cc_htcp.c revision 216115
1/*-
2 * Copyright (c) 2007-2008
3 * 	Swinburne University of Technology, Melbourne, Australia
4 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
5 * Copyright (c) 2010 The FreeBSD Foundation
6 * All rights reserved.
7 *
8 * This software was developed at the Centre for Advanced Internet
9 * Architectures, Swinburne University, by Lawrence Stewart and James Healy,
10 * made possible in part by a grant from the Cisco University Research Program
11 * Fund at Community Foundation Silicon Valley.
12 *
13 * Portions of this software were developed at the Centre for Advanced
14 * Internet Architectures, Swinburne University of Technology, Melbourne,
15 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39/*
40 * An implementation of the H-TCP congestion control algorithm for FreeBSD,
41 * based on the Internet Draft "draft-leith-tcp-htcp-06.txt" by Leith and
42 * Shorten. Originally released as part of the NewTCP research project at
43 * Swinburne University's Centre for Advanced Internet Architectures, Melbourne,
44 * Australia, which was made possible in part by a grant from the Cisco
45 * University Research Program Fund at Community Foundation Silicon Valley. More
46 * details are available at:
47 *   http://caia.swin.edu.au/urp/newtcp/
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/netinet/cc/cc_htcp.c 216115 2010-12-02 06:40:21Z lstewart $");
52
53#include <sys/param.h>
54#include <sys/kernel.h>
55#include <sys/limits.h>
56#include <sys/malloc.h>
57#include <sys/module.h>
58#include <sys/socket.h>
59#include <sys/socketvar.h>
60#include <sys/sysctl.h>
61#include <sys/systm.h>
62
63#include <net/vnet.h>
64
65#include <netinet/cc.h>
66#include <netinet/tcp_seq.h>
67#include <netinet/tcp_timer.h>
68#include <netinet/tcp_var.h>
69
70#include <netinet/cc/cc_module.h>
71
72/* Fixed point math shifts. */
73#define HTCP_SHIFT 8
74#define HTCP_ALPHA_INC_SHIFT 4
75
76#define HTCP_INIT_ALPHA 1
77#define HTCP_DELTA_L hz		/* 1 sec in ticks. */
78#define HTCP_MINBETA 128	/* 0.5 << HTCP_SHIFT. */
79#define HTCP_MAXBETA 204	/* ~0.8 << HTCP_SHIFT. */
80#define HTCP_MINROWE 26		/* ~0.1 << HTCP_SHIFT. */
81#define HTCP_MAXROWE 512	/* 2 << HTCP_SHIFT. */
82
83/* RTT_ref (ms) used in the calculation of alpha if RTT scaling is enabled. */
84#define HTCP_RTT_REF 100
85
86/* Don't trust SRTT until this many samples have been taken. */
87#define HTCP_MIN_RTT_SAMPLES 8
88
89/*
90 * HTCP_CALC_ALPHA performs a fixed point math calculation to determine the
91 * value of alpha, based on the function defined in the HTCP spec.
92 *
93 * i.e. 1 + 10(delta - delta_l) + ((delta - delta_l) / 2) ^ 2
94 *
95 * "diff" is passed in to the macro as "delta - delta_l" and is expected to be
96 * in units of ticks.
97 *
98 * The joyousnous of fixed point maths means our function implementation looks a
99 * little funky...
100 *
101 * In order to maintain some precision in the calculations, a fixed point shift
102 * HTCP_ALPHA_INC_SHIFT is used to ensure the integer divisions don't
103 * truncate the results too badly.
104 *
105 * The "16" value is the "1" term in the alpha function shifted up by
106 * HTCP_ALPHA_INC_SHIFT
107 *
108 * The "160" value is the "10" multiplier in the alpha function multiplied by
109 * 2^HTCP_ALPHA_INC_SHIFT
110 *
111 * Specifying these as constants reduces the computations required. After
112 * up-shifting all the terms in the function and performing the required
113 * calculations, we down-shift the final result by HTCP_ALPHA_INC_SHIFT to
114 * ensure it is back in the correct range.
115 *
116 * The "hz" terms are required as kernels can be configured to run with
117 * different tick timers, which we have to adjust for in the alpha calculation
118 * (which originally was defined in terms of seconds).
119 *
120 * We also have to be careful to constrain the value of diff such that it won't
121 * overflow whilst performing the calculation. The middle term i.e. (160 * diff)
122 * / hz is the limiting factor in the calculation. We must constrain diff to be
123 * less than the max size of an int divided by the constant 160 figure
124 * i.e. diff < INT_MAX / 160
125 *
126 * NB: Changing HTCP_ALPHA_INC_SHIFT will require you to MANUALLY update the
127 * constants used in this function!
128 */
129#define HTCP_CALC_ALPHA(diff) \
130((\
131	(16) + \
132	((160 * (diff)) / hz) + \
133	(((diff) / hz) * (((diff) << HTCP_ALPHA_INC_SHIFT) / (4 * hz))) \
134) >> HTCP_ALPHA_INC_SHIFT)
135
136static void	htcp_ack_received(struct cc_var *ccv, uint16_t type);
137static void	htcp_cb_destroy(struct cc_var *ccv);
138static int	htcp_cb_init(struct cc_var *ccv);
139static void	htcp_cong_signal(struct cc_var *ccv, uint32_t type);
140static int	htcp_mod_init(void);
141static void	htcp_post_recovery(struct cc_var *ccv);
142static void	htcp_recalc_alpha(struct cc_var *ccv);
143static void	htcp_recalc_beta(struct cc_var *ccv);
144static void	htcp_record_rtt(struct cc_var *ccv);
145static void	htcp_ssthresh_update(struct cc_var *ccv);
146
147struct htcp {
148	/* cwnd before entering cong recovery. */
149	unsigned long	prev_cwnd;
150	/* cwnd additive increase parameter. */
151	int		alpha;
152	/* cwnd multiplicative decrease parameter. */
153	int		beta;
154	/* Largest rtt seen for the flow. */
155	int		maxrtt;
156	/* Shortest rtt seen for the flow. */
157	int		minrtt;
158	/* Time of last congestion event in ticks. */
159	int		t_last_cong;
160};
161
162static int htcp_rtt_ref;
163/*
164 * The maximum number of ticks the value of diff can reach in
165 * htcp_recalc_alpha() before alpha will stop increasing due to overflow.
166 * See comment above HTCP_CALC_ALPHA for more info.
167 */
168static int htcp_max_diff = INT_MAX / ((1 << HTCP_ALPHA_INC_SHIFT) * 10);
169
170/* Per-netstack vars. */
171static VNET_DEFINE(uint8_t, htcp_adaptive_backoff) = 0;
172static VNET_DEFINE(uint8_t, htcp_rtt_scaling) = 0;
173#define	V_htcp_adaptive_backoff    VNET(htcp_adaptive_backoff)
174#define	V_htcp_rtt_scaling    VNET(htcp_rtt_scaling)
175
176MALLOC_DECLARE(M_HTCP);
177MALLOC_DEFINE(M_HTCP, "htcp data",
178    "Per connection data required for the HTCP congestion control algorithm");
179
180struct cc_algo htcp_cc_algo = {
181	.name = "htcp",
182	.ack_received = htcp_ack_received,
183	.cb_destroy = htcp_cb_destroy,
184	.cb_init = htcp_cb_init,
185	.cong_signal = htcp_cong_signal,
186	.mod_init = htcp_mod_init,
187	.post_recovery = htcp_post_recovery,
188};
189
190static void
191htcp_ack_received(struct cc_var *ccv, uint16_t type)
192{
193	struct htcp *htcp_data;
194
195	htcp_data = ccv->cc_data;
196	htcp_record_rtt(ccv);
197
198	/*
199	 * Regular ACK and we're not in cong/fast recovery and we're cwnd
200	 * limited and we're either not doing ABC or are slow starting or are
201	 * doing ABC and we've sent a cwnd's worth of bytes.
202	 */
203	if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) &&
204	    (ccv->flags & CCF_CWND_LIMITED) && (!V_tcp_do_rfc3465 ||
205	    CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
206	    (V_tcp_do_rfc3465 && ccv->flags & CCF_ABC_SENTAWND))) {
207		htcp_recalc_beta(ccv);
208		htcp_recalc_alpha(ccv);
209		/*
210		 * Use the logic in NewReno ack_received() for slow start and
211		 * for the first HTCP_DELTA_L ticks after either the flow starts
212		 * or a congestion event (when alpha equals 1).
213		 */
214		if (htcp_data->alpha == 1 ||
215		    CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh))
216			newreno_cc_algo.ack_received(ccv, type);
217		else {
218			if (V_tcp_do_rfc3465) {
219				/* Increment cwnd by alpha segments. */
220				CCV(ccv, snd_cwnd) += htcp_data->alpha *
221				    CCV(ccv, t_maxseg);
222				ccv->flags &= ~CCF_ABC_SENTAWND;
223			} else
224				/*
225				 * Increment cwnd by alpha/cwnd segments to
226				 * approximate an increase of alpha segments
227				 * per RTT.
228				 */
229				CCV(ccv, snd_cwnd) += (((htcp_data->alpha <<
230				    HTCP_SHIFT) / (CCV(ccv, snd_cwnd) /
231				    CCV(ccv, t_maxseg))) * CCV(ccv, t_maxseg))
232				    >> HTCP_SHIFT;
233		}
234	}
235}
236
237static void
238htcp_cb_destroy(struct cc_var *ccv)
239{
240
241	if (ccv->cc_data != NULL)
242		free(ccv->cc_data, M_HTCP);
243}
244
245static int
246htcp_cb_init(struct cc_var *ccv)
247{
248	struct htcp *htcp_data;
249
250	htcp_data = malloc(sizeof(struct htcp), M_HTCP, M_NOWAIT);
251
252	if (htcp_data == NULL)
253		return (ENOMEM);
254
255	/* Init some key variables with sensible defaults. */
256	htcp_data->alpha = HTCP_INIT_ALPHA;
257	htcp_data->beta = HTCP_MINBETA;
258	htcp_data->maxrtt = TCPTV_SRTTBASE;
259	htcp_data->minrtt = TCPTV_SRTTBASE;
260	htcp_data->prev_cwnd = 0;
261	htcp_data->t_last_cong = ticks;
262
263	ccv->cc_data = htcp_data;
264
265	return (0);
266}
267
268/*
269 * Perform any necessary tasks before we enter congestion recovery.
270 */
271static void
272htcp_cong_signal(struct cc_var *ccv, uint32_t type)
273{
274	struct htcp *htcp_data;
275
276	htcp_data = ccv->cc_data;
277
278	switch (type) {
279	case CC_NDUPACK:
280		if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
281			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
282				/*
283				 * Apply hysteresis to maxrtt to ensure
284				 * reductions in the RTT are reflected in our
285				 * measurements.
286				 */
287				htcp_data->maxrtt = (htcp_data->minrtt +
288				    (htcp_data->maxrtt - htcp_data->minrtt) *
289				    95) / 100;
290				htcp_ssthresh_update(ccv);
291				htcp_data->t_last_cong = ticks;
292				htcp_data->prev_cwnd = CCV(ccv, snd_cwnd);
293			}
294			ENTER_RECOVERY(CCV(ccv, t_flags));
295		}
296		break;
297
298	case CC_ECN:
299		if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
300			/*
301			 * Apply hysteresis to maxrtt to ensure reductions in
302			 * the RTT are reflected in our measurements.
303			 */
304			htcp_data->maxrtt = (htcp_data->minrtt + (htcp_data->maxrtt -
305			    htcp_data->minrtt) * 95) / 100;
306			htcp_ssthresh_update(ccv);
307			CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
308			htcp_data->t_last_cong = ticks;
309			htcp_data->prev_cwnd = CCV(ccv, snd_cwnd);
310			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
311		}
312		break;
313
314	case CC_RTO:
315		/*
316		 * Grab the current time and record it so we know when the
317		 * most recent congestion event was. Only record it when the
318		 * timeout has fired more than once, as there is a reasonable
319		 * chance the first one is a false alarm and may not indicate
320		 * congestion.
321		 */
322		if (CCV(ccv, t_rxtshift) >= 2)
323			htcp_data->t_last_cong = ticks;
324		break;
325	}
326}
327
328static int
329htcp_mod_init(void)
330{
331
332	htcp_cc_algo.after_idle = newreno_cc_algo.after_idle;
333
334	/*
335	 * HTCP_RTT_REF is defined in ms, and t_srtt in the tcpcb is stored in
336	 * units of TCP_RTT_SCALE*hz. Scale HTCP_RTT_REF to be in the same units
337	 * as t_srtt.
338	 */
339	htcp_rtt_ref = (HTCP_RTT_REF * TCP_RTT_SCALE * hz) / 1000;
340
341	return (0);
342}
343
344/*
345 * Perform any necessary tasks before we exit congestion recovery.
346 */
347static void
348htcp_post_recovery(struct cc_var *ccv)
349{
350	struct htcp *htcp_data;
351
352	htcp_data = ccv->cc_data;
353
354	if (IN_FASTRECOVERY(CCV(ccv, t_flags))) {
355		/*
356		 * If inflight data is less than ssthresh, set cwnd
357		 * conservatively to avoid a burst of data, as suggested in the
358		 * NewReno RFC. Otherwise, use the HTCP method.
359		 *
360		 * XXXLAS: Find a way to do this without needing curack
361		 */
362		if (SEQ_GT(ccv->curack + CCV(ccv, snd_ssthresh),
363		    CCV(ccv, snd_max)))
364			CCV(ccv, snd_cwnd) = CCV(ccv, snd_max) - ccv->curack +
365			    CCV(ccv, t_maxseg);
366		else
367			CCV(ccv, snd_cwnd) = max(1, ((htcp_data->beta *
368			    htcp_data->prev_cwnd / CCV(ccv, t_maxseg))
369			    >> HTCP_SHIFT)) * CCV(ccv, t_maxseg);
370	}
371}
372
373static void
374htcp_recalc_alpha(struct cc_var *ccv)
375{
376	struct htcp *htcp_data;
377	int alpha, diff, now;
378
379	htcp_data = ccv->cc_data;
380	now = ticks;
381
382	/*
383	 * If ticks has wrapped around (will happen approximately once every 49
384	 * days on a machine with the default kern.hz=1000) and a flow straddles
385	 * the wrap point, our alpha calcs will be completely wrong. We cut our
386	 * losses and restart alpha from scratch by setting t_last_cong = now -
387	 * HTCP_DELTA_L.
388	 *
389	 * This does not deflate our cwnd at all. It simply slows the rate cwnd
390	 * is growing by until alpha regains the value it held prior to taking
391	 * this drastic measure.
392	 */
393	if (now < htcp_data->t_last_cong)
394		htcp_data->t_last_cong = now - HTCP_DELTA_L;
395
396	diff = now - htcp_data->t_last_cong - HTCP_DELTA_L;
397
398	/* Cap alpha if the value of diff would overflow HTCP_CALC_ALPHA(). */
399	if (diff < htcp_max_diff) {
400		/*
401		 * If it has been more than HTCP_DELTA_L ticks since congestion,
402		 * increase alpha according to the function defined in the spec.
403		 */
404		if (diff > 0) {
405			alpha = HTCP_CALC_ALPHA(diff);
406
407			/*
408			 * Adaptive backoff fairness adjustment:
409			 * 2 * (1 - beta) * alpha_raw
410			 */
411			if (V_htcp_adaptive_backoff)
412				alpha = max(1, (2 * ((1 << HTCP_SHIFT) -
413				    htcp_data->beta) * alpha) >> HTCP_SHIFT);
414
415			/*
416			 * RTT scaling: (RTT / RTT_ref) * alpha
417			 * alpha will be the raw value from HTCP_CALC_ALPHA() if
418			 * adaptive backoff is off, or the adjusted value if
419			 * adaptive backoff is on.
420			 */
421			if (V_htcp_rtt_scaling)
422				alpha = max(1, (min(max(HTCP_MINROWE,
423				    (CCV(ccv, t_srtt) << HTCP_SHIFT) /
424				    htcp_rtt_ref), HTCP_MAXROWE) * alpha)
425				    >> HTCP_SHIFT);
426
427		} else
428			alpha = 1;
429
430		htcp_data->alpha = alpha;
431	}
432}
433
434static void
435htcp_recalc_beta(struct cc_var *ccv)
436{
437	struct htcp *htcp_data;
438
439	htcp_data = ccv->cc_data;
440
441	/*
442	 * TCPTV_SRTTBASE is the initialised value of each connection's SRTT, so
443	 * we only calc beta if the connection's SRTT has been changed from its
444	 * inital value. beta is bounded to ensure it is always between
445	 * HTCP_MINBETA and HTCP_MAXBETA.
446	 */
447	if (V_htcp_adaptive_backoff && htcp_data->minrtt != TCPTV_SRTTBASE &&
448	    htcp_data->maxrtt != TCPTV_SRTTBASE)
449		htcp_data->beta = min(max(HTCP_MINBETA,
450		    (htcp_data->minrtt << HTCP_SHIFT) / htcp_data->maxrtt),
451		    HTCP_MAXBETA);
452	else
453		htcp_data->beta = HTCP_MINBETA;
454}
455
456/*
457 * Record the minimum and maximum RTT seen for the connection. These are used in
458 * the calculation of beta if adaptive backoff is enabled.
459 */
460static void
461htcp_record_rtt(struct cc_var *ccv)
462{
463	struct htcp *htcp_data;
464
465	htcp_data = ccv->cc_data;
466
467	/* XXXLAS: Should there be some hysteresis for minrtt? */
468
469	/*
470	 * Record the current SRTT as our minrtt if it's the smallest we've seen
471	 * or minrtt is currently equal to its initialised value. Ignore SRTT
472	 * until a min number of samples have been taken.
473	 */
474	if ((CCV(ccv, t_srtt) < htcp_data->minrtt ||
475	    htcp_data->minrtt == TCPTV_SRTTBASE) &&
476	    (CCV(ccv, t_rttupdated) >= HTCP_MIN_RTT_SAMPLES))
477		htcp_data->minrtt = CCV(ccv, t_srtt);
478
479	/*
480	 * Record the current SRTT as our maxrtt if it's the largest we've
481	 * seen. Ignore SRTT until a min number of samples have been taken.
482	 */
483	if (CCV(ccv, t_srtt) > htcp_data->maxrtt
484	    && CCV(ccv, t_rttupdated) >= HTCP_MIN_RTT_SAMPLES)
485		htcp_data->maxrtt = CCV(ccv, t_srtt);
486}
487
488/*
489 * Update the ssthresh in the event of congestion.
490 */
491static void
492htcp_ssthresh_update(struct cc_var *ccv)
493{
494	struct htcp *htcp_data;
495
496	htcp_data = ccv->cc_data;
497
498	/*
499	 * On the first congestion event, set ssthresh to cwnd * 0.5, on
500	 * subsequent congestion events, set it to cwnd * beta.
501	 */
502	if (CCV(ccv, snd_ssthresh) == TCP_MAXWIN << TCP_MAX_WINSHIFT)
503		CCV(ccv, snd_ssthresh) = (CCV(ccv, snd_cwnd) * HTCP_MINBETA)
504		    >> HTCP_SHIFT;
505	else {
506		htcp_recalc_beta(ccv);
507		CCV(ccv, snd_ssthresh) = (CCV(ccv, snd_cwnd) * htcp_data->beta)
508		    >> HTCP_SHIFT;
509	}
510}
511
512
513SYSCTL_DECL(_net_inet_tcp_cc_htcp);
514SYSCTL_NODE(_net_inet_tcp_cc, OID_AUTO, htcp, CTLFLAG_RW,
515    NULL, "H-TCP related settings");
516SYSCTL_VNET_UINT(_net_inet_tcp_cc_htcp, OID_AUTO, adaptive_backoff, CTLFLAG_RW,
517    &VNET_NAME(htcp_adaptive_backoff), 0, "enable H-TCP adaptive backoff");
518SYSCTL_VNET_UINT(_net_inet_tcp_cc_htcp, OID_AUTO, rtt_scaling, CTLFLAG_RW,
519    &VNET_NAME(htcp_rtt_scaling), 0, "enable H-TCP RTT scaling");
520
521DECLARE_CC_MODULE(htcp, &htcp_cc_algo);
522