ip_reass.c revision 117897
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/netinet/ip_input.c 117897 2003-07-22 18:58:34Z sam $
35 */
36
37#include "opt_bootp.h"
38#include "opt_ipfw.h"
39#include "opt_ipdn.h"
40#include "opt_ipdivert.h"
41#include "opt_ipfilter.h"
42#include "opt_ipstealth.h"
43#include "opt_ipsec.h"
44#include "opt_mac.h"
45#include "opt_pfil_hooks.h"
46#include "opt_random_ip_id.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/mac.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/domain.h>
54#include <sys/protosw.h>
55#include <sys/socket.h>
56#include <sys/time.h>
57#include <sys/kernel.h>
58#include <sys/syslog.h>
59#include <sys/sysctl.h>
60
61#include <net/pfil.h>
62#include <net/if.h>
63#include <net/if_types.h>
64#include <net/if_var.h>
65#include <net/if_dl.h>
66#include <net/route.h>
67#include <net/netisr.h>
68
69#include <netinet/in.h>
70#include <netinet/in_systm.h>
71#include <netinet/in_var.h>
72#include <netinet/ip.h>
73#include <netinet/in_pcb.h>
74#include <netinet/ip_var.h>
75#include <netinet/ip_icmp.h>
76#include <machine/in_cksum.h>
77
78#include <sys/socketvar.h>
79
80#include <netinet/ip_fw.h>
81#include <netinet/ip_dummynet.h>
82
83#ifdef IPSEC
84#include <netinet6/ipsec.h>
85#include <netkey/key.h>
86#endif
87
88#ifdef FAST_IPSEC
89#include <netipsec/ipsec.h>
90#include <netipsec/key.h>
91#endif
92
93int rsvp_on = 0;
94
95int	ipforwarding = 0;
96SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
97    &ipforwarding, 0, "Enable IP forwarding between interfaces");
98
99static int	ipsendredirects = 1; /* XXX */
100SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
101    &ipsendredirects, 0, "Enable sending IP redirects");
102
103int	ip_defttl = IPDEFTTL;
104SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
105    &ip_defttl, 0, "Maximum TTL on IP packets");
106
107static int	ip_dosourceroute = 0;
108SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
109    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
110
111static int	ip_acceptsourceroute = 0;
112SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
113    CTLFLAG_RW, &ip_acceptsourceroute, 0,
114    "Enable accepting source routed IP packets");
115
116static int	ip_keepfaith = 0;
117SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
118	&ip_keepfaith,	0,
119	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
120
121static int    nipq = 0;         /* total # of reass queues */
122static int    maxnipq;
123SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
124	&maxnipq, 0,
125	"Maximum number of IPv4 fragment reassembly queue entries");
126
127static int    maxfragsperpacket;
128SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
129	&maxfragsperpacket, 0,
130	"Maximum number of IPv4 fragments allowed per packet");
131
132static int	ip_sendsourcequench = 0;
133SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
134	&ip_sendsourcequench, 0,
135	"Enable the transmission of source quench packets");
136
137/*
138 * XXX - Setting ip_checkinterface mostly implements the receive side of
139 * the Strong ES model described in RFC 1122, but since the routing table
140 * and transmit implementation do not implement the Strong ES model,
141 * setting this to 1 results in an odd hybrid.
142 *
143 * XXX - ip_checkinterface currently must be disabled if you use ipnat
144 * to translate the destination address to another local interface.
145 *
146 * XXX - ip_checkinterface must be disabled if you add IP aliases
147 * to the loopback interface instead of the interface where the
148 * packets for those addresses are received.
149 */
150static int	ip_checkinterface = 1;
151SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
152    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
153
154#ifdef DIAGNOSTIC
155static int	ipprintfs = 0;
156#endif
157
158static struct	ifqueue ipintrq;
159static int	ipqmaxlen = IFQ_MAXLEN;
160
161extern	struct domain inetdomain;
162extern	struct protosw inetsw[];
163u_char	ip_protox[IPPROTO_MAX];
164struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
165struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
166u_long 	in_ifaddrhmask;				/* mask for hash table */
167
168SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
169    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
170SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
171    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
172
173struct ipstat ipstat;
174SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
175    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
176
177/* Packet reassembly stuff */
178#define IPREASS_NHASH_LOG2      6
179#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
180#define IPREASS_HMASK           (IPREASS_NHASH - 1)
181#define IPREASS_HASH(x,y) \
182	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
183
184static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
185
186#ifdef IPCTL_DEFMTU
187SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
188    &ip_mtu, 0, "Default MTU");
189#endif
190
191#ifdef IPSTEALTH
192static int	ipstealth = 0;
193SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
194    &ipstealth, 0, "");
195#endif
196
197
198/* Firewall hooks */
199ip_fw_chk_t *ip_fw_chk_ptr;
200int fw_enable = 1 ;
201int fw_one_pass = 1;
202
203/* Dummynet hooks */
204ip_dn_io_t *ip_dn_io_ptr;
205
206
207/*
208 * XXX this is ugly -- the following two global variables are
209 * used to store packet state while it travels through the stack.
210 * Note that the code even makes assumptions on the size and
211 * alignment of fields inside struct ip_srcrt so e.g. adding some
212 * fields will break the code. This needs to be fixed.
213 *
214 * We need to save the IP options in case a protocol wants to respond
215 * to an incoming packet over the same route if the packet got here
216 * using IP source routing.  This allows connection establishment and
217 * maintenance when the remote end is on a network that is not known
218 * to us.
219 */
220static int	ip_nhops = 0;
221static	struct ip_srcrt {
222	struct	in_addr dst;			/* final destination */
223	char	nop;				/* one NOP to align */
224	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
225	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
226} ip_srcrt;
227
228static void	save_rte(u_char *, struct in_addr);
229static int	ip_dooptions(struct mbuf *m, int,
230			struct sockaddr_in *next_hop);
231static void	ip_forward(struct mbuf *m, int srcrt,
232			struct sockaddr_in *next_hop);
233static void	ip_freef(struct ipqhead *, struct ipq *);
234static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
235		struct ipq *, u_int32_t *, u_int16_t *);
236
237/*
238 * IP initialization: fill in IP protocol switch table.
239 * All protocols not implemented in kernel go to raw IP protocol handler.
240 */
241void
242ip_init()
243{
244	register struct protosw *pr;
245	register int i;
246
247	TAILQ_INIT(&in_ifaddrhead);
248	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
249	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
250	if (pr == 0)
251		panic("ip_init");
252	for (i = 0; i < IPPROTO_MAX; i++)
253		ip_protox[i] = pr - inetsw;
254	for (pr = inetdomain.dom_protosw;
255	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
256		if (pr->pr_domain->dom_family == PF_INET &&
257		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
258			ip_protox[pr->pr_protocol] = pr - inetsw;
259
260	for (i = 0; i < IPREASS_NHASH; i++)
261	    TAILQ_INIT(&ipq[i]);
262
263	maxnipq = nmbclusters / 32;
264	maxfragsperpacket = 16;
265
266#ifndef RANDOM_IP_ID
267	ip_id = time_second & 0xffff;
268#endif
269	ipintrq.ifq_maxlen = ipqmaxlen;
270	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
271	netisr_register(NETISR_IP, ip_input, &ipintrq);
272}
273
274/*
275 * XXX watch out this one. It is perhaps used as a cache for
276 * the most recently used route ? it is cleared in in_addroute()
277 * when a new route is successfully created.
278 */
279struct	route ipforward_rt;
280
281/*
282 * Ip input routine.  Checksum and byte swap header.  If fragmented
283 * try to reassemble.  Process options.  Pass to next level.
284 */
285void
286ip_input(struct mbuf *m)
287{
288	struct ip *ip;
289	struct ipq *fp;
290	struct in_ifaddr *ia = NULL;
291	struct ifaddr *ifa;
292	int    i, hlen, checkif;
293	u_short sum;
294	struct in_addr pkt_dst;
295	u_int32_t divert_info = 0;		/* packet divert/tee info */
296	struct ip_fw_args args;
297#ifdef PFIL_HOOKS
298	struct packet_filter_hook *pfh;
299	struct mbuf *m0;
300	int rv;
301#endif /* PFIL_HOOKS */
302#ifdef FAST_IPSEC
303	struct m_tag *mtag;
304	struct tdb_ident *tdbi;
305	struct secpolicy *sp;
306	int s, error;
307#endif /* FAST_IPSEC */
308
309	args.eh = NULL;
310	args.oif = NULL;
311	args.rule = NULL;
312	args.divert_rule = 0;			/* divert cookie */
313	args.next_hop = NULL;
314
315	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
316	for (; m && m->m_type == MT_TAG; m = m->m_next) {
317		switch(m->_m_tag_id) {
318		default:
319			printf("ip_input: unrecognised MT_TAG tag %d\n",
320			    m->_m_tag_id);
321			break;
322
323		case PACKET_TAG_DUMMYNET:
324			args.rule = ((struct dn_pkt *)m)->rule;
325			break;
326
327		case PACKET_TAG_DIVERT:
328			args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
329			break;
330
331		case PACKET_TAG_IPFORWARD:
332			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
333			break;
334		}
335	}
336
337	M_ASSERTPKTHDR(m);
338
339	if (args.rule) {	/* dummynet already filtered us */
340		ip = mtod(m, struct ip *);
341		hlen = ip->ip_hl << 2;
342		goto iphack ;
343	}
344
345	ipstat.ips_total++;
346
347	if (m->m_pkthdr.len < sizeof(struct ip))
348		goto tooshort;
349
350	if (m->m_len < sizeof (struct ip) &&
351	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
352		ipstat.ips_toosmall++;
353		return;
354	}
355	ip = mtod(m, struct ip *);
356
357	if (ip->ip_v != IPVERSION) {
358		ipstat.ips_badvers++;
359		goto bad;
360	}
361
362	hlen = ip->ip_hl << 2;
363	if (hlen < sizeof(struct ip)) {	/* minimum header length */
364		ipstat.ips_badhlen++;
365		goto bad;
366	}
367	if (hlen > m->m_len) {
368		if ((m = m_pullup(m, hlen)) == 0) {
369			ipstat.ips_badhlen++;
370			return;
371		}
372		ip = mtod(m, struct ip *);
373	}
374
375	/* 127/8 must not appear on wire - RFC1122 */
376	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
377	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
378		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
379			ipstat.ips_badaddr++;
380			goto bad;
381		}
382	}
383
384	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
385		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
386	} else {
387		if (hlen == sizeof(struct ip)) {
388			sum = in_cksum_hdr(ip);
389		} else {
390			sum = in_cksum(m, hlen);
391		}
392	}
393	if (sum) {
394		ipstat.ips_badsum++;
395		goto bad;
396	}
397
398	/*
399	 * Convert fields to host representation.
400	 */
401	ip->ip_len = ntohs(ip->ip_len);
402	if (ip->ip_len < hlen) {
403		ipstat.ips_badlen++;
404		goto bad;
405	}
406	ip->ip_off = ntohs(ip->ip_off);
407
408	/*
409	 * Check that the amount of data in the buffers
410	 * is as at least much as the IP header would have us expect.
411	 * Trim mbufs if longer than we expect.
412	 * Drop packet if shorter than we expect.
413	 */
414	if (m->m_pkthdr.len < ip->ip_len) {
415tooshort:
416		ipstat.ips_tooshort++;
417		goto bad;
418	}
419	if (m->m_pkthdr.len > ip->ip_len) {
420		if (m->m_len == m->m_pkthdr.len) {
421			m->m_len = ip->ip_len;
422			m->m_pkthdr.len = ip->ip_len;
423		} else
424			m_adj(m, ip->ip_len - m->m_pkthdr.len);
425	}
426#if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
427	/*
428	 * Bypass packet filtering for packets from a tunnel (gif).
429	 */
430	if (ipsec_gethist(m, NULL))
431		goto pass;
432#endif
433#if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
434	/*
435	 * Bypass packet filtering for packets from a tunnel (gif).
436	 */
437	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
438		goto pass;
439#endif
440
441	/*
442	 * IpHack's section.
443	 * Right now when no processing on packet has done
444	 * and it is still fresh out of network we do our black
445	 * deals with it.
446	 * - Firewall: deny/allow/divert
447	 * - Xlate: translate packet's addr/port (NAT).
448	 * - Pipe: pass pkt through dummynet.
449	 * - Wrap: fake packet's addr/port <unimpl.>
450	 * - Encapsulate: put it in another IP and send out. <unimp.>
451 	 */
452
453iphack:
454
455#ifdef PFIL_HOOKS
456	/*
457	 * Run through list of hooks for input packets.  If there are any
458	 * filters which require that additional packets in the flow are
459	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
460	 * Note that filters must _never_ set this flag, as another filter
461	 * in the list may have previously cleared it.
462	 */
463	m0 = m;
464	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
465	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
466		if (pfh->pfil_func) {
467			rv = pfh->pfil_func(ip, hlen,
468					    m->m_pkthdr.rcvif, 0, &m0);
469			if (rv)
470				return;
471			m = m0;
472			if (m == NULL)
473				return;
474			ip = mtod(m, struct ip *);
475		}
476#endif /* PFIL_HOOKS */
477
478	if (fw_enable && IPFW_LOADED) {
479		/*
480		 * If we've been forwarded from the output side, then
481		 * skip the firewall a second time
482		 */
483		if (args.next_hop)
484			goto ours;
485
486		args.m = m;
487		i = ip_fw_chk_ptr(&args);
488		m = args.m;
489
490		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
491			if (m)
492				m_freem(m);
493			return;
494		}
495		ip = mtod(m, struct ip *); /* just in case m changed */
496		if (i == 0 && args.next_hop == NULL)	/* common case */
497			goto pass;
498                if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
499			/* Send packet to the appropriate pipe */
500			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
501			return;
502		}
503#ifdef IPDIVERT
504		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
505			/* Divert or tee packet */
506			divert_info = i;
507			goto ours;
508		}
509#endif
510		if (i == 0 && args.next_hop != NULL)
511			goto pass;
512		/*
513		 * if we get here, the packet must be dropped
514		 */
515		m_freem(m);
516		return;
517	}
518pass:
519
520	/*
521	 * Process options and, if not destined for us,
522	 * ship it on.  ip_dooptions returns 1 when an
523	 * error was detected (causing an icmp message
524	 * to be sent and the original packet to be freed).
525	 */
526	ip_nhops = 0;		/* for source routed packets */
527	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
528		return;
529
530        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
531         * matter if it is destined to another node, or whether it is
532         * a multicast one, RSVP wants it! and prevents it from being forwarded
533         * anywhere else. Also checks if the rsvp daemon is running before
534	 * grabbing the packet.
535         */
536	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
537		goto ours;
538
539	/*
540	 * Check our list of addresses, to see if the packet is for us.
541	 * If we don't have any addresses, assume any unicast packet
542	 * we receive might be for us (and let the upper layers deal
543	 * with it).
544	 */
545	if (TAILQ_EMPTY(&in_ifaddrhead) &&
546	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
547		goto ours;
548
549	/*
550	 * Cache the destination address of the packet; this may be
551	 * changed by use of 'ipfw fwd'.
552	 */
553	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
554
555	/*
556	 * Enable a consistency check between the destination address
557	 * and the arrival interface for a unicast packet (the RFC 1122
558	 * strong ES model) if IP forwarding is disabled and the packet
559	 * is not locally generated and the packet is not subject to
560	 * 'ipfw fwd'.
561	 *
562	 * XXX - Checking also should be disabled if the destination
563	 * address is ipnat'ed to a different interface.
564	 *
565	 * XXX - Checking is incompatible with IP aliases added
566	 * to the loopback interface instead of the interface where
567	 * the packets are received.
568	 */
569	checkif = ip_checkinterface && (ipforwarding == 0) &&
570	    m->m_pkthdr.rcvif != NULL &&
571	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
572	    (args.next_hop == NULL);
573
574	/*
575	 * Check for exact addresses in the hash bucket.
576	 */
577	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
578		/*
579		 * If the address matches, verify that the packet
580		 * arrived via the correct interface if checking is
581		 * enabled.
582		 */
583		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
584		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
585			goto ours;
586	}
587	/*
588	 * Check for broadcast addresses.
589	 *
590	 * Only accept broadcast packets that arrive via the matching
591	 * interface.  Reception of forwarded directed broadcasts would
592	 * be handled via ip_forward() and ether_output() with the loopback
593	 * into the stack for SIMPLEX interfaces handled by ether_output().
594	 */
595	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
596	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
597			if (ifa->ifa_addr->sa_family != AF_INET)
598				continue;
599			ia = ifatoia(ifa);
600			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
601			    pkt_dst.s_addr)
602				goto ours;
603			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
604				goto ours;
605#ifdef BOOTP_COMPAT
606			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
607				goto ours;
608#endif
609		}
610	}
611	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
612		struct in_multi *inm;
613		if (ip_mrouter) {
614			/*
615			 * If we are acting as a multicast router, all
616			 * incoming multicast packets are passed to the
617			 * kernel-level multicast forwarding function.
618			 * The packet is returned (relatively) intact; if
619			 * ip_mforward() returns a non-zero value, the packet
620			 * must be discarded, else it may be accepted below.
621			 */
622			if (ip_mforward &&
623			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
624				ipstat.ips_cantforward++;
625				m_freem(m);
626				return;
627			}
628
629			/*
630			 * The process-level routing daemon needs to receive
631			 * all multicast IGMP packets, whether or not this
632			 * host belongs to their destination groups.
633			 */
634			if (ip->ip_p == IPPROTO_IGMP)
635				goto ours;
636			ipstat.ips_forward++;
637		}
638		/*
639		 * See if we belong to the destination multicast group on the
640		 * arrival interface.
641		 */
642		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
643		if (inm == NULL) {
644			ipstat.ips_notmember++;
645			m_freem(m);
646			return;
647		}
648		goto ours;
649	}
650	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
651		goto ours;
652	if (ip->ip_dst.s_addr == INADDR_ANY)
653		goto ours;
654
655	/*
656	 * FAITH(Firewall Aided Internet Translator)
657	 */
658	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
659		if (ip_keepfaith) {
660			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
661				goto ours;
662		}
663		m_freem(m);
664		return;
665	}
666
667	/*
668	 * Not for us; forward if possible and desirable.
669	 */
670	if (ipforwarding == 0) {
671		ipstat.ips_cantforward++;
672		m_freem(m);
673	} else {
674#ifdef IPSEC
675		/*
676		 * Enforce inbound IPsec SPD.
677		 */
678		if (ipsec4_in_reject(m, NULL)) {
679			ipsecstat.in_polvio++;
680			goto bad;
681		}
682#endif /* IPSEC */
683#ifdef FAST_IPSEC
684		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
685		s = splnet();
686		if (mtag != NULL) {
687			tdbi = (struct tdb_ident *)(mtag + 1);
688			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
689		} else {
690			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
691						   IP_FORWARDING, &error);
692		}
693		if (sp == NULL) {	/* NB: can happen if error */
694			splx(s);
695			/*XXX error stat???*/
696			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
697			goto bad;
698		}
699
700		/*
701		 * Check security policy against packet attributes.
702		 */
703		error = ipsec_in_reject(sp, m);
704		KEY_FREESP(&sp);
705		splx(s);
706		if (error) {
707			ipstat.ips_cantforward++;
708			goto bad;
709		}
710#endif /* FAST_IPSEC */
711		ip_forward(m, 0, args.next_hop);
712	}
713	return;
714
715ours:
716#ifdef IPSTEALTH
717	/*
718	 * IPSTEALTH: Process non-routing options only
719	 * if the packet is destined for us.
720	 */
721	if (ipstealth && hlen > sizeof (struct ip) &&
722	    ip_dooptions(m, 1, args.next_hop))
723		return;
724#endif /* IPSTEALTH */
725
726	/* Count the packet in the ip address stats */
727	if (ia != NULL) {
728		ia->ia_ifa.if_ipackets++;
729		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
730	}
731
732	/*
733	 * If offset or IP_MF are set, must reassemble.
734	 * Otherwise, nothing need be done.
735	 * (We could look in the reassembly queue to see
736	 * if the packet was previously fragmented,
737	 * but it's not worth the time; just let them time out.)
738	 */
739	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
740
741		/* If maxnipq is 0, never accept fragments. */
742		if (maxnipq == 0) {
743                	ipstat.ips_fragments++;
744			ipstat.ips_fragdropped++;
745			goto bad;
746		}
747
748		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
749		/*
750		 * Look for queue of fragments
751		 * of this datagram.
752		 */
753		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
754			if (ip->ip_id == fp->ipq_id &&
755			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
756			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
757#ifdef MAC
758			    mac_fragment_match(m, fp) &&
759#endif
760			    ip->ip_p == fp->ipq_p)
761				goto found;
762
763		fp = NULL;
764
765		/*
766		 * Enforce upper bound on number of fragmented packets
767		 * for which we attempt reassembly;
768		 * If maxnipq is -1, accept all fragments without limitation.
769		 */
770		if ((nipq > maxnipq) && (maxnipq > 0)) {
771		    /*
772		     * drop something from the tail of the current queue
773		     * before proceeding further
774		     */
775		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
776		    if (q == NULL) {   /* gak */
777			for (i = 0; i < IPREASS_NHASH; i++) {
778			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
779			    if (r) {
780				ipstat.ips_fragtimeout += r->ipq_nfrags;
781				ip_freef(&ipq[i], r);
782				break;
783			    }
784			}
785		    } else {
786			ipstat.ips_fragtimeout += q->ipq_nfrags;
787			ip_freef(&ipq[sum], q);
788		    }
789		}
790found:
791		/*
792		 * Adjust ip_len to not reflect header,
793		 * convert offset of this to bytes.
794		 */
795		ip->ip_len -= hlen;
796		if (ip->ip_off & IP_MF) {
797		        /*
798		         * Make sure that fragments have a data length
799			 * that's a non-zero multiple of 8 bytes.
800		         */
801			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
802				ipstat.ips_toosmall++; /* XXX */
803				goto bad;
804			}
805			m->m_flags |= M_FRAG;
806		} else
807			m->m_flags &= ~M_FRAG;
808		ip->ip_off <<= 3;
809
810		/*
811		 * Attempt reassembly; if it succeeds, proceed.
812		 * ip_reass() will return a different mbuf, and update
813		 * the divert info in divert_info and args.divert_rule.
814		 */
815		ipstat.ips_fragments++;
816		m->m_pkthdr.header = ip;
817		m = ip_reass(m,
818		    &ipq[sum], fp, &divert_info, &args.divert_rule);
819		if (m == 0)
820			return;
821		ipstat.ips_reassembled++;
822		ip = mtod(m, struct ip *);
823		/* Get the header length of the reassembled packet */
824		hlen = ip->ip_hl << 2;
825#ifdef IPDIVERT
826		/* Restore original checksum before diverting packet */
827		if (divert_info != 0) {
828			ip->ip_len += hlen;
829			ip->ip_len = htons(ip->ip_len);
830			ip->ip_off = htons(ip->ip_off);
831			ip->ip_sum = 0;
832			if (hlen == sizeof(struct ip))
833				ip->ip_sum = in_cksum_hdr(ip);
834			else
835				ip->ip_sum = in_cksum(m, hlen);
836			ip->ip_off = ntohs(ip->ip_off);
837			ip->ip_len = ntohs(ip->ip_len);
838			ip->ip_len -= hlen;
839		}
840#endif
841	} else
842		ip->ip_len -= hlen;
843
844#ifdef IPDIVERT
845	/*
846	 * Divert or tee packet to the divert protocol if required.
847	 */
848	if (divert_info != 0) {
849		struct mbuf *clone = NULL;
850
851		/* Clone packet if we're doing a 'tee' */
852		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
853			clone = m_dup(m, M_DONTWAIT);
854
855		/* Restore packet header fields to original values */
856		ip->ip_len += hlen;
857		ip->ip_len = htons(ip->ip_len);
858		ip->ip_off = htons(ip->ip_off);
859
860		/* Deliver packet to divert input routine */
861		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
862		ipstat.ips_delivered++;
863
864		/* If 'tee', continue with original packet */
865		if (clone == NULL)
866			return;
867		m = clone;
868		ip = mtod(m, struct ip *);
869		ip->ip_len += hlen;
870		/*
871		 * Jump backwards to complete processing of the
872		 * packet. But first clear divert_info to avoid
873		 * entering this block again.
874		 * We do not need to clear args.divert_rule
875		 * or args.next_hop as they will not be used.
876		 */
877		divert_info = 0;
878		goto pass;
879	}
880#endif
881
882#ifdef IPSEC
883	/*
884	 * enforce IPsec policy checking if we are seeing last header.
885	 * note that we do not visit this with protocols with pcb layer
886	 * code - like udp/tcp/raw ip.
887	 */
888	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
889	    ipsec4_in_reject(m, NULL)) {
890		ipsecstat.in_polvio++;
891		goto bad;
892	}
893#endif
894#if FAST_IPSEC
895	/*
896	 * enforce IPsec policy checking if we are seeing last header.
897	 * note that we do not visit this with protocols with pcb layer
898	 * code - like udp/tcp/raw ip.
899	 */
900	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
901		/*
902		 * Check if the packet has already had IPsec processing
903		 * done.  If so, then just pass it along.  This tag gets
904		 * set during AH, ESP, etc. input handling, before the
905		 * packet is returned to the ip input queue for delivery.
906		 */
907		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
908		s = splnet();
909		if (mtag != NULL) {
910			tdbi = (struct tdb_ident *)(mtag + 1);
911			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
912		} else {
913			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
914						   IP_FORWARDING, &error);
915		}
916		if (sp != NULL) {
917			/*
918			 * Check security policy against packet attributes.
919			 */
920			error = ipsec_in_reject(sp, m);
921			KEY_FREESP(&sp);
922		} else {
923			/* XXX error stat??? */
924			error = EINVAL;
925DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
926			goto bad;
927		}
928		splx(s);
929		if (error)
930			goto bad;
931	}
932#endif /* FAST_IPSEC */
933
934	/*
935	 * Switch out to protocol's input routine.
936	 */
937	ipstat.ips_delivered++;
938	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
939		/* TCP needs IPFORWARD info if available */
940		struct m_hdr tag;
941
942		tag.mh_type = MT_TAG;
943		tag.mh_flags = PACKET_TAG_IPFORWARD;
944		tag.mh_data = (caddr_t)args.next_hop;
945		tag.mh_next = m;
946
947		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
948			(struct mbuf *)&tag, hlen);
949	} else
950		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
951	return;
952bad:
953	m_freem(m);
954}
955
956/*
957 * Take incoming datagram fragment and try to reassemble it into
958 * whole datagram.  If a chain for reassembly of this datagram already
959 * exists, then it is given as fp; otherwise have to make a chain.
960 *
961 * When IPDIVERT enabled, keep additional state with each packet that
962 * tells us if we need to divert or tee the packet we're building.
963 * In particular, *divinfo includes the port and TEE flag,
964 * *divert_rule is the number of the matching rule.
965 */
966
967static struct mbuf *
968ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
969	u_int32_t *divinfo, u_int16_t *divert_rule)
970{
971	struct ip *ip = mtod(m, struct ip *);
972	register struct mbuf *p, *q, *nq;
973	struct mbuf *t;
974	int hlen = ip->ip_hl << 2;
975	int i, next;
976
977	/*
978	 * Presence of header sizes in mbufs
979	 * would confuse code below.
980	 */
981	m->m_data += hlen;
982	m->m_len -= hlen;
983
984	/*
985	 * If first fragment to arrive, create a reassembly queue.
986	 */
987	if (fp == NULL) {
988		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
989			goto dropfrag;
990		fp = mtod(t, struct ipq *);
991#ifdef MAC
992		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
993			m_free(t);
994			goto dropfrag;
995		}
996		mac_create_ipq(m, fp);
997#endif
998		TAILQ_INSERT_HEAD(head, fp, ipq_list);
999		nipq++;
1000		fp->ipq_nfrags = 1;
1001		fp->ipq_ttl = IPFRAGTTL;
1002		fp->ipq_p = ip->ip_p;
1003		fp->ipq_id = ip->ip_id;
1004		fp->ipq_src = ip->ip_src;
1005		fp->ipq_dst = ip->ip_dst;
1006		fp->ipq_frags = m;
1007		m->m_nextpkt = NULL;
1008#ifdef IPDIVERT
1009		fp->ipq_div_info = 0;
1010		fp->ipq_div_cookie = 0;
1011#endif
1012		goto inserted;
1013	} else {
1014		fp->ipq_nfrags++;
1015#ifdef MAC
1016		mac_update_ipq(m, fp);
1017#endif
1018	}
1019
1020#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1021
1022	/*
1023	 * Find a segment which begins after this one does.
1024	 */
1025	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1026		if (GETIP(q)->ip_off > ip->ip_off)
1027			break;
1028
1029	/*
1030	 * If there is a preceding segment, it may provide some of
1031	 * our data already.  If so, drop the data from the incoming
1032	 * segment.  If it provides all of our data, drop us, otherwise
1033	 * stick new segment in the proper place.
1034	 *
1035	 * If some of the data is dropped from the the preceding
1036	 * segment, then it's checksum is invalidated.
1037	 */
1038	if (p) {
1039		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1040		if (i > 0) {
1041			if (i >= ip->ip_len)
1042				goto dropfrag;
1043			m_adj(m, i);
1044			m->m_pkthdr.csum_flags = 0;
1045			ip->ip_off += i;
1046			ip->ip_len -= i;
1047		}
1048		m->m_nextpkt = p->m_nextpkt;
1049		p->m_nextpkt = m;
1050	} else {
1051		m->m_nextpkt = fp->ipq_frags;
1052		fp->ipq_frags = m;
1053	}
1054
1055	/*
1056	 * While we overlap succeeding segments trim them or,
1057	 * if they are completely covered, dequeue them.
1058	 */
1059	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1060	     q = nq) {
1061		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1062		if (i < GETIP(q)->ip_len) {
1063			GETIP(q)->ip_len -= i;
1064			GETIP(q)->ip_off += i;
1065			m_adj(q, i);
1066			q->m_pkthdr.csum_flags = 0;
1067			break;
1068		}
1069		nq = q->m_nextpkt;
1070		m->m_nextpkt = nq;
1071		ipstat.ips_fragdropped++;
1072		fp->ipq_nfrags--;
1073		m_freem(q);
1074	}
1075
1076inserted:
1077
1078#ifdef IPDIVERT
1079	/*
1080	 * Transfer firewall instructions to the fragment structure.
1081	 * Only trust info in the fragment at offset 0.
1082	 */
1083	if (ip->ip_off == 0) {
1084		fp->ipq_div_info = *divinfo;
1085		fp->ipq_div_cookie = *divert_rule;
1086	}
1087	*divinfo = 0;
1088	*divert_rule = 0;
1089#endif
1090
1091	/*
1092	 * Check for complete reassembly and perform frag per packet
1093	 * limiting.
1094	 *
1095	 * Frag limiting is performed here so that the nth frag has
1096	 * a chance to complete the packet before we drop the packet.
1097	 * As a result, n+1 frags are actually allowed per packet, but
1098	 * only n will ever be stored. (n = maxfragsperpacket.)
1099	 *
1100	 */
1101	next = 0;
1102	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1103		if (GETIP(q)->ip_off != next) {
1104			if (fp->ipq_nfrags > maxfragsperpacket) {
1105				ipstat.ips_fragdropped += fp->ipq_nfrags;
1106				ip_freef(head, fp);
1107			}
1108			return (0);
1109		}
1110		next += GETIP(q)->ip_len;
1111	}
1112	/* Make sure the last packet didn't have the IP_MF flag */
1113	if (p->m_flags & M_FRAG) {
1114		if (fp->ipq_nfrags > maxfragsperpacket) {
1115			ipstat.ips_fragdropped += fp->ipq_nfrags;
1116			ip_freef(head, fp);
1117		}
1118		return (0);
1119	}
1120
1121	/*
1122	 * Reassembly is complete.  Make sure the packet is a sane size.
1123	 */
1124	q = fp->ipq_frags;
1125	ip = GETIP(q);
1126	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1127		ipstat.ips_toolong++;
1128		ipstat.ips_fragdropped += fp->ipq_nfrags;
1129		ip_freef(head, fp);
1130		return (0);
1131	}
1132
1133	/*
1134	 * Concatenate fragments.
1135	 */
1136	m = q;
1137	t = m->m_next;
1138	m->m_next = 0;
1139	m_cat(m, t);
1140	nq = q->m_nextpkt;
1141	q->m_nextpkt = 0;
1142	for (q = nq; q != NULL; q = nq) {
1143		nq = q->m_nextpkt;
1144		q->m_nextpkt = NULL;
1145		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1146		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1147		m_cat(m, q);
1148	}
1149#ifdef MAC
1150	mac_create_datagram_from_ipq(fp, m);
1151	mac_destroy_ipq(fp);
1152#endif
1153
1154#ifdef IPDIVERT
1155	/*
1156	 * Extract firewall instructions from the fragment structure.
1157	 */
1158	*divinfo = fp->ipq_div_info;
1159	*divert_rule = fp->ipq_div_cookie;
1160#endif
1161
1162	/*
1163	 * Create header for new ip packet by
1164	 * modifying header of first packet;
1165	 * dequeue and discard fragment reassembly header.
1166	 * Make header visible.
1167	 */
1168	ip->ip_len = next;
1169	ip->ip_src = fp->ipq_src;
1170	ip->ip_dst = fp->ipq_dst;
1171	TAILQ_REMOVE(head, fp, ipq_list);
1172	nipq--;
1173	(void) m_free(dtom(fp));
1174	m->m_len += (ip->ip_hl << 2);
1175	m->m_data -= (ip->ip_hl << 2);
1176	/* some debugging cruft by sklower, below, will go away soon */
1177	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1178		m_fixhdr(m);
1179	return (m);
1180
1181dropfrag:
1182#ifdef IPDIVERT
1183	*divinfo = 0;
1184	*divert_rule = 0;
1185#endif
1186	ipstat.ips_fragdropped++;
1187	if (fp != NULL)
1188		fp->ipq_nfrags--;
1189	m_freem(m);
1190	return (0);
1191
1192#undef GETIP
1193}
1194
1195/*
1196 * Free a fragment reassembly header and all
1197 * associated datagrams.
1198 */
1199static void
1200ip_freef(fhp, fp)
1201	struct ipqhead *fhp;
1202	struct ipq *fp;
1203{
1204	register struct mbuf *q;
1205
1206	while (fp->ipq_frags) {
1207		q = fp->ipq_frags;
1208		fp->ipq_frags = q->m_nextpkt;
1209		m_freem(q);
1210	}
1211	TAILQ_REMOVE(fhp, fp, ipq_list);
1212	(void) m_free(dtom(fp));
1213	nipq--;
1214}
1215
1216/*
1217 * IP timer processing;
1218 * if a timer expires on a reassembly
1219 * queue, discard it.
1220 */
1221void
1222ip_slowtimo()
1223{
1224	register struct ipq *fp;
1225	int s = splnet();
1226	int i;
1227
1228	for (i = 0; i < IPREASS_NHASH; i++) {
1229		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1230			struct ipq *fpp;
1231
1232			fpp = fp;
1233			fp = TAILQ_NEXT(fp, ipq_list);
1234			if(--fpp->ipq_ttl == 0) {
1235				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1236				ip_freef(&ipq[i], fpp);
1237			}
1238		}
1239	}
1240	/*
1241	 * If we are over the maximum number of fragments
1242	 * (due to the limit being lowered), drain off
1243	 * enough to get down to the new limit.
1244	 */
1245	if (maxnipq >= 0 && nipq > maxnipq) {
1246		for (i = 0; i < IPREASS_NHASH; i++) {
1247			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1248				ipstat.ips_fragdropped +=
1249				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1250				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1251			}
1252		}
1253	}
1254	ipflow_slowtimo();
1255	splx(s);
1256}
1257
1258/*
1259 * Drain off all datagram fragments.
1260 */
1261void
1262ip_drain()
1263{
1264	int     i;
1265
1266	for (i = 0; i < IPREASS_NHASH; i++) {
1267		while(!TAILQ_EMPTY(&ipq[i])) {
1268			ipstat.ips_fragdropped +=
1269			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1270			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1271		}
1272	}
1273	in_rtqdrain();
1274}
1275
1276/*
1277 * Do option processing on a datagram,
1278 * possibly discarding it if bad options are encountered,
1279 * or forwarding it if source-routed.
1280 * The pass argument is used when operating in the IPSTEALTH
1281 * mode to tell what options to process:
1282 * [LS]SRR (pass 0) or the others (pass 1).
1283 * The reason for as many as two passes is that when doing IPSTEALTH,
1284 * non-routing options should be processed only if the packet is for us.
1285 * Returns 1 if packet has been forwarded/freed,
1286 * 0 if the packet should be processed further.
1287 */
1288static int
1289ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1290{
1291	struct ip *ip = mtod(m, struct ip *);
1292	u_char *cp;
1293	struct in_ifaddr *ia;
1294	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1295	struct in_addr *sin, dst;
1296	n_time ntime;
1297	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1298
1299	dst = ip->ip_dst;
1300	cp = (u_char *)(ip + 1);
1301	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1302	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1303		opt = cp[IPOPT_OPTVAL];
1304		if (opt == IPOPT_EOL)
1305			break;
1306		if (opt == IPOPT_NOP)
1307			optlen = 1;
1308		else {
1309			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1310				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1311				goto bad;
1312			}
1313			optlen = cp[IPOPT_OLEN];
1314			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1315				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1316				goto bad;
1317			}
1318		}
1319		switch (opt) {
1320
1321		default:
1322			break;
1323
1324		/*
1325		 * Source routing with record.
1326		 * Find interface with current destination address.
1327		 * If none on this machine then drop if strictly routed,
1328		 * or do nothing if loosely routed.
1329		 * Record interface address and bring up next address
1330		 * component.  If strictly routed make sure next
1331		 * address is on directly accessible net.
1332		 */
1333		case IPOPT_LSRR:
1334		case IPOPT_SSRR:
1335#ifdef IPSTEALTH
1336			if (ipstealth && pass > 0)
1337				break;
1338#endif
1339			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1340				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1341				goto bad;
1342			}
1343			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1344				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1345				goto bad;
1346			}
1347			ipaddr.sin_addr = ip->ip_dst;
1348			ia = (struct in_ifaddr *)
1349				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1350			if (ia == 0) {
1351				if (opt == IPOPT_SSRR) {
1352					type = ICMP_UNREACH;
1353					code = ICMP_UNREACH_SRCFAIL;
1354					goto bad;
1355				}
1356				if (!ip_dosourceroute)
1357					goto nosourcerouting;
1358				/*
1359				 * Loose routing, and not at next destination
1360				 * yet; nothing to do except forward.
1361				 */
1362				break;
1363			}
1364			off--;			/* 0 origin */
1365			if (off > optlen - (int)sizeof(struct in_addr)) {
1366				/*
1367				 * End of source route.  Should be for us.
1368				 */
1369				if (!ip_acceptsourceroute)
1370					goto nosourcerouting;
1371				save_rte(cp, ip->ip_src);
1372				break;
1373			}
1374#ifdef IPSTEALTH
1375			if (ipstealth)
1376				goto dropit;
1377#endif
1378			if (!ip_dosourceroute) {
1379				if (ipforwarding) {
1380					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1381					/*
1382					 * Acting as a router, so generate ICMP
1383					 */
1384nosourcerouting:
1385					strcpy(buf, inet_ntoa(ip->ip_dst));
1386					log(LOG_WARNING,
1387					    "attempted source route from %s to %s\n",
1388					    inet_ntoa(ip->ip_src), buf);
1389					type = ICMP_UNREACH;
1390					code = ICMP_UNREACH_SRCFAIL;
1391					goto bad;
1392				} else {
1393					/*
1394					 * Not acting as a router, so silently drop.
1395					 */
1396#ifdef IPSTEALTH
1397dropit:
1398#endif
1399					ipstat.ips_cantforward++;
1400					m_freem(m);
1401					return (1);
1402				}
1403			}
1404
1405			/*
1406			 * locate outgoing interface
1407			 */
1408			(void)memcpy(&ipaddr.sin_addr, cp + off,
1409			    sizeof(ipaddr.sin_addr));
1410
1411			if (opt == IPOPT_SSRR) {
1412#define	INA	struct in_ifaddr *
1413#define	SA	struct sockaddr *
1414			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1415				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1416			} else
1417				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1418			if (ia == 0) {
1419				type = ICMP_UNREACH;
1420				code = ICMP_UNREACH_SRCFAIL;
1421				goto bad;
1422			}
1423			ip->ip_dst = ipaddr.sin_addr;
1424			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1425			    sizeof(struct in_addr));
1426			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1427			/*
1428			 * Let ip_intr's mcast routing check handle mcast pkts
1429			 */
1430			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1431			break;
1432
1433		case IPOPT_RR:
1434#ifdef IPSTEALTH
1435			if (ipstealth && pass == 0)
1436				break;
1437#endif
1438			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1439				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1440				goto bad;
1441			}
1442			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1443				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1444				goto bad;
1445			}
1446			/*
1447			 * If no space remains, ignore.
1448			 */
1449			off--;			/* 0 origin */
1450			if (off > optlen - (int)sizeof(struct in_addr))
1451				break;
1452			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1453			    sizeof(ipaddr.sin_addr));
1454			/*
1455			 * locate outgoing interface; if we're the destination,
1456			 * use the incoming interface (should be same).
1457			 */
1458			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1459			    (ia = ip_rtaddr(ipaddr.sin_addr,
1460			    &ipforward_rt)) == 0) {
1461				type = ICMP_UNREACH;
1462				code = ICMP_UNREACH_HOST;
1463				goto bad;
1464			}
1465			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1466			    sizeof(struct in_addr));
1467			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1468			break;
1469
1470		case IPOPT_TS:
1471#ifdef IPSTEALTH
1472			if (ipstealth && pass == 0)
1473				break;
1474#endif
1475			code = cp - (u_char *)ip;
1476			if (optlen < 4 || optlen > 40) {
1477				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1478				goto bad;
1479			}
1480			if ((off = cp[IPOPT_OFFSET]) < 5) {
1481				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1482				goto bad;
1483			}
1484			if (off > optlen - (int)sizeof(int32_t)) {
1485				cp[IPOPT_OFFSET + 1] += (1 << 4);
1486				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1487					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1488					goto bad;
1489				}
1490				break;
1491			}
1492			off--;				/* 0 origin */
1493			sin = (struct in_addr *)(cp + off);
1494			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1495
1496			case IPOPT_TS_TSONLY:
1497				break;
1498
1499			case IPOPT_TS_TSANDADDR:
1500				if (off + sizeof(n_time) +
1501				    sizeof(struct in_addr) > optlen) {
1502					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1503					goto bad;
1504				}
1505				ipaddr.sin_addr = dst;
1506				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1507							    m->m_pkthdr.rcvif);
1508				if (ia == 0)
1509					continue;
1510				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1511				    sizeof(struct in_addr));
1512				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1513				off += sizeof(struct in_addr);
1514				break;
1515
1516			case IPOPT_TS_PRESPEC:
1517				if (off + sizeof(n_time) +
1518				    sizeof(struct in_addr) > optlen) {
1519					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1520					goto bad;
1521				}
1522				(void)memcpy(&ipaddr.sin_addr, sin,
1523				    sizeof(struct in_addr));
1524				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1525					continue;
1526				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1527				off += sizeof(struct in_addr);
1528				break;
1529
1530			default:
1531				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1532				goto bad;
1533			}
1534			ntime = iptime();
1535			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1536			cp[IPOPT_OFFSET] += sizeof(n_time);
1537		}
1538	}
1539	if (forward && ipforwarding) {
1540		ip_forward(m, 1, next_hop);
1541		return (1);
1542	}
1543	return (0);
1544bad:
1545	icmp_error(m, type, code, 0, 0);
1546	ipstat.ips_badoptions++;
1547	return (1);
1548}
1549
1550/*
1551 * Given address of next destination (final or next hop),
1552 * return internet address info of interface to be used to get there.
1553 */
1554struct in_ifaddr *
1555ip_rtaddr(dst, rt)
1556	struct in_addr dst;
1557	struct route *rt;
1558{
1559	register struct sockaddr_in *sin;
1560
1561	sin = (struct sockaddr_in *)&rt->ro_dst;
1562
1563	if (rt->ro_rt == 0 ||
1564	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1565	    dst.s_addr != sin->sin_addr.s_addr) {
1566		if (rt->ro_rt) {
1567			RTFREE(rt->ro_rt);
1568			rt->ro_rt = 0;
1569		}
1570		sin->sin_family = AF_INET;
1571		sin->sin_len = sizeof(*sin);
1572		sin->sin_addr = dst;
1573
1574		rtalloc_ign(rt, RTF_PRCLONING);
1575	}
1576	if (rt->ro_rt == 0)
1577		return ((struct in_ifaddr *)0);
1578	return (ifatoia(rt->ro_rt->rt_ifa));
1579}
1580
1581/*
1582 * Save incoming source route for use in replies,
1583 * to be picked up later by ip_srcroute if the receiver is interested.
1584 */
1585static void
1586save_rte(option, dst)
1587	u_char *option;
1588	struct in_addr dst;
1589{
1590	unsigned olen;
1591
1592	olen = option[IPOPT_OLEN];
1593#ifdef DIAGNOSTIC
1594	if (ipprintfs)
1595		printf("save_rte: olen %d\n", olen);
1596#endif
1597	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1598		return;
1599	bcopy(option, ip_srcrt.srcopt, olen);
1600	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1601	ip_srcrt.dst = dst;
1602}
1603
1604/*
1605 * Retrieve incoming source route for use in replies,
1606 * in the same form used by setsockopt.
1607 * The first hop is placed before the options, will be removed later.
1608 */
1609struct mbuf *
1610ip_srcroute()
1611{
1612	register struct in_addr *p, *q;
1613	register struct mbuf *m;
1614
1615	if (ip_nhops == 0)
1616		return ((struct mbuf *)0);
1617	m = m_get(M_DONTWAIT, MT_HEADER);
1618	if (m == 0)
1619		return ((struct mbuf *)0);
1620
1621#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1622
1623	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1624	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1625	    OPTSIZ;
1626#ifdef DIAGNOSTIC
1627	if (ipprintfs)
1628		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1629#endif
1630
1631	/*
1632	 * First save first hop for return route
1633	 */
1634	p = &ip_srcrt.route[ip_nhops - 1];
1635	*(mtod(m, struct in_addr *)) = *p--;
1636#ifdef DIAGNOSTIC
1637	if (ipprintfs)
1638		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1639#endif
1640
1641	/*
1642	 * Copy option fields and padding (nop) to mbuf.
1643	 */
1644	ip_srcrt.nop = IPOPT_NOP;
1645	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1646	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1647	    &ip_srcrt.nop, OPTSIZ);
1648	q = (struct in_addr *)(mtod(m, caddr_t) +
1649	    sizeof(struct in_addr) + OPTSIZ);
1650#undef OPTSIZ
1651	/*
1652	 * Record return path as an IP source route,
1653	 * reversing the path (pointers are now aligned).
1654	 */
1655	while (p >= ip_srcrt.route) {
1656#ifdef DIAGNOSTIC
1657		if (ipprintfs)
1658			printf(" %lx", (u_long)ntohl(q->s_addr));
1659#endif
1660		*q++ = *p--;
1661	}
1662	/*
1663	 * Last hop goes to final destination.
1664	 */
1665	*q = ip_srcrt.dst;
1666#ifdef DIAGNOSTIC
1667	if (ipprintfs)
1668		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1669#endif
1670	return (m);
1671}
1672
1673/*
1674 * Strip out IP options, at higher
1675 * level protocol in the kernel.
1676 * Second argument is buffer to which options
1677 * will be moved, and return value is their length.
1678 * XXX should be deleted; last arg currently ignored.
1679 */
1680void
1681ip_stripoptions(m, mopt)
1682	register struct mbuf *m;
1683	struct mbuf *mopt;
1684{
1685	register int i;
1686	struct ip *ip = mtod(m, struct ip *);
1687	register caddr_t opts;
1688	int olen;
1689
1690	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1691	opts = (caddr_t)(ip + 1);
1692	i = m->m_len - (sizeof (struct ip) + olen);
1693	bcopy(opts + olen, opts, (unsigned)i);
1694	m->m_len -= olen;
1695	if (m->m_flags & M_PKTHDR)
1696		m->m_pkthdr.len -= olen;
1697	ip->ip_v = IPVERSION;
1698	ip->ip_hl = sizeof(struct ip) >> 2;
1699}
1700
1701u_char inetctlerrmap[PRC_NCMDS] = {
1702	0,		0,		0,		0,
1703	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1704	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1705	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1706	0,		0,		EHOSTUNREACH,	0,
1707	ENOPROTOOPT,	ECONNREFUSED
1708};
1709
1710/*
1711 * Forward a packet.  If some error occurs return the sender
1712 * an icmp packet.  Note we can't always generate a meaningful
1713 * icmp message because icmp doesn't have a large enough repertoire
1714 * of codes and types.
1715 *
1716 * If not forwarding, just drop the packet.  This could be confusing
1717 * if ipforwarding was zero but some routing protocol was advancing
1718 * us as a gateway to somewhere.  However, we must let the routing
1719 * protocol deal with that.
1720 *
1721 * The srcrt parameter indicates whether the packet is being forwarded
1722 * via a source route.
1723 */
1724static void
1725ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1726{
1727	struct ip *ip = mtod(m, struct ip *);
1728	struct rtentry *rt;
1729	int error, type = 0, code = 0;
1730	struct mbuf *mcopy;
1731	n_long dest;
1732	struct in_addr pkt_dst;
1733	struct ifnet *destifp;
1734#if defined(IPSEC) || defined(FAST_IPSEC)
1735	struct ifnet dummyifp;
1736#endif
1737
1738	dest = 0;
1739	/*
1740	 * Cache the destination address of the packet; this may be
1741	 * changed by use of 'ipfw fwd'.
1742	 */
1743	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1744
1745#ifdef DIAGNOSTIC
1746	if (ipprintfs)
1747		printf("forward: src %lx dst %lx ttl %x\n",
1748		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1749		    ip->ip_ttl);
1750#endif
1751
1752
1753	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1754		ipstat.ips_cantforward++;
1755		m_freem(m);
1756		return;
1757	}
1758#ifdef IPSTEALTH
1759	if (!ipstealth) {
1760#endif
1761		if (ip->ip_ttl <= IPTTLDEC) {
1762			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1763			    dest, 0);
1764			return;
1765		}
1766#ifdef IPSTEALTH
1767	}
1768#endif
1769
1770	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1771		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1772		return;
1773	} else
1774		rt = ipforward_rt.ro_rt;
1775
1776	/*
1777	 * Save the IP header and at most 8 bytes of the payload,
1778	 * in case we need to generate an ICMP message to the src.
1779	 *
1780	 * XXX this can be optimized a lot by saving the data in a local
1781	 * buffer on the stack (72 bytes at most), and only allocating the
1782	 * mbuf if really necessary. The vast majority of the packets
1783	 * are forwarded without having to send an ICMP back (either
1784	 * because unnecessary, or because rate limited), so we are
1785	 * really we are wasting a lot of work here.
1786	 *
1787	 * We don't use m_copy() because it might return a reference
1788	 * to a shared cluster. Both this function and ip_output()
1789	 * assume exclusive access to the IP header in `m', so any
1790	 * data in a cluster may change before we reach icmp_error().
1791	 */
1792	MGET(mcopy, M_DONTWAIT, m->m_type);
1793	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1794		/*
1795		 * It's probably ok if the pkthdr dup fails (because
1796		 * the deep copy of the tag chain failed), but for now
1797		 * be conservative and just discard the copy since
1798		 * code below may some day want the tags.
1799		 */
1800		m_free(mcopy);
1801		mcopy = NULL;
1802	}
1803	if (mcopy != NULL) {
1804		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1805		    (int)ip->ip_len);
1806		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1807		/*
1808		 * XXXMAC: Eventually, we may have an explict labeling
1809		 * point here.
1810		 */
1811	}
1812
1813#ifdef IPSTEALTH
1814	if (!ipstealth) {
1815#endif
1816		ip->ip_ttl -= IPTTLDEC;
1817#ifdef IPSTEALTH
1818	}
1819#endif
1820
1821	/*
1822	 * If forwarding packet using same interface that it came in on,
1823	 * perhaps should send a redirect to sender to shortcut a hop.
1824	 * Only send redirect if source is sending directly to us,
1825	 * and if packet was not source routed (or has any options).
1826	 * Also, don't send redirect if forwarding using a default route
1827	 * or a route modified by a redirect.
1828	 */
1829	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1830	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1831	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1832	    ipsendredirects && !srcrt && !next_hop) {
1833#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1834		u_long src = ntohl(ip->ip_src.s_addr);
1835
1836		if (RTA(rt) &&
1837		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1838		    if (rt->rt_flags & RTF_GATEWAY)
1839			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1840		    else
1841			dest = pkt_dst.s_addr;
1842		    /* Router requirements says to only send host redirects */
1843		    type = ICMP_REDIRECT;
1844		    code = ICMP_REDIRECT_HOST;
1845#ifdef DIAGNOSTIC
1846		    if (ipprintfs)
1847		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1848#endif
1849		}
1850	}
1851
1852    {
1853	struct m_hdr tag;
1854
1855	if (next_hop) {
1856		/* Pass IPFORWARD info if available */
1857
1858		tag.mh_type = MT_TAG;
1859		tag.mh_flags = PACKET_TAG_IPFORWARD;
1860		tag.mh_data = (caddr_t)next_hop;
1861		tag.mh_next = m;
1862		m = (struct mbuf *)&tag;
1863	}
1864	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1865			  IP_FORWARDING, 0, NULL);
1866    }
1867	if (error)
1868		ipstat.ips_cantforward++;
1869	else {
1870		ipstat.ips_forward++;
1871		if (type)
1872			ipstat.ips_redirectsent++;
1873		else {
1874			if (mcopy) {
1875				ipflow_create(&ipforward_rt, mcopy);
1876				m_freem(mcopy);
1877			}
1878			return;
1879		}
1880	}
1881	if (mcopy == NULL)
1882		return;
1883	destifp = NULL;
1884
1885	switch (error) {
1886
1887	case 0:				/* forwarded, but need redirect */
1888		/* type, code set above */
1889		break;
1890
1891	case ENETUNREACH:		/* shouldn't happen, checked above */
1892	case EHOSTUNREACH:
1893	case ENETDOWN:
1894	case EHOSTDOWN:
1895	default:
1896		type = ICMP_UNREACH;
1897		code = ICMP_UNREACH_HOST;
1898		break;
1899
1900	case EMSGSIZE:
1901		type = ICMP_UNREACH;
1902		code = ICMP_UNREACH_NEEDFRAG;
1903#ifdef IPSEC
1904		/*
1905		 * If the packet is routed over IPsec tunnel, tell the
1906		 * originator the tunnel MTU.
1907		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1908		 * XXX quickhack!!!
1909		 */
1910		if (ipforward_rt.ro_rt) {
1911			struct secpolicy *sp = NULL;
1912			int ipsecerror;
1913			int ipsechdr;
1914			struct route *ro;
1915
1916			sp = ipsec4_getpolicybyaddr(mcopy,
1917						    IPSEC_DIR_OUTBOUND,
1918			                            IP_FORWARDING,
1919			                            &ipsecerror);
1920
1921			if (sp == NULL)
1922				destifp = ipforward_rt.ro_rt->rt_ifp;
1923			else {
1924				/* count IPsec header size */
1925				ipsechdr = ipsec4_hdrsiz(mcopy,
1926							 IPSEC_DIR_OUTBOUND,
1927							 NULL);
1928
1929				/*
1930				 * find the correct route for outer IPv4
1931				 * header, compute tunnel MTU.
1932				 *
1933				 * XXX BUG ALERT
1934				 * The "dummyifp" code relies upon the fact
1935				 * that icmp_error() touches only ifp->if_mtu.
1936				 */
1937				/*XXX*/
1938				destifp = NULL;
1939				if (sp->req != NULL
1940				 && sp->req->sav != NULL
1941				 && sp->req->sav->sah != NULL) {
1942					ro = &sp->req->sav->sah->sa_route;
1943					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1944						dummyifp.if_mtu =
1945						    ro->ro_rt->rt_ifp->if_mtu;
1946						dummyifp.if_mtu -= ipsechdr;
1947						destifp = &dummyifp;
1948					}
1949				}
1950
1951				key_freesp(sp);
1952			}
1953		}
1954#elif FAST_IPSEC
1955		/*
1956		 * If the packet is routed over IPsec tunnel, tell the
1957		 * originator the tunnel MTU.
1958		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1959		 * XXX quickhack!!!
1960		 */
1961		if (ipforward_rt.ro_rt) {
1962			struct secpolicy *sp = NULL;
1963			int ipsecerror;
1964			int ipsechdr;
1965			struct route *ro;
1966
1967			sp = ipsec_getpolicybyaddr(mcopy,
1968						   IPSEC_DIR_OUTBOUND,
1969			                           IP_FORWARDING,
1970			                           &ipsecerror);
1971
1972			if (sp == NULL)
1973				destifp = ipforward_rt.ro_rt->rt_ifp;
1974			else {
1975				/* count IPsec header size */
1976				ipsechdr = ipsec4_hdrsiz(mcopy,
1977							 IPSEC_DIR_OUTBOUND,
1978							 NULL);
1979
1980				/*
1981				 * find the correct route for outer IPv4
1982				 * header, compute tunnel MTU.
1983				 *
1984				 * XXX BUG ALERT
1985				 * The "dummyifp" code relies upon the fact
1986				 * that icmp_error() touches only ifp->if_mtu.
1987				 */
1988				/*XXX*/
1989				destifp = NULL;
1990				if (sp->req != NULL
1991				 && sp->req->sav != NULL
1992				 && sp->req->sav->sah != NULL) {
1993					ro = &sp->req->sav->sah->sa_route;
1994					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1995						dummyifp.if_mtu =
1996						    ro->ro_rt->rt_ifp->if_mtu;
1997						dummyifp.if_mtu -= ipsechdr;
1998						destifp = &dummyifp;
1999					}
2000				}
2001
2002				KEY_FREESP(&sp);
2003			}
2004		}
2005#else /* !IPSEC && !FAST_IPSEC */
2006		if (ipforward_rt.ro_rt)
2007			destifp = ipforward_rt.ro_rt->rt_ifp;
2008#endif /*IPSEC*/
2009		ipstat.ips_cantfrag++;
2010		break;
2011
2012	case ENOBUFS:
2013		/*
2014		 * A router should not generate ICMP_SOURCEQUENCH as
2015		 * required in RFC1812 Requirements for IP Version 4 Routers.
2016		 * Source quench could be a big problem under DoS attacks,
2017		 * or if the underlying interface is rate-limited.
2018		 * Those who need source quench packets may re-enable them
2019		 * via the net.inet.ip.sendsourcequench sysctl.
2020		 */
2021		if (ip_sendsourcequench == 0) {
2022			m_freem(mcopy);
2023			return;
2024		} else {
2025			type = ICMP_SOURCEQUENCH;
2026			code = 0;
2027		}
2028		break;
2029
2030	case EACCES:			/* ipfw denied packet */
2031		m_freem(mcopy);
2032		return;
2033	}
2034	icmp_error(mcopy, type, code, dest, destifp);
2035}
2036
2037void
2038ip_savecontrol(inp, mp, ip, m)
2039	register struct inpcb *inp;
2040	register struct mbuf **mp;
2041	register struct ip *ip;
2042	register struct mbuf *m;
2043{
2044	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2045		struct timeval tv;
2046
2047		microtime(&tv);
2048		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2049			SCM_TIMESTAMP, SOL_SOCKET);
2050		if (*mp)
2051			mp = &(*mp)->m_next;
2052	}
2053	if (inp->inp_flags & INP_RECVDSTADDR) {
2054		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2055		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2056		if (*mp)
2057			mp = &(*mp)->m_next;
2058	}
2059	if (inp->inp_flags & INP_RECVTTL) {
2060		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2061		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2062		if (*mp)
2063			mp = &(*mp)->m_next;
2064	}
2065#ifdef notyet
2066	/* XXX
2067	 * Moving these out of udp_input() made them even more broken
2068	 * than they already were.
2069	 */
2070	/* options were tossed already */
2071	if (inp->inp_flags & INP_RECVOPTS) {
2072		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2073		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2074		if (*mp)
2075			mp = &(*mp)->m_next;
2076	}
2077	/* ip_srcroute doesn't do what we want here, need to fix */
2078	if (inp->inp_flags & INP_RECVRETOPTS) {
2079		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2080		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2081		if (*mp)
2082			mp = &(*mp)->m_next;
2083	}
2084#endif
2085	if (inp->inp_flags & INP_RECVIF) {
2086		struct ifnet *ifp;
2087		struct sdlbuf {
2088			struct sockaddr_dl sdl;
2089			u_char	pad[32];
2090		} sdlbuf;
2091		struct sockaddr_dl *sdp;
2092		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2093
2094		if (((ifp = m->m_pkthdr.rcvif))
2095		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2096			sdp = (struct sockaddr_dl *)
2097			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2098			/*
2099			 * Change our mind and don't try copy.
2100			 */
2101			if ((sdp->sdl_family != AF_LINK)
2102			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2103				goto makedummy;
2104			}
2105			bcopy(sdp, sdl2, sdp->sdl_len);
2106		} else {
2107makedummy:
2108			sdl2->sdl_len
2109				= offsetof(struct sockaddr_dl, sdl_data[0]);
2110			sdl2->sdl_family = AF_LINK;
2111			sdl2->sdl_index = 0;
2112			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2113		}
2114		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2115			IP_RECVIF, IPPROTO_IP);
2116		if (*mp)
2117			mp = &(*mp)->m_next;
2118	}
2119}
2120
2121/*
2122 * XXX these routines are called from the upper part of the kernel.
2123 * They need to be locked when we remove Giant.
2124 *
2125 * They could also be moved to ip_mroute.c, since all the RSVP
2126 *  handling is done there already.
2127 */
2128static int ip_rsvp_on;
2129struct socket *ip_rsvpd;
2130int
2131ip_rsvp_init(struct socket *so)
2132{
2133	if (so->so_type != SOCK_RAW ||
2134	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2135		return EOPNOTSUPP;
2136
2137	if (ip_rsvpd != NULL)
2138		return EADDRINUSE;
2139
2140	ip_rsvpd = so;
2141	/*
2142	 * This may seem silly, but we need to be sure we don't over-increment
2143	 * the RSVP counter, in case something slips up.
2144	 */
2145	if (!ip_rsvp_on) {
2146		ip_rsvp_on = 1;
2147		rsvp_on++;
2148	}
2149
2150	return 0;
2151}
2152
2153int
2154ip_rsvp_done(void)
2155{
2156	ip_rsvpd = NULL;
2157	/*
2158	 * This may seem silly, but we need to be sure we don't over-decrement
2159	 * the RSVP counter, in case something slips up.
2160	 */
2161	if (ip_rsvp_on) {
2162		ip_rsvp_on = 0;
2163		rsvp_on--;
2164	}
2165	return 0;
2166}
2167
2168void
2169rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2170{
2171	if (rsvp_input_p) { /* call the real one if loaded */
2172		rsvp_input_p(m, off);
2173		return;
2174	}
2175
2176	/* Can still get packets with rsvp_on = 0 if there is a local member
2177	 * of the group to which the RSVP packet is addressed.  But in this
2178	 * case we want to throw the packet away.
2179	 */
2180
2181	if (!rsvp_on) {
2182		m_freem(m);
2183		return;
2184	}
2185
2186	if (ip_rsvpd != NULL) {
2187		rip_input(m, off);
2188		return;
2189	}
2190	/* Drop the packet */
2191	m_freem(m);
2192}
2193