if_ethersubr.c revision 332159
1/*-
2 * Copyright (c) 1982, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
30 * $FreeBSD: stable/11/sys/net/if_ethersubr.c 332159 2018-04-06 23:31:47Z brooks $
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35#include "opt_netgraph.h"
36#include "opt_mbuf_profiling.h"
37#include "opt_rss.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/bus.h>
42#include <sys/eventhandler.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/module.h>
47#include <sys/mbuf.h>
48#include <sys/random.h>
49#include <sys/socket.h>
50#include <sys/sockio.h>
51#include <sys/sysctl.h>
52#include <sys/uuid.h>
53
54#include <net/if.h>
55#include <net/if_var.h>
56#include <net/if_arp.h>
57#include <net/netisr.h>
58#include <net/route.h>
59#include <net/if_llc.h>
60#include <net/if_dl.h>
61#include <net/if_types.h>
62#include <net/bpf.h>
63#include <net/ethernet.h>
64#include <net/if_bridgevar.h>
65#include <net/if_vlan_var.h>
66#include <net/if_llatbl.h>
67#include <net/pfil.h>
68#include <net/rss_config.h>
69#include <net/vnet.h>
70
71#include <netpfil/pf/pf_mtag.h>
72
73#if defined(INET) || defined(INET6)
74#include <netinet/in.h>
75#include <netinet/in_var.h>
76#include <netinet/if_ether.h>
77#include <netinet/ip_carp.h>
78#include <netinet/ip_var.h>
79#endif
80#ifdef INET6
81#include <netinet6/nd6.h>
82#endif
83#include <security/mac/mac_framework.h>
84
85#ifdef CTASSERT
86CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
87CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
88#endif
89
90VNET_DEFINE(struct pfil_head, link_pfil_hook);	/* Packet filter hooks */
91
92/* netgraph node hooks for ng_ether(4) */
93void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
94void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
95int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
96void	(*ng_ether_attach_p)(struct ifnet *ifp);
97void	(*ng_ether_detach_p)(struct ifnet *ifp);
98
99void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
100
101/* if_bridge(4) support */
102struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
103int	(*bridge_output_p)(struct ifnet *, struct mbuf *,
104		struct sockaddr *, struct rtentry *);
105void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
106
107/* if_lagg(4) support */
108struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *);
109
110static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
111			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
112
113static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
114		struct sockaddr *);
115#ifdef VIMAGE
116static	void ether_reassign(struct ifnet *, struct vnet *, char *);
117#endif
118static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
119
120#define	ETHER_IS_BROADCAST(addr) \
121	(bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0)
122
123#define senderr(e) do { error = (e); goto bad;} while (0)
124
125static void
126update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
127{
128	int csum_flags = 0;
129
130	if (src->m_pkthdr.csum_flags & CSUM_IP)
131		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
132	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
133		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
134	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
135		csum_flags |= CSUM_SCTP_VALID;
136	dst->m_pkthdr.csum_flags |= csum_flags;
137	if (csum_flags & CSUM_DATA_VALID)
138		dst->m_pkthdr.csum_data = 0xffff;
139}
140
141/*
142 * Handle link-layer encapsulation requests.
143 */
144static int
145ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
146{
147	struct ether_header *eh;
148	struct arphdr *ah;
149	uint16_t etype;
150	const u_char *lladdr;
151
152	if (req->rtype != IFENCAP_LL)
153		return (EOPNOTSUPP);
154
155	if (req->bufsize < ETHER_HDR_LEN)
156		return (ENOMEM);
157
158	eh = (struct ether_header *)req->buf;
159	lladdr = req->lladdr;
160	req->lladdr_off = 0;
161
162	switch (req->family) {
163	case AF_INET:
164		etype = htons(ETHERTYPE_IP);
165		break;
166	case AF_INET6:
167		etype = htons(ETHERTYPE_IPV6);
168		break;
169	case AF_ARP:
170		ah = (struct arphdr *)req->hdata;
171		ah->ar_hrd = htons(ARPHRD_ETHER);
172
173		switch(ntohs(ah->ar_op)) {
174		case ARPOP_REVREQUEST:
175		case ARPOP_REVREPLY:
176			etype = htons(ETHERTYPE_REVARP);
177			break;
178		case ARPOP_REQUEST:
179		case ARPOP_REPLY:
180		default:
181			etype = htons(ETHERTYPE_ARP);
182			break;
183		}
184
185		if (req->flags & IFENCAP_FLAG_BROADCAST)
186			lladdr = ifp->if_broadcastaddr;
187		break;
188	default:
189		return (EAFNOSUPPORT);
190	}
191
192	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
193	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
194	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
195	req->bufsize = sizeof(struct ether_header);
196
197	return (0);
198}
199
200
201static int
202ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
203	const struct sockaddr *dst, struct route *ro, u_char *phdr,
204	uint32_t *pflags, struct llentry **plle)
205{
206	struct ether_header *eh;
207	uint32_t lleflags = 0;
208	int error = 0;
209#if defined(INET) || defined(INET6)
210	uint16_t etype;
211#endif
212
213	if (plle)
214		*plle = NULL;
215	eh = (struct ether_header *)phdr;
216
217	switch (dst->sa_family) {
218#ifdef INET
219	case AF_INET:
220		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
221			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
222			    plle);
223		else {
224			if (m->m_flags & M_BCAST)
225				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
226				    ETHER_ADDR_LEN);
227			else {
228				const struct in_addr *a;
229				a = &(((const struct sockaddr_in *)dst)->sin_addr);
230				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
231			}
232			etype = htons(ETHERTYPE_IP);
233			memcpy(&eh->ether_type, &etype, sizeof(etype));
234			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
235		}
236		break;
237#endif
238#ifdef INET6
239	case AF_INET6:
240		if ((m->m_flags & M_MCAST) == 0)
241			error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags,
242			    plle);
243		else {
244			const struct in6_addr *a6;
245			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
246			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
247			etype = htons(ETHERTYPE_IPV6);
248			memcpy(&eh->ether_type, &etype, sizeof(etype));
249			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
250		}
251		break;
252#endif
253	default:
254		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
255		if (m != NULL)
256			m_freem(m);
257		return (EAFNOSUPPORT);
258	}
259
260	if (error == EHOSTDOWN) {
261		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
262			error = EHOSTUNREACH;
263	}
264
265	if (error != 0)
266		return (error);
267
268	*pflags = RT_MAY_LOOP;
269	if (lleflags & LLE_IFADDR)
270		*pflags |= RT_L2_ME;
271
272	return (0);
273}
274
275/*
276 * Ethernet output routine.
277 * Encapsulate a packet of type family for the local net.
278 * Use trailer local net encapsulation if enough data in first
279 * packet leaves a multiple of 512 bytes of data in remainder.
280 */
281int
282ether_output(struct ifnet *ifp, struct mbuf *m,
283	const struct sockaddr *dst, struct route *ro)
284{
285	int error = 0;
286	char linkhdr[ETHER_HDR_LEN], *phdr;
287	struct ether_header *eh;
288	struct pf_mtag *t;
289	int loop_copy = 1;
290	int hlen;	/* link layer header length */
291	uint32_t pflags;
292	struct llentry *lle = NULL;
293	struct rtentry *rt0 = NULL;
294	int addref = 0;
295
296	phdr = NULL;
297	pflags = 0;
298	if (ro != NULL) {
299		/* XXX BPF uses ro_prepend */
300		if (ro->ro_prepend != NULL) {
301			phdr = ro->ro_prepend;
302			hlen = ro->ro_plen;
303		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
304			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
305				lle = ro->ro_lle;
306				if (lle != NULL &&
307				    (lle->la_flags & LLE_VALID) == 0) {
308					LLE_FREE(lle);
309					lle = NULL;	/* redundant */
310					ro->ro_lle = NULL;
311				}
312				if (lle == NULL) {
313					/* if we lookup, keep cache */
314					addref = 1;
315				}
316			}
317			if (lle != NULL) {
318				phdr = lle->r_linkdata;
319				hlen = lle->r_hdrlen;
320				pflags = lle->r_flags;
321			}
322		}
323		rt0 = ro->ro_rt;
324	}
325
326#ifdef MAC
327	error = mac_ifnet_check_transmit(ifp, m);
328	if (error)
329		senderr(error);
330#endif
331
332	M_PROFILE(m);
333	if (ifp->if_flags & IFF_MONITOR)
334		senderr(ENETDOWN);
335	if (!((ifp->if_flags & IFF_UP) &&
336	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
337		senderr(ENETDOWN);
338
339	if (phdr == NULL) {
340		/* No prepend data supplied. Try to calculate ourselves. */
341		phdr = linkhdr;
342		hlen = ETHER_HDR_LEN;
343		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
344		    addref ? &lle : NULL);
345		if (addref && lle != NULL)
346			ro->ro_lle = lle;
347		if (error != 0)
348			return (error == EWOULDBLOCK ? 0 : error);
349	}
350
351	if ((pflags & RT_L2_ME) != 0) {
352		update_mbuf_csumflags(m, m);
353		return (if_simloop(ifp, m, dst->sa_family, 0));
354	}
355	loop_copy = pflags & RT_MAY_LOOP;
356
357	/*
358	 * Add local net header.  If no space in first mbuf,
359	 * allocate another.
360	 *
361	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
362	 * This is done because BPF code shifts m_data pointer
363	 * to the end of ethernet header prior to calling if_output().
364	 */
365	M_PREPEND(m, hlen, M_NOWAIT);
366	if (m == NULL)
367		senderr(ENOBUFS);
368	if ((pflags & RT_HAS_HEADER) == 0) {
369		eh = mtod(m, struct ether_header *);
370		memcpy(eh, phdr, hlen);
371	}
372
373	/*
374	 * If a simplex interface, and the packet is being sent to our
375	 * Ethernet address or a broadcast address, loopback a copy.
376	 * XXX To make a simplex device behave exactly like a duplex
377	 * device, we should copy in the case of sending to our own
378	 * ethernet address (thus letting the original actually appear
379	 * on the wire). However, we don't do that here for security
380	 * reasons and compatibility with the original behavior.
381	 */
382	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
383	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
384		struct mbuf *n;
385
386		/*
387		 * Because if_simloop() modifies the packet, we need a
388		 * writable copy through m_dup() instead of a readonly
389		 * one as m_copy[m] would give us. The alternative would
390		 * be to modify if_simloop() to handle the readonly mbuf,
391		 * but performancewise it is mostly equivalent (trading
392		 * extra data copying vs. extra locking).
393		 *
394		 * XXX This is a local workaround.  A number of less
395		 * often used kernel parts suffer from the same bug.
396		 * See PR kern/105943 for a proposed general solution.
397		 */
398		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
399			update_mbuf_csumflags(m, n);
400			(void)if_simloop(ifp, n, dst->sa_family, hlen);
401		} else
402			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
403	}
404
405       /*
406	* Bridges require special output handling.
407	*/
408	if (ifp->if_bridge) {
409		BRIDGE_OUTPUT(ifp, m, error);
410		return (error);
411	}
412
413#if defined(INET) || defined(INET6)
414	if (ifp->if_carp &&
415	    (error = (*carp_output_p)(ifp, m, dst)))
416		goto bad;
417#endif
418
419	/* Handle ng_ether(4) processing, if any */
420	if (ifp->if_l2com != NULL) {
421		KASSERT(ng_ether_output_p != NULL,
422		    ("ng_ether_output_p is NULL"));
423		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
424bad:			if (m != NULL)
425				m_freem(m);
426			return (error);
427		}
428		if (m == NULL)
429			return (0);
430	}
431
432	/* Continue with link-layer output */
433	return ether_output_frame(ifp, m);
434}
435
436/*
437 * Ethernet link layer output routine to send a raw frame to the device.
438 *
439 * This assumes that the 14 byte Ethernet header is present and contiguous
440 * in the first mbuf (if BRIDGE'ing).
441 */
442int
443ether_output_frame(struct ifnet *ifp, struct mbuf *m)
444{
445	int i;
446
447	if (PFIL_HOOKED(&V_link_pfil_hook)) {
448		i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL);
449
450		if (i != 0)
451			return (EACCES);
452
453		if (m == NULL)
454			return (0);
455	}
456
457	/*
458	 * Queue message on interface, update output statistics if
459	 * successful, and start output if interface not yet active.
460	 */
461	return ((ifp->if_transmit)(ifp, m));
462}
463
464/*
465 * Process a received Ethernet packet; the packet is in the
466 * mbuf chain m with the ethernet header at the front.
467 */
468static void
469ether_input_internal(struct ifnet *ifp, struct mbuf *m)
470{
471	struct ether_header *eh;
472	u_short etype;
473
474	if ((ifp->if_flags & IFF_UP) == 0) {
475		m_freem(m);
476		return;
477	}
478#ifdef DIAGNOSTIC
479	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
480		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
481		m_freem(m);
482		return;
483	}
484#endif
485	if (m->m_len < ETHER_HDR_LEN) {
486		/* XXX maybe should pullup? */
487		if_printf(ifp, "discard frame w/o leading ethernet "
488				"header (len %u pkt len %u)\n",
489				m->m_len, m->m_pkthdr.len);
490		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
491		m_freem(m);
492		return;
493	}
494	eh = mtod(m, struct ether_header *);
495	etype = ntohs(eh->ether_type);
496	random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER);
497
498	CURVNET_SET_QUIET(ifp->if_vnet);
499
500	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
501		if (ETHER_IS_BROADCAST(eh->ether_dhost))
502			m->m_flags |= M_BCAST;
503		else
504			m->m_flags |= M_MCAST;
505		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
506	}
507
508#ifdef MAC
509	/*
510	 * Tag the mbuf with an appropriate MAC label before any other
511	 * consumers can get to it.
512	 */
513	mac_ifnet_create_mbuf(ifp, m);
514#endif
515
516	/*
517	 * Give bpf a chance at the packet.
518	 */
519	ETHER_BPF_MTAP(ifp, m);
520
521	/*
522	 * If the CRC is still on the packet, trim it off. We do this once
523	 * and once only in case we are re-entered. Nothing else on the
524	 * Ethernet receive path expects to see the FCS.
525	 */
526	if (m->m_flags & M_HASFCS) {
527		m_adj(m, -ETHER_CRC_LEN);
528		m->m_flags &= ~M_HASFCS;
529	}
530
531	if (!(ifp->if_capenable & IFCAP_HWSTATS))
532		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
533
534	/* Allow monitor mode to claim this frame, after stats are updated. */
535	if (ifp->if_flags & IFF_MONITOR) {
536		m_freem(m);
537		CURVNET_RESTORE();
538		return;
539	}
540
541	/* Handle input from a lagg(4) port */
542	if (ifp->if_type == IFT_IEEE8023ADLAG) {
543		KASSERT(lagg_input_p != NULL,
544		    ("%s: if_lagg not loaded!", __func__));
545		m = (*lagg_input_p)(ifp, m);
546		if (m != NULL)
547			ifp = m->m_pkthdr.rcvif;
548		else {
549			CURVNET_RESTORE();
550			return;
551		}
552	}
553
554	/*
555	 * If the hardware did not process an 802.1Q tag, do this now,
556	 * to allow 802.1P priority frames to be passed to the main input
557	 * path correctly.
558	 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels.
559	 */
560	if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) {
561		struct ether_vlan_header *evl;
562
563		if (m->m_len < sizeof(*evl) &&
564		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
565#ifdef DIAGNOSTIC
566			if_printf(ifp, "cannot pullup VLAN header\n");
567#endif
568			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
569			CURVNET_RESTORE();
570			return;
571		}
572
573		evl = mtod(m, struct ether_vlan_header *);
574		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
575		m->m_flags |= M_VLANTAG;
576
577		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
578		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
579		m_adj(m, ETHER_VLAN_ENCAP_LEN);
580		eh = mtod(m, struct ether_header *);
581	}
582
583	M_SETFIB(m, ifp->if_fib);
584
585	/* Allow ng_ether(4) to claim this frame. */
586	if (ifp->if_l2com != NULL) {
587		KASSERT(ng_ether_input_p != NULL,
588		    ("%s: ng_ether_input_p is NULL", __func__));
589		m->m_flags &= ~M_PROMISC;
590		(*ng_ether_input_p)(ifp, &m);
591		if (m == NULL) {
592			CURVNET_RESTORE();
593			return;
594		}
595		eh = mtod(m, struct ether_header *);
596	}
597
598	/*
599	 * Allow if_bridge(4) to claim this frame.
600	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
601	 * and the frame should be delivered locally.
602	 */
603	if (ifp->if_bridge != NULL) {
604		m->m_flags &= ~M_PROMISC;
605		BRIDGE_INPUT(ifp, m);
606		if (m == NULL) {
607			CURVNET_RESTORE();
608			return;
609		}
610		eh = mtod(m, struct ether_header *);
611	}
612
613#if defined(INET) || defined(INET6)
614	/*
615	 * Clear M_PROMISC on frame so that carp(4) will see it when the
616	 * mbuf flows up to Layer 3.
617	 * FreeBSD's implementation of carp(4) uses the inprotosw
618	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
619	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
620	 * is outside the scope of the M_PROMISC test below.
621	 * TODO: Maintain a hash table of ethernet addresses other than
622	 * ether_dhost which may be active on this ifp.
623	 */
624	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
625		m->m_flags &= ~M_PROMISC;
626	} else
627#endif
628	{
629		/*
630		 * If the frame received was not for our MAC address, set the
631		 * M_PROMISC flag on the mbuf chain. The frame may need to
632		 * be seen by the rest of the Ethernet input path in case of
633		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
634		 * seen by upper protocol layers.
635		 */
636		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
637		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
638			m->m_flags |= M_PROMISC;
639	}
640
641	ether_demux(ifp, m);
642	CURVNET_RESTORE();
643}
644
645/*
646 * Ethernet input dispatch; by default, direct dispatch here regardless of
647 * global configuration.  However, if RSS is enabled, hook up RSS affinity
648 * so that when deferred or hybrid dispatch is enabled, we can redistribute
649 * load based on RSS.
650 *
651 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
652 * not it had already done work distribution via multi-queue.  Then we could
653 * direct dispatch in the event load balancing was already complete and
654 * handle the case of interfaces with different capabilities better.
655 *
656 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
657 * at multiple layers?
658 *
659 * XXXRW: For now, enable all this only if RSS is compiled in, although it
660 * works fine without RSS.  Need to characterise the performance overhead
661 * of the detour through the netisr code in the event the result is always
662 * direct dispatch.
663 */
664static void
665ether_nh_input(struct mbuf *m)
666{
667
668	M_ASSERTPKTHDR(m);
669	KASSERT(m->m_pkthdr.rcvif != NULL,
670	    ("%s: NULL interface pointer", __func__));
671	ether_input_internal(m->m_pkthdr.rcvif, m);
672}
673
674static struct netisr_handler	ether_nh = {
675	.nh_name = "ether",
676	.nh_handler = ether_nh_input,
677	.nh_proto = NETISR_ETHER,
678#ifdef RSS
679	.nh_policy = NETISR_POLICY_CPU,
680	.nh_dispatch = NETISR_DISPATCH_DIRECT,
681	.nh_m2cpuid = rss_m2cpuid,
682#else
683	.nh_policy = NETISR_POLICY_SOURCE,
684	.nh_dispatch = NETISR_DISPATCH_DIRECT,
685#endif
686};
687
688static void
689ether_init(__unused void *arg)
690{
691
692	netisr_register(&ether_nh);
693}
694SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
695
696static void
697vnet_ether_init(__unused void *arg)
698{
699	int i;
700
701	/* Initialize packet filter hooks. */
702	V_link_pfil_hook.ph_type = PFIL_TYPE_AF;
703	V_link_pfil_hook.ph_af = AF_LINK;
704	if ((i = pfil_head_register(&V_link_pfil_hook)) != 0)
705		printf("%s: WARNING: unable to register pfil link hook, "
706			"error %d\n", __func__, i);
707#ifdef VIMAGE
708	netisr_register_vnet(&ether_nh);
709#endif
710}
711VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
712    vnet_ether_init, NULL);
713
714#ifdef VIMAGE
715static void
716vnet_ether_pfil_destroy(__unused void *arg)
717{
718	int i;
719
720	if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0)
721		printf("%s: WARNING: unable to unregister pfil link hook, "
722			"error %d\n", __func__, i);
723}
724VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
725    vnet_ether_pfil_destroy, NULL);
726
727static void
728vnet_ether_destroy(__unused void *arg)
729{
730
731	netisr_unregister_vnet(&ether_nh);
732}
733VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
734    vnet_ether_destroy, NULL);
735#endif
736
737
738
739static void
740ether_input(struct ifnet *ifp, struct mbuf *m)
741{
742
743	struct mbuf *mn;
744
745	/*
746	 * The drivers are allowed to pass in a chain of packets linked with
747	 * m_nextpkt. We split them up into separate packets here and pass
748	 * them up. This allows the drivers to amortize the receive lock.
749	 */
750	while (m) {
751		mn = m->m_nextpkt;
752		m->m_nextpkt = NULL;
753
754		/*
755		 * We will rely on rcvif being set properly in the deferred context,
756		 * so assert it is correct here.
757		 */
758		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
759		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
760		CURVNET_SET_QUIET(ifp->if_vnet);
761		netisr_dispatch(NETISR_ETHER, m);
762		CURVNET_RESTORE();
763		m = mn;
764	}
765}
766
767/*
768 * Upper layer processing for a received Ethernet packet.
769 */
770void
771ether_demux(struct ifnet *ifp, struct mbuf *m)
772{
773	struct ether_header *eh;
774	int i, isr;
775	u_short ether_type;
776
777	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
778
779	/* Do not grab PROMISC frames in case we are re-entered. */
780	if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) {
781		i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL);
782
783		if (i != 0 || m == NULL)
784			return;
785	}
786
787	eh = mtod(m, struct ether_header *);
788	ether_type = ntohs(eh->ether_type);
789
790	/*
791	 * If this frame has a VLAN tag other than 0, call vlan_input()
792	 * if its module is loaded. Otherwise, drop.
793	 */
794	if ((m->m_flags & M_VLANTAG) &&
795	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
796		if (ifp->if_vlantrunk == NULL) {
797			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
798			m_freem(m);
799			return;
800		}
801		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
802		    __func__));
803		/* Clear before possibly re-entering ether_input(). */
804		m->m_flags &= ~M_PROMISC;
805		(*vlan_input_p)(ifp, m);
806		return;
807	}
808
809	/*
810	 * Pass promiscuously received frames to the upper layer if the user
811	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
812	 */
813	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
814		m_freem(m);
815		return;
816	}
817
818	/*
819	 * Reset layer specific mbuf flags to avoid confusing upper layers.
820	 * Strip off Ethernet header.
821	 */
822	m->m_flags &= ~M_VLANTAG;
823	m_clrprotoflags(m);
824	m_adj(m, ETHER_HDR_LEN);
825
826	/*
827	 * Dispatch frame to upper layer.
828	 */
829	switch (ether_type) {
830#ifdef INET
831	case ETHERTYPE_IP:
832		isr = NETISR_IP;
833		break;
834
835	case ETHERTYPE_ARP:
836		if (ifp->if_flags & IFF_NOARP) {
837			/* Discard packet if ARP is disabled on interface */
838			m_freem(m);
839			return;
840		}
841		isr = NETISR_ARP;
842		break;
843#endif
844#ifdef INET6
845	case ETHERTYPE_IPV6:
846		isr = NETISR_IPV6;
847		break;
848#endif
849	default:
850		goto discard;
851	}
852	netisr_dispatch(isr, m);
853	return;
854
855discard:
856	/*
857	 * Packet is to be discarded.  If netgraph is present,
858	 * hand the packet to it for last chance processing;
859	 * otherwise dispose of it.
860	 */
861	if (ifp->if_l2com != NULL) {
862		KASSERT(ng_ether_input_orphan_p != NULL,
863		    ("ng_ether_input_orphan_p is NULL"));
864		/*
865		 * Put back the ethernet header so netgraph has a
866		 * consistent view of inbound packets.
867		 */
868		M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
869		(*ng_ether_input_orphan_p)(ifp, m);
870		return;
871	}
872	m_freem(m);
873}
874
875/*
876 * Convert Ethernet address to printable (loggable) representation.
877 * This routine is for compatibility; it's better to just use
878 *
879 *	printf("%6D", <pointer to address>, ":");
880 *
881 * since there's no static buffer involved.
882 */
883char *
884ether_sprintf(const u_char *ap)
885{
886	static char etherbuf[18];
887	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
888	return (etherbuf);
889}
890
891/*
892 * Perform common duties while attaching to interface list
893 */
894void
895ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
896{
897	int i;
898	struct ifaddr *ifa;
899	struct sockaddr_dl *sdl;
900
901	ifp->if_addrlen = ETHER_ADDR_LEN;
902	ifp->if_hdrlen = ETHER_HDR_LEN;
903	if_attach(ifp);
904	ifp->if_mtu = ETHERMTU;
905	ifp->if_output = ether_output;
906	ifp->if_input = ether_input;
907	ifp->if_resolvemulti = ether_resolvemulti;
908	ifp->if_requestencap = ether_requestencap;
909#ifdef VIMAGE
910	ifp->if_reassign = ether_reassign;
911#endif
912	if (ifp->if_baudrate == 0)
913		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
914	ifp->if_broadcastaddr = etherbroadcastaddr;
915
916	ifa = ifp->if_addr;
917	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
918	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
919	sdl->sdl_type = IFT_ETHER;
920	sdl->sdl_alen = ifp->if_addrlen;
921	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
922
923	if (ifp->if_hw_addr != NULL)
924		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
925
926	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
927	if (ng_ether_attach_p != NULL)
928		(*ng_ether_attach_p)(ifp);
929
930	/* Announce Ethernet MAC address if non-zero. */
931	for (i = 0; i < ifp->if_addrlen; i++)
932		if (lla[i] != 0)
933			break;
934	if (i != ifp->if_addrlen)
935		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
936
937	uuid_ether_add(LLADDR(sdl));
938
939	/* Add necessary bits are setup; announce it now. */
940	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
941	if (IS_DEFAULT_VNET(curvnet))
942		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
943}
944
945/*
946 * Perform common duties while detaching an Ethernet interface
947 */
948void
949ether_ifdetach(struct ifnet *ifp)
950{
951	struct sockaddr_dl *sdl;
952
953	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
954	uuid_ether_del(LLADDR(sdl));
955
956	if (ifp->if_l2com != NULL) {
957		KASSERT(ng_ether_detach_p != NULL,
958		    ("ng_ether_detach_p is NULL"));
959		(*ng_ether_detach_p)(ifp);
960	}
961
962	bpfdetach(ifp);
963	if_detach(ifp);
964}
965
966#ifdef VIMAGE
967void
968ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
969{
970
971	if (ifp->if_l2com != NULL) {
972		KASSERT(ng_ether_detach_p != NULL,
973		    ("ng_ether_detach_p is NULL"));
974		(*ng_ether_detach_p)(ifp);
975	}
976
977	if (ng_ether_attach_p != NULL) {
978		CURVNET_SET_QUIET(new_vnet);
979		(*ng_ether_attach_p)(ifp);
980		CURVNET_RESTORE();
981	}
982}
983#endif
984
985SYSCTL_DECL(_net_link);
986SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
987
988#if 0
989/*
990 * This is for reference.  We have a table-driven version
991 * of the little-endian crc32 generator, which is faster
992 * than the double-loop.
993 */
994uint32_t
995ether_crc32_le(const uint8_t *buf, size_t len)
996{
997	size_t i;
998	uint32_t crc;
999	int bit;
1000	uint8_t data;
1001
1002	crc = 0xffffffff;	/* initial value */
1003
1004	for (i = 0; i < len; i++) {
1005		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1006			carry = (crc ^ data) & 1;
1007			crc >>= 1;
1008			if (carry)
1009				crc = (crc ^ ETHER_CRC_POLY_LE);
1010		}
1011	}
1012
1013	return (crc);
1014}
1015#else
1016uint32_t
1017ether_crc32_le(const uint8_t *buf, size_t len)
1018{
1019	static const uint32_t crctab[] = {
1020		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1021		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1022		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1023		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1024	};
1025	size_t i;
1026	uint32_t crc;
1027
1028	crc = 0xffffffff;	/* initial value */
1029
1030	for (i = 0; i < len; i++) {
1031		crc ^= buf[i];
1032		crc = (crc >> 4) ^ crctab[crc & 0xf];
1033		crc = (crc >> 4) ^ crctab[crc & 0xf];
1034	}
1035
1036	return (crc);
1037}
1038#endif
1039
1040uint32_t
1041ether_crc32_be(const uint8_t *buf, size_t len)
1042{
1043	size_t i;
1044	uint32_t crc, carry;
1045	int bit;
1046	uint8_t data;
1047
1048	crc = 0xffffffff;	/* initial value */
1049
1050	for (i = 0; i < len; i++) {
1051		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1052			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1053			crc <<= 1;
1054			if (carry)
1055				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1056		}
1057	}
1058
1059	return (crc);
1060}
1061
1062int
1063ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1064{
1065	struct ifaddr *ifa = (struct ifaddr *) data;
1066	struct ifreq *ifr = (struct ifreq *) data;
1067	int error = 0;
1068
1069	switch (command) {
1070	case SIOCSIFADDR:
1071		ifp->if_flags |= IFF_UP;
1072
1073		switch (ifa->ifa_addr->sa_family) {
1074#ifdef INET
1075		case AF_INET:
1076			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1077			arp_ifinit(ifp, ifa);
1078			break;
1079#endif
1080		default:
1081			ifp->if_init(ifp->if_softc);
1082			break;
1083		}
1084		break;
1085
1086	case SIOCGIFADDR:
1087		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1088		    ETHER_ADDR_LEN);
1089		break;
1090
1091	case SIOCSIFMTU:
1092		/*
1093		 * Set the interface MTU.
1094		 */
1095		if (ifr->ifr_mtu > ETHERMTU) {
1096			error = EINVAL;
1097		} else {
1098			ifp->if_mtu = ifr->ifr_mtu;
1099		}
1100		break;
1101	default:
1102		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1103		break;
1104	}
1105	return (error);
1106}
1107
1108static int
1109ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1110	struct sockaddr *sa)
1111{
1112	struct sockaddr_dl *sdl;
1113#ifdef INET
1114	struct sockaddr_in *sin;
1115#endif
1116#ifdef INET6
1117	struct sockaddr_in6 *sin6;
1118#endif
1119	u_char *e_addr;
1120
1121	switch(sa->sa_family) {
1122	case AF_LINK:
1123		/*
1124		 * No mapping needed. Just check that it's a valid MC address.
1125		 */
1126		sdl = (struct sockaddr_dl *)sa;
1127		e_addr = LLADDR(sdl);
1128		if (!ETHER_IS_MULTICAST(e_addr))
1129			return EADDRNOTAVAIL;
1130		*llsa = NULL;
1131		return 0;
1132
1133#ifdef INET
1134	case AF_INET:
1135		sin = (struct sockaddr_in *)sa;
1136		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1137			return EADDRNOTAVAIL;
1138		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1139		sdl->sdl_alen = ETHER_ADDR_LEN;
1140		e_addr = LLADDR(sdl);
1141		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1142		*llsa = (struct sockaddr *)sdl;
1143		return 0;
1144#endif
1145#ifdef INET6
1146	case AF_INET6:
1147		sin6 = (struct sockaddr_in6 *)sa;
1148		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1149			/*
1150			 * An IP6 address of 0 means listen to all
1151			 * of the Ethernet multicast address used for IP6.
1152			 * (This is used for multicast routers.)
1153			 */
1154			ifp->if_flags |= IFF_ALLMULTI;
1155			*llsa = NULL;
1156			return 0;
1157		}
1158		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1159			return EADDRNOTAVAIL;
1160		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1161		sdl->sdl_alen = ETHER_ADDR_LEN;
1162		e_addr = LLADDR(sdl);
1163		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1164		*llsa = (struct sockaddr *)sdl;
1165		return 0;
1166#endif
1167
1168	default:
1169		/*
1170		 * Well, the text isn't quite right, but it's the name
1171		 * that counts...
1172		 */
1173		return EAFNOSUPPORT;
1174	}
1175}
1176
1177static moduledata_t ether_mod = {
1178	.name = "ether",
1179};
1180
1181void
1182ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1183{
1184	struct ether_vlan_header vlan;
1185	struct mbuf mv, mb;
1186
1187	KASSERT((m->m_flags & M_VLANTAG) != 0,
1188	    ("%s: vlan information not present", __func__));
1189	KASSERT(m->m_len >= sizeof(struct ether_header),
1190	    ("%s: mbuf not large enough for header", __func__));
1191	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1192	vlan.evl_proto = vlan.evl_encap_proto;
1193	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1194	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1195	m->m_len -= sizeof(struct ether_header);
1196	m->m_data += sizeof(struct ether_header);
1197	/*
1198	 * If a data link has been supplied by the caller, then we will need to
1199	 * re-create a stack allocated mbuf chain with the following structure:
1200	 *
1201	 * (1) mbuf #1 will contain the supplied data link
1202	 * (2) mbuf #2 will contain the vlan header
1203	 * (3) mbuf #3 will contain the original mbuf's packet data
1204	 *
1205	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1206	 */
1207	if (data != NULL) {
1208		mv.m_next = m;
1209		mv.m_data = (caddr_t)&vlan;
1210		mv.m_len = sizeof(vlan);
1211		mb.m_next = &mv;
1212		mb.m_data = data;
1213		mb.m_len = dlen;
1214		bpf_mtap(bp, &mb);
1215	} else
1216		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1217	m->m_len += sizeof(struct ether_header);
1218	m->m_data -= sizeof(struct ether_header);
1219}
1220
1221struct mbuf *
1222ether_vlanencap(struct mbuf *m, uint16_t tag)
1223{
1224	struct ether_vlan_header *evl;
1225
1226	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1227	if (m == NULL)
1228		return (NULL);
1229	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1230
1231	if (m->m_len < sizeof(*evl)) {
1232		m = m_pullup(m, sizeof(*evl));
1233		if (m == NULL)
1234			return (NULL);
1235	}
1236
1237	/*
1238	 * Transform the Ethernet header into an Ethernet header
1239	 * with 802.1Q encapsulation.
1240	 */
1241	evl = mtod(m, struct ether_vlan_header *);
1242	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1243	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1244	evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1245	evl->evl_tag = htons(tag);
1246	return (m);
1247}
1248
1249DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1250MODULE_VERSION(ether, 1);
1251