ip_reass.c revision 109623
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/netinet/ip_input.c 109623 2003-01-21 08:56:16Z alfred $
35 */
36
37#include "opt_bootp.h"
38#include "opt_ipfw.h"
39#include "opt_ipdn.h"
40#include "opt_ipdivert.h"
41#include "opt_ipfilter.h"
42#include "opt_ipstealth.h"
43#include "opt_ipsec.h"
44#include "opt_mac.h"
45#include "opt_pfil_hooks.h"
46#include "opt_random_ip_id.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/mac.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/domain.h>
54#include <sys/protosw.h>
55#include <sys/socket.h>
56#include <sys/time.h>
57#include <sys/kernel.h>
58#include <sys/syslog.h>
59#include <sys/sysctl.h>
60
61#include <net/pfil.h>
62#include <net/if.h>
63#include <net/if_types.h>
64#include <net/if_var.h>
65#include <net/if_dl.h>
66#include <net/route.h>
67#include <net/netisr.h>
68#include <net/intrq.h>
69
70#include <netinet/in.h>
71#include <netinet/in_systm.h>
72#include <netinet/in_var.h>
73#include <netinet/ip.h>
74#include <netinet/in_pcb.h>
75#include <netinet/ip_var.h>
76#include <netinet/ip_icmp.h>
77#include <machine/in_cksum.h>
78
79#include <sys/socketvar.h>
80
81#include <netinet/ip_fw.h>
82#include <netinet/ip_dummynet.h>
83
84#ifdef IPSEC
85#include <netinet6/ipsec.h>
86#include <netkey/key.h>
87#endif
88
89#ifdef FAST_IPSEC
90#include <netipsec/ipsec.h>
91#include <netipsec/key.h>
92#endif
93
94int rsvp_on = 0;
95
96int	ipforwarding = 0;
97SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
98    &ipforwarding, 0, "Enable IP forwarding between interfaces");
99
100static int	ipsendredirects = 1; /* XXX */
101SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
102    &ipsendredirects, 0, "Enable sending IP redirects");
103
104int	ip_defttl = IPDEFTTL;
105SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
106    &ip_defttl, 0, "Maximum TTL on IP packets");
107
108static int	ip_dosourceroute = 0;
109SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
110    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
111
112static int	ip_acceptsourceroute = 0;
113SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
114    CTLFLAG_RW, &ip_acceptsourceroute, 0,
115    "Enable accepting source routed IP packets");
116
117static int	ip_keepfaith = 0;
118SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119	&ip_keepfaith,	0,
120	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121
122static int	ip_nfragpackets = 0;
123static int	ip_maxfragpackets;	/* initialized in ip_init() */
124SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125	&ip_maxfragpackets, 0,
126	"Maximum number of IPv4 fragment reassembly queue entries");
127
128static int	ip_sendsourcequench = 0;
129SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
130	&ip_sendsourcequench, 0,
131	"Enable the transmission of source quench packets");
132
133/*
134 * XXX - Setting ip_checkinterface mostly implements the receive side of
135 * the Strong ES model described in RFC 1122, but since the routing table
136 * and transmit implementation do not implement the Strong ES model,
137 * setting this to 1 results in an odd hybrid.
138 *
139 * XXX - ip_checkinterface currently must be disabled if you use ipnat
140 * to translate the destination address to another local interface.
141 *
142 * XXX - ip_checkinterface must be disabled if you add IP aliases
143 * to the loopback interface instead of the interface where the
144 * packets for those addresses are received.
145 */
146static int	ip_checkinterface = 1;
147SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
148    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
149
150#ifdef DIAGNOSTIC
151static int	ipprintfs = 0;
152#endif
153
154static int	ipqmaxlen = IFQ_MAXLEN;
155
156extern	struct domain inetdomain;
157extern	struct protosw inetsw[];
158u_char	ip_protox[IPPROTO_MAX];
159struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
160struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
161u_long 	in_ifaddrhmask;				/* mask for hash table */
162
163SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
164    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
165SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
166    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
167
168struct ipstat ipstat;
169SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
170    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
171
172/* Packet reassembly stuff */
173#define IPREASS_NHASH_LOG2      6
174#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
175#define IPREASS_HMASK           (IPREASS_NHASH - 1)
176#define IPREASS_HASH(x,y) \
177	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
178
179static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
180static int    nipq = 0;         /* total # of reass queues */
181static int    maxnipq;
182
183#ifdef IPCTL_DEFMTU
184SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
185    &ip_mtu, 0, "Default MTU");
186#endif
187
188#ifdef IPSTEALTH
189static int	ipstealth = 0;
190SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
191    &ipstealth, 0, "");
192#endif
193
194
195/* Firewall hooks */
196ip_fw_chk_t *ip_fw_chk_ptr;
197int fw_enable = 1 ;
198int fw_one_pass = 1;
199
200/* Dummynet hooks */
201ip_dn_io_t *ip_dn_io_ptr;
202
203
204/*
205 * XXX this is ugly -- the following two global variables are
206 * used to store packet state while it travels through the stack.
207 * Note that the code even makes assumptions on the size and
208 * alignment of fields inside struct ip_srcrt so e.g. adding some
209 * fields will break the code. This needs to be fixed.
210 *
211 * We need to save the IP options in case a protocol wants to respond
212 * to an incoming packet over the same route if the packet got here
213 * using IP source routing.  This allows connection establishment and
214 * maintenance when the remote end is on a network that is not known
215 * to us.
216 */
217static int	ip_nhops = 0;
218static	struct ip_srcrt {
219	struct	in_addr dst;			/* final destination */
220	char	nop;				/* one NOP to align */
221	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
222	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
223} ip_srcrt;
224
225static void	save_rte(u_char *, struct in_addr);
226static int	ip_dooptions(struct mbuf *m, int,
227			struct sockaddr_in *next_hop);
228static void	ip_forward(struct mbuf *m, int srcrt,
229			struct sockaddr_in *next_hop);
230static void	ip_freef(struct ipqhead *, struct ipq *);
231static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
232		struct ipq *, u_int32_t *, u_int16_t *);
233static void	ipintr(void);
234
235/*
236 * IP initialization: fill in IP protocol switch table.
237 * All protocols not implemented in kernel go to raw IP protocol handler.
238 */
239void
240ip_init()
241{
242	register struct protosw *pr;
243	register int i;
244
245	TAILQ_INIT(&in_ifaddrhead);
246	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
247	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
248	if (pr == 0)
249		panic("ip_init");
250	for (i = 0; i < IPPROTO_MAX; i++)
251		ip_protox[i] = pr - inetsw;
252	for (pr = inetdomain.dom_protosw;
253	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
254		if (pr->pr_domain->dom_family == PF_INET &&
255		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
256			ip_protox[pr->pr_protocol] = pr - inetsw;
257
258	for (i = 0; i < IPREASS_NHASH; i++)
259	    TAILQ_INIT(&ipq[i]);
260
261	maxnipq = nmbclusters / 4;
262	ip_maxfragpackets = nmbclusters / 4;
263
264#ifndef RANDOM_IP_ID
265	ip_id = time_second & 0xffff;
266#endif
267	ipintrq.ifq_maxlen = ipqmaxlen;
268	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
269	ipintrq_present = 1;
270
271	register_netisr(NETISR_IP, ipintr);
272}
273
274/*
275 * XXX watch out this one. It is perhaps used as a cache for
276 * the most recently used route ? it is cleared in in_addroute()
277 * when a new route is successfully created.
278 */
279struct	route ipforward_rt;
280
281/*
282 * Ip input routine.  Checksum and byte swap header.  If fragmented
283 * try to reassemble.  Process options.  Pass to next level.
284 */
285void
286ip_input(struct mbuf *m)
287{
288	struct ip *ip;
289	struct ipq *fp;
290	struct in_ifaddr *ia = NULL;
291	struct ifaddr *ifa;
292	int    i, hlen, checkif;
293	u_short sum;
294	struct in_addr pkt_dst;
295	u_int32_t divert_info = 0;		/* packet divert/tee info */
296	struct ip_fw_args args;
297#ifdef PFIL_HOOKS
298	struct packet_filter_hook *pfh;
299	struct mbuf *m0;
300	int rv;
301#endif /* PFIL_HOOKS */
302#ifdef FAST_IPSEC
303	struct m_tag *mtag;
304	struct tdb_ident *tdbi;
305	struct secpolicy *sp;
306	int s, error;
307#endif /* FAST_IPSEC */
308
309	args.eh = NULL;
310	args.oif = NULL;
311	args.rule = NULL;
312	args.divert_rule = 0;			/* divert cookie */
313	args.next_hop = NULL;
314
315	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
316	for (; m && m->m_type == MT_TAG; m = m->m_next) {
317		switch(m->_m_tag_id) {
318		default:
319			printf("ip_input: unrecognised MT_TAG tag %d\n",
320			    m->_m_tag_id);
321			break;
322
323		case PACKET_TAG_DUMMYNET:
324			args.rule = ((struct dn_pkt *)m)->rule;
325			break;
326
327		case PACKET_TAG_DIVERT:
328			args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
329			break;
330
331		case PACKET_TAG_IPFORWARD:
332			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
333			break;
334		}
335	}
336
337	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
338	    ("ip_input: no HDR"));
339
340	if (args.rule) {	/* dummynet already filtered us */
341		ip = mtod(m, struct ip *);
342		hlen = ip->ip_hl << 2;
343		goto iphack ;
344	}
345
346	ipstat.ips_total++;
347
348	if (m->m_pkthdr.len < sizeof(struct ip))
349		goto tooshort;
350
351	if (m->m_len < sizeof (struct ip) &&
352	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
353		ipstat.ips_toosmall++;
354		return;
355	}
356	ip = mtod(m, struct ip *);
357
358	if (ip->ip_v != IPVERSION) {
359		ipstat.ips_badvers++;
360		goto bad;
361	}
362
363	hlen = ip->ip_hl << 2;
364	if (hlen < sizeof(struct ip)) {	/* minimum header length */
365		ipstat.ips_badhlen++;
366		goto bad;
367	}
368	if (hlen > m->m_len) {
369		if ((m = m_pullup(m, hlen)) == 0) {
370			ipstat.ips_badhlen++;
371			return;
372		}
373		ip = mtod(m, struct ip *);
374	}
375
376	/* 127/8 must not appear on wire - RFC1122 */
377	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
378	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
379		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
380			ipstat.ips_badaddr++;
381			goto bad;
382		}
383	}
384
385	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
386		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
387	} else {
388		if (hlen == sizeof(struct ip)) {
389			sum = in_cksum_hdr(ip);
390		} else {
391			sum = in_cksum(m, hlen);
392		}
393	}
394	if (sum) {
395		ipstat.ips_badsum++;
396		goto bad;
397	}
398
399	/*
400	 * Convert fields to host representation.
401	 */
402	ip->ip_len = ntohs(ip->ip_len);
403	if (ip->ip_len < hlen) {
404		ipstat.ips_badlen++;
405		goto bad;
406	}
407	ip->ip_off = ntohs(ip->ip_off);
408
409	/*
410	 * Check that the amount of data in the buffers
411	 * is as at least much as the IP header would have us expect.
412	 * Trim mbufs if longer than we expect.
413	 * Drop packet if shorter than we expect.
414	 */
415	if (m->m_pkthdr.len < ip->ip_len) {
416tooshort:
417		ipstat.ips_tooshort++;
418		goto bad;
419	}
420	if (m->m_pkthdr.len > ip->ip_len) {
421		if (m->m_len == m->m_pkthdr.len) {
422			m->m_len = ip->ip_len;
423			m->m_pkthdr.len = ip->ip_len;
424		} else
425			m_adj(m, ip->ip_len - m->m_pkthdr.len);
426	}
427
428	/*
429	 * IpHack's section.
430	 * Right now when no processing on packet has done
431	 * and it is still fresh out of network we do our black
432	 * deals with it.
433	 * - Firewall: deny/allow/divert
434	 * - Xlate: translate packet's addr/port (NAT).
435	 * - Pipe: pass pkt through dummynet.
436	 * - Wrap: fake packet's addr/port <unimpl.>
437	 * - Encapsulate: put it in another IP and send out. <unimp.>
438 	 */
439
440iphack:
441
442#ifdef PFIL_HOOKS
443	/*
444	 * Run through list of hooks for input packets.  If there are any
445	 * filters which require that additional packets in the flow are
446	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
447	 * Note that filters must _never_ set this flag, as another filter
448	 * in the list may have previously cleared it.
449	 */
450	m0 = m;
451	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
452	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
453		if (pfh->pfil_func) {
454			rv = pfh->pfil_func(ip, hlen,
455					    m->m_pkthdr.rcvif, 0, &m0);
456			if (rv)
457				return;
458			m = m0;
459			if (m == NULL)
460				return;
461			ip = mtod(m, struct ip *);
462		}
463#endif /* PFIL_HOOKS */
464
465	if (fw_enable && IPFW_LOADED) {
466		/*
467		 * If we've been forwarded from the output side, then
468		 * skip the firewall a second time
469		 */
470		if (args.next_hop)
471			goto ours;
472
473		args.m = m;
474		i = ip_fw_chk_ptr(&args);
475		m = args.m;
476
477		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
478			if (m)
479				m_freem(m);
480			return;
481		}
482		ip = mtod(m, struct ip *); /* just in case m changed */
483		if (i == 0 && args.next_hop == NULL)	/* common case */
484			goto pass;
485                if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
486			/* Send packet to the appropriate pipe */
487			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
488			return;
489		}
490#ifdef IPDIVERT
491		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
492			/* Divert or tee packet */
493			divert_info = i;
494			goto ours;
495		}
496#endif
497		if (i == 0 && args.next_hop != NULL)
498			goto pass;
499		/*
500		 * if we get here, the packet must be dropped
501		 */
502		m_freem(m);
503		return;
504	}
505pass:
506
507	/*
508	 * Process options and, if not destined for us,
509	 * ship it on.  ip_dooptions returns 1 when an
510	 * error was detected (causing an icmp message
511	 * to be sent and the original packet to be freed).
512	 */
513	ip_nhops = 0;		/* for source routed packets */
514	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
515		return;
516
517        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
518         * matter if it is destined to another node, or whether it is
519         * a multicast one, RSVP wants it! and prevents it from being forwarded
520         * anywhere else. Also checks if the rsvp daemon is running before
521	 * grabbing the packet.
522         */
523	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
524		goto ours;
525
526	/*
527	 * Check our list of addresses, to see if the packet is for us.
528	 * If we don't have any addresses, assume any unicast packet
529	 * we receive might be for us (and let the upper layers deal
530	 * with it).
531	 */
532	if (TAILQ_EMPTY(&in_ifaddrhead) &&
533	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
534		goto ours;
535
536	/*
537	 * Cache the destination address of the packet; this may be
538	 * changed by use of 'ipfw fwd'.
539	 */
540	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
541
542	/*
543	 * Enable a consistency check between the destination address
544	 * and the arrival interface for a unicast packet (the RFC 1122
545	 * strong ES model) if IP forwarding is disabled and the packet
546	 * is not locally generated and the packet is not subject to
547	 * 'ipfw fwd'.
548	 *
549	 * XXX - Checking also should be disabled if the destination
550	 * address is ipnat'ed to a different interface.
551	 *
552	 * XXX - Checking is incompatible with IP aliases added
553	 * to the loopback interface instead of the interface where
554	 * the packets are received.
555	 */
556	checkif = ip_checkinterface && (ipforwarding == 0) &&
557	    m->m_pkthdr.rcvif != NULL &&
558	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
559	    (args.next_hop == NULL);
560
561	/*
562	 * Check for exact addresses in the hash bucket.
563	 */
564	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
565		/*
566		 * If the address matches, verify that the packet
567		 * arrived via the correct interface if checking is
568		 * enabled.
569		 */
570		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
571		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
572			goto ours;
573	}
574	/*
575	 * Check for broadcast addresses.
576	 *
577	 * Only accept broadcast packets that arrive via the matching
578	 * interface.  Reception of forwarded directed broadcasts would
579	 * be handled via ip_forward() and ether_output() with the loopback
580	 * into the stack for SIMPLEX interfaces handled by ether_output().
581	 */
582	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
583	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
584			if (ifa->ifa_addr->sa_family != AF_INET)
585				continue;
586			ia = ifatoia(ifa);
587			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
588			    pkt_dst.s_addr)
589				goto ours;
590			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
591				goto ours;
592#ifdef BOOTP_COMPAT
593			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
594				goto ours;
595#endif
596		}
597	}
598	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
599		struct in_multi *inm;
600		if (ip_mrouter) {
601			/*
602			 * If we are acting as a multicast router, all
603			 * incoming multicast packets are passed to the
604			 * kernel-level multicast forwarding function.
605			 * The packet is returned (relatively) intact; if
606			 * ip_mforward() returns a non-zero value, the packet
607			 * must be discarded, else it may be accepted below.
608			 */
609			if (ip_mforward &&
610			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
611				ipstat.ips_cantforward++;
612				m_freem(m);
613				return;
614			}
615
616			/*
617			 * The process-level routing daemon needs to receive
618			 * all multicast IGMP packets, whether or not this
619			 * host belongs to their destination groups.
620			 */
621			if (ip->ip_p == IPPROTO_IGMP)
622				goto ours;
623			ipstat.ips_forward++;
624		}
625		/*
626		 * See if we belong to the destination multicast group on the
627		 * arrival interface.
628		 */
629		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
630		if (inm == NULL) {
631			ipstat.ips_notmember++;
632			m_freem(m);
633			return;
634		}
635		goto ours;
636	}
637	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
638		goto ours;
639	if (ip->ip_dst.s_addr == INADDR_ANY)
640		goto ours;
641
642	/*
643	 * FAITH(Firewall Aided Internet Translator)
644	 */
645	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
646		if (ip_keepfaith) {
647			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
648				goto ours;
649		}
650		m_freem(m);
651		return;
652	}
653
654	/*
655	 * Not for us; forward if possible and desirable.
656	 */
657	if (ipforwarding == 0) {
658		ipstat.ips_cantforward++;
659		m_freem(m);
660	} else {
661#ifdef IPSEC
662		/*
663		 * Enforce inbound IPsec SPD.
664		 */
665		if (ipsec4_in_reject(m, NULL)) {
666			ipsecstat.in_polvio++;
667			goto bad;
668		}
669#endif /* IPSEC */
670#ifdef FAST_IPSEC
671		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
672		s = splnet();
673		if (mtag != NULL) {
674			tdbi = (struct tdb_ident *)(mtag + 1);
675			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
676		} else {
677			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
678						   IP_FORWARDING, &error);
679		}
680		if (sp == NULL) {	/* NB: can happen if error */
681			splx(s);
682			/*XXX error stat???*/
683			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
684			goto bad;
685		}
686
687		/*
688		 * Check security policy against packet attributes.
689		 */
690		error = ipsec_in_reject(sp, m);
691		KEY_FREESP(&sp);
692		splx(s);
693		if (error) {
694			ipstat.ips_cantforward++;
695			goto bad;
696		}
697#endif /* FAST_IPSEC */
698		ip_forward(m, 0, args.next_hop);
699	}
700	return;
701
702ours:
703#ifdef IPSTEALTH
704	/*
705	 * IPSTEALTH: Process non-routing options only
706	 * if the packet is destined for us.
707	 */
708	if (ipstealth && hlen > sizeof (struct ip) &&
709	    ip_dooptions(m, 1, args.next_hop))
710		return;
711#endif /* IPSTEALTH */
712
713	/* Count the packet in the ip address stats */
714	if (ia != NULL) {
715		ia->ia_ifa.if_ipackets++;
716		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
717	}
718
719	/*
720	 * If offset or IP_MF are set, must reassemble.
721	 * Otherwise, nothing need be done.
722	 * (We could look in the reassembly queue to see
723	 * if the packet was previously fragmented,
724	 * but it's not worth the time; just let them time out.)
725	 */
726	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
727
728		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
729		/*
730		 * Look for queue of fragments
731		 * of this datagram.
732		 */
733		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
734			if (ip->ip_id == fp->ipq_id &&
735			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
736			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
737#ifdef MAC
738			    mac_fragment_match(m, fp) &&
739#endif
740			    ip->ip_p == fp->ipq_p)
741				goto found;
742
743		fp = 0;
744
745		/* check if there's a place for the new queue */
746		if (nipq > maxnipq) {
747		    /*
748		     * drop something from the tail of the current queue
749		     * before proceeding further
750		     */
751		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
752		    if (q == NULL) {   /* gak */
753			for (i = 0; i < IPREASS_NHASH; i++) {
754			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
755			    if (r) {
756				ip_freef(&ipq[i], r);
757				break;
758			    }
759			}
760		    } else
761			ip_freef(&ipq[sum], q);
762		}
763found:
764		/*
765		 * Adjust ip_len to not reflect header,
766		 * convert offset of this to bytes.
767		 */
768		ip->ip_len -= hlen;
769		if (ip->ip_off & IP_MF) {
770		        /*
771		         * Make sure that fragments have a data length
772			 * that's a non-zero multiple of 8 bytes.
773		         */
774			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
775				ipstat.ips_toosmall++; /* XXX */
776				goto bad;
777			}
778			m->m_flags |= M_FRAG;
779		} else
780			m->m_flags &= ~M_FRAG;
781		ip->ip_off <<= 3;
782
783		/*
784		 * Attempt reassembly; if it succeeds, proceed.
785		 * ip_reass() will return a different mbuf, and update
786		 * the divert info in divert_info and args.divert_rule.
787		 */
788		ipstat.ips_fragments++;
789		m->m_pkthdr.header = ip;
790		m = ip_reass(m,
791		    &ipq[sum], fp, &divert_info, &args.divert_rule);
792		if (m == 0)
793			return;
794		ipstat.ips_reassembled++;
795		ip = mtod(m, struct ip *);
796		/* Get the header length of the reassembled packet */
797		hlen = ip->ip_hl << 2;
798#ifdef IPDIVERT
799		/* Restore original checksum before diverting packet */
800		if (divert_info != 0) {
801			ip->ip_len += hlen;
802			ip->ip_len = htons(ip->ip_len);
803			ip->ip_off = htons(ip->ip_off);
804			ip->ip_sum = 0;
805			if (hlen == sizeof(struct ip))
806				ip->ip_sum = in_cksum_hdr(ip);
807			else
808				ip->ip_sum = in_cksum(m, hlen);
809			ip->ip_off = ntohs(ip->ip_off);
810			ip->ip_len = ntohs(ip->ip_len);
811			ip->ip_len -= hlen;
812		}
813#endif
814	} else
815		ip->ip_len -= hlen;
816
817#ifdef IPDIVERT
818	/*
819	 * Divert or tee packet to the divert protocol if required.
820	 */
821	if (divert_info != 0) {
822		struct mbuf *clone = NULL;
823
824		/* Clone packet if we're doing a 'tee' */
825		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
826			clone = m_dup(m, M_NOWAIT);
827
828		/* Restore packet header fields to original values */
829		ip->ip_len += hlen;
830		ip->ip_len = htons(ip->ip_len);
831		ip->ip_off = htons(ip->ip_off);
832
833		/* Deliver packet to divert input routine */
834		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
835		ipstat.ips_delivered++;
836
837		/* If 'tee', continue with original packet */
838		if (clone == NULL)
839			return;
840		m = clone;
841		ip = mtod(m, struct ip *);
842		ip->ip_len += hlen;
843		/*
844		 * Jump backwards to complete processing of the
845		 * packet. But first clear divert_info to avoid
846		 * entering this block again.
847		 * We do not need to clear args.divert_rule
848		 * or args.next_hop as they will not be used.
849		 */
850		divert_info = 0;
851		goto pass;
852	}
853#endif
854
855#ifdef IPSEC
856	/*
857	 * enforce IPsec policy checking if we are seeing last header.
858	 * note that we do not visit this with protocols with pcb layer
859	 * code - like udp/tcp/raw ip.
860	 */
861	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
862	    ipsec4_in_reject(m, NULL)) {
863		ipsecstat.in_polvio++;
864		goto bad;
865	}
866#endif
867#if FAST_IPSEC
868	/*
869	 * enforce IPsec policy checking if we are seeing last header.
870	 * note that we do not visit this with protocols with pcb layer
871	 * code - like udp/tcp/raw ip.
872	 */
873	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
874		/*
875		 * Check if the packet has already had IPsec processing
876		 * done.  If so, then just pass it along.  This tag gets
877		 * set during AH, ESP, etc. input handling, before the
878		 * packet is returned to the ip input queue for delivery.
879		 */
880		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
881		s = splnet();
882		if (mtag != NULL) {
883			tdbi = (struct tdb_ident *)(mtag + 1);
884			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
885		} else {
886			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
887						   IP_FORWARDING, &error);
888		}
889		if (sp != NULL) {
890			/*
891			 * Check security policy against packet attributes.
892			 */
893			error = ipsec_in_reject(sp, m);
894			KEY_FREESP(&sp);
895		} else {
896			/* XXX error stat??? */
897			error = EINVAL;
898DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
899			goto bad;
900		}
901		splx(s);
902		if (error)
903			goto bad;
904	}
905#endif /* FAST_IPSEC */
906
907	/*
908	 * Switch out to protocol's input routine.
909	 */
910	ipstat.ips_delivered++;
911	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
912		/* TCP needs IPFORWARD info if available */
913		struct m_hdr tag;
914
915		tag.mh_type = MT_TAG;
916		tag.mh_flags = PACKET_TAG_IPFORWARD;
917		tag.mh_data = (caddr_t)args.next_hop;
918		tag.mh_next = m;
919
920		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
921			(struct mbuf *)&tag, hlen);
922	} else
923		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
924	return;
925bad:
926	m_freem(m);
927}
928
929/*
930 * IP software interrupt routine - to go away sometime soon
931 */
932static void
933ipintr(void)
934{
935	struct mbuf *m;
936
937	while (1) {
938		IF_DEQUEUE(&ipintrq, m);
939		if (m == 0)
940			return;
941		ip_input(m);
942	}
943}
944
945/*
946 * Take incoming datagram fragment and try to reassemble it into
947 * whole datagram.  If a chain for reassembly of this datagram already
948 * exists, then it is given as fp; otherwise have to make a chain.
949 *
950 * When IPDIVERT enabled, keep additional state with each packet that
951 * tells us if we need to divert or tee the packet we're building.
952 * In particular, *divinfo includes the port and TEE flag,
953 * *divert_rule is the number of the matching rule.
954 */
955
956static struct mbuf *
957ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
958	u_int32_t *divinfo, u_int16_t *divert_rule)
959{
960	struct ip *ip = mtod(m, struct ip *);
961	register struct mbuf *p, *q, *nq;
962	struct mbuf *t;
963	int hlen = ip->ip_hl << 2;
964	int i, next;
965
966	/*
967	 * Presence of header sizes in mbufs
968	 * would confuse code below.
969	 */
970	m->m_data += hlen;
971	m->m_len -= hlen;
972
973	/*
974	 * If first fragment to arrive, create a reassembly queue.
975	 */
976	if (fp == 0) {
977		/*
978		 * Enforce upper bound on number of fragmented packets
979		 * for which we attempt reassembly;
980		 * If maxfrag is 0, never accept fragments.
981		 * If maxfrag is -1, accept all fragments without limitation.
982		 */
983		if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets))
984			goto dropfrag;
985		ip_nfragpackets++;
986		if ((t = m_get(M_NOWAIT, MT_FTABLE)) == NULL)
987			goto dropfrag;
988		fp = mtod(t, struct ipq *);
989#ifdef MAC
990		mac_init_ipq(fp);
991		mac_create_ipq(m, fp);
992#endif
993		TAILQ_INSERT_HEAD(head, fp, ipq_list);
994		nipq++;
995		fp->ipq_ttl = IPFRAGTTL;
996		fp->ipq_p = ip->ip_p;
997		fp->ipq_id = ip->ip_id;
998		fp->ipq_src = ip->ip_src;
999		fp->ipq_dst = ip->ip_dst;
1000		fp->ipq_frags = m;
1001		m->m_nextpkt = NULL;
1002#ifdef IPDIVERT
1003		fp->ipq_div_info = 0;
1004		fp->ipq_div_cookie = 0;
1005#endif
1006		goto inserted;
1007	} else {
1008#ifdef MAC
1009		mac_update_ipq(m, fp);
1010#endif
1011	}
1012
1013#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1014
1015	/*
1016	 * Find a segment which begins after this one does.
1017	 */
1018	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1019		if (GETIP(q)->ip_off > ip->ip_off)
1020			break;
1021
1022	/*
1023	 * If there is a preceding segment, it may provide some of
1024	 * our data already.  If so, drop the data from the incoming
1025	 * segment.  If it provides all of our data, drop us, otherwise
1026	 * stick new segment in the proper place.
1027	 *
1028	 * If some of the data is dropped from the the preceding
1029	 * segment, then it's checksum is invalidated.
1030	 */
1031	if (p) {
1032		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1033		if (i > 0) {
1034			if (i >= ip->ip_len)
1035				goto dropfrag;
1036			m_adj(m, i);
1037			m->m_pkthdr.csum_flags = 0;
1038			ip->ip_off += i;
1039			ip->ip_len -= i;
1040		}
1041		m->m_nextpkt = p->m_nextpkt;
1042		p->m_nextpkt = m;
1043	} else {
1044		m->m_nextpkt = fp->ipq_frags;
1045		fp->ipq_frags = m;
1046	}
1047
1048	/*
1049	 * While we overlap succeeding segments trim them or,
1050	 * if they are completely covered, dequeue them.
1051	 */
1052	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1053	     q = nq) {
1054		i = (ip->ip_off + ip->ip_len) -
1055		    GETIP(q)->ip_off;
1056		if (i < GETIP(q)->ip_len) {
1057			GETIP(q)->ip_len -= i;
1058			GETIP(q)->ip_off += i;
1059			m_adj(q, i);
1060			q->m_pkthdr.csum_flags = 0;
1061			break;
1062		}
1063		nq = q->m_nextpkt;
1064		m->m_nextpkt = nq;
1065		m_freem(q);
1066	}
1067
1068inserted:
1069
1070#ifdef IPDIVERT
1071	/*
1072	 * Transfer firewall instructions to the fragment structure.
1073	 * Only trust info in the fragment at offset 0.
1074	 */
1075	if (ip->ip_off == 0) {
1076		fp->ipq_div_info = *divinfo;
1077		fp->ipq_div_cookie = *divert_rule;
1078	}
1079	*divinfo = 0;
1080	*divert_rule = 0;
1081#endif
1082
1083	/*
1084	 * Check for complete reassembly.
1085	 */
1086	next = 0;
1087	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1088		if (GETIP(q)->ip_off != next)
1089			return (0);
1090		next += GETIP(q)->ip_len;
1091	}
1092	/* Make sure the last packet didn't have the IP_MF flag */
1093	if (p->m_flags & M_FRAG)
1094		return (0);
1095
1096	/*
1097	 * Reassembly is complete.  Make sure the packet is a sane size.
1098	 */
1099	q = fp->ipq_frags;
1100	ip = GETIP(q);
1101	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1102		ipstat.ips_toolong++;
1103		ip_freef(head, fp);
1104		return (0);
1105	}
1106
1107	/*
1108	 * Concatenate fragments.
1109	 */
1110	m = q;
1111	t = m->m_next;
1112	m->m_next = 0;
1113	m_cat(m, t);
1114	nq = q->m_nextpkt;
1115	q->m_nextpkt = 0;
1116	for (q = nq; q != NULL; q = nq) {
1117		nq = q->m_nextpkt;
1118		q->m_nextpkt = NULL;
1119		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1120		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1121		m_cat(m, q);
1122	}
1123#ifdef MAC
1124	mac_create_datagram_from_ipq(fp, m);
1125	mac_destroy_ipq(fp);
1126#endif
1127
1128#ifdef IPDIVERT
1129	/*
1130	 * Extract firewall instructions from the fragment structure.
1131	 */
1132	*divinfo = fp->ipq_div_info;
1133	*divert_rule = fp->ipq_div_cookie;
1134#endif
1135
1136	/*
1137	 * Create header for new ip packet by
1138	 * modifying header of first packet;
1139	 * dequeue and discard fragment reassembly header.
1140	 * Make header visible.
1141	 */
1142	ip->ip_len = next;
1143	ip->ip_src = fp->ipq_src;
1144	ip->ip_dst = fp->ipq_dst;
1145	TAILQ_REMOVE(head, fp, ipq_list);
1146	nipq--;
1147	(void) m_free(dtom(fp));
1148	ip_nfragpackets--;
1149	m->m_len += (ip->ip_hl << 2);
1150	m->m_data -= (ip->ip_hl << 2);
1151	/* some debugging cruft by sklower, below, will go away soon */
1152	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1153		m_fixhdr(m);
1154	return (m);
1155
1156dropfrag:
1157#ifdef IPDIVERT
1158	*divinfo = 0;
1159	*divert_rule = 0;
1160#endif
1161	ipstat.ips_fragdropped++;
1162	m_freem(m);
1163	return (0);
1164
1165#undef GETIP
1166}
1167
1168/*
1169 * Free a fragment reassembly header and all
1170 * associated datagrams.
1171 */
1172static void
1173ip_freef(fhp, fp)
1174	struct ipqhead *fhp;
1175	struct ipq *fp;
1176{
1177	register struct mbuf *q;
1178
1179	while (fp->ipq_frags) {
1180		q = fp->ipq_frags;
1181		fp->ipq_frags = q->m_nextpkt;
1182		m_freem(q);
1183	}
1184	TAILQ_REMOVE(fhp, fp, ipq_list);
1185	(void) m_free(dtom(fp));
1186	ip_nfragpackets--;
1187	nipq--;
1188}
1189
1190/*
1191 * IP timer processing;
1192 * if a timer expires on a reassembly
1193 * queue, discard it.
1194 */
1195void
1196ip_slowtimo()
1197{
1198	register struct ipq *fp;
1199	int s = splnet();
1200	int i;
1201
1202	for (i = 0; i < IPREASS_NHASH; i++) {
1203		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1204			struct ipq *fpp;
1205
1206			fpp = fp;
1207			fp = TAILQ_NEXT(fp, ipq_list);
1208			if(--fpp->ipq_ttl == 0) {
1209				ipstat.ips_fragtimeout++;
1210				ip_freef(&ipq[i], fpp);
1211			}
1212		}
1213	}
1214	/*
1215	 * If we are over the maximum number of fragments
1216	 * (due to the limit being lowered), drain off
1217	 * enough to get down to the new limit.
1218	 */
1219	for (i = 0; i < IPREASS_NHASH; i++) {
1220		if (ip_maxfragpackets >= 0) {
1221			while (ip_nfragpackets > ip_maxfragpackets &&
1222				!TAILQ_EMPTY(&ipq[i])) {
1223				ipstat.ips_fragdropped++;
1224				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1225			}
1226		}
1227	}
1228	ipflow_slowtimo();
1229	splx(s);
1230}
1231
1232/*
1233 * Drain off all datagram fragments.
1234 */
1235void
1236ip_drain()
1237{
1238	int     i;
1239
1240	for (i = 0; i < IPREASS_NHASH; i++) {
1241		while(!TAILQ_EMPTY(&ipq[i])) {
1242			ipstat.ips_fragdropped++;
1243			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1244		}
1245	}
1246	in_rtqdrain();
1247}
1248
1249/*
1250 * Do option processing on a datagram,
1251 * possibly discarding it if bad options are encountered,
1252 * or forwarding it if source-routed.
1253 * The pass argument is used when operating in the IPSTEALTH
1254 * mode to tell what options to process:
1255 * [LS]SRR (pass 0) or the others (pass 1).
1256 * The reason for as many as two passes is that when doing IPSTEALTH,
1257 * non-routing options should be processed only if the packet is for us.
1258 * Returns 1 if packet has been forwarded/freed,
1259 * 0 if the packet should be processed further.
1260 */
1261static int
1262ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1263{
1264	struct ip *ip = mtod(m, struct ip *);
1265	u_char *cp;
1266	struct in_ifaddr *ia;
1267	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1268	struct in_addr *sin, dst;
1269	n_time ntime;
1270	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1271
1272	dst = ip->ip_dst;
1273	cp = (u_char *)(ip + 1);
1274	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1275	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1276		opt = cp[IPOPT_OPTVAL];
1277		if (opt == IPOPT_EOL)
1278			break;
1279		if (opt == IPOPT_NOP)
1280			optlen = 1;
1281		else {
1282			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1283				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1284				goto bad;
1285			}
1286			optlen = cp[IPOPT_OLEN];
1287			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1288				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1289				goto bad;
1290			}
1291		}
1292		switch (opt) {
1293
1294		default:
1295			break;
1296
1297		/*
1298		 * Source routing with record.
1299		 * Find interface with current destination address.
1300		 * If none on this machine then drop if strictly routed,
1301		 * or do nothing if loosely routed.
1302		 * Record interface address and bring up next address
1303		 * component.  If strictly routed make sure next
1304		 * address is on directly accessible net.
1305		 */
1306		case IPOPT_LSRR:
1307		case IPOPT_SSRR:
1308#ifdef IPSTEALTH
1309			if (ipstealth && pass > 0)
1310				break;
1311#endif
1312			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1313				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1314				goto bad;
1315			}
1316			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1317				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1318				goto bad;
1319			}
1320			ipaddr.sin_addr = ip->ip_dst;
1321			ia = (struct in_ifaddr *)
1322				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1323			if (ia == 0) {
1324				if (opt == IPOPT_SSRR) {
1325					type = ICMP_UNREACH;
1326					code = ICMP_UNREACH_SRCFAIL;
1327					goto bad;
1328				}
1329				if (!ip_dosourceroute)
1330					goto nosourcerouting;
1331				/*
1332				 * Loose routing, and not at next destination
1333				 * yet; nothing to do except forward.
1334				 */
1335				break;
1336			}
1337			off--;			/* 0 origin */
1338			if (off > optlen - (int)sizeof(struct in_addr)) {
1339				/*
1340				 * End of source route.  Should be for us.
1341				 */
1342				if (!ip_acceptsourceroute)
1343					goto nosourcerouting;
1344				save_rte(cp, ip->ip_src);
1345				break;
1346			}
1347#ifdef IPSTEALTH
1348			if (ipstealth)
1349				goto dropit;
1350#endif
1351			if (!ip_dosourceroute) {
1352				if (ipforwarding) {
1353					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1354					/*
1355					 * Acting as a router, so generate ICMP
1356					 */
1357nosourcerouting:
1358					strcpy(buf, inet_ntoa(ip->ip_dst));
1359					log(LOG_WARNING,
1360					    "attempted source route from %s to %s\n",
1361					    inet_ntoa(ip->ip_src), buf);
1362					type = ICMP_UNREACH;
1363					code = ICMP_UNREACH_SRCFAIL;
1364					goto bad;
1365				} else {
1366					/*
1367					 * Not acting as a router, so silently drop.
1368					 */
1369#ifdef IPSTEALTH
1370dropit:
1371#endif
1372					ipstat.ips_cantforward++;
1373					m_freem(m);
1374					return (1);
1375				}
1376			}
1377
1378			/*
1379			 * locate outgoing interface
1380			 */
1381			(void)memcpy(&ipaddr.sin_addr, cp + off,
1382			    sizeof(ipaddr.sin_addr));
1383
1384			if (opt == IPOPT_SSRR) {
1385#define	INA	struct in_ifaddr *
1386#define	SA	struct sockaddr *
1387			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1388				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1389			} else
1390				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1391			if (ia == 0) {
1392				type = ICMP_UNREACH;
1393				code = ICMP_UNREACH_SRCFAIL;
1394				goto bad;
1395			}
1396			ip->ip_dst = ipaddr.sin_addr;
1397			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1398			    sizeof(struct in_addr));
1399			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1400			/*
1401			 * Let ip_intr's mcast routing check handle mcast pkts
1402			 */
1403			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1404			break;
1405
1406		case IPOPT_RR:
1407#ifdef IPSTEALTH
1408			if (ipstealth && pass == 0)
1409				break;
1410#endif
1411			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1412				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1413				goto bad;
1414			}
1415			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1416				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1417				goto bad;
1418			}
1419			/*
1420			 * If no space remains, ignore.
1421			 */
1422			off--;			/* 0 origin */
1423			if (off > optlen - (int)sizeof(struct in_addr))
1424				break;
1425			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1426			    sizeof(ipaddr.sin_addr));
1427			/*
1428			 * locate outgoing interface; if we're the destination,
1429			 * use the incoming interface (should be same).
1430			 */
1431			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1432			    (ia = ip_rtaddr(ipaddr.sin_addr,
1433			    &ipforward_rt)) == 0) {
1434				type = ICMP_UNREACH;
1435				code = ICMP_UNREACH_HOST;
1436				goto bad;
1437			}
1438			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1439			    sizeof(struct in_addr));
1440			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1441			break;
1442
1443		case IPOPT_TS:
1444#ifdef IPSTEALTH
1445			if (ipstealth && pass == 0)
1446				break;
1447#endif
1448			code = cp - (u_char *)ip;
1449			if (optlen < 4 || optlen > 40) {
1450				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1451				goto bad;
1452			}
1453			if ((off = cp[IPOPT_OFFSET]) < 5) {
1454				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1455				goto bad;
1456			}
1457			if (off > optlen - (int)sizeof(int32_t)) {
1458				cp[IPOPT_OFFSET + 1] += (1 << 4);
1459				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1460					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1461					goto bad;
1462				}
1463				break;
1464			}
1465			off--;				/* 0 origin */
1466			sin = (struct in_addr *)(cp + off);
1467			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1468
1469			case IPOPT_TS_TSONLY:
1470				break;
1471
1472			case IPOPT_TS_TSANDADDR:
1473				if (off + sizeof(n_time) +
1474				    sizeof(struct in_addr) > optlen) {
1475					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1476					goto bad;
1477				}
1478				ipaddr.sin_addr = dst;
1479				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1480							    m->m_pkthdr.rcvif);
1481				if (ia == 0)
1482					continue;
1483				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1484				    sizeof(struct in_addr));
1485				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1486				off += sizeof(struct in_addr);
1487				break;
1488
1489			case IPOPT_TS_PRESPEC:
1490				if (off + sizeof(n_time) +
1491				    sizeof(struct in_addr) > optlen) {
1492					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1493					goto bad;
1494				}
1495				(void)memcpy(&ipaddr.sin_addr, sin,
1496				    sizeof(struct in_addr));
1497				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1498					continue;
1499				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1500				off += sizeof(struct in_addr);
1501				break;
1502
1503			default:
1504				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1505				goto bad;
1506			}
1507			ntime = iptime();
1508			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1509			cp[IPOPT_OFFSET] += sizeof(n_time);
1510		}
1511	}
1512	if (forward && ipforwarding) {
1513		ip_forward(m, 1, next_hop);
1514		return (1);
1515	}
1516	return (0);
1517bad:
1518	icmp_error(m, type, code, 0, 0);
1519	ipstat.ips_badoptions++;
1520	return (1);
1521}
1522
1523/*
1524 * Given address of next destination (final or next hop),
1525 * return internet address info of interface to be used to get there.
1526 */
1527struct in_ifaddr *
1528ip_rtaddr(dst, rt)
1529	struct in_addr dst;
1530	struct route *rt;
1531{
1532	register struct sockaddr_in *sin;
1533
1534	sin = (struct sockaddr_in *)&rt->ro_dst;
1535
1536	if (rt->ro_rt == 0 ||
1537	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1538	    dst.s_addr != sin->sin_addr.s_addr) {
1539		if (rt->ro_rt) {
1540			RTFREE(rt->ro_rt);
1541			rt->ro_rt = 0;
1542		}
1543		sin->sin_family = AF_INET;
1544		sin->sin_len = sizeof(*sin);
1545		sin->sin_addr = dst;
1546
1547		rtalloc_ign(rt, RTF_PRCLONING);
1548	}
1549	if (rt->ro_rt == 0)
1550		return ((struct in_ifaddr *)0);
1551	return (ifatoia(rt->ro_rt->rt_ifa));
1552}
1553
1554/*
1555 * Save incoming source route for use in replies,
1556 * to be picked up later by ip_srcroute if the receiver is interested.
1557 */
1558static void
1559save_rte(option, dst)
1560	u_char *option;
1561	struct in_addr dst;
1562{
1563	unsigned olen;
1564
1565	olen = option[IPOPT_OLEN];
1566#ifdef DIAGNOSTIC
1567	if (ipprintfs)
1568		printf("save_rte: olen %d\n", olen);
1569#endif
1570	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1571		return;
1572	bcopy(option, ip_srcrt.srcopt, olen);
1573	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1574	ip_srcrt.dst = dst;
1575}
1576
1577/*
1578 * Retrieve incoming source route for use in replies,
1579 * in the same form used by setsockopt.
1580 * The first hop is placed before the options, will be removed later.
1581 */
1582struct mbuf *
1583ip_srcroute()
1584{
1585	register struct in_addr *p, *q;
1586	register struct mbuf *m;
1587
1588	if (ip_nhops == 0)
1589		return ((struct mbuf *)0);
1590	m = m_get(M_NOWAIT, MT_HEADER);
1591	if (m == 0)
1592		return ((struct mbuf *)0);
1593
1594#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1595
1596	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1597	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1598	    OPTSIZ;
1599#ifdef DIAGNOSTIC
1600	if (ipprintfs)
1601		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1602#endif
1603
1604	/*
1605	 * First save first hop for return route
1606	 */
1607	p = &ip_srcrt.route[ip_nhops - 1];
1608	*(mtod(m, struct in_addr *)) = *p--;
1609#ifdef DIAGNOSTIC
1610	if (ipprintfs)
1611		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1612#endif
1613
1614	/*
1615	 * Copy option fields and padding (nop) to mbuf.
1616	 */
1617	ip_srcrt.nop = IPOPT_NOP;
1618	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1619	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1620	    &ip_srcrt.nop, OPTSIZ);
1621	q = (struct in_addr *)(mtod(m, caddr_t) +
1622	    sizeof(struct in_addr) + OPTSIZ);
1623#undef OPTSIZ
1624	/*
1625	 * Record return path as an IP source route,
1626	 * reversing the path (pointers are now aligned).
1627	 */
1628	while (p >= ip_srcrt.route) {
1629#ifdef DIAGNOSTIC
1630		if (ipprintfs)
1631			printf(" %lx", (u_long)ntohl(q->s_addr));
1632#endif
1633		*q++ = *p--;
1634	}
1635	/*
1636	 * Last hop goes to final destination.
1637	 */
1638	*q = ip_srcrt.dst;
1639#ifdef DIAGNOSTIC
1640	if (ipprintfs)
1641		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1642#endif
1643	return (m);
1644}
1645
1646/*
1647 * Strip out IP options, at higher
1648 * level protocol in the kernel.
1649 * Second argument is buffer to which options
1650 * will be moved, and return value is their length.
1651 * XXX should be deleted; last arg currently ignored.
1652 */
1653void
1654ip_stripoptions(m, mopt)
1655	register struct mbuf *m;
1656	struct mbuf *mopt;
1657{
1658	register int i;
1659	struct ip *ip = mtod(m, struct ip *);
1660	register caddr_t opts;
1661	int olen;
1662
1663	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1664	opts = (caddr_t)(ip + 1);
1665	i = m->m_len - (sizeof (struct ip) + olen);
1666	bcopy(opts + olen, opts, (unsigned)i);
1667	m->m_len -= olen;
1668	if (m->m_flags & M_PKTHDR)
1669		m->m_pkthdr.len -= olen;
1670	ip->ip_v = IPVERSION;
1671	ip->ip_hl = sizeof(struct ip) >> 2;
1672}
1673
1674u_char inetctlerrmap[PRC_NCMDS] = {
1675	0,		0,		0,		0,
1676	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1677	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1678	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1679	0,		0,		0,		0,
1680	ENOPROTOOPT,	ECONNREFUSED
1681};
1682
1683/*
1684 * Forward a packet.  If some error occurs return the sender
1685 * an icmp packet.  Note we can't always generate a meaningful
1686 * icmp message because icmp doesn't have a large enough repertoire
1687 * of codes and types.
1688 *
1689 * If not forwarding, just drop the packet.  This could be confusing
1690 * if ipforwarding was zero but some routing protocol was advancing
1691 * us as a gateway to somewhere.  However, we must let the routing
1692 * protocol deal with that.
1693 *
1694 * The srcrt parameter indicates whether the packet is being forwarded
1695 * via a source route.
1696 */
1697static void
1698ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1699{
1700	struct ip *ip = mtod(m, struct ip *);
1701	struct rtentry *rt;
1702	int error, type = 0, code = 0;
1703	struct mbuf *mcopy;
1704	n_long dest;
1705	struct in_addr pkt_dst;
1706	struct ifnet *destifp;
1707#if defined(IPSEC) || defined(FAST_IPSEC)
1708	struct ifnet dummyifp;
1709#endif
1710
1711	dest = 0;
1712	/*
1713	 * Cache the destination address of the packet; this may be
1714	 * changed by use of 'ipfw fwd'.
1715	 */
1716	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1717
1718#ifdef DIAGNOSTIC
1719	if (ipprintfs)
1720		printf("forward: src %lx dst %lx ttl %x\n",
1721		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1722		    ip->ip_ttl);
1723#endif
1724
1725
1726	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1727		ipstat.ips_cantforward++;
1728		m_freem(m);
1729		return;
1730	}
1731#ifdef IPSTEALTH
1732	if (!ipstealth) {
1733#endif
1734		if (ip->ip_ttl <= IPTTLDEC) {
1735			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1736			    dest, 0);
1737			return;
1738		}
1739#ifdef IPSTEALTH
1740	}
1741#endif
1742
1743	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1744		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1745		return;
1746	} else
1747		rt = ipforward_rt.ro_rt;
1748
1749	/*
1750	 * Save the IP header and at most 8 bytes of the payload,
1751	 * in case we need to generate an ICMP message to the src.
1752	 *
1753	 * XXX this can be optimized a lot by saving the data in a local
1754	 * buffer on the stack (72 bytes at most), and only allocating the
1755	 * mbuf if really necessary. The vast majority of the packets
1756	 * are forwarded without having to send an ICMP back (either
1757	 * because unnecessary, or because rate limited), so we are
1758	 * really we are wasting a lot of work here.
1759	 *
1760	 * We don't use m_copy() because it might return a reference
1761	 * to a shared cluster. Both this function and ip_output()
1762	 * assume exclusive access to the IP header in `m', so any
1763	 * data in a cluster may change before we reach icmp_error().
1764	 */
1765	MGET(mcopy, M_NOWAIT, m->m_type);
1766	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1767		/*
1768		 * It's probably ok if the pkthdr dup fails (because
1769		 * the deep copy of the tag chain failed), but for now
1770		 * be conservative and just discard the copy since
1771		 * code below may some day want the tags.
1772		 */
1773		m_free(mcopy);
1774		mcopy = NULL;
1775	}
1776	if (mcopy != NULL) {
1777		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1778		    (int)ip->ip_len);
1779		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1780#ifdef MAC
1781		/*
1782		 * XXXMAC: This will eventually become an explicit
1783		 * labeling point.
1784		 */
1785		mac_create_mbuf_from_mbuf(m, mcopy);
1786#endif
1787	}
1788
1789#ifdef IPSTEALTH
1790	if (!ipstealth) {
1791#endif
1792		ip->ip_ttl -= IPTTLDEC;
1793#ifdef IPSTEALTH
1794	}
1795#endif
1796
1797	/*
1798	 * If forwarding packet using same interface that it came in on,
1799	 * perhaps should send a redirect to sender to shortcut a hop.
1800	 * Only send redirect if source is sending directly to us,
1801	 * and if packet was not source routed (or has any options).
1802	 * Also, don't send redirect if forwarding using a default route
1803	 * or a route modified by a redirect.
1804	 */
1805	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1806	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1807	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1808	    ipsendredirects && !srcrt && !next_hop) {
1809#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1810		u_long src = ntohl(ip->ip_src.s_addr);
1811
1812		if (RTA(rt) &&
1813		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1814		    if (rt->rt_flags & RTF_GATEWAY)
1815			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1816		    else
1817			dest = pkt_dst.s_addr;
1818		    /* Router requirements says to only send host redirects */
1819		    type = ICMP_REDIRECT;
1820		    code = ICMP_REDIRECT_HOST;
1821#ifdef DIAGNOSTIC
1822		    if (ipprintfs)
1823		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1824#endif
1825		}
1826	}
1827
1828    {
1829	struct m_hdr tag;
1830
1831	if (next_hop) {
1832		/* Pass IPFORWARD info if available */
1833
1834		tag.mh_type = MT_TAG;
1835		tag.mh_flags = PACKET_TAG_IPFORWARD;
1836		tag.mh_data = (caddr_t)next_hop;
1837		tag.mh_next = m;
1838		m = (struct mbuf *)&tag;
1839	}
1840	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1841			  IP_FORWARDING, 0, NULL);
1842    }
1843	if (error)
1844		ipstat.ips_cantforward++;
1845	else {
1846		ipstat.ips_forward++;
1847		if (type)
1848			ipstat.ips_redirectsent++;
1849		else {
1850			if (mcopy) {
1851				ipflow_create(&ipforward_rt, mcopy);
1852				m_freem(mcopy);
1853			}
1854			return;
1855		}
1856	}
1857	if (mcopy == NULL)
1858		return;
1859	destifp = NULL;
1860
1861	switch (error) {
1862
1863	case 0:				/* forwarded, but need redirect */
1864		/* type, code set above */
1865		break;
1866
1867	case ENETUNREACH:		/* shouldn't happen, checked above */
1868	case EHOSTUNREACH:
1869	case ENETDOWN:
1870	case EHOSTDOWN:
1871	default:
1872		type = ICMP_UNREACH;
1873		code = ICMP_UNREACH_HOST;
1874		break;
1875
1876	case EMSGSIZE:
1877		type = ICMP_UNREACH;
1878		code = ICMP_UNREACH_NEEDFRAG;
1879#ifdef IPSEC
1880		/*
1881		 * If the packet is routed over IPsec tunnel, tell the
1882		 * originator the tunnel MTU.
1883		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1884		 * XXX quickhack!!!
1885		 */
1886		if (ipforward_rt.ro_rt) {
1887			struct secpolicy *sp = NULL;
1888			int ipsecerror;
1889			int ipsechdr;
1890			struct route *ro;
1891
1892			sp = ipsec4_getpolicybyaddr(mcopy,
1893						    IPSEC_DIR_OUTBOUND,
1894			                            IP_FORWARDING,
1895			                            &ipsecerror);
1896
1897			if (sp == NULL)
1898				destifp = ipforward_rt.ro_rt->rt_ifp;
1899			else {
1900				/* count IPsec header size */
1901				ipsechdr = ipsec4_hdrsiz(mcopy,
1902							 IPSEC_DIR_OUTBOUND,
1903							 NULL);
1904
1905				/*
1906				 * find the correct route for outer IPv4
1907				 * header, compute tunnel MTU.
1908				 *
1909				 * XXX BUG ALERT
1910				 * The "dummyifp" code relies upon the fact
1911				 * that icmp_error() touches only ifp->if_mtu.
1912				 */
1913				/*XXX*/
1914				destifp = NULL;
1915				if (sp->req != NULL
1916				 && sp->req->sav != NULL
1917				 && sp->req->sav->sah != NULL) {
1918					ro = &sp->req->sav->sah->sa_route;
1919					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1920						dummyifp.if_mtu =
1921						    ro->ro_rt->rt_ifp->if_mtu;
1922						dummyifp.if_mtu -= ipsechdr;
1923						destifp = &dummyifp;
1924					}
1925				}
1926
1927				key_freesp(sp);
1928			}
1929		}
1930#elif FAST_IPSEC
1931		/*
1932		 * If the packet is routed over IPsec tunnel, tell the
1933		 * originator the tunnel MTU.
1934		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1935		 * XXX quickhack!!!
1936		 */
1937		if (ipforward_rt.ro_rt) {
1938			struct secpolicy *sp = NULL;
1939			int ipsecerror;
1940			int ipsechdr;
1941			struct route *ro;
1942
1943			sp = ipsec_getpolicybyaddr(mcopy,
1944						   IPSEC_DIR_OUTBOUND,
1945			                           IP_FORWARDING,
1946			                           &ipsecerror);
1947
1948			if (sp == NULL)
1949				destifp = ipforward_rt.ro_rt->rt_ifp;
1950			else {
1951				/* count IPsec header size */
1952				ipsechdr = ipsec4_hdrsiz(mcopy,
1953							 IPSEC_DIR_OUTBOUND,
1954							 NULL);
1955
1956				/*
1957				 * find the correct route for outer IPv4
1958				 * header, compute tunnel MTU.
1959				 *
1960				 * XXX BUG ALERT
1961				 * The "dummyifp" code relies upon the fact
1962				 * that icmp_error() touches only ifp->if_mtu.
1963				 */
1964				/*XXX*/
1965				destifp = NULL;
1966				if (sp->req != NULL
1967				 && sp->req->sav != NULL
1968				 && sp->req->sav->sah != NULL) {
1969					ro = &sp->req->sav->sah->sa_route;
1970					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1971						dummyifp.if_mtu =
1972						    ro->ro_rt->rt_ifp->if_mtu;
1973						dummyifp.if_mtu -= ipsechdr;
1974						destifp = &dummyifp;
1975					}
1976				}
1977
1978				KEY_FREESP(&sp);
1979			}
1980		}
1981#else /* !IPSEC && !FAST_IPSEC */
1982		if (ipforward_rt.ro_rt)
1983			destifp = ipforward_rt.ro_rt->rt_ifp;
1984#endif /*IPSEC*/
1985		ipstat.ips_cantfrag++;
1986		break;
1987
1988	case ENOBUFS:
1989		/*
1990		 * A router should not generate ICMP_SOURCEQUENCH as
1991		 * required in RFC1812 Requirements for IP Version 4 Routers.
1992		 * Source quench could be a big problem under DoS attacks,
1993		 * or if the underlying interface is rate-limited.
1994		 * Those who need source quench packets may re-enable them
1995		 * via the net.inet.ip.sendsourcequench sysctl.
1996		 */
1997		if (ip_sendsourcequench == 0) {
1998			m_freem(mcopy);
1999			return;
2000		} else {
2001			type = ICMP_SOURCEQUENCH;
2002			code = 0;
2003		}
2004		break;
2005
2006	case EACCES:			/* ipfw denied packet */
2007		m_freem(mcopy);
2008		return;
2009	}
2010	icmp_error(mcopy, type, code, dest, destifp);
2011}
2012
2013void
2014ip_savecontrol(inp, mp, ip, m)
2015	register struct inpcb *inp;
2016	register struct mbuf **mp;
2017	register struct ip *ip;
2018	register struct mbuf *m;
2019{
2020	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2021		struct timeval tv;
2022
2023		microtime(&tv);
2024		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2025			SCM_TIMESTAMP, SOL_SOCKET);
2026		if (*mp)
2027			mp = &(*mp)->m_next;
2028	}
2029	if (inp->inp_flags & INP_RECVDSTADDR) {
2030		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2031		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2032		if (*mp)
2033			mp = &(*mp)->m_next;
2034	}
2035#ifdef notyet
2036	/* XXX
2037	 * Moving these out of udp_input() made them even more broken
2038	 * than they already were.
2039	 */
2040	/* options were tossed already */
2041	if (inp->inp_flags & INP_RECVOPTS) {
2042		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2043		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2044		if (*mp)
2045			mp = &(*mp)->m_next;
2046	}
2047	/* ip_srcroute doesn't do what we want here, need to fix */
2048	if (inp->inp_flags & INP_RECVRETOPTS) {
2049		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2050		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2051		if (*mp)
2052			mp = &(*mp)->m_next;
2053	}
2054#endif
2055	if (inp->inp_flags & INP_RECVIF) {
2056		struct ifnet *ifp;
2057		struct sdlbuf {
2058			struct sockaddr_dl sdl;
2059			u_char	pad[32];
2060		} sdlbuf;
2061		struct sockaddr_dl *sdp;
2062		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2063
2064		if (((ifp = m->m_pkthdr.rcvif))
2065		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2066			sdp = (struct sockaddr_dl *)
2067			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2068			/*
2069			 * Change our mind and don't try copy.
2070			 */
2071			if ((sdp->sdl_family != AF_LINK)
2072			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2073				goto makedummy;
2074			}
2075			bcopy(sdp, sdl2, sdp->sdl_len);
2076		} else {
2077makedummy:
2078			sdl2->sdl_len
2079				= offsetof(struct sockaddr_dl, sdl_data[0]);
2080			sdl2->sdl_family = AF_LINK;
2081			sdl2->sdl_index = 0;
2082			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2083		}
2084		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2085			IP_RECVIF, IPPROTO_IP);
2086		if (*mp)
2087			mp = &(*mp)->m_next;
2088	}
2089}
2090
2091/*
2092 * XXX these routines are called from the upper part of the kernel.
2093 * They need to be locked when we remove Giant.
2094 *
2095 * They could also be moved to ip_mroute.c, since all the RSVP
2096 *  handling is done there already.
2097 */
2098static int ip_rsvp_on;
2099struct socket *ip_rsvpd;
2100int
2101ip_rsvp_init(struct socket *so)
2102{
2103	if (so->so_type != SOCK_RAW ||
2104	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2105		return EOPNOTSUPP;
2106
2107	if (ip_rsvpd != NULL)
2108		return EADDRINUSE;
2109
2110	ip_rsvpd = so;
2111	/*
2112	 * This may seem silly, but we need to be sure we don't over-increment
2113	 * the RSVP counter, in case something slips up.
2114	 */
2115	if (!ip_rsvp_on) {
2116		ip_rsvp_on = 1;
2117		rsvp_on++;
2118	}
2119
2120	return 0;
2121}
2122
2123int
2124ip_rsvp_done(void)
2125{
2126	ip_rsvpd = NULL;
2127	/*
2128	 * This may seem silly, but we need to be sure we don't over-decrement
2129	 * the RSVP counter, in case something slips up.
2130	 */
2131	if (ip_rsvp_on) {
2132		ip_rsvp_on = 0;
2133		rsvp_on--;
2134	}
2135	return 0;
2136}
2137
2138void
2139rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2140{
2141	if (rsvp_input_p) { /* call the real one if loaded */
2142		rsvp_input_p(m, off);
2143		return;
2144	}
2145
2146	/* Can still get packets with rsvp_on = 0 if there is a local member
2147	 * of the group to which the RSVP packet is addressed.  But in this
2148	 * case we want to throw the packet away.
2149	 */
2150
2151	if (!rsvp_on) {
2152		m_freem(m);
2153		return;
2154	}
2155
2156	if (ip_rsvpd != NULL) {
2157		rip_input(m, off);
2158		return;
2159	}
2160	/* Drop the packet */
2161	m_freem(m);
2162}
2163