sb_zbpci.c revision 302408
1/*-
2 * Copyright (c) 2009 Neelkanth Natu
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/param.h>
28#include <sys/types.h>
29#include <sys/kernel.h>
30#include <sys/systm.h>
31#include <sys/module.h>
32#include <sys/bus.h>
33#include <sys/rman.h>
34#include <sys/pcpu.h>
35#include <sys/smp.h>
36
37#include <vm/vm.h>
38#include <vm/vm_param.h>
39#include <vm/vm_kern.h>
40#include <vm/vm_extern.h>
41#include <vm/pmap.h>
42
43#include <dev/pci/pcireg.h>
44#include <dev/pci/pcivar.h>
45#include <dev/pci/pcib_private.h>
46
47#include <machine/resource.h>
48#include <machine/bus.h>
49
50#include "pcib_if.h"
51
52#include "sb_bus_space.h"
53#include "sb_scd.h"
54
55__FBSDID("$FreeBSD: stable/11/sys/mips/sibyte/sb_zbpci.c 298433 2016-04-21 19:57:40Z pfg $");
56
57static struct {
58	vm_offset_t vaddr;
59	vm_paddr_t  paddr;
60} zbpci_config_space[MAXCPU];
61
62static const vm_paddr_t CFG_PADDR_BASE = 0xFE000000;
63static const u_long PCI_IOSPACE_ADDR = 0xFC000000;
64static const u_long PCI_IOSPACE_SIZE = 0x02000000;
65
66#define	PCI_MATCH_BYTE_LANES_START	0x40000000
67#define	PCI_MATCH_BYTE_LANES_END	0x5FFFFFFF
68#define	PCI_MATCH_BYTE_LANES_SIZE	0x20000000
69
70#define	PCI_MATCH_BIT_LANES_MASK	(1 << 29)
71#define	PCI_MATCH_BIT_LANES_START	0x60000000
72#define	PCI_MATCH_BIT_LANES_END		0x7FFFFFFF
73#define	PCI_MATCH_BIT_LANES_SIZE	0x20000000
74
75static struct rman port_rman;
76
77static int
78zbpci_probe(device_t dev)
79{
80
81	device_set_desc(dev, "Broadcom/Sibyte PCI I/O Bridge");
82	return (0);
83}
84
85static int
86zbpci_attach(device_t dev)
87{
88	int n, rid, size;
89	vm_offset_t va;
90	struct resource *res;
91
92	/*
93	 * Reserve the physical memory window used to map PCI I/O space.
94	 */
95	rid = 0;
96	res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
97				 PCI_IOSPACE_ADDR,
98				 PCI_IOSPACE_ADDR + PCI_IOSPACE_SIZE - 1,
99				 PCI_IOSPACE_SIZE, 0);
100	if (res == NULL)
101		panic("Cannot allocate resource for PCI I/O space mapping.");
102
103	port_rman.rm_start = 0;
104	port_rman.rm_end = PCI_IOSPACE_SIZE - 1;
105	port_rman.rm_type = RMAN_ARRAY;
106	port_rman.rm_descr = "PCI I/O ports";
107	if (rman_init(&port_rman) != 0 ||
108	    rman_manage_region(&port_rman, 0, PCI_IOSPACE_SIZE - 1) != 0)
109		panic("%s: port_rman", __func__);
110
111	/*
112	 * Reserve the physical memory that is used to read/write to the
113	 * pci config space but don't activate it. We are using a page worth
114	 * of KVA as a window over this region.
115	 */
116	rid = 1;
117	size = (PCI_BUSMAX + 1) * (PCI_SLOTMAX + 1) * (PCI_FUNCMAX + 1) * 256;
118	res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, CFG_PADDR_BASE,
119				 CFG_PADDR_BASE + size - 1, size, 0);
120	if (res == NULL)
121		panic("Cannot allocate resource for config space accesses.");
122
123	/*
124	 * Allocate the entire "match bit lanes" address space.
125	 */
126#if _BYTE_ORDER == _BIG_ENDIAN
127	rid = 2;
128	res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
129				 PCI_MATCH_BIT_LANES_START,
130				 PCI_MATCH_BIT_LANES_END,
131				 PCI_MATCH_BIT_LANES_SIZE, 0);
132	if (res == NULL)
133		panic("Cannot allocate resource for pci match bit lanes.");
134#endif	/* _BYTE_ORDER ==_BIG_ENDIAN */
135
136	/*
137	 * Allocate KVA for accessing PCI config space.
138	 */
139	va = kva_alloc(PAGE_SIZE * mp_ncpus);
140	if (va == 0) {
141		device_printf(dev, "Cannot allocate virtual addresses for "
142				   "config space access.\n");
143		return (ENOMEM);
144	}
145
146	for (n = 0; n < mp_ncpus; ++n)
147		zbpci_config_space[n].vaddr = va + n * PAGE_SIZE;
148
149	/*
150	 * Sibyte has the PCI bus hierarchy rooted at bus 0 and HT-PCI
151	 * hierarchy rooted at bus 1.
152	 */
153	if (device_add_child(dev, "pci", 0) == NULL)
154		panic("zbpci_attach: could not add pci bus 0.\n");
155
156	if (device_add_child(dev, "pci", 1) == NULL)
157		panic("zbpci_attach: could not add pci bus 1.\n");
158
159	if (bootverbose)
160		device_printf(dev, "attached.\n");
161
162	return (bus_generic_attach(dev));
163}
164
165static struct resource *
166zbpci_alloc_resource(device_t bus, device_t child, int type, int *rid,
167		     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
168{
169	struct resource *res;
170
171	/*
172	 * Handle PCI I/O port resources here and pass everything else to nexus.
173	 */
174	if (type != SYS_RES_IOPORT) {
175		res = bus_generic_alloc_resource(bus, child, type, rid,
176						 start, end, count, flags);
177		return (res);
178	}
179
180	res = rman_reserve_resource(&port_rman, start, end, count,
181				    flags, child);
182	if (res == NULL)
183		return (NULL);
184
185	rman_set_rid(res, *rid);
186
187	/* Activate the resource is requested */
188	if (flags & RF_ACTIVE) {
189		if (bus_activate_resource(child, type, *rid, res) != 0) {
190			rman_release_resource(res);
191			return (NULL);
192		}
193	}
194
195	return (res);
196}
197
198static int
199zbpci_activate_resource(device_t bus, device_t child, int type, int rid,
200			struct resource *res)
201{
202	int error;
203	void *vaddr;
204	u_long orig_paddr, paddr, psize;
205
206	paddr = rman_get_start(res);
207	psize = rman_get_size(res);
208	orig_paddr = paddr;
209
210#if _BYTE_ORDER == _BIG_ENDIAN
211	/*
212	 * The CFE allocates PCI memory resources that map to the
213	 * "match byte lanes" address space. This address space works
214	 * best for DMA transfers because it does not do any automatic
215	 * byte swaps when data crosses the pci-cpu interface.
216	 *
217	 * This also makes it sub-optimal for accesses to PCI device
218	 * registers because it exposes the little-endian nature of
219	 * the PCI bus to the big-endian CPU. The Sibyte has another
220	 * address window called the "match bit lanes" window which
221	 * automatically swaps bytes when data crosses the pci-cpu
222	 * interface.
223	 *
224	 * We "assume" that any bus_space memory accesses done by the
225	 * CPU to a PCI device are register/configuration accesses and
226	 * are done through the "match bit lanes" window. Any DMA
227	 * transfers will continue to be through the "match byte lanes"
228	 * window because the PCI BAR registers will not be changed.
229	 */
230	if (type == SYS_RES_MEMORY) {
231		if (paddr >= PCI_MATCH_BYTE_LANES_START &&
232		    paddr + psize - 1 <= PCI_MATCH_BYTE_LANES_END) {
233			paddr |= PCI_MATCH_BIT_LANES_MASK;
234			rman_set_start(res, paddr);
235			rman_set_end(res, paddr + psize - 1);
236		}
237	}
238#endif
239
240	if (type != SYS_RES_IOPORT) {
241		error = bus_generic_activate_resource(bus, child, type,
242						      rid, res);
243#if _BYTE_ORDER == _BIG_ENDIAN
244		if (type == SYS_RES_MEMORY) {
245			rman_set_start(res, orig_paddr);
246			rman_set_end(res, orig_paddr + psize - 1);
247		}
248#endif
249		return (error);
250	}
251
252	/*
253	 * Map the I/O space resource through the memory window starting
254	 * at PCI_IOSPACE_ADDR.
255	 */
256	vaddr = pmap_mapdev(paddr + PCI_IOSPACE_ADDR, psize);
257
258	rman_set_virtual(res, vaddr);
259	rman_set_bustag(res, mips_bus_space_generic);
260	rman_set_bushandle(res, (bus_space_handle_t)vaddr);
261
262	return (rman_activate_resource(res));
263}
264
265static int
266zbpci_release_resource(device_t bus, device_t child, int type, int rid,
267		       struct resource *r)
268{
269	int error;
270
271	if (type != SYS_RES_IOPORT)
272		return (bus_generic_release_resource(bus, child, type, rid, r));
273
274	if (rman_get_flags(r) & RF_ACTIVE) {
275		error = bus_deactivate_resource(child, type, rid, r);
276		if (error)
277			return (error);
278	}
279
280	return (rman_release_resource(r));
281}
282
283static int
284zbpci_deactivate_resource(device_t bus, device_t child, int type, int rid,
285			  struct resource *r)
286{
287	vm_offset_t va;
288
289	if (type != SYS_RES_IOPORT) {
290		return (bus_generic_deactivate_resource(bus, child, type,
291							rid, r));
292	}
293
294	va = (vm_offset_t)rman_get_virtual(r);
295	pmap_unmapdev(va, rman_get_size(r));
296
297	return (rman_deactivate_resource(r));
298}
299
300static int
301zbpci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
302{
303
304	switch (which) {
305	case PCIB_IVAR_DOMAIN:
306		*result = 0;				/* single PCI domain */
307		return (0);
308	case PCIB_IVAR_BUS:
309		*result = device_get_unit(child);	/* PCI bus 0 or 1 */
310		return (0);
311	default:
312		return (ENOENT);
313	}
314}
315
316/*
317 * We rely on the CFE to have configured the intline correctly to point to
318 * one of PCI-A/PCI-B/PCI-C/PCI-D in the interupt mapper.
319 */
320static int
321zbpci_route_interrupt(device_t pcib, device_t dev, int pin)
322{
323
324	return (PCI_INVALID_IRQ);
325}
326
327/*
328 * This function is expected to be called in a critical section since it
329 * changes the per-cpu pci config space va-to-pa mappings.
330 */
331static vm_offset_t
332zbpci_config_space_va(int bus, int slot, int func, int reg, int bytes)
333{
334	int cpu;
335	vm_offset_t va_page;
336	vm_paddr_t pa, pa_page;
337
338	if (bus <= PCI_BUSMAX && slot <= PCI_SLOTMAX && func <= PCI_FUNCMAX &&
339	    reg <= PCI_REGMAX && (bytes == 1 || bytes == 2 || bytes == 4) &&
340	    ((reg & (bytes - 1)) == 0)) {
341		cpu = PCPU_GET(cpuid);
342		va_page = zbpci_config_space[cpu].vaddr;
343		pa = CFG_PADDR_BASE |
344		     (bus << 16) | (slot << 11) | (func << 8) | reg;
345#if _BYTE_ORDER == _BIG_ENDIAN
346		pa = pa ^ (4 - bytes);
347#endif
348		pa_page = rounddown2(pa, PAGE_SIZE);
349		if (zbpci_config_space[cpu].paddr != pa_page) {
350			pmap_kremove(va_page);
351			pmap_kenter_attr(va_page, pa_page, PTE_C_UNCACHED);
352			zbpci_config_space[cpu].paddr = pa_page;
353		}
354		return (va_page + (pa - pa_page));
355	} else {
356		return (0);
357	}
358}
359
360static uint32_t
361zbpci_read_config(device_t dev, u_int b, u_int s, u_int f, u_int r, int w)
362{
363	uint32_t data;
364	vm_offset_t va;
365
366	critical_enter();
367
368	va = zbpci_config_space_va(b, s, f, r, w);
369	if (va == 0) {
370		panic("zbpci_read_config: invalid %d/%d/%d[%d] %d\n",
371		      b, s, f, r, w);
372	}
373
374	switch (w) {
375	case 4:
376		data = *(uint32_t *)va;
377		break;
378	case 2:
379		data = *(uint16_t *)va;
380		break;
381	case 1:
382		data = *(uint8_t *)va;
383		break;
384	default:
385		panic("zbpci_read_config: invalid width %d\n", w);
386	}
387
388	critical_exit();
389
390	return (data);
391}
392
393static void
394zbpci_write_config(device_t d, u_int b, u_int s, u_int f, u_int r,
395		   uint32_t data, int w)
396{
397	vm_offset_t va;
398
399	critical_enter();
400
401	va = zbpci_config_space_va(b, s, f, r, w);
402	if (va == 0) {
403		panic("zbpci_write_config: invalid %d/%d/%d[%d] %d/%d\n",
404		      b, s, f, r, data, w);
405	}
406
407	switch (w) {
408	case 4:
409		*(uint32_t *)va = data;
410		break;
411	case 2:
412		*(uint16_t *)va = data;
413		break;
414	case 1:
415		*(uint8_t *)va = data;
416		break;
417	default:
418		panic("zbpci_write_config: invalid width %d\n", w);
419	}
420
421	critical_exit();
422}
423
424static device_method_t zbpci_methods[] ={
425	/* Device interface */
426	DEVMETHOD(device_probe,		zbpci_probe),
427	DEVMETHOD(device_attach,	zbpci_attach),
428	DEVMETHOD(device_detach,	bus_generic_detach),
429	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
430	DEVMETHOD(device_suspend,	bus_generic_suspend),
431	DEVMETHOD(device_resume,	bus_generic_resume),
432
433	/* Bus interface */
434	DEVMETHOD(bus_read_ivar,	zbpci_read_ivar),
435	DEVMETHOD(bus_write_ivar,	bus_generic_write_ivar),
436	DEVMETHOD(bus_alloc_resource,	zbpci_alloc_resource),
437	DEVMETHOD(bus_activate_resource, zbpci_activate_resource),
438	DEVMETHOD(bus_deactivate_resource, zbpci_deactivate_resource),
439	DEVMETHOD(bus_release_resource,	zbpci_release_resource),
440	DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
441	DEVMETHOD(bus_teardown_intr,	bus_generic_teardown_intr),
442	DEVMETHOD(bus_add_child,	bus_generic_add_child),
443
444	/* pcib interface */
445	DEVMETHOD(pcib_maxslots,	pcib_maxslots),
446	DEVMETHOD(pcib_read_config,	zbpci_read_config),
447	DEVMETHOD(pcib_write_config,	zbpci_write_config),
448	DEVMETHOD(pcib_route_interrupt,	zbpci_route_interrupt),
449
450	{ 0, 0 }
451};
452
453/*
454 * The "zbpci" class inherits from the "pcib" base class. Therefore in
455 * addition to drivers that belong to the "zbpci" class we will also
456 * consider drivers belonging to the "pcib" when probing children of
457 * "zbpci".
458 */
459DEFINE_CLASS_1(zbpci, zbpci_driver, zbpci_methods, 0, pcib_driver);
460
461static devclass_t zbpci_devclass;
462
463DRIVER_MODULE(zbpci, zbbus, zbpci_driver, zbpci_devclass, 0, 0);
464
465/*
466 * Big endian bus space routines
467 */
468#if _BYTE_ORDER == _BIG_ENDIAN
469
470/*
471 * The CPU correctly deals with the big-endian to little-endian swap if
472 * we are accessing 4 bytes at a time. However if we want to read 1 or 2
473 * bytes then we need to fudge the address generated by the CPU such that
474 * it generates the right byte enables on the PCI bus.
475 */
476static bus_addr_t
477sb_match_bit_lane_addr(bus_addr_t addr, int bytes)
478{
479	vm_offset_t pa;
480
481	pa = vtophys(addr);
482
483	if (pa >= PCI_MATCH_BIT_LANES_START && pa <= PCI_MATCH_BIT_LANES_END)
484		return (addr ^ (4 - bytes));
485	else
486		return (addr);
487}
488
489uint8_t
490sb_big_endian_read8(bus_addr_t addr)
491{
492	bus_addr_t addr2;
493
494	addr2 = sb_match_bit_lane_addr(addr, 1);
495	return (readb(addr2));
496}
497
498uint16_t
499sb_big_endian_read16(bus_addr_t addr)
500{
501	bus_addr_t addr2;
502
503	addr2 = sb_match_bit_lane_addr(addr, 2);
504	return (readw(addr2));
505}
506
507uint32_t
508sb_big_endian_read32(bus_addr_t addr)
509{
510	bus_addr_t addr2;
511
512	addr2 = sb_match_bit_lane_addr(addr, 4);
513	return (readl(addr2));
514}
515
516void
517sb_big_endian_write8(bus_addr_t addr, uint8_t val)
518{
519	bus_addr_t addr2;
520
521	addr2 = sb_match_bit_lane_addr(addr, 1);
522	writeb(addr2, val);
523}
524
525void
526sb_big_endian_write16(bus_addr_t addr, uint16_t val)
527{
528	bus_addr_t addr2;
529
530	addr2 = sb_match_bit_lane_addr(addr, 2);
531	writew(addr2, val);
532}
533
534void
535sb_big_endian_write32(bus_addr_t addr, uint32_t val)
536{
537	bus_addr_t addr2;
538
539	addr2 = sb_match_bit_lane_addr(addr, 4);
540	writel(addr2, val);
541}
542#endif	/* _BIG_ENDIAN */
543