen;
827		}
828#endif
829	} else
830		ip->ip_len -= hlen;
831
832#ifdef IPDIVERT
833	/*
834	 * Divert or tee packet to the divert protocol if required.
835	 */
836	divert_info = divert_find_info(m);
837	if (divert_info != 0) {
838		struct mbuf *clone;
839
840		/* Clone packet if we're doing a 'tee' */
841		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
842			clone = divert_clone(m);
843		else
844			clone = NULL;
845
846		/* Restore packet header fields to original values */
847		ip->ip_len += hlen;
848		ip->ip_len = htons(ip->ip_len);
849		ip->ip_off = htons(ip->ip_off);
850
851		/* Deliver packet to divert input routine */
852		divert_packet(m, 1);
853		ipstat.ips_delivered++;
854
855		/* If 'tee', continue with original packet */
856		if (clone == NULL)
857			return;
858		m = clone;
859		ip = mtod(m, struct ip *);
860		ip->ip_len += hlen;
861		/*
862		 * Jump backwards to complete processing of the
863		 * packet.  We do not need to clear args.next_hop
864		 * as that will not be used again and the cloned packet
865		 * doesn't contain a divert packet tag so we won't
866		 * re-entry this block.
867		 */
868		goto pass;
869	}
870#endif
871
872#ifdef IPSEC
873	/*
874	 * enforce IPsec policy checking if we are seeing last header.
875	 * note that we do not visit this with protocols with pcb layer
876	 * code - like udp/tcp/raw ip.
877	 */
878	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
879	    ipsec4_in_reject(m, NULL)) {
880		ipsecstat.in_polvio++;
881		goto bad;
882	}
883#endif
884#if FAST_IPSEC
885	/*
886	 * enforce IPsec policy checking if we are seeing last header.
887	 * note that we do not visit this with protocols with pcb layer
888	 * code - like udp/tcp/raw ip.
889	 */
890	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
891		/*
892		 * Check if the packet has already had IPsec processing
893		 * done.  If so, then just pass it along.  This tag gets
894		 * set during AH, ESP, etc. input handling, before the
895		 * packet is returned to the ip input queue for delivery.
896		 */
897		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
898		s = splnet();
899		if (mtag != NULL) {
900			tdbi = (struct tdb_ident *)(mtag + 1);
901			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
902		} else {
903			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
904						   IP_FORWARDING, &error);
905		}
906		if (sp != NULL) {
907			/*
908			 * Check security policy against packet attributes.
909			 */
910			error = ipsec_in_reject(sp, m);
911			KEY_FREESP(&sp);
912		} else {
913			/* XXX error stat??? */
914			error = EINVAL;
915DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
916			goto bad;
917		}
918		splx(s);
919		if (error)
920			goto bad;
921	}
922#endif /* FAST_IPSEC */
923
924	/*
925	 * Switch out to protocol's input routine.
926	 */
927	ipstat.ips_delivered++;
928	NET_PICKUP_GIANT();
929	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
930		/* attach next hop info for TCP */
931		mtag = m_tag_get(PACKET_TAG_IPFORWARD,
932				sizeof(struct sockaddr_in *), M_NOWAIT);
933		if (mtag == NULL) {
934			/* XXX statistic */
935			NET_DROP_GIANT();
936			goto bad;
937		}
938		*(struct sockaddr_in **)(mtag+1) = args.next_hop;
939		m_tag_prepend(m, mtag);
940	}
941	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
942	NET_DROP_GIANT();
943	return;
944bad:
945	m_freem(m);
946}
947
948/*
949 * Take incoming datagram fragment and try to reassemble it into
950 * whole datagram.  If a chain for reassembly of this datagram already
951 * exists, then it is given as fp; otherwise have to make a chain.
952 *
953 * When IPDIVERT enabled, keep additional state with each packet that
954 * tells us if we need to divert or tee the packet we're building.
955 * In particular, *divinfo includes the port and TEE flag,
956 * *divert_rule is the number of the matching rule.
957 */
958
959static struct mbuf *
960ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp)
961{
962	struct ip *ip = mtod(m, struct ip *);
963	register struct mbuf *p, *q, *nq;
964	struct mbuf *t;
965	int hlen = ip->ip_hl << 2;
966	int i, next;
967	u_int8_t ecn, ecn0;
968
969	IPQ_LOCK_ASSERT();
970
971	/*
972	 * Presence of header sizes in mbufs
973	 * would confuse code below.
974	 */
975	m->m_data += hlen;
976	m->m_len -= hlen;
977
978	/*
979	 * If first fragment to arrive, create a reassembly queue.
980	 */
981	if (fp == NULL) {
982		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
983			goto dropfrag;
984		fp = mtod(t, struct ipq *);
985#ifdef MAC
986		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
987			m_free(t);
988			goto dropfrag;
989		}
990		mac_create_ipq(m, fp);
991#endif
992		TAILQ_INSERT_HEAD(head, fp, ipq_list);
993		nipq++;
994		fp->ipq_nfrags = 1;
995		fp->ipq_ttl = IPFRAGTTL;
996		fp->ipq_p = ip->ip_p;
997		fp->ipq_id = ip->ip_id;
998		fp->ipq_src = ip->ip_src;
999		fp->ipq_dst = ip->ip_dst;
1000		fp->ipq_frags = m;
1001		m->m_nextpkt = NULL;
1002		goto inserted;
1003	} else {
1004		fp->ipq_nfrags++;
1005#ifdef MAC
1006		mac_update_ipq(m, fp);
1007#endif
1008	}
1009
1010#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1011
1012	/*
1013	 * Handle ECN by comparing this segment with the first one;
1014	 * if CE is set, do not lose CE.
1015	 * drop if CE and not-ECT are mixed for the same packet.
1016	 */
1017	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1018	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1019	if (ecn == IPTOS_ECN_CE) {
1020		if (ecn0 == IPTOS_ECN_NOTECT)
1021			goto dropfrag;
1022		if (ecn0 != IPTOS_ECN_CE)
1023			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1024	}
1025	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1026		goto dropfrag;
1027
1028	/*
1029	 * Find a segment which begins after this one does.
1030	 */
1031	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1032		if (GETIP(q)->ip_off > ip->ip_off)
1033			break;
1034
1035	/*
1036	 * If there is a preceding segment, it may provide some of
1037	 * our data already.  If so, drop the data from the incoming
1038	 * segment.  If it provides all of our data, drop us, otherwise
1039	 * stick new segment in the proper place.
1040	 *
1041	 * If some of the data is dropped from the the preceding
1042	 * segment, then it's checksum is invalidated.
1043	 */
1044	if (p) {
1045		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1046		if (i > 0) {
1047			if (i >= ip->ip_len)
1048				goto dropfrag;
1049			m_adj(m, i);
1050			m->m_pkthdr.csum_flags = 0;
1051			ip->ip_off += i;
1052			ip->ip_len -= i;
1053		}
1054		m->m_nextpkt = p->m_nextpkt;
1055		p->m_nextpkt = m;
1056	} else {
1057		m->m_nextpkt = fp->ipq_frags;
1058		fp->ipq_frags = m;
1059	}
1060
1061	/*
1062	 * While we overlap succeeding segments trim them or,
1063	 * if they are completely covered, dequeue them.
1064	 */
1065	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1066	     q = nq) {
1067		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1068		if (i < GETIP(q)->ip_len) {
1069			GETIP(q)->ip_len -= i;
1070			GETIP(q)->ip_off += i;
1071			m_adj(q, i);
1072			q->m_pkthdr.csum_flags = 0;
1073			break;
1074		}
1075		nq = q->m_nextpkt;
1076		m->m_nextpkt = nq;
1077		ipstat.ips_fragdropped++;
1078		fp->ipq_nfrags--;
1079		m_freem(q);
1080	}
1081
1082inserted:
1083
1084#ifdef IPDIVERT
1085	if (ip->ip_off != 0) {
1086		/*
1087		 * Strip any divert information; only the info
1088		 * on the first fragment is used/kept.
1089		 */
1090		struct m_tag *mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
1091		if (mtag)
1092			m_tag_delete(m, mtag);
1093	}
1094#endif
1095
1096	/*
1097	 * Check for complete reassembly and perform frag per packet
1098	 * limiting.
1099	 *
1100	 * Frag limiting is performed here so that the nth frag has
1101	 * a chance to complete the packet before we drop the packet.
1102	 * As a result, n+1 frags are actually allowed per packet, but
1103	 * only n will ever be stored. (n = maxfragsperpacket.)
1104	 *
1105	 */
1106	next = 0;
1107	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1108		if (GETIP(q)->ip_off != next) {
1109			if (fp->ipq_nfrags > maxfragsperpacket) {
1110				ipstat.ips_fragdropped += fp->ipq_nfrags;
1111				ip_freef(head, fp);
1112			}
1113			return (0);
1114		}
1115		next += GETIP(q)->ip_len;
1116	}
1117	/* Make sure the last packet didn't have the IP_MF flag */
1118	if (p->m_flags & M_FRAG) {
1119		if (fp->ipq_nfrags > maxfragsperpacket) {
1120			ipstat.ips_fragdropped += fp->ipq_nfrags;
1121			ip_freef(head, fp);
1122		}
1123		return (0);
1124	}
1125
1126	/*
1127	 * Reassembly is complete.  Make sure the packet is a sane size.
1128	 */
1129	q = fp->ipq_frags;
1130	ip = GETIP(q);
1131	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1132		ipstat.ips_toolong++;
1133		ipstat.ips_fragdropped += fp->ipq_nfrags;
1134		ip_freef(head, fp);
1135		return (0);
1136	}
1137
1138	/*
1139	 * Concatenate fragments.
1140	 */
1141	m = q;
1142	t = m->m_next;
1143	m->m_next = 0;
1144	m_cat(m, t);
1145	nq = q->m_nextpkt;
1146	q->m_nextpkt = 0;
1147	for (q = nq; q != NULL; q = nq) {
1148		nq = q->m_nextpkt;
1149		q->m_nextpkt = NULL;
1150		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1151		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1152		m_cat(m, q);
1153	}
1154#ifdef MAC
1155	mac_create_datagram_from_ipq(fp, m);
1156	mac_destroy_ipq(fp);
1157#endif
1158
1159	/*
1160	 * Create header for new ip packet by
1161	 * modifying header of first packet;
1162	 * dequeue and discard fragment reassembly header.
1163	 * Make header visible.
1164	 */
1165	ip->ip_len = next;
1166	ip->ip_src = fp->ipq_src;
1167	ip->ip_dst = fp->ipq_dst;
1168	TAILQ_REMOVE(head, fp, ipq_list);
1169	nipq--;
1170	(void) m_free(dtom(fp));
1171	m->m_len += (ip->ip_hl << 2);
1172	m->m_data -= (ip->ip_hl << 2);
1173	/* some debugging cruft by sklower, below, will go away soon */
1174	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1175		m_fixhdr(m);
1176	return (m);
1177
1178dropfrag:
1179	ipstat.ips_fragdropped++;
1180	if (fp != NULL)
1181		fp->ipq_nfrags--;
1182	m_freem(m);
1183	return (0);
1184
1185#undef GETIP
1186}
1187
1188/*
1189 * Free a fragment reassembly header and all
1190 * associated datagrams.
1191 */
1192static void
1193ip_freef(fhp, fp)
1194	struct ipqhead *fhp;
1195	struct ipq *fp;
1196{
1197	register struct mbuf *q;
1198
1199	IPQ_LOCK_ASSERT();
1200
1201	while (fp->ipq_frags) {
1202		q = fp->ipq_frags;
1203		fp->ipq_frags = q->m_nextpkt;
1204		m_freem(q);
1205	}
1206	TAILQ_REMOVE(fhp, fp, ipq_list);
1207	(void) m_free(dtom(fp));
1208	nipq--;
1209}
1210
1211/*
1212 * IP timer processing;
1213 * if a timer expires on a reassembly
1214 * queue, discard it.
1215 */
1216void
1217ip_slowtimo()
1218{
1219	register struct ipq *fp;
1220	int s = splnet();
1221	int i;
1222
1223	IPQ_LOCK();
1224	for (i = 0; i < IPREASS_NHASH; i++) {
1225		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1226			struct ipq *fpp;
1227
1228			fpp = fp;
1229			fp = TAILQ_NEXT(fp, ipq_list);
1230			if(--fpp->ipq_ttl == 0) {
1231				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1232				ip_freef(&ipq[i], fpp);
1233			}
1234		}
1235	}
1236	/*
1237	 * If we are over the maximum number of fragments
1238	 * (due to the limit being lowered), drain off
1239	 * enough to get down to the new limit.
1240	 */
1241	if (maxnipq >= 0 && nipq > maxnipq) {
1242		for (i = 0; i < IPREASS_NHASH; i++) {
1243			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1244				ipstat.ips_fragdropped +=
1245				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1246				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1247			}
1248		}
1249	}
1250	IPQ_UNLOCK();
1251	splx(s);
1252}
1253
1254/*
1255 * Drain off all datagram fragments.
1256 */
1257void
1258ip_drain()
1259{
1260	int     i;
1261
1262	IPQ_LOCK();
1263	for (i = 0; i < IPREASS_NHASH; i++) {
1264		while(!TAILQ_EMPTY(&ipq[i])) {
1265			ipstat.ips_fragdropped +=
1266			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1267			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1268		}
1269	}
1270	IPQ_UNLOCK();
1271	in_rtqdrain();
1272}
1273
1274/*
1275 * Do option processing on a datagram,
1276 * possibly discarding it if bad options are encountered,
1277 * or forwarding it if source-routed.
1278 * The pass argument is used when operating in the IPSTEALTH
1279 * mode to tell what options to process:
1280 * [LS]SRR (pass 0) or the others (pass 1).
1281 * The reason for as many as two passes is that when doing IPSTEALTH,
1282 * non-routing options should be processed only if the packet is for us.
1283 * Returns 1 if packet has been forwarded/freed,
1284 * 0 if the packet should be processed further.
1285 */
1286static int
1287ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1288{
1289	struct ip *ip = mtod(m, struct ip *);
1290	u_char *cp;
1291	struct in_ifaddr *ia;
1292	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1293	struct in_addr *sin, dst;
1294	n_time ntime;
1295	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1296
1297	dst = ip->ip_dst;
1298	cp = (u_char *)(ip + 1);
1299	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1300	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1301		opt = cp[IPOPT_OPTVAL];
1302		if (opt == IPOPT_EOL)
1303			break;
1304		if (opt == IPOPT_NOP)
1305			optlen = 1;
1306		else {
1307			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1308				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1309				goto bad;
1310			}
1311			optlen = cp[IPOPT_OLEN];
1312			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1313				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1314				goto bad;
1315			}
1316		}
1317		switch (opt) {
1318
1319		default:
1320			break;
1321
1322		/*
1323		 * Source routing with record.
1324		 * Find interface with current destination address.
1325		 * If none on this machine then drop if strictly routed,
1326		 * or do nothing if loosely routed.
1327		 * Record interface address and bring up next address
1328		 * component.  If strictly routed make sure next
1329		 * address is on directly accessible net.
1330		 */
1331		case IPOPT_LSRR:
1332		case IPOPT_SSRR:
1333#ifdef IPSTEALTH
1334			if (ipstealth && pass > 0)
1335				break;
1336#endif
1337			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1338				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1339				goto bad;
1340			}
1341			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1342				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1343				goto bad;
1344			}
1345			ipaddr.sin_addr = ip->ip_dst;
1346			ia = (struct in_ifaddr *)
1347				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1348			if (ia == 0) {
1349				if (opt == IPOPT_SSRR) {
1350					type = ICMP_UNREACH;
1351					code = ICMP_UNREACH_SRCFAIL;
1352					goto bad;
1353				}
1354				if (!ip_dosourceroute)
1355					goto nosourcerouting;
1356				/*
1357				 * Loose routing, and not at next destination
1358				 * yet; nothing to do except forward.
1359				 */
1360				break;
1361			}
1362			off--;			/* 0 origin */
1363			if (off > optlen - (int)sizeof(struct in_addr)) {
1364				/*
1365				 * End of source route.  Should be for us.
1366				 */
1367				if (!ip_acceptsourceroute)
1368					goto nosourcerouting;
1369				save_rte(cp, ip->ip_src);
1370				break;
1371			}
1372#ifdef IPSTEALTH
1373			if (ipstealth)
1374				goto dropit;
1375#endif
1376			if (!ip_dosourceroute) {
1377				if (ipforwarding) {
1378					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1379					/*
1380					 * Acting as a router, so generate ICMP
1381					 */
1382nosourcerouting:
1383					strcpy(buf, inet_ntoa(ip->ip_dst));
1384					log(LOG_WARNING,
1385					    "attempted source route from %s to %s\n",
1386					    inet_ntoa(ip->ip_src), buf);
1387					type = ICMP_UNREACH;
1388					code = ICMP_UNREACH_SRCFAIL;
1389					goto bad;
1390				} else {
1391					/*
1392					 * Not acting as a router, so silently drop.
1393					 */
1394#ifdef IPSTEALTH
1395dropit:
1396#endif
1397					ipstat.ips_cantforward++;
1398					m_freem(m);
1399					return (1);
1400				}
1401			}
1402
1403			/*
1404			 * locate outgoing interface
1405			 */
1406			(void)memcpy(&ipaddr.sin_addr, cp + off,
1407			    sizeof(ipaddr.sin_addr));
1408
1409			if (opt == IPOPT_SSRR) {
1410#define	INA	struct in_ifaddr *
1411#define	SA	struct sockaddr *
1412			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1413				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1414			} else
1415				ia = ip_rtaddr(ipaddr.sin_addr);
1416			if (ia == 0) {
1417				type = ICMP_UNREACH;
1418				code = ICMP_UNREACH_SRCFAIL;
1419				goto bad;
1420			}
1421			ip->ip_dst = ipaddr.sin_addr;
1422			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1423			    sizeof(struct in_addr));
1424			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1425			/*
1426			 * Let ip_intr's mcast routing check handle mcast pkts
1427			 */
1428			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1429			break;
1430
1431		case IPOPT_RR:
1432#ifdef IPSTEALTH
1433			if (ipstealth && pass == 0)
1434				break;
1435#endif
1436			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1437				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1438				goto bad;
1439			}
1440			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1441				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1442				goto bad;
1443			}
1444			/*
1445			 * If no space remains, ignore.
1446			 */
1447			off--;			/* 0 origin */
1448			if (off > optlen - (int)sizeof(struct in_addr))
1449				break;
1450			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1451			    sizeof(ipaddr.sin_addr));
1452			/*
1453			 * locate outgoing interface; if we're the destination,
1454			 * use the incoming interface (should be same).
1455			 */
1456			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1457			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1458				type = ICMP_UNREACH;
1459				code = ICMP_UNREACH_HOST;
1460				goto bad;
1461			}
1462			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1463			    sizeof(struct in_addr));
1464			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1465			break;
1466
1467		case IPOPT_TS:
1468#ifdef IPSTEALTH
1469			if (ipstealth && pass == 0)
1470				break;
1471#endif
1472			code = cp - (u_char *)ip;
1473			if (optlen < 4 || optlen > 40) {
1474				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1475				goto bad;
1476			}
1477			if ((off = cp[IPOPT_OFFSET]) < 5) {
1478				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1479				goto bad;
1480			}
1481			if (off > optlen - (int)sizeof(int32_t)) {
1482				cp[IPOPT_OFFSET + 1] += (1 << 4);
1483				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1484					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1485					goto bad;
1486				}
1487				break;
1488			}
1489			off--;				/* 0 origin */
1490			sin = (struct in_addr *)(cp + off);
1491			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1492
1493			case IPOPT_TS_TSONLY:
1494				break;
1495
1496			case IPOPT_TS_TSANDADDR:
1497				if (off + sizeof(n_time) +
1498				    sizeof(struct in_addr) > optlen) {
1499					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1500					goto bad;
1501				}
1502				ipaddr.sin_addr = dst;
1503				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1504							    m->m_pkthdr.rcvif);
1505				if (ia == 0)
1506					continue;
1507				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1508				    sizeof(struct in_addr));
1509				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1510				off += sizeof(struct in_addr);
1511				break;
1512
1513			case IPOPT_TS_PRESPEC:
1514				if (off + sizeof(n_time) +
1515				    sizeof(struct in_addr) > optlen) {
1516					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1517					goto bad;
1518				}
1519				(void)memcpy(&ipaddr.sin_addr, sin,
1520				    sizeof(struct in_addr));
1521				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1522					continue;
1523				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1524				off += sizeof(struct in_addr);
1525				break;
1526
1527			default:
1528				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1529				goto bad;
1530			}
1531			ntime = iptime();
1532			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1533			cp[IPOPT_OFFSET] += sizeof(n_time);
1534		}
1535	}
1536	if (forward && ipforwarding) {
1537		ip_forward(m, 1, next_hop);
1538		return (1);
1539	}
1540	return (0);
1541bad:
1542	icmp_error(m, type, code, 0, 0);
1543	ipstat.ips_badoptions++;
1544	return (1);
1545}
1546
1547/*
1548 * Given address of next destination (final or next hop),
1549 * return internet address info of interface to be used to get there.
1550 */
1551struct in_ifaddr *
1552ip_rtaddr(dst)
1553	struct in_addr dst;
1554{
1555	struct route sro;
1556	struct sockaddr_in *sin;
1557	struct in_ifaddr *ifa;
1558
1559	bzero(&sro, sizeof(sro));
1560	sin = (struct sockaddr_in *)&sro.ro_dst;
1561	sin->sin_family = AF_INET;
1562	sin->sin_len = sizeof(*sin);
1563	sin->sin_addr = dst;
1564	rtalloc_ign(&sro, RTF_CLONING);
1565
1566	if (sro.ro_rt == NULL)
1567		return ((struct in_ifaddr *)0);
1568
1569	ifa = ifatoia(sro.ro_rt->rt_ifa);
1570	RTFREE(sro.ro_rt);
1571	return ifa;
1572}
1573
1574/*
1575 * Save incoming source route for use in replies,
1576 * to be picked up later by ip_srcroute if the receiver is interested.
1577 */
1578static void
1579save_rte(option, dst)
1580	u_char *option;
1581	struct in_addr dst;
1582{
1583	unsigned olen;
1584
1585	olen = option[IPOPT_OLEN];
1586#ifdef DIAGNOSTIC
1587	if (ipprintfs)
1588		printf("save_rte: olen %d\n", olen);
1589#endif
1590	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1591		return;
1592	bcopy(option, ip_srcrt.srcopt, olen);
1593	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1594	ip_srcrt.dst = dst;
1595}
1596
1597/*
1598 * Retrieve incoming source route for use in replies,
1599 * in the same form used by setsockopt.
1600 * The first hop is placed before the options, will be removed later.
1601 */
1602struct mbuf *
1603ip_srcroute()
1604{
1605	register struct in_addr *p, *q;
1606	register struct mbuf *m;
1607
1608	if (ip_nhops == 0)
1609		return ((struct mbuf *)0);
1610	m = m_get(M_DONTWAIT, MT_HEADER);
1611	if (m == 0)
1612		return ((struct mbuf *)0);
1613
1614#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1615
1616	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1617	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1618	    OPTSIZ;
1619#ifdef DIAGNOSTIC
1620	if (ipprintfs)
1621		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1622#endif
1623
1624	/*
1625	 * First save first hop for return route
1626	 */
1627	p = &ip_srcrt.route[ip_nhops - 1];
1628	*(mtod(m, struct in_addr *)) = *p--;
1629#ifdef DIAGNOSTIC
1630	if (ipprintfs)
1631		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1632#endif
1633
1634	/*
1635	 * Copy option fields and padding (nop) to mbuf.
1636	 */
1637	ip_srcrt.nop = IPOPT_NOP;
1638	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1639	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1640	    &ip_srcrt.nop, OPTSIZ);
1641	q = (struct in_addr *)(mtod(m, caddr_t) +
1642	    sizeof(struct in_addr) + OPTSIZ);
1643#undef OPTSIZ
1644	/*
1645	 * Record return path as an IP source route,
1646	 * reversing the path (pointers are now aligned).
1647	 */
1648	while (p >= ip_srcrt.route) {
1649#ifdef DIAGNOSTIC
1650		if (ipprintfs)
1651			printf(" %lx", (u_long)ntohl(q->s_addr));
1652#endif
1653		*q++ = *p--;
1654	}
1655	/*
1656	 * Last hop goes to final destination.
1657	 */
1658	*q = ip_srcrt.dst;
1659#ifdef DIAGNOSTIC
1660	if (ipprintfs)
1661		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1662#endif
1663	return (m);
1664}
1665
1666/*
1667 * Strip out IP options, at higher
1668 * level protocol in the kernel.
1669 * Second argument is buffer to which options
1670 * will be moved, and return value is their length.
1671 * XXX should be deleted; last arg currently ignored.
1672 */
1673void
1674ip_stripoptions(m, mopt)
1675	register struct mbuf *m;
1676	struct mbuf *mopt;
1677{
1678	register int i;
1679	struct ip *ip = mtod(m, struct ip *);
1680	register caddr_t opts;
1681	int olen;
1682
1683	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1684	opts = (caddr_t)(ip + 1);
1685	i = m->m_len - (sizeof (struct ip) + olen);
1686	bcopy(opts + olen, opts, (unsigned)i);
1687	m->m_len -= olen;
1688	if (m->m_flags & M_PKTHDR)
1689		m->m_pkthdr.len -= olen;
1690	ip->ip_v = IPVERSION;
1691	ip->ip_hl = sizeof(struct ip) >> 2;
1692}
1693
1694u_char inetctlerrmap[PRC_NCMDS] = {
1695	0,		0,		0,		0,
1696	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1697	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1698	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1699	0,		0,		EHOSTUNREACH,	0,
1700	ENOPROTOOPT,	ECONNREFUSED
1701};
1702
1703/*
1704 * Forward a packet.  If some error occurs return the sender
1705 * an icmp packet.  Note we can't always generate a meaningful
1706 * icmp message because icmp doesn't have a large enough repertoire
1707 * of codes and types.
1708 *
1709 * If not forwarding, just drop the packet.  This could be confusing
1710 * if ipforwarding was zero but some routing protocol was advancing
1711 * us as a gateway to somewhere.  However, we must let the routing
1712 * protocol deal with that.
1713 *
1714 * The srcrt parameter indicates whether the packet is being forwarded
1715 * via a source route.
1716 */
1717static void
1718ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1719{
1720	struct ip *ip = mtod(m, struct ip *);
1721	struct in_ifaddr *ia;
1722	int error, type = 0, code = 0;
1723	struct mbuf *mcopy;
1724	struct m_tag *mtag;
1725	n_long dest;
1726	struct in_addr pkt_dst;
1727	struct ifnet *destifp;
1728#if defined(IPSEC) || defined(FAST_IPSEC)
1729	struct ifnet dummyifp;
1730#endif
1731
1732	/*
1733	 * Cache the destination address of the packet; this may be
1734	 * changed by use of 'ipfw fwd'.
1735	 */
1736	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1737
1738#ifdef DIAGNOSTIC
1739	if (ipprintfs)
1740		printf("forward: src %lx dst %lx ttl %x\n",
1741		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1742		    ip->ip_ttl);
1743#endif
1744
1745
1746	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1747		ipstat.ips_cantforward++;
1748		m_freem(m);
1749		return;
1750	}
1751#ifdef IPSTEALTH
1752	if (!ipstealth) {
1753#endif
1754		if (ip->ip_ttl <= IPTTLDEC) {
1755			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1756			    0, 0);
1757			return;
1758		}
1759#ifdef IPSTEALTH
1760	}
1761#endif
1762
1763	if ((ia = ip_rtaddr(pkt_dst)) == 0) {
1764		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1765		return;
1766	}
1767
1768	/*
1769	 * Save the IP header and at most 8 bytes of the payload,
1770	 * in case we need to generate an ICMP message to the src.
1771	 *
1772	 * XXX this can be optimized a lot by saving the data in a local
1773	 * buffer on the stack (72 bytes at most), and only allocating the
1774	 * mbuf if really necessary. The vast majority of the packets
1775	 * are forwarded without having to send an ICMP back (either
1776	 * because unnecessary, or because rate limited), so we are
1777	 * really we are wasting a lot of work here.
1778	 *
1779	 * We don't use m_copy() because it might return a reference
1780	 * to a shared cluster. Both this function and ip_output()
1781	 * assume exclusive access to the IP header in `m', so any
1782	 * data in a cluster may change before we reach icmp_error().
1783	 */
1784	MGET(mcopy, M_DONTWAIT, m->m_type);
1785	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1786		/*
1787		 * It's probably ok if the pkthdr dup fails (because
1788		 * the deep copy of the tag chain failed), but for now
1789		 * be conservative and just discard the copy since
1790		 * code below may some day want the tags.
1791		 */
1792		m_free(mcopy);
1793		mcopy = NULL;
1794	}
1795	if (mcopy != NULL) {
1796		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1797		    (int)ip->ip_len);
1798		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1799	}
1800
1801#ifdef IPSTEALTH
1802	if (!ipstealth) {
1803#endif
1804		ip->ip_ttl -= IPTTLDEC;
1805#ifdef IPSTEALTH
1806	}
1807#endif
1808
1809	/*
1810	 * If forwarding packet using same interface that it came in on,
1811	 * perhaps should send a redirect to sender to shortcut a hop.
1812	 * Only send redirect if source is sending directly to us,
1813	 * and if packet was not source routed (or has any options).
1814	 * Also, don't send redirect if forwarding using a default route
1815	 * or a route modified by a redirect.
1816	 */
1817	dest = 0;
1818	if (ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1819		struct sockaddr_in *sin;
1820		struct route ro;
1821		struct rtentry *rt;
1822
1823		bzero(&ro, sizeof(ro));
1824		sin = (struct sockaddr_in *)&ro.ro_dst;
1825		sin->sin_family = AF_INET;
1826		sin->sin_len = sizeof(*sin);
1827		sin->sin_addr = pkt_dst;
1828		rtalloc_ign(&ro, RTF_CLONING);
1829
1830		rt = ro.ro_rt;
1831
1832		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1833		    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1834		    ipsendredirects && !srcrt && !next_hop) {
1835#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1836			u_long src = ntohl(ip->ip_src.s_addr);
1837
1838			if (RTA(rt) &&
1839			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1840				if (rt->rt_flags & RTF_GATEWAY)
1841					dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1842				else
1843					dest = pkt_dst.s_addr;
1844				/* Router requirements says to only send host redirects */
1845				type = ICMP_REDIRECT;
1846				code = ICMP_REDIRECT_HOST;
1847#ifdef DIAGNOSTIC
1848				if (ipprintfs)
1849					printf("redirect (%d) to %lx\n", code, (u_long)dest);
1850#endif
1851			}
1852		}
1853		if (rt)
1854			RTFREE(rt);
1855	}
1856
1857	if (next_hop) {
1858		mtag = m_tag_get(PACKET_TAG_IPFORWARD,
1859				sizeof(struct sockaddr_in *), M_NOWAIT);
1860		if (mtag == NULL) {
1861			/* XXX statistic */
1862			m_freem(m);
1863			return;
1864		}
1865		*(struct sockaddr_in **)(mtag+1) = next_hop;
1866		m_tag_prepend(m, mtag);
1867	}
1868	error = ip_output(m, (struct mbuf *)0, NULL, IP_FORWARDING, 0, NULL);
1869	if (error)
1870		ipstat.ips_cantforward++;
1871	else {
1872		ipstat.ips_forward++;
1873		if (type)
1874			ipstat.ips_redirectsent++;
1875		else {
1876			if (mcopy)
1877				m_freem(mcopy);
1878			return;
1879		}
1880	}
1881	if (mcopy == NULL)
1882		return;
1883	destifp = NULL;
1884
1885	switch (error) {
1886
1887	case 0:				/* forwarded, but need redirect */
1888		/* type, code set above */
1889		break;
1890
1891	case ENETUNREACH:		/* shouldn't happen, checked above */
1892	case EHOSTUNREACH:
1893	case ENETDOWN:
1894	case EHOSTDOWN:
1895	default:
1896		type = ICMP_UNREACH;
1897		code = ICMP_UNREACH_HOST;
1898		break;
1899
1900	case EMSGSIZE:
1901		type = ICMP_UNREACH;
1902		code = ICMP_UNREACH_NEEDFRAG;
1903#if defined(IPSEC) || defined(FAST_IPSEC)
1904		/*
1905		 * If the packet is routed over IPsec tunnel, tell the
1906		 * originator the tunnel MTU.
1907		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1908		 * XXX quickhack!!!
1909		 */
1910		{
1911			struct secpolicy *sp = NULL;
1912			int ipsecerror;
1913			int ipsechdr;
1914			struct route *ro;
1915
1916#ifdef IPSEC
1917			sp = ipsec4_getpolicybyaddr(mcopy,
1918						    IPSEC_DIR_OUTBOUND,
1919						    IP_FORWARDING,
1920						    &ipsecerror);
1921#else /* FAST_IPSEC */
1922			sp = ipsec_getpolicybyaddr(mcopy,
1923						   IPSEC_DIR_OUTBOUND,
1924						   IP_FORWARDING,
1925						   &ipsecerror);
1926#endif
1927			if (sp != NULL) {
1928				/* count IPsec header size */
1929				ipsechdr = ipsec4_hdrsiz(mcopy,
1930							 IPSEC_DIR_OUTBOUND,
1931							 NULL);
1932
1933				/*
1934				 * find the correct route for outer IPv4
1935				 * header, compute tunnel MTU.
1936				 *
1937				 * XXX BUG ALERT
1938				 * The "dummyifp" code relies upon the fact
1939				 * that icmp_error() touches only ifp->if_mtu.
1940				 */
1941				/*XXX*/
1942				destifp = NULL;
1943				if (sp->req != NULL
1944				 && sp->req->sav != NULL
1945				 && sp->req->sav->sah != NULL) {
1946					ro = &sp->req->sav->sah->sa_route;
1947					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1948						dummyifp.if_mtu =
1949						    ro->ro_rt->rt_ifp->if_mtu;
1950						dummyifp.if_mtu -= ipsechdr;
1951						destifp = &dummyifp;
1952					}
1953				}
1954
1955#ifdef IPSEC
1956				key_freesp(sp);
1957#else /* FAST_IPSEC */
1958				KEY_FREESP(&sp);
1959#endif
1960				ipstat.ips_cantfrag++;
1961				break;
1962			} else
1963#endif /*IPSEC || FAST_IPSEC*/
1964		destifp = ia->ia_ifp;
1965#if defined(IPSEC) || defined(FAST_IPSEC)
1966		}
1967#endif /*IPSEC || FAST_IPSEC*/
1968		ipstat.ips_cantfrag++;
1969		break;
1970
1971	case ENOBUFS:
1972		/*
1973		 * A router should not generate ICMP_SOURCEQUENCH as
1974		 * required in RFC1812 Requirements for IP Version 4 Routers.
1975		 * Source quench could be a big problem under DoS attacks,
1976		 * or if the underlying interface is rate-limited.
1977		 * Those who need source quench packets may re-enable them
1978		 * via the net.inet.ip.sendsourcequench sysctl.
1979		 */
1980		if (ip_sendsourcequench == 0) {
1981			m_freem(mcopy);
1982			return;
1983		} else {
1984			type = ICMP_SOURCEQUENCH;
1985			code = 0;
1986		}
1987		break;
1988
1989	case EACCES:			/* ipfw denied packet */
1990		m_freem(mcopy);
1991		return;
1992	}
1993	icmp_error(mcopy, type, code, dest, destifp);
1994}
1995
1996void
1997ip_savecontrol(inp, mp, ip, m)
1998	register struct inpcb *inp;
1999	register struct mbuf **mp;
2000	register struct ip *ip;
2001	register struct mbuf *m;
2002{
2003	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
2004		struct bintime bt;
2005
2006		bintime(&bt);
2007		if (inp->inp_socket->so_options & SO_BINTIME) {
2008			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
2009			SCM_BINTIME, SOL_SOCKET);
2010			if (*mp)
2011				mp = &(*mp)->m_next;
2012		}
2013		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2014			struct timeval tv;
2015
2016			bintime2timeval(&bt, &tv);
2017			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2018				SCM_TIMESTAMP, SOL_SOCKET);
2019			if (*mp)
2020				mp = &(*mp)->m_next;
2021		}
2022	}
2023	if (inp->inp_flags & INP_RECVDSTADDR) {
2024		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2025		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2026		if (*mp)
2027			mp = &(*mp)->m_next;
2028	}
2029	if (inp->inp_flags & INP_RECVTTL) {
2030		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2031		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2032		if (*mp)
2033			mp = &(*mp)->m_next;
2034	}
2035#ifdef notyet
2036	/* XXX
2037	 * Moving these out of udp_input() made them even more broken
2038	 * than they already were.
2039	 */
2040	/* options were tossed already */
2041	if (inp->inp_flags & INP_RECVOPTS) {
2042		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2043		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2044		if (*mp)
2045			mp = &(*mp)->m_next;
2046	}
2047	/* ip_srcroute doesn't do what we want here, need to fix */
2048	if (inp->inp_flags & INP_RECVRETOPTS) {
2049		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2050		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2051		if (*mp)
2052			mp = &(*mp)->m_next;
2053	}
2054#endif
2055	if (inp->inp_flags & INP_RECVIF) {
2056		struct ifnet *ifp;
2057		struct sdlbuf {
2058			struct sockaddr_dl sdl;
2059			u_char	pad[32];
2060		} sdlbuf;
2061		struct sockaddr_dl *sdp;
2062		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2063
2064		if (((ifp = m->m_pkthdr.rcvif))
2065		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2066			sdp = (struct sockaddr_dl *)
2067			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2068			/*
2069			 * Change our mind and don't try copy.
2070			 */
2071			if ((sdp->sdl_family != AF_LINK)
2072			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2073				goto makedummy;
2074			}
2075			bcopy(sdp, sdl2, sdp->sdl_len);
2076		} else {
2077makedummy:
2078			sdl2->sdl_len
2079				= offsetof(struct sockaddr_dl, sdl_data[0]);
2080			sdl2->sdl_family = AF_LINK;
2081			sdl2->sdl_index = 0;
2082			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2083		}
2084		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2085			IP_RECVIF, IPPROTO_IP);
2086		if (*mp)
2087			mp = &(*mp)->m_next;
2088	}
2089}
2090
2091/*
2092 * XXX these routines are called from the upper part of the kernel.
2093 * They need to be locked when we remove Giant.
2094 *
2095 * They could also be moved to ip_mroute.c, since all the RSVP
2096 *  handling is done there already.
2097 */
2098static int ip_rsvp_on;
2099struct socket *ip_rsvpd;
2100int
2101ip_rsvp_init(struct socket *so)
2102{
2103	if (so->so_type != SOCK_RAW ||
2104	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2105		return EOPNOTSUPP;
2106
2107	if (ip_rsvpd != NULL)
2108		return EADDRINUSE;
2109
2110	ip_rsvpd = so;
2111	/*
2112	 * This may seem silly, but we need to be sure we don't over-increment
2113	 * the RSVP counter, in case something slips up.
2114	 */
2115	if (!ip_rsvp_on) {
2116		ip_rsvp_on = 1;
2117		rsvp_on++;
2118	}
2119
2120	return 0;
2121}
2122
2123int
2124ip_rsvp_done(void)
2125{
2126	ip_rsvpd = NULL;
2127	/*
2128	 * This may seem silly, but we need to be sure we don't over-decrement
2129	 * the RSVP counter, in case something slips up.
2130	 */
2131	if (ip_rsvp_on) {
2132		ip_rsvp_on = 0;
2133		rsvp_on--;
2134	}
2135	return 0;
2136}
2137
2138void
2139rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2140{
2141	if (rsvp_input_p) { /* call the real one if loaded */
2142		rsvp_input_p(m, off);
2143		return;
2144	}
2145
2146	/* Can still get packets with rsvp_on = 0 if there is a local member
2147	 * of the group to which the RSVP packet is addressed.  But in this
2148	 * case we want to throw the packet away.
2149	 */
2150
2151	if (!rsvp_on) {
2152		m_freem(m);
2153		return;
2154	}
2155
2156	if (ip_rsvpd != NULL) {
2157		rip_input(m, off);
2158		return;
2159	}
2160	/* Drop the packet */
2161	m_freem(m);
2162}
2163