ip_reass.c revision 120386
1229997Sken/*
2229997Sken * Copyright (c) 1982, 1986, 1988, 1993
3229997Sken *	The Regents of the University of California.  All rights reserved.
4229997Sken *
5229997Sken * Redistribution and use in source and binary forms, with or without
6229997Sken * modification, are permitted provided that the following conditions
7229997Sken * are met:
8229997Sken * 1. Redistributions of source code must retain the above copyright
9229997Sken *    notice, this list of conditions and the following disclaimer.
10229997Sken * 2. Redistributions in binary form must reproduce the above copyright
11229997Sken *    notice, this list of conditions and the following disclaimer in the
12229997Sken *    documentation and/or other materials provided with the distribution.
13229997Sken * 3. All advertising materials mentioning features or use of this software
14229997Sken *    must display the following acknowledgement:
15229997Sken *	This product includes software developed by the University of
16229997Sken *	California, Berkeley and its contributors.
17229997Sken * 4. Neither the name of the University nor the names of its contributors
18229997Sken *    may be used to endorse or promote products derived from this software
19229997Sken *    without specific prior written permission.
20229997Sken *
21229997Sken * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22229997Sken * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23229997Sken * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24229997Sken * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25229997Sken * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26229997Sken * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27229997Sken * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28229997Sken * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29229997Sken * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30229997Sken * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31229997Sken * SUCH DAMAGE.
32229997Sken *
33229997Sken *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34229997Sken * $FreeBSD: head/sys/netinet/ip_input.c 120386 2003-09-23 17:54:04Z sam $
35229997Sken */
36229997Sken
37229997Sken#include "opt_bootp.h"
38229997Sken#include "opt_ipfw.h"
39229997Sken#include "opt_ipdn.h"
40229997Sken#include "opt_ipdivert.h"
41229997Sken#include "opt_ipfilter.h"
42229997Sken#include "opt_ipstealth.h"
43229997Sken#include "opt_ipsec.h"
44229997Sken#include "opt_mac.h"
45229997Sken#include "opt_pfil_hooks.h"
46229997Sken#include "opt_random_ip_id.h"
47229997Sken
48229997Sken#include <sys/param.h>
49229997Sken#include <sys/systm.h>
50229997Sken#include <sys/mac.h>
51229997Sken#include <sys/mbuf.h>
52229997Sken#include <sys/malloc.h>
53229997Sken#include <sys/domain.h>
54229997Sken#include <sys/protosw.h>
55229997Sken#include <sys/socket.h>
56229997Sken#include <sys/time.h>
57229997Sken#include <sys/kernel.h>
58229997Sken#include <sys/syslog.h>
59229997Sken#include <sys/sysctl.h>
60229997Sken
61229997Sken#include <net/pfil.h>
62229997Sken#include <net/if.h>
63229997Sken#include <net/if_types.h>
64229997Sken#include <net/if_var.h>
65229997Sken#include <net/if_dl.h>
66229997Sken#include <net/route.h>
67229997Sken#include <net/netisr.h>
68229997Sken
69229997Sken#include <netinet/in.h>
70229997Sken#include <netinet/in_systm.h>
71229997Sken#include <netinet/in_var.h>
72229997Sken#include <netinet/ip.h>
73229997Sken#include <netinet/in_pcb.h>
74265634Smav#include <netinet/ip_var.h>
75265634Smav#include <netinet/ip_icmp.h>
76229997Sken#include <machine/in_cksum.h>
77229997Sken
78229997Sken#include <sys/socketvar.h>
79229997Sken
80229997Sken#include <netinet/ip_fw.h>
81229997Sken#include <netinet/ip_dummynet.h>
82229997Sken
83229997Sken#ifdef IPSEC
84265634Smav#include <netinet6/ipsec.h>
85265634Smav#include <netkey/key.h>
86229997Sken#endif
87229997Sken
88229997Sken#ifdef FAST_IPSEC
89229997Sken#include <netipsec/ipsec.h>
90229997Sken#include <netipsec/key.h>
91229997Sken#endif
92229997Sken
93229997Skenint rsvp_on = 0;
94229997Sken
95229997Skenint	ipforwarding = 0;
96229997SkenSYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
97229997Sken    &ipforwarding, 0, "Enable IP forwarding between interfaces");
98229997Sken
99229997Skenstatic int	ipsendredirects = 1; /* XXX */
100229997SkenSYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
101229997Sken    &ipsendredirects, 0, "Enable sending IP redirects");
102229997Sken
103229997Skenint	ip_defttl = IPDEFTTL;
104229997SkenSYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
105229997Sken    &ip_defttl, 0, "Maximum TTL on IP packets");
106229997Sken
107229997Skenstatic int	ip_dosourceroute = 0;
108229997SkenSYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
109229997Sken    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
110229997Sken
111229997Skenstatic int	ip_acceptsourceroute = 0;
112229997SkenSYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
113229997Sken    CTLFLAG_RW, &ip_acceptsourceroute, 0,
114229997Sken    "Enable accepting source routed IP packets");
115229997Sken
116229997Skenstatic int	ip_keepfaith = 0;
117229997SkenSYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
118229997Sken	&ip_keepfaith,	0,
119229997Sken	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
120229997Sken
121229997Skenstatic int    nipq = 0;         /* total # of reass queues */
122229997Skenstatic int    maxnipq;
123229997SkenSYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
124229997Sken	&maxnipq, 0,
125229997Sken	"Maximum number of IPv4 fragment reassembly queue entries");
126229997Sken
127229997Skenstatic int    maxfragsperpacket;
128229997SkenSYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
129229997Sken	&maxfragsperpacket, 0,
130229997Sken	"Maximum number of IPv4 fragments allowed per packet");
131229997Sken
132229997Skenstatic int	ip_sendsourcequench = 0;
133229997SkenSYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
134229997Sken	&ip_sendsourcequench, 0,
135229997Sken	"Enable the transmission of source quench packets");
136229997Sken
137229997Sken/*
138229997Sken * XXX - Setting ip_checkinterface mostly implements the receive side of
139229997Sken * the Strong ES model described in RFC 1122, but since the routing table
140229997Sken * and transmit implementation do not implement the Strong ES model,
141229997Sken * setting this to 1 results in an odd hybrid.
142229997Sken *
143264727Smav * XXX - ip_checkinterface currently must be disabled if you use ipnat
144264727Smav * to translate the destination address to another local interface.
145264727Smav *
146264727Smav * XXX - ip_checkinterface must be disabled if you add IP aliases
147229997Sken * to the loopback interface instead of the interface where the
148229997Sken * packets for those addresses are received.
149229997Sken */
150229997Skenstatic int	ip_checkinterface = 1;
151229997SkenSYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
152229997Sken    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
153229997Sken
154229997Sken#ifdef DIAGNOSTIC
155229997Skenstatic int	ipprintfs = 0;
156229997Sken#endif
157229997Sken#ifdef PFIL_HOOKS
158229997Skenstruct pfil_head inet_pfil_hook;
159229997Sken#endif
160229997Sken
161229997Skenstatic struct	ifqueue ipintrq;
162229997Skenstatic int	ipqmaxlen = IFQ_MAXLEN;
163229997Sken
164229997Skenextern	struct domain inetdomain;
165229997Skenextern	struct protosw inetsw[];
166229997Skenu_char	ip_protox[IPPROTO_MAX];
167229997Skenstruct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
168229997Skenstruct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
169229997Skenu_long 	in_ifaddrhmask;				/* mask for hash table */
170229997Sken
171229997SkenSYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
172229997Sken    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
173229997SkenSYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
174229997Sken    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
175229997Sken
176229997Skenstruct ipstat ipstat;
177229997SkenSYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
178229997Sken    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
179229997Sken
180229997Sken/* Packet reassembly stuff */
181229997Sken#define IPREASS_NHASH_LOG2      6
182229997Sken#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
183229997Sken#define IPREASS_HMASK           (IPREASS_NHASH - 1)
184229997Sken#define IPREASS_HASH(x,y) \
185229997Sken	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
186229997Sken
187229997Skenstatic TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
188229997Skenstruct mtx ipqlock;
189264727Smav
190264727Smav#define	IPQ_LOCK()	mtx_lock(&ipqlock)
191229997Sken#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
192229997Sken#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF);
193229997Sken#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED);
194229997Sken
195229997Sken#ifdef IPCTL_DEFMTU
196229997SkenSYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
197229997Sken    &ip_mtu, 0, "Default MTU");
198229997Sken#endif
199268678Smav
200229997Sken#ifdef IPSTEALTH
201229997Skenstatic int	ipstealth = 0;
202229997SkenSYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
203229997Sken    &ipstealth, 0, "");
204229997Sken#endif
205229997Sken
206229997Sken
207229997Sken/* Firewall hooks */
208229997Skenip_fw_chk_t *ip_fw_chk_ptr;
209229997Skenint fw_enable = 1 ;
210229997Skenint fw_one_pass = 1;
211229997Sken
212229997Sken/* Dummynet hooks */
213229997Skenip_dn_io_t *ip_dn_io_ptr;
214229997Sken
215229997Sken
216229997Sken/*
217229997Sken * XXX this is ugly -- the following two global variables are
218229997Sken * used to store packet state while it travels through the stack.
219229997Sken * Note that the code even makes assumptions on the size and
220229997Sken * alignment of fields inside struct ip_srcrt so e.g. adding some
221229997Sken * fields will break the code. This needs to be fixed.
222229997Sken *
223229997Sken * We need to save the IP options in case a protocol wants to respond
224229997Sken * to an incoming packet over the same route if the packet got here
225229997Sken * using IP source routing.  This allows connection establishment and
226229997Sken * maintenance when the remote end is on a network that is not known
227229997Sken * to us.
228229997Sken */
229229997Skenstatic int	ip_nhops = 0;
230229997Skenstatic	struct ip_srcrt {
231229997Sken	struct	in_addr dst;			/* final destination */
232229997Sken	char	nop;				/* one NOP to align */
233229997Sken	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
234229997Sken	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
235229997Sken} ip_srcrt;
236229997Sken
237229997Skenstatic void	save_rte(u_char *, struct in_addr);
238229997Skenstatic int	ip_dooptions(struct mbuf *m, int,
239229997Sken			struct sockaddr_in *next_hop);
240229997Skenstatic void	ip_forward(struct mbuf *m, int srcrt,
241229997Sken			struct sockaddr_in *next_hop);
242229997Skenstatic void	ip_freef(struct ipqhead *, struct ipq *);
243229997Skenstatic struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
244229997Sken		struct ipq *, u_int32_t *, u_int16_t *);
245229997Sken
246229997Sken/*
247229997Sken * IP initialization: fill in IP protocol switch table.
248229997Sken * All protocols not implemented in kernel go to raw IP protocol handler.
249229997Sken */
250229997Skenvoid
251229997Skenip_init()
252229997Sken{
253229997Sken	register struct protosw *pr;
254229997Sken	register int i;
255229997Sken
256229997Sken	TAILQ_INIT(&in_ifaddrhead);
257229997Sken	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
258229997Sken	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
259229997Sken	if (pr == 0)
260229997Sken		panic("ip_init");
261229997Sken	for (i = 0; i < IPPROTO_MAX; i++)
262229997Sken		ip_protox[i] = pr - inetsw;
263229997Sken	for (pr = inetdomain.dom_protosw;
264229997Sken	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
265229997Sken		if (pr->pr_domain->dom_family == PF_INET &&
266229997Sken		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
267229997Sken			ip_protox[pr->pr_protocol] = pr - inetsw;
268229997Sken
269229997Sken#ifdef PFIL_HOOKS
270229997Sken	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
271229997Sken	inet_pfil_hook.ph_af = AF_INET;
272229997Sken	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
273229997Sken		printf("%s: WARNING: unable to register pfil hook, "
274229997Sken			"error %d\n", __func__, i);
275229997Sken#endif /* PFIL_HOOKS */
276229997Sken
277229997Sken	IPQ_LOCK_INIT();
278229997Sken	for (i = 0; i < IPREASS_NHASH; i++)
279229997Sken	    TAILQ_INIT(&ipq[i]);
280229997Sken
281229997Sken	maxnipq = nmbclusters / 32;
282229997Sken	maxfragsperpacket = 16;
283229997Sken
284229997Sken#ifndef RANDOM_IP_ID
285229997Sken	ip_id = time_second & 0xffff;
286229997Sken#endif
287229997Sken	ipintrq.ifq_maxlen = ipqmaxlen;
288229997Sken	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
289229997Sken	netisr_register(NETISR_IP, ip_input, &ipintrq);
290229997Sken}
291229997Sken
292229997Sken/*
293232604Strasz * XXX watch out this one. It is perhaps used as a cache for
294232604Strasz * the most recently used route ? it is cleared in in_addroute()
295232604Strasz * when a new route is successfully created.
296232604Strasz */
297232604Straszstruct	route ipforward_rt;
298229997Sken
299229997Sken/*
300229997Sken * Ip input routine.  Checksum and byte swap header.  If fragmented
301229997Sken * try to reassemble.  Process options.  Pass to next level.
302229997Sken */
303229997Skenvoid
304ip_input(struct mbuf *m)
305{
306	struct ip *ip;
307	struct ipq *fp;
308	struct in_ifaddr *ia = NULL;
309	struct ifaddr *ifa;
310	int    i, hlen, checkif;
311	u_short sum;
312	struct in_addr pkt_dst;
313	u_int32_t divert_info = 0;		/* packet divert/tee info */
314	struct ip_fw_args args;
315#ifdef FAST_IPSEC
316	struct m_tag *mtag;
317	struct tdb_ident *tdbi;
318	struct secpolicy *sp;
319	int s, error;
320#endif /* FAST_IPSEC */
321
322	args.eh = NULL;
323	args.oif = NULL;
324	args.rule = NULL;
325	args.divert_rule = 0;			/* divert cookie */
326	args.next_hop = NULL;
327
328	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
329	for (; m && m->m_type == MT_TAG; m = m->m_next) {
330		switch(m->_m_tag_id) {
331		default:
332			printf("ip_input: unrecognised MT_TAG tag %d\n",
333			    m->_m_tag_id);
334			break;
335
336		case PACKET_TAG_DUMMYNET:
337			args.rule = ((struct dn_pkt *)m)->rule;
338			break;
339
340		case PACKET_TAG_DIVERT:
341			args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
342			break;
343
344		case PACKET_TAG_IPFORWARD:
345			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
346			break;
347		}
348	}
349
350	M_ASSERTPKTHDR(m);
351
352	if (args.rule) {	/* dummynet already filtered us */
353		ip = mtod(m, struct ip *);
354		hlen = ip->ip_hl << 2;
355		goto iphack ;
356	}
357
358	ipstat.ips_total++;
359
360	if (m->m_pkthdr.len < sizeof(struct ip))
361		goto tooshort;
362
363	if (m->m_len < sizeof (struct ip) &&
364	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
365		ipstat.ips_toosmall++;
366		return;
367	}
368	ip = mtod(m, struct ip *);
369
370	if (ip->ip_v != IPVERSION) {
371		ipstat.ips_badvers++;
372		goto bad;
373	}
374
375	hlen = ip->ip_hl << 2;
376	if (hlen < sizeof(struct ip)) {	/* minimum header length */
377		ipstat.ips_badhlen++;
378		goto bad;
379	}
380	if (hlen > m->m_len) {
381		if ((m = m_pullup(m, hlen)) == 0) {
382			ipstat.ips_badhlen++;
383			return;
384		}
385		ip = mtod(m, struct ip *);
386	}
387
388	/* 127/8 must not appear on wire - RFC1122 */
389	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
390	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
391		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
392			ipstat.ips_badaddr++;
393			goto bad;
394		}
395	}
396
397	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
398		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
399	} else {
400		if (hlen == sizeof(struct ip)) {
401			sum = in_cksum_hdr(ip);
402		} else {
403			sum = in_cksum(m, hlen);
404		}
405	}
406	if (sum) {
407		ipstat.ips_badsum++;
408		goto bad;
409	}
410
411	/*
412	 * Convert fields to host representation.
413	 */
414	ip->ip_len = ntohs(ip->ip_len);
415	if (ip->ip_len < hlen) {
416		ipstat.ips_badlen++;
417		goto bad;
418	}
419	ip->ip_off = ntohs(ip->ip_off);
420
421	/*
422	 * Check that the amount of data in the buffers
423	 * is as at least much as the IP header would have us expect.
424	 * Trim mbufs if longer than we expect.
425	 * Drop packet if shorter than we expect.
426	 */
427	if (m->m_pkthdr.len < ip->ip_len) {
428tooshort:
429		ipstat.ips_tooshort++;
430		goto bad;
431	}
432	if (m->m_pkthdr.len > ip->ip_len) {
433		if (m->m_len == m->m_pkthdr.len) {
434			m->m_len = ip->ip_len;
435			m->m_pkthdr.len = ip->ip_len;
436		} else
437			m_adj(m, ip->ip_len - m->m_pkthdr.len);
438	}
439#if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
440	/*
441	 * Bypass packet filtering for packets from a tunnel (gif).
442	 */
443	if (ipsec_gethist(m, NULL))
444		goto pass;
445#endif
446#if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
447	/*
448	 * Bypass packet filtering for packets from a tunnel (gif).
449	 */
450	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
451		goto pass;
452#endif
453
454	/*
455	 * IpHack's section.
456	 * Right now when no processing on packet has done
457	 * and it is still fresh out of network we do our black
458	 * deals with it.
459	 * - Firewall: deny/allow/divert
460	 * - Xlate: translate packet's addr/port (NAT).
461	 * - Pipe: pass pkt through dummynet.
462	 * - Wrap: fake packet's addr/port <unimpl.>
463	 * - Encapsulate: put it in another IP and send out. <unimp.>
464 	 */
465
466iphack:
467
468#ifdef PFIL_HOOKS
469	/*
470	 * Run through list of hooks for input packets.
471	 */
472	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
473	    PFIL_IN) != 0)
474		return;
475	if (m == NULL)			/* consumed by filter */
476		return;
477	ip = mtod(m, struct ip *);
478#endif /* PFIL_HOOKS */
479
480	if (fw_enable && IPFW_LOADED) {
481		/*
482		 * If we've been forwarded from the output side, then
483		 * skip the firewall a second time
484		 */
485		if (args.next_hop)
486			goto ours;
487
488		args.m = m;
489		i = ip_fw_chk_ptr(&args);
490		m = args.m;
491
492		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
493			if (m)
494				m_freem(m);
495			return;
496		}
497		ip = mtod(m, struct ip *); /* just in case m changed */
498		if (i == 0 && args.next_hop == NULL)	/* common case */
499			goto pass;
500                if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
501			/* Send packet to the appropriate pipe */
502			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
503			return;
504		}
505#ifdef IPDIVERT
506		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
507			/* Divert or tee packet */
508			divert_info = i;
509			goto ours;
510		}
511#endif
512		if (i == 0 && args.next_hop != NULL)
513			goto pass;
514		/*
515		 * if we get here, the packet must be dropped
516		 */
517		m_freem(m);
518		return;
519	}
520pass:
521
522	/*
523	 * Process options and, if not destined for us,
524	 * ship it on.  ip_dooptions returns 1 when an
525	 * error was detected (causing an icmp message
526	 * to be sent and the original packet to be freed).
527	 */
528	ip_nhops = 0;		/* for source routed packets */
529	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
530		return;
531
532        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
533         * matter if it is destined to another node, or whether it is
534         * a multicast one, RSVP wants it! and prevents it from being forwarded
535         * anywhere else. Also checks if the rsvp daemon is running before
536	 * grabbing the packet.
537         */
538	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
539		goto ours;
540
541	/*
542	 * Check our list of addresses, to see if the packet is for us.
543	 * If we don't have any addresses, assume any unicast packet
544	 * we receive might be for us (and let the upper layers deal
545	 * with it).
546	 */
547	if (TAILQ_EMPTY(&in_ifaddrhead) &&
548	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
549		goto ours;
550
551	/*
552	 * Cache the destination address of the packet; this may be
553	 * changed by use of 'ipfw fwd'.
554	 */
555	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
556
557	/*
558	 * Enable a consistency check between the destination address
559	 * and the arrival interface for a unicast packet (the RFC 1122
560	 * strong ES model) if IP forwarding is disabled and the packet
561	 * is not locally generated and the packet is not subject to
562	 * 'ipfw fwd'.
563	 *
564	 * XXX - Checking also should be disabled if the destination
565	 * address is ipnat'ed to a different interface.
566	 *
567	 * XXX - Checking is incompatible with IP aliases added
568	 * to the loopback interface instead of the interface where
569	 * the packets are received.
570	 */
571	checkif = ip_checkinterface && (ipforwarding == 0) &&
572	    m->m_pkthdr.rcvif != NULL &&
573	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
574	    (args.next_hop == NULL);
575
576	/*
577	 * Check for exact addresses in the hash bucket.
578	 */
579	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
580		/*
581		 * If the address matches, verify that the packet
582		 * arrived via the correct interface if checking is
583		 * enabled.
584		 */
585		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
586		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
587			goto ours;
588	}
589	/*
590	 * Check for broadcast addresses.
591	 *
592	 * Only accept broadcast packets that arrive via the matching
593	 * interface.  Reception of forwarded directed broadcasts would
594	 * be handled via ip_forward() and ether_output() with the loopback
595	 * into the stack for SIMPLEX interfaces handled by ether_output().
596	 */
597	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
598	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
599			if (ifa->ifa_addr->sa_family != AF_INET)
600				continue;
601			ia = ifatoia(ifa);
602			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
603			    pkt_dst.s_addr)
604				goto ours;
605			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
606				goto ours;
607#ifdef BOOTP_COMPAT
608			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
609				goto ours;
610#endif
611		}
612	}
613	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
614		struct in_multi *inm;
615		if (ip_mrouter) {
616			/*
617			 * If we are acting as a multicast router, all
618			 * incoming multicast packets are passed to the
619			 * kernel-level multicast forwarding function.
620			 * The packet is returned (relatively) intact; if
621			 * ip_mforward() returns a non-zero value, the packet
622			 * must be discarded, else it may be accepted below.
623			 */
624			if (ip_mforward &&
625			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
626				ipstat.ips_cantforward++;
627				m_freem(m);
628				return;
629			}
630
631			/*
632			 * The process-level routing daemon needs to receive
633			 * all multicast IGMP packets, whether or not this
634			 * host belongs to their destination groups.
635			 */
636			if (ip->ip_p == IPPROTO_IGMP)
637				goto ours;
638			ipstat.ips_forward++;
639		}
640		/*
641		 * See if we belong to the destination multicast group on the
642		 * arrival interface.
643		 */
644		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
645		if (inm == NULL) {
646			ipstat.ips_notmember++;
647			m_freem(m);
648			return;
649		}
650		goto ours;
651	}
652	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
653		goto ours;
654	if (ip->ip_dst.s_addr == INADDR_ANY)
655		goto ours;
656
657	/*
658	 * FAITH(Firewall Aided Internet Translator)
659	 */
660	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
661		if (ip_keepfaith) {
662			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
663				goto ours;
664		}
665		m_freem(m);
666		return;
667	}
668
669	/*
670	 * Not for us; forward if possible and desirable.
671	 */
672	if (ipforwarding == 0) {
673		ipstat.ips_cantforward++;
674		m_freem(m);
675	} else {
676#ifdef IPSEC
677		/*
678		 * Enforce inbound IPsec SPD.
679		 */
680		if (ipsec4_in_reject(m, NULL)) {
681			ipsecstat.in_polvio++;
682			goto bad;
683		}
684#endif /* IPSEC */
685#ifdef FAST_IPSEC
686		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
687		s = splnet();
688		if (mtag != NULL) {
689			tdbi = (struct tdb_ident *)(mtag + 1);
690			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
691		} else {
692			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
693						   IP_FORWARDING, &error);
694		}
695		if (sp == NULL) {	/* NB: can happen if error */
696			splx(s);
697			/*XXX error stat???*/
698			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
699			goto bad;
700		}
701
702		/*
703		 * Check security policy against packet attributes.
704		 */
705		error = ipsec_in_reject(sp, m);
706		KEY_FREESP(&sp);
707		splx(s);
708		if (error) {
709			ipstat.ips_cantforward++;
710			goto bad;
711		}
712#endif /* FAST_IPSEC */
713		ip_forward(m, 0, args.next_hop);
714	}
715	return;
716
717ours:
718#ifdef IPSTEALTH
719	/*
720	 * IPSTEALTH: Process non-routing options only
721	 * if the packet is destined for us.
722	 */
723	if (ipstealth && hlen > sizeof (struct ip) &&
724	    ip_dooptions(m, 1, args.next_hop))
725		return;
726#endif /* IPSTEALTH */
727
728	/* Count the packet in the ip address stats */
729	if (ia != NULL) {
730		ia->ia_ifa.if_ipackets++;
731		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
732	}
733
734	/*
735	 * If offset or IP_MF are set, must reassemble.
736	 * Otherwise, nothing need be done.
737	 * (We could look in the reassembly queue to see
738	 * if the packet was previously fragmented,
739	 * but it's not worth the time; just let them time out.)
740	 */
741	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
742
743		/* If maxnipq is 0, never accept fragments. */
744		if (maxnipq == 0) {
745                	ipstat.ips_fragments++;
746			ipstat.ips_fragdropped++;
747			goto bad;
748		}
749
750		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
751		IPQ_LOCK();
752		/*
753		 * Look for queue of fragments
754		 * of this datagram.
755		 */
756		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
757			if (ip->ip_id == fp->ipq_id &&
758			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
759			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
760#ifdef MAC
761			    mac_fragment_match(m, fp) &&
762#endif
763			    ip->ip_p == fp->ipq_p)
764				goto found;
765
766		fp = NULL;
767
768		/*
769		 * Enforce upper bound on number of fragmented packets
770		 * for which we attempt reassembly;
771		 * If maxnipq is -1, accept all fragments without limitation.
772		 */
773		if ((nipq > maxnipq) && (maxnipq > 0)) {
774		    /*
775		     * drop something from the tail of the current queue
776		     * before proceeding further
777		     */
778		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
779		    if (q == NULL) {   /* gak */
780			for (i = 0; i < IPREASS_NHASH; i++) {
781			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
782			    if (r) {
783				ipstat.ips_fragtimeout += r->ipq_nfrags;
784				ip_freef(&ipq[i], r);
785				break;
786			    }
787			}
788		    } else {
789			ipstat.ips_fragtimeout += q->ipq_nfrags;
790			ip_freef(&ipq[sum], q);
791		    }
792		}
793found:
794		/*
795		 * Adjust ip_len to not reflect header,
796		 * convert offset of this to bytes.
797		 */
798		ip->ip_len -= hlen;
799		if (ip->ip_off & IP_MF) {
800		        /*
801		         * Make sure that fragments have a data length
802			 * that's a non-zero multiple of 8 bytes.
803		         */
804			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
805				IPQ_UNLOCK();
806				ipstat.ips_toosmall++; /* XXX */
807				goto bad;
808			}
809			m->m_flags |= M_FRAG;
810		} else
811			m->m_flags &= ~M_FRAG;
812		ip->ip_off <<= 3;
813
814		/*
815		 * Attempt reassembly; if it succeeds, proceed.
816		 * ip_reass() will return a different mbuf, and update
817		 * the divert info in divert_info and args.divert_rule.
818		 */
819		ipstat.ips_fragments++;
820		m->m_pkthdr.header = ip;
821		m = ip_reass(m,
822		    &ipq[sum], fp, &divert_info, &args.divert_rule);
823		IPQ_UNLOCK();
824		if (m == 0)
825			return;
826		ipstat.ips_reassembled++;
827		ip = mtod(m, struct ip *);
828		/* Get the header length of the reassembled packet */
829		hlen = ip->ip_hl << 2;
830#ifdef IPDIVERT
831		/* Restore original checksum before diverting packet */
832		if (divert_info != 0) {
833			ip->ip_len += hlen;
834			ip->ip_len = htons(ip->ip_len);
835			ip->ip_off = htons(ip->ip_off);
836			ip->ip_sum = 0;
837			if (hlen == sizeof(struct ip))
838				ip->ip_sum = in_cksum_hdr(ip);
839			else
840				ip->ip_sum = in_cksum(m, hlen);
841			ip->ip_off = ntohs(ip->ip_off);
842			ip->ip_len = ntohs(ip->ip_len);
843			ip->ip_len -= hlen;
844		}
845#endif
846	} else
847		ip->ip_len -= hlen;
848
849#ifdef IPDIVERT
850	/*
851	 * Divert or tee packet to the divert protocol if required.
852	 */
853	if (divert_info != 0) {
854		struct mbuf *clone = NULL;
855
856		/* Clone packet if we're doing a 'tee' */
857		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
858			clone = m_dup(m, M_DONTWAIT);
859
860		/* Restore packet header fields to original values */
861		ip->ip_len += hlen;
862		ip->ip_len = htons(ip->ip_len);
863		ip->ip_off = htons(ip->ip_off);
864
865		/* Deliver packet to divert input routine */
866		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
867		ipstat.ips_delivered++;
868
869		/* If 'tee', continue with original packet */
870		if (clone == NULL)
871			return;
872		m = clone;
873		ip = mtod(m, struct ip *);
874		ip->ip_len += hlen;
875		/*
876		 * Jump backwards to complete processing of the
877		 * packet. But first clear divert_info to avoid
878		 * entering this block again.
879		 * We do not need to clear args.divert_rule
880		 * or args.next_hop as they will not be used.
881		 */
882		divert_info = 0;
883		goto pass;
884	}
885#endif
886
887#ifdef IPSEC
888	/*
889	 * enforce IPsec policy checking if we are seeing last header.
890	 * note that we do not visit this with protocols with pcb layer
891	 * code - like udp/tcp/raw ip.
892	 */
893	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
894	    ipsec4_in_reject(m, NULL)) {
895		ipsecstat.in_polvio++;
896		goto bad;
897	}
898#endif
899#if FAST_IPSEC
900	/*
901	 * enforce IPsec policy checking if we are seeing last header.
902	 * note that we do not visit this with protocols with pcb layer
903	 * code - like udp/tcp/raw ip.
904	 */
905	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
906		/*
907		 * Check if the packet has already had IPsec processing
908		 * done.  If so, then just pass it along.  This tag gets
909		 * set during AH, ESP, etc. input handling, before the
910		 * packet is returned to the ip input queue for delivery.
911		 */
912		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
913		s = splnet();
914		if (mtag != NULL) {
915			tdbi = (struct tdb_ident *)(mtag + 1);
916			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
917		} else {
918			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
919						   IP_FORWARDING, &error);
920		}
921		if (sp != NULL) {
922			/*
923			 * Check security policy against packet attributes.
924			 */
925			error = ipsec_in_reject(sp, m);
926			KEY_FREESP(&sp);
927		} else {
928			/* XXX error stat??? */
929			error = EINVAL;
930DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
931			goto bad;
932		}
933		splx(s);
934		if (error)
935			goto bad;
936	}
937#endif /* FAST_IPSEC */
938
939	/*
940	 * Switch out to protocol's input routine.
941	 */
942	ipstat.ips_delivered++;
943	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
944		/* TCP needs IPFORWARD info if available */
945		struct m_hdr tag;
946
947		tag.mh_type = MT_TAG;
948		tag.mh_flags = PACKET_TAG_IPFORWARD;
949		tag.mh_data = (caddr_t)args.next_hop;
950		tag.mh_next = m;
951
952		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
953			(struct mbuf *)&tag, hlen);
954	} else
955		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
956	return;
957bad:
958	m_freem(m);
959}
960
961/*
962 * Take incoming datagram fragment and try to reassemble it into
963 * whole datagram.  If a chain for reassembly of this datagram already
964 * exists, then it is given as fp; otherwise have to make a chain.
965 *
966 * When IPDIVERT enabled, keep additional state with each packet that
967 * tells us if we need to divert or tee the packet we're building.
968 * In particular, *divinfo includes the port and TEE flag,
969 * *divert_rule is the number of the matching rule.
970 */
971
972static struct mbuf *
973ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
974	u_int32_t *divinfo, u_int16_t *divert_rule)
975{
976	struct ip *ip = mtod(m, struct ip *);
977	register struct mbuf *p, *q, *nq;
978	struct mbuf *t;
979	int hlen = ip->ip_hl << 2;
980	int i, next;
981
982	IPQ_LOCK_ASSERT();
983
984	/*
985	 * Presence of header sizes in mbufs
986	 * would confuse code below.
987	 */
988	m->m_data += hlen;
989	m->m_len -= hlen;
990
991	/*
992	 * If first fragment to arrive, create a reassembly queue.
993	 */
994	if (fp == NULL) {
995		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
996			goto dropfrag;
997		fp = mtod(t, struct ipq *);
998#ifdef MAC
999		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
1000			m_free(t);
1001			goto dropfrag;
1002		}
1003		mac_create_ipq(m, fp);
1004#endif
1005		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1006		nipq++;
1007		fp->ipq_nfrags = 1;
1008		fp->ipq_ttl = IPFRAGTTL;
1009		fp->ipq_p = ip->ip_p;
1010		fp->ipq_id = ip->ip_id;
1011		fp->ipq_src = ip->ip_src;
1012		fp->ipq_dst = ip->ip_dst;
1013		fp->ipq_frags = m;
1014		m->m_nextpkt = NULL;
1015#ifdef IPDIVERT
1016		fp->ipq_div_info = 0;
1017		fp->ipq_div_cookie = 0;
1018#endif
1019		goto inserted;
1020	} else {
1021		fp->ipq_nfrags++;
1022#ifdef MAC
1023		mac_update_ipq(m, fp);
1024#endif
1025	}
1026
1027#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1028
1029	/*
1030	 * Find a segment which begins after this one does.
1031	 */
1032	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1033		if (GETIP(q)->ip_off > ip->ip_off)
1034			break;
1035
1036	/*
1037	 * If there is a preceding segment, it may provide some of
1038	 * our data already.  If so, drop the data from the incoming
1039	 * segment.  If it provides all of our data, drop us, otherwise
1040	 * stick new segment in the proper place.
1041	 *
1042	 * If some of the data is dropped from the the preceding
1043	 * segment, then it's checksum is invalidated.
1044	 */
1045	if (p) {
1046		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1047		if (i > 0) {
1048			if (i >= ip->ip_len)
1049				goto dropfrag;
1050			m_adj(m, i);
1051			m->m_pkthdr.csum_flags = 0;
1052			ip->ip_off += i;
1053			ip->ip_len -= i;
1054		}
1055		m->m_nextpkt = p->m_nextpkt;
1056		p->m_nextpkt = m;
1057	} else {
1058		m->m_nextpkt = fp->ipq_frags;
1059		fp->ipq_frags = m;
1060	}
1061
1062	/*
1063	 * While we overlap succeeding segments trim them or,
1064	 * if they are completely covered, dequeue them.
1065	 */
1066	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1067	     q = nq) {
1068		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1069		if (i < GETIP(q)->ip_len) {
1070			GETIP(q)->ip_len -= i;
1071			GETIP(q)->ip_off += i;
1072			m_adj(q, i);
1073			q->m_pkthdr.csum_flags = 0;
1074			break;
1075		}
1076		nq = q->m_nextpkt;
1077		m->m_nextpkt = nq;
1078		ipstat.ips_fragdropped++;
1079		fp->ipq_nfrags--;
1080		m_freem(q);
1081	}
1082
1083inserted:
1084
1085#ifdef IPDIVERT
1086	/*
1087	 * Transfer firewall instructions to the fragment structure.
1088	 * Only trust info in the fragment at offset 0.
1089	 */
1090	if (ip->ip_off == 0) {
1091		fp->ipq_div_info = *divinfo;
1092		fp->ipq_div_cookie = *divert_rule;
1093	}
1094	*divinfo = 0;
1095	*divert_rule = 0;
1096#endif
1097
1098	/*
1099	 * Check for complete reassembly and perform frag per packet
1100	 * limiting.
1101	 *
1102	 * Frag limiting is performed here so that the nth frag has
1103	 * a chance to complete the packet before we drop the packet.
1104	 * As a result, n+1 frags are actually allowed per packet, but
1105	 * only n will ever be stored. (n = maxfragsperpacket.)
1106	 *
1107	 */
1108	next = 0;
1109	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1110		if (GETIP(q)->ip_off != next) {
1111			if (fp->ipq_nfrags > maxfragsperpacket) {
1112				ipstat.ips_fragdropped += fp->ipq_nfrags;
1113				ip_freef(head, fp);
1114			}
1115			return (0);
1116		}
1117		next += GETIP(q)->ip_len;
1118	}
1119	/* Make sure the last packet didn't have the IP_MF flag */
1120	if (p->m_flags & M_FRAG) {
1121		if (fp->ipq_nfrags > maxfragsperpacket) {
1122			ipstat.ips_fragdropped += fp->ipq_nfrags;
1123			ip_freef(head, fp);
1124		}
1125		return (0);
1126	}
1127
1128	/*
1129	 * Reassembly is complete.  Make sure the packet is a sane size.
1130	 */
1131	q = fp->ipq_frags;
1132	ip = GETIP(q);
1133	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1134		ipstat.ips_toolong++;
1135		ipstat.ips_fragdropped += fp->ipq_nfrags;
1136		ip_freef(head, fp);
1137		return (0);
1138	}
1139
1140	/*
1141	 * Concatenate fragments.
1142	 */
1143	m = q;
1144	t = m->m_next;
1145	m->m_next = 0;
1146	m_cat(m, t);
1147	nq = q->m_nextpkt;
1148	q->m_nextpkt = 0;
1149	for (q = nq; q != NULL; q = nq) {
1150		nq = q->m_nextpkt;
1151		q->m_nextpkt = NULL;
1152		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1153		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1154		m_cat(m, q);
1155	}
1156#ifdef MAC
1157	mac_create_datagram_from_ipq(fp, m);
1158	mac_destroy_ipq(fp);
1159#endif
1160
1161#ifdef IPDIVERT
1162	/*
1163	 * Extract firewall instructions from the fragment structure.
1164	 */
1165	*divinfo = fp->ipq_div_info;
1166	*divert_rule = fp->ipq_div_cookie;
1167#endif
1168
1169	/*
1170	 * Create header for new ip packet by
1171	 * modifying header of first packet;
1172	 * dequeue and discard fragment reassembly header.
1173	 * Make header visible.
1174	 */
1175	ip->ip_len = next;
1176	ip->ip_src = fp->ipq_src;
1177	ip->ip_dst = fp->ipq_dst;
1178	TAILQ_REMOVE(head, fp, ipq_list);
1179	nipq--;
1180	(void) m_free(dtom(fp));
1181	m->m_len += (ip->ip_hl << 2);
1182	m->m_data -= (ip->ip_hl << 2);
1183	/* some debugging cruft by sklower, below, will go away soon */
1184	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1185		m_fixhdr(m);
1186	return (m);
1187
1188dropfrag:
1189#ifdef IPDIVERT
1190	*divinfo = 0;
1191	*divert_rule = 0;
1192#endif
1193	ipstat.ips_fragdropped++;
1194	if (fp != NULL)
1195		fp->ipq_nfrags--;
1196	m_freem(m);
1197	return (0);
1198
1199#undef GETIP
1200}
1201
1202/*
1203 * Free a fragment reassembly header and all
1204 * associated datagrams.
1205 */
1206static void
1207ip_freef(fhp, fp)
1208	struct ipqhead *fhp;
1209	struct ipq *fp;
1210{
1211	register struct mbuf *q;
1212
1213	IPQ_LOCK_ASSERT();
1214
1215	while (fp->ipq_frags) {
1216		q = fp->ipq_frags;
1217		fp->ipq_frags = q->m_nextpkt;
1218		m_freem(q);
1219	}
1220	TAILQ_REMOVE(fhp, fp, ipq_list);
1221	(void) m_free(dtom(fp));
1222	nipq--;
1223}
1224
1225/*
1226 * IP timer processing;
1227 * if a timer expires on a reassembly
1228 * queue, discard it.
1229 */
1230void
1231ip_slowtimo()
1232{
1233	register struct ipq *fp;
1234	int s = splnet();
1235	int i;
1236
1237	IPQ_LOCK();
1238	for (i = 0; i < IPREASS_NHASH; i++) {
1239		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1240			struct ipq *fpp;
1241
1242			fpp = fp;
1243			fp = TAILQ_NEXT(fp, ipq_list);
1244			if(--fpp->ipq_ttl == 0) {
1245				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1246				ip_freef(&ipq[i], fpp);
1247			}
1248		}
1249	}
1250	/*
1251	 * If we are over the maximum number of fragments
1252	 * (due to the limit being lowered), drain off
1253	 * enough to get down to the new limit.
1254	 */
1255	if (maxnipq >= 0 && nipq > maxnipq) {
1256		for (i = 0; i < IPREASS_NHASH; i++) {
1257			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1258				ipstat.ips_fragdropped +=
1259				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1260				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1261			}
1262		}
1263	}
1264	IPQ_UNLOCK();
1265	ipflow_slowtimo();
1266	splx(s);
1267}
1268
1269/*
1270 * Drain off all datagram fragments.
1271 */
1272void
1273ip_drain()
1274{
1275	int     i;
1276
1277	IPQ_LOCK();
1278	for (i = 0; i < IPREASS_NHASH; i++) {
1279		while(!TAILQ_EMPTY(&ipq[i])) {
1280			ipstat.ips_fragdropped +=
1281			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1282			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1283		}
1284	}
1285	IPQ_UNLOCK();
1286	in_rtqdrain();
1287}
1288
1289/*
1290 * Do option processing on a datagram,
1291 * possibly discarding it if bad options are encountered,
1292 * or forwarding it if source-routed.
1293 * The pass argument is used when operating in the IPSTEALTH
1294 * mode to tell what options to process:
1295 * [LS]SRR (pass 0) or the others (pass 1).
1296 * The reason for as many as two passes is that when doing IPSTEALTH,
1297 * non-routing options should be processed only if the packet is for us.
1298 * Returns 1 if packet has been forwarded/freed,
1299 * 0 if the packet should be processed further.
1300 */
1301static int
1302ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1303{
1304	struct ip *ip = mtod(m, struct ip *);
1305	u_char *cp;
1306	struct in_ifaddr *ia;
1307	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1308	struct in_addr *sin, dst;
1309	n_time ntime;
1310	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1311
1312	dst = ip->ip_dst;
1313	cp = (u_char *)(ip + 1);
1314	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1315	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1316		opt = cp[IPOPT_OPTVAL];
1317		if (opt == IPOPT_EOL)
1318			break;
1319		if (opt == IPOPT_NOP)
1320			optlen = 1;
1321		else {
1322			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1323				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1324				goto bad;
1325			}
1326			optlen = cp[IPOPT_OLEN];
1327			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1328				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1329				goto bad;
1330			}
1331		}
1332		switch (opt) {
1333
1334		default:
1335			break;
1336
1337		/*
1338		 * Source routing with record.
1339		 * Find interface with current destination address.
1340		 * If none on this machine then drop if strictly routed,
1341		 * or do nothing if loosely routed.
1342		 * Record interface address and bring up next address
1343		 * component.  If strictly routed make sure next
1344		 * address is on directly accessible net.
1345		 */
1346		case IPOPT_LSRR:
1347		case IPOPT_SSRR:
1348#ifdef IPSTEALTH
1349			if (ipstealth && pass > 0)
1350				break;
1351#endif
1352			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1353				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1354				goto bad;
1355			}
1356			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1357				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1358				goto bad;
1359			}
1360			ipaddr.sin_addr = ip->ip_dst;
1361			ia = (struct in_ifaddr *)
1362				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1363			if (ia == 0) {
1364				if (opt == IPOPT_SSRR) {
1365					type = ICMP_UNREACH;
1366					code = ICMP_UNREACH_SRCFAIL;
1367					goto bad;
1368				}
1369				if (!ip_dosourceroute)
1370					goto nosourcerouting;
1371				/*
1372				 * Loose routing, and not at next destination
1373				 * yet; nothing to do except forward.
1374				 */
1375				break;
1376			}
1377			off--;			/* 0 origin */
1378			if (off > optlen - (int)sizeof(struct in_addr)) {
1379				/*
1380				 * End of source route.  Should be for us.
1381				 */
1382				if (!ip_acceptsourceroute)
1383					goto nosourcerouting;
1384				save_rte(cp, ip->ip_src);
1385				break;
1386			}
1387#ifdef IPSTEALTH
1388			if (ipstealth)
1389				goto dropit;
1390#endif
1391			if (!ip_dosourceroute) {
1392				if (ipforwarding) {
1393					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1394					/*
1395					 * Acting as a router, so generate ICMP
1396					 */
1397nosourcerouting:
1398					strcpy(buf, inet_ntoa(ip->ip_dst));
1399					log(LOG_WARNING,
1400					    "attempted source route from %s to %s\n",
1401					    inet_ntoa(ip->ip_src), buf);
1402					type = ICMP_UNREACH;
1403					code = ICMP_UNREACH_SRCFAIL;
1404					goto bad;
1405				} else {
1406					/*
1407					 * Not acting as a router, so silently drop.
1408					 */
1409#ifdef IPSTEALTH
1410dropit:
1411#endif
1412					ipstat.ips_cantforward++;
1413					m_freem(m);
1414					return (1);
1415				}
1416			}
1417
1418			/*
1419			 * locate outgoing interface
1420			 */
1421			(void)memcpy(&ipaddr.sin_addr, cp + off,
1422			    sizeof(ipaddr.sin_addr));
1423
1424			if (opt == IPOPT_SSRR) {
1425#define	INA	struct in_ifaddr *
1426#define	SA	struct sockaddr *
1427			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1428				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1429			} else
1430				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1431			if (ia == 0) {
1432				type = ICMP_UNREACH;
1433				code = ICMP_UNREACH_SRCFAIL;
1434				goto bad;
1435			}
1436			ip->ip_dst = ipaddr.sin_addr;
1437			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1438			    sizeof(struct in_addr));
1439			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1440			/*
1441			 * Let ip_intr's mcast routing check handle mcast pkts
1442			 */
1443			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1444			break;
1445
1446		case IPOPT_RR:
1447#ifdef IPSTEALTH
1448			if (ipstealth && pass == 0)
1449				break;
1450#endif
1451			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1452				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1453				goto bad;
1454			}
1455			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1456				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1457				goto bad;
1458			}
1459			/*
1460			 * If no space remains, ignore.
1461			 */
1462			off--;			/* 0 origin */
1463			if (off > optlen - (int)sizeof(struct in_addr))
1464				break;
1465			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1466			    sizeof(ipaddr.sin_addr));
1467			/*
1468			 * locate outgoing interface; if we're the destination,
1469			 * use the incoming interface (should be same).
1470			 */
1471			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1472			    (ia = ip_rtaddr(ipaddr.sin_addr,
1473			    &ipforward_rt)) == 0) {
1474				type = ICMP_UNREACH;
1475				code = ICMP_UNREACH_HOST;
1476				goto bad;
1477			}
1478			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1479			    sizeof(struct in_addr));
1480			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1481			break;
1482
1483		case IPOPT_TS:
1484#ifdef IPSTEALTH
1485			if (ipstealth && pass == 0)
1486				break;
1487#endif
1488			code = cp - (u_char *)ip;
1489			if (optlen < 4 || optlen > 40) {
1490				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1491				goto bad;
1492			}
1493			if ((off = cp[IPOPT_OFFSET]) < 5) {
1494				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1495				goto bad;
1496			}
1497			if (off > optlen - (int)sizeof(int32_t)) {
1498				cp[IPOPT_OFFSET + 1] += (1 << 4);
1499				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1500					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1501					goto bad;
1502				}
1503				break;
1504			}
1505			off--;				/* 0 origin */
1506			sin = (struct in_addr *)(cp + off);
1507			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1508
1509			case IPOPT_TS_TSONLY:
1510				break;
1511
1512			case IPOPT_TS_TSANDADDR:
1513				if (off + sizeof(n_time) +
1514				    sizeof(struct in_addr) > optlen) {
1515					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1516					goto bad;
1517				}
1518				ipaddr.sin_addr = dst;
1519				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1520							    m->m_pkthdr.rcvif);
1521				if (ia == 0)
1522					continue;
1523				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1524				    sizeof(struct in_addr));
1525				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1526				off += sizeof(struct in_addr);
1527				break;
1528
1529			case IPOPT_TS_PRESPEC:
1530				if (off + sizeof(n_time) +
1531				    sizeof(struct in_addr) > optlen) {
1532					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1533					goto bad;
1534				}
1535				(void)memcpy(&ipaddr.sin_addr, sin,
1536				    sizeof(struct in_addr));
1537				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1538					continue;
1539				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1540				off += sizeof(struct in_addr);
1541				break;
1542
1543			default:
1544				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1545				goto bad;
1546			}
1547			ntime = iptime();
1548			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1549			cp[IPOPT_OFFSET] += sizeof(n_time);
1550		}
1551	}
1552	if (forward && ipforwarding) {
1553		ip_forward(m, 1, next_hop);
1554		return (1);
1555	}
1556	return (0);
1557bad:
1558	icmp_error(m, type, code, 0, 0);
1559	ipstat.ips_badoptions++;
1560	return (1);
1561}
1562
1563/*
1564 * Given address of next destination (final or next hop),
1565 * return internet address info of interface to be used to get there.
1566 */
1567struct in_ifaddr *
1568ip_rtaddr(dst, rt)
1569	struct in_addr dst;
1570	struct route *rt;
1571{
1572	register struct sockaddr_in *sin;
1573
1574	sin = (struct sockaddr_in *)&rt->ro_dst;
1575
1576	if (rt->ro_rt == 0 ||
1577	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1578	    dst.s_addr != sin->sin_addr.s_addr) {
1579		if (rt->ro_rt) {
1580			RTFREE(rt->ro_rt);
1581			rt->ro_rt = 0;
1582		}
1583		sin->sin_family = AF_INET;
1584		sin->sin_len = sizeof(*sin);
1585		sin->sin_addr = dst;
1586
1587		rtalloc_ign(rt, RTF_PRCLONING);
1588	}
1589	if (rt->ro_rt == 0)
1590		return ((struct in_ifaddr *)0);
1591	return (ifatoia(rt->ro_rt->rt_ifa));
1592}
1593
1594/*
1595 * Save incoming source route for use in replies,
1596 * to be picked up later by ip_srcroute if the receiver is interested.
1597 */
1598static void
1599save_rte(option, dst)
1600	u_char *option;
1601	struct in_addr dst;
1602{
1603	unsigned olen;
1604
1605	olen = option[IPOPT_OLEN];
1606#ifdef DIAGNOSTIC
1607	if (ipprintfs)
1608		printf("save_rte: olen %d\n", olen);
1609#endif
1610	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1611		return;
1612	bcopy(option, ip_srcrt.srcopt, olen);
1613	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1614	ip_srcrt.dst = dst;
1615}
1616
1617/*
1618 * Retrieve incoming source route for use in replies,
1619 * in the same form used by setsockopt.
1620 * The first hop is placed before the options, will be removed later.
1621 */
1622struct mbuf *
1623ip_srcroute()
1624{
1625	register struct in_addr *p, *q;
1626	register struct mbuf *m;
1627
1628	if (ip_nhops == 0)
1629		return ((struct mbuf *)0);
1630	m = m_get(M_DONTWAIT, MT_HEADER);
1631	if (m == 0)
1632		return ((struct mbuf *)0);
1633
1634#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1635
1636	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1637	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1638	    OPTSIZ;
1639#ifdef DIAGNOSTIC
1640	if (ipprintfs)
1641		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1642#endif
1643
1644	/*
1645	 * First save first hop for return route
1646	 */
1647	p = &ip_srcrt.route[ip_nhops - 1];
1648	*(mtod(m, struct in_addr *)) = *p--;
1649#ifdef DIAGNOSTIC
1650	if (ipprintfs)
1651		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1652#endif
1653
1654	/*
1655	 * Copy option fields and padding (nop) to mbuf.
1656	 */
1657	ip_srcrt.nop = IPOPT_NOP;
1658	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1659	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1660	    &ip_srcrt.nop, OPTSIZ);
1661	q = (struct in_addr *)(mtod(m, caddr_t) +
1662	    sizeof(struct in_addr) + OPTSIZ);
1663#undef OPTSIZ
1664	/*
1665	 * Record return path as an IP source route,
1666	 * reversing the path (pointers are now aligned).
1667	 */
1668	while (p >= ip_srcrt.route) {
1669#ifdef DIAGNOSTIC
1670		if (ipprintfs)
1671			printf(" %lx", (u_long)ntohl(q->s_addr));
1672#endif
1673		*q++ = *p--;
1674	}
1675	/*
1676	 * Last hop goes to final destination.
1677	 */
1678	*q = ip_srcrt.dst;
1679#ifdef DIAGNOSTIC
1680	if (ipprintfs)
1681		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1682#endif
1683	return (m);
1684}
1685
1686/*
1687 * Strip out IP options, at higher
1688 * level protocol in the kernel.
1689 * Second argument is buffer to which options
1690 * will be moved, and return value is their length.
1691 * XXX should be deleted; last arg currently ignored.
1692 */
1693void
1694ip_stripoptions(m, mopt)
1695	register struct mbuf *m;
1696	struct mbuf *mopt;
1697{
1698	register int i;
1699	struct ip *ip = mtod(m, struct ip *);
1700	register caddr_t opts;
1701	int olen;
1702
1703	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1704	opts = (caddr_t)(ip + 1);
1705	i = m->m_len - (sizeof (struct ip) + olen);
1706	bcopy(opts + olen, opts, (unsigned)i);
1707	m->m_len -= olen;
1708	if (m->m_flags & M_PKTHDR)
1709		m->m_pkthdr.len -= olen;
1710	ip->ip_v = IPVERSION;
1711	ip->ip_hl = sizeof(struct ip) >> 2;
1712}
1713
1714u_char inetctlerrmap[PRC_NCMDS] = {
1715	0,		0,		0,		0,
1716	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1717	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1718	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1719	0,		0,		EHOSTUNREACH,	0,
1720	ENOPROTOOPT,	ECONNREFUSED
1721};
1722
1723/*
1724 * Forward a packet.  If some error occurs return the sender
1725 * an icmp packet.  Note we can't always generate a meaningful
1726 * icmp message because icmp doesn't have a large enough repertoire
1727 * of codes and types.
1728 *
1729 * If not forwarding, just drop the packet.  This could be confusing
1730 * if ipforwarding was zero but some routing protocol was advancing
1731 * us as a gateway to somewhere.  However, we must let the routing
1732 * protocol deal with that.
1733 *
1734 * The srcrt parameter indicates whether the packet is being forwarded
1735 * via a source route.
1736 */
1737static void
1738ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1739{
1740	struct ip *ip = mtod(m, struct ip *);
1741	struct rtentry *rt;
1742	int error, type = 0, code = 0;
1743	struct mbuf *mcopy;
1744	n_long dest;
1745	struct in_addr pkt_dst;
1746	struct ifnet *destifp;
1747#if defined(IPSEC) || defined(FAST_IPSEC)
1748	struct ifnet dummyifp;
1749#endif
1750
1751	dest = 0;
1752	/*
1753	 * Cache the destination address of the packet; this may be
1754	 * changed by use of 'ipfw fwd'.
1755	 */
1756	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1757
1758#ifdef DIAGNOSTIC
1759	if (ipprintfs)
1760		printf("forward: src %lx dst %lx ttl %x\n",
1761		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1762		    ip->ip_ttl);
1763#endif
1764
1765
1766	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1767		ipstat.ips_cantforward++;
1768		m_freem(m);
1769		return;
1770	}
1771#ifdef IPSTEALTH
1772	if (!ipstealth) {
1773#endif
1774		if (ip->ip_ttl <= IPTTLDEC) {
1775			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1776			    dest, 0);
1777			return;
1778		}
1779#ifdef IPSTEALTH
1780	}
1781#endif
1782
1783	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1784		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1785		return;
1786	} else
1787		rt = ipforward_rt.ro_rt;
1788
1789	/*
1790	 * Save the IP header and at most 8 bytes of the payload,
1791	 * in case we need to generate an ICMP message to the src.
1792	 *
1793	 * XXX this can be optimized a lot by saving the data in a local
1794	 * buffer on the stack (72 bytes at most), and only allocating the
1795	 * mbuf if really necessary. The vast majority of the packets
1796	 * are forwarded without having to send an ICMP back (either
1797	 * because unnecessary, or because rate limited), so we are
1798	 * really we are wasting a lot of work here.
1799	 *
1800	 * We don't use m_copy() because it might return a reference
1801	 * to a shared cluster. Both this function and ip_output()
1802	 * assume exclusive access to the IP header in `m', so any
1803	 * data in a cluster may change before we reach icmp_error().
1804	 */
1805	MGET(mcopy, M_DONTWAIT, m->m_type);
1806	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1807		/*
1808		 * It's probably ok if the pkthdr dup fails (because
1809		 * the deep copy of the tag chain failed), but for now
1810		 * be conservative and just discard the copy since
1811		 * code below may some day want the tags.
1812		 */
1813		m_free(mcopy);
1814		mcopy = NULL;
1815	}
1816	if (mcopy != NULL) {
1817		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1818		    (int)ip->ip_len);
1819		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1820		/*
1821		 * XXXMAC: Eventually, we may have an explict labeling
1822		 * point here.
1823		 */
1824	}
1825
1826#ifdef IPSTEALTH
1827	if (!ipstealth) {
1828#endif
1829		ip->ip_ttl -= IPTTLDEC;
1830#ifdef IPSTEALTH
1831	}
1832#endif
1833
1834	/*
1835	 * If forwarding packet using same interface that it came in on,
1836	 * perhaps should send a redirect to sender to shortcut a hop.
1837	 * Only send redirect if source is sending directly to us,
1838	 * and if packet was not source routed (or has any options).
1839	 * Also, don't send redirect if forwarding using a default route
1840	 * or a route modified by a redirect.
1841	 */
1842	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1843	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1844	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1845	    ipsendredirects && !srcrt && !next_hop) {
1846#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1847		u_long src = ntohl(ip->ip_src.s_addr);
1848
1849		if (RTA(rt) &&
1850		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1851		    if (rt->rt_flags & RTF_GATEWAY)
1852			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1853		    else
1854			dest = pkt_dst.s_addr;
1855		    /* Router requirements says to only send host redirects */
1856		    type = ICMP_REDIRECT;
1857		    code = ICMP_REDIRECT_HOST;
1858#ifdef DIAGNOSTIC
1859		    if (ipprintfs)
1860		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1861#endif
1862		}
1863	}
1864
1865    {
1866	struct m_hdr tag;
1867
1868	if (next_hop) {
1869		/* Pass IPFORWARD info if available */
1870
1871		tag.mh_type = MT_TAG;
1872		tag.mh_flags = PACKET_TAG_IPFORWARD;
1873		tag.mh_data = (caddr_t)next_hop;
1874		tag.mh_next = m;
1875		m = (struct mbuf *)&tag;
1876	}
1877	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1878			  IP_FORWARDING, 0, NULL);
1879    }
1880	if (error)
1881		ipstat.ips_cantforward++;
1882	else {
1883		ipstat.ips_forward++;
1884		if (type)
1885			ipstat.ips_redirectsent++;
1886		else {
1887			if (mcopy) {
1888				ipflow_create(&ipforward_rt, mcopy);
1889				m_freem(mcopy);
1890			}
1891			return;
1892		}
1893	}
1894	if (mcopy == NULL)
1895		return;
1896	destifp = NULL;
1897
1898	switch (error) {
1899
1900	case 0:				/* forwarded, but need redirect */
1901		/* type, code set above */
1902		break;
1903
1904	case ENETUNREACH:		/* shouldn't happen, checked above */
1905	case EHOSTUNREACH:
1906	case ENETDOWN:
1907	case EHOSTDOWN:
1908	default:
1909		type = ICMP_UNREACH;
1910		code = ICMP_UNREACH_HOST;
1911		break;
1912
1913	case EMSGSIZE:
1914		type = ICMP_UNREACH;
1915		code = ICMP_UNREACH_NEEDFRAG;
1916#ifdef IPSEC
1917		/*
1918		 * If the packet is routed over IPsec tunnel, tell the
1919		 * originator the tunnel MTU.
1920		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1921		 * XXX quickhack!!!
1922		 */
1923		if (ipforward_rt.ro_rt) {
1924			struct secpolicy *sp = NULL;
1925			int ipsecerror;
1926			int ipsechdr;
1927			struct route *ro;
1928
1929			sp = ipsec4_getpolicybyaddr(mcopy,
1930						    IPSEC_DIR_OUTBOUND,
1931			                            IP_FORWARDING,
1932			                            &ipsecerror);
1933
1934			if (sp == NULL)
1935				destifp = ipforward_rt.ro_rt->rt_ifp;
1936			else {
1937				/* count IPsec header size */
1938				ipsechdr = ipsec4_hdrsiz(mcopy,
1939							 IPSEC_DIR_OUTBOUND,
1940							 NULL);
1941
1942				/*
1943				 * find the correct route for outer IPv4
1944				 * header, compute tunnel MTU.
1945				 *
1946				 * XXX BUG ALERT
1947				 * The "dummyifp" code relies upon the fact
1948				 * that icmp_error() touches only ifp->if_mtu.
1949				 */
1950				/*XXX*/
1951				destifp = NULL;
1952				if (sp->req != NULL
1953				 && sp->req->sav != NULL
1954				 && sp->req->sav->sah != NULL) {
1955					ro = &sp->req->sav->sah->sa_route;
1956					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1957						dummyifp.if_mtu =
1958						    ro->ro_rt->rt_ifp->if_mtu;
1959						dummyifp.if_mtu -= ipsechdr;
1960						destifp = &dummyifp;
1961					}
1962				}
1963
1964				key_freesp(sp);
1965			}
1966		}
1967#elif FAST_IPSEC
1968		/*
1969		 * If the packet is routed over IPsec tunnel, tell the
1970		 * originator the tunnel MTU.
1971		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1972		 * XXX quickhack!!!
1973		 */
1974		if (ipforward_rt.ro_rt) {
1975			struct secpolicy *sp = NULL;
1976			int ipsecerror;
1977			int ipsechdr;
1978			struct route *ro;
1979
1980			sp = ipsec_getpolicybyaddr(mcopy,
1981						   IPSEC_DIR_OUTBOUND,
1982			                           IP_FORWARDING,
1983			                           &ipsecerror);
1984
1985			if (sp == NULL)
1986				destifp = ipforward_rt.ro_rt->rt_ifp;
1987			else {
1988				/* count IPsec header size */
1989				ipsechdr = ipsec4_hdrsiz(mcopy,
1990							 IPSEC_DIR_OUTBOUND,
1991							 NULL);
1992
1993				/*
1994				 * find the correct route for outer IPv4
1995				 * header, compute tunnel MTU.
1996				 *
1997				 * XXX BUG ALERT
1998				 * The "dummyifp" code relies upon the fact
1999				 * that icmp_error() touches only ifp->if_mtu.
2000				 */
2001				/*XXX*/
2002				destifp = NULL;
2003				if (sp->req != NULL
2004				 && sp->req->sav != NULL
2005				 && sp->req->sav->sah != NULL) {
2006					ro = &sp->req->sav->sah->sa_route;
2007					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
2008						dummyifp.if_mtu =
2009						    ro->ro_rt->rt_ifp->if_mtu;
2010						dummyifp.if_mtu -= ipsechdr;
2011						destifp = &dummyifp;
2012					}
2013				}
2014
2015				KEY_FREESP(&sp);
2016			}
2017		}
2018#else /* !IPSEC && !FAST_IPSEC */
2019		if (ipforward_rt.ro_rt)
2020			destifp = ipforward_rt.ro_rt->rt_ifp;
2021#endif /*IPSEC*/
2022		ipstat.ips_cantfrag++;
2023		break;
2024
2025	case ENOBUFS:
2026		/*
2027		 * A router should not generate ICMP_SOURCEQUENCH as
2028		 * required in RFC1812 Requirements for IP Version 4 Routers.
2029		 * Source quench could be a big problem under DoS attacks,
2030		 * or if the underlying interface is rate-limited.
2031		 * Those who need source quench packets may re-enable them
2032		 * via the net.inet.ip.sendsourcequench sysctl.
2033		 */
2034		if (ip_sendsourcequench == 0) {
2035			m_freem(mcopy);
2036			return;
2037		} else {
2038			type = ICMP_SOURCEQUENCH;
2039			code = 0;
2040		}
2041		break;
2042
2043	case EACCES:			/* ipfw denied packet */
2044		m_freem(mcopy);
2045		return;
2046	}
2047	icmp_error(mcopy, type, code, dest, destifp);
2048}
2049
2050void
2051ip_savecontrol(inp, mp, ip, m)
2052	register struct inpcb *inp;
2053	register struct mbuf **mp;
2054	register struct ip *ip;
2055	register struct mbuf *m;
2056{
2057	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2058		struct timeval tv;
2059
2060		microtime(&tv);
2061		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2062			SCM_TIMESTAMP, SOL_SOCKET);
2063		if (*mp)
2064			mp = &(*mp)->m_next;
2065	}
2066	if (inp->inp_flags & INP_RECVDSTADDR) {
2067		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2068		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2069		if (*mp)
2070			mp = &(*mp)->m_next;
2071	}
2072	if (inp->inp_flags & INP_RECVTTL) {
2073		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2074		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2075		if (*mp)
2076			mp = &(*mp)->m_next;
2077	}
2078#ifdef notyet
2079	/* XXX
2080	 * Moving these out of udp_input() made them even more broken
2081	 * than they already were.
2082	 */
2083	/* options were tossed already */
2084	if (inp->inp_flags & INP_RECVOPTS) {
2085		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2086		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2087		if (*mp)
2088			mp = &(*mp)->m_next;
2089	}
2090	/* ip_srcroute doesn't do what we want here, need to fix */
2091	if (inp->inp_flags & INP_RECVRETOPTS) {
2092		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2093		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2094		if (*mp)
2095			mp = &(*mp)->m_next;
2096	}
2097#endif
2098	if (inp->inp_flags & INP_RECVIF) {
2099		struct ifnet *ifp;
2100		struct sdlbuf {
2101			struct sockaddr_dl sdl;
2102			u_char	pad[32];
2103		} sdlbuf;
2104		struct sockaddr_dl *sdp;
2105		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2106
2107		if (((ifp = m->m_pkthdr.rcvif))
2108		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2109			sdp = (struct sockaddr_dl *)
2110			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2111			/*
2112			 * Change our mind and don't try copy.
2113			 */
2114			if ((sdp->sdl_family != AF_LINK)
2115			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2116				goto makedummy;
2117			}
2118			bcopy(sdp, sdl2, sdp->sdl_len);
2119		} else {
2120makedummy:
2121			sdl2->sdl_len
2122				= offsetof(struct sockaddr_dl, sdl_data[0]);
2123			sdl2->sdl_family = AF_LINK;
2124			sdl2->sdl_index = 0;
2125			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2126		}
2127		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2128			IP_RECVIF, IPPROTO_IP);
2129		if (*mp)
2130			mp = &(*mp)->m_next;
2131	}
2132}
2133
2134/*
2135 * XXX these routines are called from the upper part of the kernel.
2136 * They need to be locked when we remove Giant.
2137 *
2138 * They could also be moved to ip_mroute.c, since all the RSVP
2139 *  handling is done there already.
2140 */
2141static int ip_rsvp_on;
2142struct socket *ip_rsvpd;
2143int
2144ip_rsvp_init(struct socket *so)
2145{
2146	if (so->so_type != SOCK_RAW ||
2147	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2148		return EOPNOTSUPP;
2149
2150	if (ip_rsvpd != NULL)
2151		return EADDRINUSE;
2152
2153	ip_rsvpd = so;
2154	/*
2155	 * This may seem silly, but we need to be sure we don't over-increment
2156	 * the RSVP counter, in case something slips up.
2157	 */
2158	if (!ip_rsvp_on) {
2159		ip_rsvp_on = 1;
2160		rsvp_on++;
2161	}
2162
2163	return 0;
2164}
2165
2166int
2167ip_rsvp_done(void)
2168{
2169	ip_rsvpd = NULL;
2170	/*
2171	 * This may seem silly, but we need to be sure we don't over-decrement
2172	 * the RSVP counter, in case something slips up.
2173	 */
2174	if (ip_rsvp_on) {
2175		ip_rsvp_on = 0;
2176		rsvp_on--;
2177	}
2178	return 0;
2179}
2180
2181void
2182rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2183{
2184	if (rsvp_input_p) { /* call the real one if loaded */
2185		rsvp_input_p(m, off);
2186		return;
2187	}
2188
2189	/* Can still get packets with rsvp_on = 0 if there is a local member
2190	 * of the group to which the RSVP packet is addressed.  But in this
2191	 * case we want to throw the packet away.
2192	 */
2193
2194	if (!rsvp_on) {
2195		m_freem(m);
2196		return;
2197	}
2198
2199	if (ip_rsvpd != NULL) {
2200		rip_input(m, off);
2201		return;
2202	}
2203	/* Drop the packet */
2204	m_freem(m);
2205}
2206