pmap.c revision 241156
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	Since the information managed by this module is
46 *	also stored by the logical address mapping module,
47 *	this module may throw away valid virtual-to-physical
48 *	mappings at almost any time.  However, invalidations
49 *	of virtual-to-physical mappings must be done as
50 *	requested.
51 *
52 *	In order to cope with hardware architectures which
53 *	make virtual-to-physical map invalidates expensive,
54 *	this module may delay invalidate or reduced protection
55 *	operations until such time as they are actually
56 *	necessary.  This module is given full information as
57 *	to which processors are currently using which maps,
58 *	and to when physical maps must be made correct.
59 */
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 241156 2012-10-03 05:42:15Z alc $");
63
64#include "opt_ddb.h"
65#include "opt_pmap.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/lock.h>
70#include <sys/mman.h>
71#include <sys/msgbuf.h>
72#include <sys/mutex.h>
73#include <sys/pcpu.h>
74#include <sys/proc.h>
75#include <sys/rwlock.h>
76#include <sys/sched.h>
77#ifdef SMP
78#include <sys/smp.h>
79#else
80#include <sys/cpuset.h>
81#endif
82#include <sys/sysctl.h>
83#include <sys/vmmeter.h>
84
85#ifdef DDB
86#include <ddb/ddb.h>
87#endif
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/uma.h>
99
100#include <machine/cache.h>
101#include <machine/md_var.h>
102#include <machine/tlb.h>
103
104#undef PMAP_DEBUG
105
106#if !defined(DIAGNOSTIC)
107#define	PMAP_INLINE __inline
108#else
109#define	PMAP_INLINE
110#endif
111
112#ifdef PV_STATS
113#define PV_STAT(x)	do { x ; } while (0)
114#else
115#define PV_STAT(x)	do { } while (0)
116#endif
117
118/*
119 * Get PDEs and PTEs for user/kernel address space
120 */
121#define	pmap_seg_index(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
122#define	pmap_pde_index(v)	(((v) >> PDRSHIFT) & (NPDEPG - 1))
123#define	pmap_pte_index(v)	(((v) >> PAGE_SHIFT) & (NPTEPG - 1))
124#define	pmap_pde_pindex(v)	((v) >> PDRSHIFT)
125
126#ifdef __mips_n64
127#define	NUPDE			(NPDEPG * NPDEPG)
128#define	NUSERPGTBLS		(NUPDE + NPDEPG)
129#else
130#define	NUPDE			(NPDEPG)
131#define	NUSERPGTBLS		(NUPDE)
132#endif
133
134#define	is_kernel_pmap(x)	((x) == kernel_pmap)
135
136struct pmap kernel_pmap_store;
137pd_entry_t *kernel_segmap;
138
139vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
140vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
141
142static int nkpt;
143unsigned pmap_max_asid;		/* max ASID supported by the system */
144
145#define	PMAP_ASID_RESERVED	0
146
147vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
148
149static void pmap_asid_alloc(pmap_t pmap);
150
151/*
152 * Isolate the global pv list lock from data and other locks to prevent false
153 * sharing within the cache.
154 */
155static struct {
156	struct rwlock	lock;
157	char		padding[CACHE_LINE_SIZE - sizeof(struct rwlock)];
158} pvh_global __aligned(CACHE_LINE_SIZE);
159
160#define	pvh_global_lock	pvh_global.lock
161
162/*
163 * Data for the pv entry allocation mechanism
164 */
165static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
166static int pv_entry_count;
167
168static void free_pv_chunk(struct pv_chunk *pc);
169static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
170static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
171static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap);
172static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
173static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
174    vm_offset_t va);
175static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
176    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
177static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
178    pd_entry_t pde);
179static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
180static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
181static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
182    vm_offset_t va, vm_page_t m);
183static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
184static void pmap_invalidate_all(pmap_t pmap);
185static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
186static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m);
187
188static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
189static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
190static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
191static pt_entry_t init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot);
192
193static void pmap_invalidate_page_action(void *arg);
194static void pmap_invalidate_range_action(void *arg);
195static void pmap_update_page_action(void *arg);
196
197#ifndef __mips_n64
198/*
199 * This structure is for high memory (memory above 512Meg in 32 bit) support.
200 * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
201 * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
202 *
203 * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
204 * access a highmem physical address on a CPU, we map the physical address to
205 * the reserved virtual address for the CPU in the kernel pagetable.  This is
206 * done with interrupts disabled(although a spinlock and sched_pin would be
207 * sufficient).
208 */
209struct local_sysmaps {
210	vm_offset_t	base;
211	uint32_t	saved_intr;
212	uint16_t	valid1, valid2;
213};
214static struct local_sysmaps sysmap_lmem[MAXCPU];
215
216static __inline void
217pmap_alloc_lmem_map(void)
218{
219	int i;
220
221	for (i = 0; i < MAXCPU; i++) {
222		sysmap_lmem[i].base = virtual_avail;
223		virtual_avail += PAGE_SIZE * 2;
224		sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
225	}
226}
227
228static __inline vm_offset_t
229pmap_lmem_map1(vm_paddr_t phys)
230{
231	struct local_sysmaps *sysm;
232	pt_entry_t *pte, npte;
233	vm_offset_t va;
234	uint32_t intr;
235	int cpu;
236
237	intr = intr_disable();
238	cpu = PCPU_GET(cpuid);
239	sysm = &sysmap_lmem[cpu];
240	sysm->saved_intr = intr;
241	va = sysm->base;
242	npte = TLBLO_PA_TO_PFN(phys) |
243	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
244	pte = pmap_pte(kernel_pmap, va);
245	*pte = npte;
246	sysm->valid1 = 1;
247	return (va);
248}
249
250static __inline vm_offset_t
251pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
252{
253	struct local_sysmaps *sysm;
254	pt_entry_t *pte, npte;
255	vm_offset_t va1, va2;
256	uint32_t intr;
257	int cpu;
258
259	intr = intr_disable();
260	cpu = PCPU_GET(cpuid);
261	sysm = &sysmap_lmem[cpu];
262	sysm->saved_intr = intr;
263	va1 = sysm->base;
264	va2 = sysm->base + PAGE_SIZE;
265	npte = TLBLO_PA_TO_PFN(phys1) |
266	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
267	pte = pmap_pte(kernel_pmap, va1);
268	*pte = npte;
269	npte =  TLBLO_PA_TO_PFN(phys2) |
270	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
271	pte = pmap_pte(kernel_pmap, va2);
272	*pte = npte;
273	sysm->valid1 = 1;
274	sysm->valid2 = 1;
275	return (va1);
276}
277
278static __inline void
279pmap_lmem_unmap(void)
280{
281	struct local_sysmaps *sysm;
282	pt_entry_t *pte;
283	int cpu;
284
285	cpu = PCPU_GET(cpuid);
286	sysm = &sysmap_lmem[cpu];
287	pte = pmap_pte(kernel_pmap, sysm->base);
288	*pte = PTE_G;
289	tlb_invalidate_address(kernel_pmap, sysm->base);
290	sysm->valid1 = 0;
291	if (sysm->valid2) {
292		pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
293		*pte = PTE_G;
294		tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
295		sysm->valid2 = 0;
296	}
297	intr_restore(sysm->saved_intr);
298}
299#else  /* __mips_n64 */
300
301static __inline void
302pmap_alloc_lmem_map(void)
303{
304}
305
306static __inline vm_offset_t
307pmap_lmem_map1(vm_paddr_t phys)
308{
309
310	return (0);
311}
312
313static __inline vm_offset_t
314pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
315{
316
317	return (0);
318}
319
320static __inline vm_offset_t
321pmap_lmem_unmap(void)
322{
323
324	return (0);
325}
326#endif /* !__mips_n64 */
327
328/*
329 * Page table entry lookup routines.
330 */
331static __inline pd_entry_t *
332pmap_segmap(pmap_t pmap, vm_offset_t va)
333{
334
335	return (&pmap->pm_segtab[pmap_seg_index(va)]);
336}
337
338#ifdef __mips_n64
339static __inline pd_entry_t *
340pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
341{
342	pd_entry_t *pde;
343
344	pde = (pd_entry_t *)*pdpe;
345	return (&pde[pmap_pde_index(va)]);
346}
347
348static __inline pd_entry_t *
349pmap_pde(pmap_t pmap, vm_offset_t va)
350{
351	pd_entry_t *pdpe;
352
353	pdpe = pmap_segmap(pmap, va);
354	if (*pdpe == NULL)
355		return (NULL);
356
357	return (pmap_pdpe_to_pde(pdpe, va));
358}
359#else
360static __inline pd_entry_t *
361pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
362{
363
364	return (pdpe);
365}
366
367static __inline
368pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
369{
370
371	return (pmap_segmap(pmap, va));
372}
373#endif
374
375static __inline pt_entry_t *
376pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
377{
378	pt_entry_t *pte;
379
380	pte = (pt_entry_t *)*pde;
381	return (&pte[pmap_pte_index(va)]);
382}
383
384pt_entry_t *
385pmap_pte(pmap_t pmap, vm_offset_t va)
386{
387	pd_entry_t *pde;
388
389	pde = pmap_pde(pmap, va);
390	if (pde == NULL || *pde == NULL)
391		return (NULL);
392
393	return (pmap_pde_to_pte(pde, va));
394}
395
396vm_offset_t
397pmap_steal_memory(vm_size_t size)
398{
399	vm_paddr_t bank_size, pa;
400	vm_offset_t va;
401
402	size = round_page(size);
403	bank_size = phys_avail[1] - phys_avail[0];
404	while (size > bank_size) {
405		int i;
406
407		for (i = 0; phys_avail[i + 2]; i += 2) {
408			phys_avail[i] = phys_avail[i + 2];
409			phys_avail[i + 1] = phys_avail[i + 3];
410		}
411		phys_avail[i] = 0;
412		phys_avail[i + 1] = 0;
413		if (!phys_avail[0])
414			panic("pmap_steal_memory: out of memory");
415		bank_size = phys_avail[1] - phys_avail[0];
416	}
417
418	pa = phys_avail[0];
419	phys_avail[0] += size;
420	if (MIPS_DIRECT_MAPPABLE(pa) == 0)
421		panic("Out of memory below 512Meg?");
422	va = MIPS_PHYS_TO_DIRECT(pa);
423	bzero((caddr_t)va, size);
424	return (va);
425}
426
427/*
428 * Bootstrap the system enough to run with virtual memory.  This
429 * assumes that the phys_avail array has been initialized.
430 */
431static void
432pmap_create_kernel_pagetable(void)
433{
434	int i, j;
435	vm_offset_t ptaddr;
436	pt_entry_t *pte;
437#ifdef __mips_n64
438	pd_entry_t *pde;
439	vm_offset_t pdaddr;
440	int npt, npde;
441#endif
442
443	/*
444	 * Allocate segment table for the kernel
445	 */
446	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
447
448	/*
449	 * Allocate second level page tables for the kernel
450	 */
451#ifdef __mips_n64
452	npde = howmany(NKPT, NPDEPG);
453	pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
454#endif
455	nkpt = NKPT;
456	ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
457
458	/*
459	 * The R[4-7]?00 stores only one copy of the Global bit in the
460	 * translation lookaside buffer for each 2 page entry. Thus invalid
461	 * entrys must have the Global bit set so when Entry LO and Entry HI
462	 * G bits are anded together they will produce a global bit to store
463	 * in the tlb.
464	 */
465	for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
466		*pte = PTE_G;
467
468#ifdef __mips_n64
469	for (i = 0,  npt = nkpt; npt > 0; i++) {
470		kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
471		pde = (pd_entry_t *)kernel_segmap[i];
472
473		for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
474			pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
475	}
476#else
477	for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
478		kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
479#endif
480
481	PMAP_LOCK_INIT(kernel_pmap);
482	kernel_pmap->pm_segtab = kernel_segmap;
483	CPU_FILL(&kernel_pmap->pm_active);
484	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
485	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
486	kernel_pmap->pm_asid[0].gen = 0;
487	kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
488}
489
490void
491pmap_bootstrap(void)
492{
493	int i;
494	int need_local_mappings = 0;
495
496	/* Sort. */
497again:
498	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
499		/*
500		 * Keep the memory aligned on page boundary.
501		 */
502		phys_avail[i] = round_page(phys_avail[i]);
503		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
504
505		if (i < 2)
506			continue;
507		if (phys_avail[i - 2] > phys_avail[i]) {
508			vm_paddr_t ptemp[2];
509
510			ptemp[0] = phys_avail[i + 0];
511			ptemp[1] = phys_avail[i + 1];
512
513			phys_avail[i + 0] = phys_avail[i - 2];
514			phys_avail[i + 1] = phys_avail[i - 1];
515
516			phys_avail[i - 2] = ptemp[0];
517			phys_avail[i - 1] = ptemp[1];
518			goto again;
519		}
520	}
521
522       	/*
523	 * In 32 bit, we may have memory which cannot be mapped directly.
524	 * This memory will need temporary mapping before it can be
525	 * accessed.
526	 */
527	if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
528		need_local_mappings = 1;
529
530	/*
531	 * Copy the phys_avail[] array before we start stealing memory from it.
532	 */
533	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
534		physmem_desc[i] = phys_avail[i];
535		physmem_desc[i + 1] = phys_avail[i + 1];
536	}
537
538	Maxmem = atop(phys_avail[i - 1]);
539
540	if (bootverbose) {
541		printf("Physical memory chunk(s):\n");
542		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
543			vm_paddr_t size;
544
545			size = phys_avail[i + 1] - phys_avail[i];
546			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
547			    (uintmax_t) phys_avail[i],
548			    (uintmax_t) phys_avail[i + 1] - 1,
549			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
550		}
551		printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
552	}
553	/*
554	 * Steal the message buffer from the beginning of memory.
555	 */
556	msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
557	msgbufinit(msgbufp, msgbufsize);
558
559	/*
560	 * Steal thread0 kstack.
561	 */
562	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
563
564	virtual_avail = VM_MIN_KERNEL_ADDRESS;
565	virtual_end = VM_MAX_KERNEL_ADDRESS;
566
567#ifdef SMP
568	/*
569	 * Steal some virtual address space to map the pcpu area.
570	 */
571	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
572	pcpup = (struct pcpu *)virtual_avail;
573	virtual_avail += PAGE_SIZE * 2;
574
575	/*
576	 * Initialize the wired TLB entry mapping the pcpu region for
577	 * the BSP at 'pcpup'. Up until this point we were operating
578	 * with the 'pcpup' for the BSP pointing to a virtual address
579	 * in KSEG0 so there was no need for a TLB mapping.
580	 */
581	mips_pcpu_tlb_init(PCPU_ADDR(0));
582
583	if (bootverbose)
584		printf("pcpu is available at virtual address %p.\n", pcpup);
585#endif
586
587	if (need_local_mappings)
588		pmap_alloc_lmem_map();
589	pmap_create_kernel_pagetable();
590	pmap_max_asid = VMNUM_PIDS;
591	mips_wr_entryhi(0);
592	mips_wr_pagemask(0);
593
594 	/*
595	 * Initialize the global pv list lock.
596	 */
597	rw_init(&pvh_global_lock, "pmap pv global");
598}
599
600/*
601 * Initialize a vm_page's machine-dependent fields.
602 */
603void
604pmap_page_init(vm_page_t m)
605{
606
607	TAILQ_INIT(&m->md.pv_list);
608	m->md.pv_flags = 0;
609}
610
611/*
612 *	Initialize the pmap module.
613 *	Called by vm_init, to initialize any structures that the pmap
614 *	system needs to map virtual memory.
615 */
616void
617pmap_init(void)
618{
619}
620
621/***************************************************
622 * Low level helper routines.....
623 ***************************************************/
624
625#ifdef	SMP
626static __inline void
627pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
628{
629	int	cpuid, cpu, self;
630	cpuset_t active_cpus;
631
632	sched_pin();
633	if (is_kernel_pmap(pmap)) {
634		smp_rendezvous(NULL, fn, NULL, arg);
635		goto out;
636	}
637	/* Force ASID update on inactive CPUs */
638	CPU_FOREACH(cpu) {
639		if (!CPU_ISSET(cpu, &pmap->pm_active))
640			pmap->pm_asid[cpu].gen = 0;
641	}
642	cpuid = PCPU_GET(cpuid);
643	/*
644	 * XXX: barrier/locking for active?
645	 *
646	 * Take a snapshot of active here, any further changes are ignored.
647	 * tlb update/invalidate should be harmless on inactive CPUs
648	 */
649	active_cpus = pmap->pm_active;
650	self = CPU_ISSET(cpuid, &active_cpus);
651	CPU_CLR(cpuid, &active_cpus);
652	/* Optimize for the case where this cpu is the only active one */
653	if (CPU_EMPTY(&active_cpus)) {
654		if (self)
655			fn(arg);
656	} else {
657		if (self)
658			CPU_SET(cpuid, &active_cpus);
659		smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
660	}
661out:
662	sched_unpin();
663}
664#else /* !SMP */
665static __inline void
666pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
667{
668	int	cpuid;
669
670	if (is_kernel_pmap(pmap)) {
671		fn(arg);
672		return;
673	}
674	cpuid = PCPU_GET(cpuid);
675	if (!CPU_ISSET(cpuid, &pmap->pm_active))
676		pmap->pm_asid[cpuid].gen = 0;
677	else
678		fn(arg);
679}
680#endif /* SMP */
681
682static void
683pmap_invalidate_all(pmap_t pmap)
684{
685
686	pmap_call_on_active_cpus(pmap,
687	    (void (*)(void *))tlb_invalidate_all_user, pmap);
688}
689
690struct pmap_invalidate_page_arg {
691	pmap_t pmap;
692	vm_offset_t va;
693};
694
695static void
696pmap_invalidate_page_action(void *arg)
697{
698	struct pmap_invalidate_page_arg *p = arg;
699
700	tlb_invalidate_address(p->pmap, p->va);
701}
702
703static void
704pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
705{
706	struct pmap_invalidate_page_arg arg;
707
708	arg.pmap = pmap;
709	arg.va = va;
710	pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
711}
712
713struct pmap_invalidate_range_arg {
714	pmap_t pmap;
715	vm_offset_t sva;
716	vm_offset_t eva;
717};
718
719static void
720pmap_invalidate_range_action(void *arg)
721{
722	struct pmap_invalidate_range_arg *p = arg;
723
724	tlb_invalidate_range(p->pmap, p->sva, p->eva);
725}
726
727static void
728pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
729{
730	struct pmap_invalidate_range_arg arg;
731
732	arg.pmap = pmap;
733	arg.sva = sva;
734	arg.eva = eva;
735	pmap_call_on_active_cpus(pmap, pmap_invalidate_range_action, &arg);
736}
737
738struct pmap_update_page_arg {
739	pmap_t pmap;
740	vm_offset_t va;
741	pt_entry_t pte;
742};
743
744static void
745pmap_update_page_action(void *arg)
746{
747	struct pmap_update_page_arg *p = arg;
748
749	tlb_update(p->pmap, p->va, p->pte);
750}
751
752static void
753pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
754{
755	struct pmap_update_page_arg arg;
756
757	arg.pmap = pmap;
758	arg.va = va;
759	arg.pte = pte;
760	pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
761}
762
763/*
764 *	Routine:	pmap_extract
765 *	Function:
766 *		Extract the physical page address associated
767 *		with the given map/virtual_address pair.
768 */
769vm_paddr_t
770pmap_extract(pmap_t pmap, vm_offset_t va)
771{
772	pt_entry_t *pte;
773	vm_offset_t retval = 0;
774
775	PMAP_LOCK(pmap);
776	pte = pmap_pte(pmap, va);
777	if (pte) {
778		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
779	}
780	PMAP_UNLOCK(pmap);
781	return (retval);
782}
783
784/*
785 *	Routine:	pmap_extract_and_hold
786 *	Function:
787 *		Atomically extract and hold the physical page
788 *		with the given pmap and virtual address pair
789 *		if that mapping permits the given protection.
790 */
791vm_page_t
792pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
793{
794	pt_entry_t *ptep;
795	pt_entry_t pte;
796	vm_page_t m;
797	vm_paddr_t pa;
798
799	m = NULL;
800	pa = 0;
801	PMAP_LOCK(pmap);
802retry:
803	ptep = pmap_pte(pmap, va);
804	if ((ptep != NULL)  && ((pte = *ptep) != 0) &&
805	    pte_test(&pte, PTE_V) &&
806	    (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) {
807		if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
808			goto retry;
809
810		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
811		vm_page_hold(m);
812	}
813	PA_UNLOCK_COND(pa);
814	PMAP_UNLOCK(pmap);
815	return (m);
816}
817
818/***************************************************
819 * Low level mapping routines.....
820 ***************************************************/
821
822/*
823 * add a wired page to the kva
824 */
825void
826pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
827{
828	pt_entry_t *pte;
829	pt_entry_t opte, npte;
830
831#ifdef PMAP_DEBUG
832	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
833#endif
834
835	pte = pmap_pte(kernel_pmap, va);
836	opte = *pte;
837	npte = TLBLO_PA_TO_PFN(pa) | attr | PTE_D | PTE_V | PTE_G;
838	*pte = npte;
839	if (pte_test(&opte, PTE_V) && opte != npte)
840		pmap_update_page(kernel_pmap, va, npte);
841}
842
843void
844pmap_kenter(vm_offset_t va, vm_paddr_t pa)
845{
846
847	KASSERT(is_cacheable_mem(pa),
848		("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
849
850	pmap_kenter_attr(va, pa, PTE_C_CACHE);
851}
852
853/*
854 * remove a page from the kernel pagetables
855 */
856 /* PMAP_INLINE */ void
857pmap_kremove(vm_offset_t va)
858{
859	pt_entry_t *pte;
860
861	/*
862	 * Write back all caches from the page being destroyed
863	 */
864	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
865
866	pte = pmap_pte(kernel_pmap, va);
867	*pte = PTE_G;
868	pmap_invalidate_page(kernel_pmap, va);
869}
870
871/*
872 *	Used to map a range of physical addresses into kernel
873 *	virtual address space.
874 *
875 *	The value passed in '*virt' is a suggested virtual address for
876 *	the mapping. Architectures which can support a direct-mapped
877 *	physical to virtual region can return the appropriate address
878 *	within that region, leaving '*virt' unchanged. Other
879 *	architectures should map the pages starting at '*virt' and
880 *	update '*virt' with the first usable address after the mapped
881 *	region.
882 *
883 *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
884 */
885vm_offset_t
886pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
887{
888	vm_offset_t va, sva;
889
890	if (MIPS_DIRECT_MAPPABLE(end - 1))
891		return (MIPS_PHYS_TO_DIRECT(start));
892
893	va = sva = *virt;
894	while (start < end) {
895		pmap_kenter(va, start);
896		va += PAGE_SIZE;
897		start += PAGE_SIZE;
898	}
899	*virt = va;
900	return (sva);
901}
902
903/*
904 * Add a list of wired pages to the kva
905 * this routine is only used for temporary
906 * kernel mappings that do not need to have
907 * page modification or references recorded.
908 * Note that old mappings are simply written
909 * over.  The page *must* be wired.
910 */
911void
912pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
913{
914	int i;
915	vm_offset_t origva = va;
916
917	for (i = 0; i < count; i++) {
918		pmap_flush_pvcache(m[i]);
919		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
920		va += PAGE_SIZE;
921	}
922
923	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
924}
925
926/*
927 * this routine jerks page mappings from the
928 * kernel -- it is meant only for temporary mappings.
929 */
930void
931pmap_qremove(vm_offset_t va, int count)
932{
933	pt_entry_t *pte;
934	vm_offset_t origva;
935
936	if (count < 1)
937		return;
938	mips_dcache_wbinv_range_index(va, PAGE_SIZE * count);
939	origva = va;
940	do {
941		pte = pmap_pte(kernel_pmap, va);
942		*pte = PTE_G;
943		va += PAGE_SIZE;
944	} while (--count > 0);
945	pmap_invalidate_range(kernel_pmap, origva, va);
946}
947
948/***************************************************
949 * Page table page management routines.....
950 ***************************************************/
951
952/*
953 * Decrements a page table page's wire count, which is used to record the
954 * number of valid page table entries within the page.  If the wire count
955 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
956 * page table page was unmapped and FALSE otherwise.
957 */
958static PMAP_INLINE boolean_t
959pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
960{
961
962	--m->wire_count;
963	if (m->wire_count == 0) {
964		_pmap_unwire_ptp(pmap, va, m);
965		return (TRUE);
966	} else
967		return (FALSE);
968}
969
970static void
971_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
972{
973	pd_entry_t *pde;
974
975	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
976	/*
977	 * unmap the page table page
978	 */
979#ifdef __mips_n64
980	if (m->pindex < NUPDE)
981		pde = pmap_pde(pmap, va);
982	else
983		pde = pmap_segmap(pmap, va);
984#else
985	pde = pmap_pde(pmap, va);
986#endif
987	*pde = 0;
988	pmap->pm_stats.resident_count--;
989
990#ifdef __mips_n64
991	if (m->pindex < NUPDE) {
992		pd_entry_t *pdp;
993		vm_page_t pdpg;
994
995		/*
996		 * Recursively decrement next level pagetable refcount
997		 */
998		pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
999		pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
1000		pmap_unwire_ptp(pmap, va, pdpg);
1001	}
1002#endif
1003
1004	/*
1005	 * If the page is finally unwired, simply free it.
1006	 */
1007	vm_page_free_zero(m);
1008	atomic_subtract_int(&cnt.v_wire_count, 1);
1009}
1010
1011/*
1012 * After removing a page table entry, this routine is used to
1013 * conditionally free the page, and manage the hold/wire counts.
1014 */
1015static int
1016pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1017{
1018	vm_page_t mpte;
1019
1020	if (va >= VM_MAXUSER_ADDRESS)
1021		return (0);
1022	KASSERT(pde != 0, ("pmap_unuse_pt: pde != 0"));
1023	mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pde));
1024	return (pmap_unwire_ptp(pmap, va, mpte));
1025}
1026
1027void
1028pmap_pinit0(pmap_t pmap)
1029{
1030	int i;
1031
1032	PMAP_LOCK_INIT(pmap);
1033	pmap->pm_segtab = kernel_segmap;
1034	CPU_ZERO(&pmap->pm_active);
1035	for (i = 0; i < MAXCPU; i++) {
1036		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1037		pmap->pm_asid[i].gen = 0;
1038	}
1039	PCPU_SET(curpmap, pmap);
1040	TAILQ_INIT(&pmap->pm_pvchunk);
1041	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1042}
1043
1044void
1045pmap_grow_direct_page_cache()
1046{
1047
1048#ifdef __mips_n64
1049	vm_pageout_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
1050#else
1051	vm_pageout_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
1052#endif
1053}
1054
1055vm_page_t
1056pmap_alloc_direct_page(unsigned int index, int req)
1057{
1058	vm_page_t m;
1059
1060	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
1061	    VM_ALLOC_ZERO);
1062	if (m == NULL)
1063		return (NULL);
1064
1065	if ((m->flags & PG_ZERO) == 0)
1066		pmap_zero_page(m);
1067
1068	m->pindex = index;
1069	return (m);
1070}
1071
1072/*
1073 * Initialize a preallocated and zeroed pmap structure,
1074 * such as one in a vmspace structure.
1075 */
1076int
1077pmap_pinit(pmap_t pmap)
1078{
1079	vm_offset_t ptdva;
1080	vm_page_t ptdpg;
1081	int i;
1082
1083	PMAP_LOCK_INIT(pmap);
1084
1085	/*
1086	 * allocate the page directory page
1087	 */
1088	while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
1089	       pmap_grow_direct_page_cache();
1090
1091	ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
1092	pmap->pm_segtab = (pd_entry_t *)ptdva;
1093	CPU_ZERO(&pmap->pm_active);
1094	for (i = 0; i < MAXCPU; i++) {
1095		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1096		pmap->pm_asid[i].gen = 0;
1097	}
1098	TAILQ_INIT(&pmap->pm_pvchunk);
1099	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1100
1101	return (1);
1102}
1103
1104/*
1105 * this routine is called if the page table page is not
1106 * mapped correctly.
1107 */
1108static vm_page_t
1109_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1110{
1111	vm_offset_t pageva;
1112	vm_page_t m;
1113
1114	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1115	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1116	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1117
1118	/*
1119	 * Find or fabricate a new pagetable page
1120	 */
1121	if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1122		if (flags & M_WAITOK) {
1123			PMAP_UNLOCK(pmap);
1124			rw_wunlock(&pvh_global_lock);
1125			pmap_grow_direct_page_cache();
1126			rw_wlock(&pvh_global_lock);
1127			PMAP_LOCK(pmap);
1128		}
1129
1130		/*
1131		 * Indicate the need to retry.	While waiting, the page
1132		 * table page may have been allocated.
1133		 */
1134		return (NULL);
1135	}
1136
1137	/*
1138	 * Map the pagetable page into the process address space, if it
1139	 * isn't already there.
1140	 */
1141	pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1142
1143#ifdef __mips_n64
1144	if (ptepindex >= NUPDE) {
1145		pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
1146	} else {
1147		pd_entry_t *pdep, *pde;
1148		int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
1149		int pdeindex = ptepindex & (NPDEPG - 1);
1150		vm_page_t pg;
1151
1152		pdep = &pmap->pm_segtab[segindex];
1153		if (*pdep == NULL) {
1154			/* recurse for allocating page dir */
1155			if (_pmap_allocpte(pmap, NUPDE + segindex,
1156			    flags) == NULL) {
1157				/* alloc failed, release current */
1158				--m->wire_count;
1159				atomic_subtract_int(&cnt.v_wire_count, 1);
1160				vm_page_free_zero(m);
1161				return (NULL);
1162			}
1163		} else {
1164			pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
1165			pg->wire_count++;
1166		}
1167		/* Next level entry */
1168		pde = (pd_entry_t *)*pdep;
1169		pde[pdeindex] = (pd_entry_t)pageva;
1170	}
1171#else
1172	pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
1173#endif
1174	pmap->pm_stats.resident_count++;
1175	return (m);
1176}
1177
1178static vm_page_t
1179pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1180{
1181	unsigned ptepindex;
1182	pd_entry_t *pde;
1183	vm_page_t m;
1184
1185	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1186	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1187	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1188
1189	/*
1190	 * Calculate pagetable page index
1191	 */
1192	ptepindex = pmap_pde_pindex(va);
1193retry:
1194	/*
1195	 * Get the page directory entry
1196	 */
1197	pde = pmap_pde(pmap, va);
1198
1199	/*
1200	 * If the page table page is mapped, we just increment the hold
1201	 * count, and activate it.
1202	 */
1203	if (pde != NULL && *pde != NULL) {
1204		m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
1205		m->wire_count++;
1206	} else {
1207		/*
1208		 * Here if the pte page isn't mapped, or if it has been
1209		 * deallocated.
1210		 */
1211		m = _pmap_allocpte(pmap, ptepindex, flags);
1212		if (m == NULL && (flags & M_WAITOK))
1213			goto retry;
1214	}
1215	return (m);
1216}
1217
1218
1219/***************************************************
1220 * Pmap allocation/deallocation routines.
1221 ***************************************************/
1222
1223/*
1224 * Release any resources held by the given physical map.
1225 * Called when a pmap initialized by pmap_pinit is being released.
1226 * Should only be called if the map contains no valid mappings.
1227 */
1228void
1229pmap_release(pmap_t pmap)
1230{
1231	vm_offset_t ptdva;
1232	vm_page_t ptdpg;
1233
1234	KASSERT(pmap->pm_stats.resident_count == 0,
1235	    ("pmap_release: pmap resident count %ld != 0",
1236	    pmap->pm_stats.resident_count));
1237
1238	ptdva = (vm_offset_t)pmap->pm_segtab;
1239	ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
1240
1241	ptdpg->wire_count--;
1242	atomic_subtract_int(&cnt.v_wire_count, 1);
1243	vm_page_free_zero(ptdpg);
1244	PMAP_LOCK_DESTROY(pmap);
1245}
1246
1247/*
1248 * grow the number of kernel page table entries, if needed
1249 */
1250void
1251pmap_growkernel(vm_offset_t addr)
1252{
1253	vm_page_t nkpg;
1254	pd_entry_t *pde, *pdpe;
1255	pt_entry_t *pte;
1256	int i;
1257
1258	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1259	addr = roundup2(addr, NBSEG);
1260	if (addr - 1 >= kernel_map->max_offset)
1261		addr = kernel_map->max_offset;
1262	while (kernel_vm_end < addr) {
1263		pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
1264#ifdef __mips_n64
1265		if (*pdpe == 0) {
1266			/* new intermediate page table entry */
1267			nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1268			if (nkpg == NULL)
1269				panic("pmap_growkernel: no memory to grow kernel");
1270			*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1271			continue; /* try again */
1272		}
1273#endif
1274		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1275		if (*pde != 0) {
1276			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1277			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1278				kernel_vm_end = kernel_map->max_offset;
1279				break;
1280			}
1281			continue;
1282		}
1283
1284		/*
1285		 * This index is bogus, but out of the way
1286		 */
1287		nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1288		if (!nkpg)
1289			panic("pmap_growkernel: no memory to grow kernel");
1290		nkpt++;
1291		*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1292
1293		/*
1294		 * The R[4-7]?00 stores only one copy of the Global bit in
1295		 * the translation lookaside buffer for each 2 page entry.
1296		 * Thus invalid entrys must have the Global bit set so when
1297		 * Entry LO and Entry HI G bits are anded together they will
1298		 * produce a global bit to store in the tlb.
1299		 */
1300		pte = (pt_entry_t *)*pde;
1301		for (i = 0; i < NPTEPG; i++)
1302			pte[i] = PTE_G;
1303
1304		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1305		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1306			kernel_vm_end = kernel_map->max_offset;
1307			break;
1308		}
1309	}
1310}
1311
1312/***************************************************
1313 * page management routines.
1314 ***************************************************/
1315
1316CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1317#ifdef __mips_n64
1318CTASSERT(_NPCM == 3);
1319CTASSERT(_NPCPV == 168);
1320#else
1321CTASSERT(_NPCM == 11);
1322CTASSERT(_NPCPV == 336);
1323#endif
1324
1325static __inline struct pv_chunk *
1326pv_to_chunk(pv_entry_t pv)
1327{
1328
1329	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1330}
1331
1332#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1333
1334#ifdef __mips_n64
1335#define	PC_FREE0_1	0xfffffffffffffffful
1336#define	PC_FREE2	0x000000fffffffffful
1337#else
1338#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1339#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1340#endif
1341
1342static const u_long pc_freemask[_NPCM] = {
1343#ifdef __mips_n64
1344	PC_FREE0_1, PC_FREE0_1, PC_FREE2
1345#else
1346	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1347	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1348	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1349	PC_FREE0_9, PC_FREE10
1350#endif
1351};
1352
1353static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
1354
1355SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1356    "Current number of pv entries");
1357
1358#ifdef PV_STATS
1359static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1360
1361SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1362    "Current number of pv entry chunks");
1363SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1364    "Current number of pv entry chunks allocated");
1365SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1366    "Current number of pv entry chunks frees");
1367SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1368    "Number of times tried to get a chunk page but failed.");
1369
1370static long pv_entry_frees, pv_entry_allocs;
1371static int pv_entry_spare;
1372
1373SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1374    "Current number of pv entry frees");
1375SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1376    "Current number of pv entry allocs");
1377SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1378    "Current number of spare pv entries");
1379#endif
1380
1381/*
1382 * We are in a serious low memory condition.  Resort to
1383 * drastic measures to free some pages so we can allocate
1384 * another pv entry chunk.
1385 */
1386static vm_page_t
1387pmap_pv_reclaim(pmap_t locked_pmap)
1388{
1389	struct pch newtail;
1390	struct pv_chunk *pc;
1391	pd_entry_t *pde;
1392	pmap_t pmap;
1393	pt_entry_t *pte, oldpte;
1394	pv_entry_t pv;
1395	vm_offset_t va;
1396	vm_page_t m, m_pc;
1397	u_long inuse;
1398	int bit, field, freed, idx;
1399
1400	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1401	pmap = NULL;
1402	m_pc = NULL;
1403	TAILQ_INIT(&newtail);
1404	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL) {
1405		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1406		if (pmap != pc->pc_pmap) {
1407			if (pmap != NULL) {
1408				pmap_invalidate_all(pmap);
1409				if (pmap != locked_pmap)
1410					PMAP_UNLOCK(pmap);
1411			}
1412			pmap = pc->pc_pmap;
1413			/* Avoid deadlock and lock recursion. */
1414			if (pmap > locked_pmap)
1415				PMAP_LOCK(pmap);
1416			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
1417				pmap = NULL;
1418				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1419				continue;
1420			}
1421		}
1422
1423		/*
1424		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1425		 */
1426		freed = 0;
1427		for (field = 0; field < _NPCM; field++) {
1428			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1429			    inuse != 0; inuse &= ~(1UL << bit)) {
1430				bit = ffsl(inuse) - 1;
1431				idx = field * sizeof(inuse) * NBBY + bit;
1432				pv = &pc->pc_pventry[idx];
1433				va = pv->pv_va;
1434				pde = pmap_pde(pmap, va);
1435				KASSERT(pde != NULL && *pde != 0,
1436				    ("pmap_pv_reclaim: pde"));
1437				pte = pmap_pde_to_pte(pde, va);
1438				oldpte = *pte;
1439				KASSERT(!pte_test(&oldpte, PTE_W),
1440				    ("wired pte for unwired page"));
1441				if (is_kernel_pmap(pmap))
1442					*pte = PTE_G;
1443				else
1444					*pte = 0;
1445				pmap_invalidate_page(pmap, va);
1446				m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(oldpte));
1447				if (pte_test(&oldpte, PTE_D))
1448					vm_page_dirty(m);
1449				if (m->md.pv_flags & PV_TABLE_REF)
1450					vm_page_aflag_set(m, PGA_REFERENCED);
1451				m->md.pv_flags &= ~PV_TABLE_REF;
1452				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1453				if (TAILQ_EMPTY(&m->md.pv_list))
1454					vm_page_aflag_clear(m, PGA_WRITEABLE);
1455				pc->pc_map[field] |= 1UL << bit;
1456				pmap_unuse_pt(pmap, va, *pde);
1457				freed++;
1458			}
1459		}
1460		if (freed == 0) {
1461			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1462			continue;
1463		}
1464		/* Every freed mapping is for a 4 KB page. */
1465		pmap->pm_stats.resident_count -= freed;
1466		PV_STAT(pv_entry_frees += freed);
1467		PV_STAT(pv_entry_spare += freed);
1468		pv_entry_count -= freed;
1469		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1470		for (field = 0; field < _NPCM; field++)
1471			if (pc->pc_map[field] != pc_freemask[field]) {
1472				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
1473				    pc_list);
1474				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1475
1476				/*
1477				 * One freed pv entry in locked_pmap is
1478				 * sufficient.
1479				 */
1480				if (pmap == locked_pmap)
1481					goto out;
1482				break;
1483			}
1484		if (field == _NPCM) {
1485			PV_STAT(pv_entry_spare -= _NPCPV);
1486			PV_STAT(pc_chunk_count--);
1487			PV_STAT(pc_chunk_frees++);
1488			/* Entire chunk is free; return it. */
1489			m_pc = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(
1490			    (vm_offset_t)pc));
1491			break;
1492		}
1493	}
1494out:
1495	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
1496	if (pmap != NULL) {
1497		pmap_invalidate_all(pmap);
1498		if (pmap != locked_pmap)
1499			PMAP_UNLOCK(pmap);
1500	}
1501	return (m_pc);
1502}
1503
1504/*
1505 * free the pv_entry back to the free list
1506 */
1507static void
1508free_pv_entry(pmap_t pmap, pv_entry_t pv)
1509{
1510	struct pv_chunk *pc;
1511	int bit, field, idx;
1512
1513	rw_assert(&pvh_global_lock, RA_WLOCKED);
1514	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1515	PV_STAT(pv_entry_frees++);
1516	PV_STAT(pv_entry_spare++);
1517	pv_entry_count--;
1518	pc = pv_to_chunk(pv);
1519	idx = pv - &pc->pc_pventry[0];
1520	field = idx / (sizeof(u_long) * NBBY);
1521	bit = idx % (sizeof(u_long) * NBBY);
1522	pc->pc_map[field] |= 1ul << bit;
1523	for (idx = 0; idx < _NPCM; idx++)
1524		if (pc->pc_map[idx] != pc_freemask[idx]) {
1525			/*
1526			 * 98% of the time, pc is already at the head of the
1527			 * list.  If it isn't already, move it to the head.
1528			 */
1529			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
1530			    pc)) {
1531				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1532				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
1533				    pc_list);
1534			}
1535			return;
1536		}
1537	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1538	free_pv_chunk(pc);
1539}
1540
1541static void
1542free_pv_chunk(struct pv_chunk *pc)
1543{
1544	vm_page_t m;
1545
1546 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1547	PV_STAT(pv_entry_spare -= _NPCPV);
1548	PV_STAT(pc_chunk_count--);
1549	PV_STAT(pc_chunk_frees++);
1550	/* entire chunk is free, return it */
1551	m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS((vm_offset_t)pc));
1552	vm_page_unwire(m, 0);
1553	vm_page_free(m);
1554}
1555
1556/*
1557 * get a new pv_entry, allocating a block from the system
1558 * when needed.
1559 */
1560static pv_entry_t
1561get_pv_entry(pmap_t pmap, boolean_t try)
1562{
1563	struct pv_chunk *pc;
1564	pv_entry_t pv;
1565	vm_page_t m;
1566	int bit, field, idx;
1567
1568	rw_assert(&pvh_global_lock, RA_WLOCKED);
1569	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1570	PV_STAT(pv_entry_allocs++);
1571	pv_entry_count++;
1572retry:
1573	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1574	if (pc != NULL) {
1575		for (field = 0; field < _NPCM; field++) {
1576			if (pc->pc_map[field]) {
1577				bit = ffsl(pc->pc_map[field]) - 1;
1578				break;
1579			}
1580		}
1581		if (field < _NPCM) {
1582			idx = field * sizeof(pc->pc_map[field]) * NBBY + bit;
1583			pv = &pc->pc_pventry[idx];
1584			pc->pc_map[field] &= ~(1ul << bit);
1585			/* If this was the last item, move it to tail */
1586			for (field = 0; field < _NPCM; field++)
1587				if (pc->pc_map[field] != 0) {
1588					PV_STAT(pv_entry_spare--);
1589					return (pv);	/* not full, return */
1590				}
1591			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1592			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1593			PV_STAT(pv_entry_spare--);
1594			return (pv);
1595		}
1596	}
1597	/* No free items, allocate another chunk */
1598	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, VM_ALLOC_NORMAL |
1599	    VM_ALLOC_WIRED);
1600	if (m == NULL) {
1601		if (try) {
1602			pv_entry_count--;
1603			PV_STAT(pc_chunk_tryfail++);
1604			return (NULL);
1605		}
1606		m = pmap_pv_reclaim(pmap);
1607		if (m == NULL)
1608			goto retry;
1609	}
1610	PV_STAT(pc_chunk_count++);
1611	PV_STAT(pc_chunk_allocs++);
1612	pc = (struct pv_chunk *)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1613	pc->pc_pmap = pmap;
1614	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
1615	for (field = 1; field < _NPCM; field++)
1616		pc->pc_map[field] = pc_freemask[field];
1617	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1618	pv = &pc->pc_pventry[0];
1619	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1620	PV_STAT(pv_entry_spare += _NPCPV - 1);
1621	return (pv);
1622}
1623
1624/*
1625 * If it is the first entry on the list, it is actually
1626 * in the header and we must copy the following entry up
1627 * to the header.  Otherwise we must search the list for
1628 * the entry.  In either case we free the now unused entry.
1629 */
1630
1631static pv_entry_t
1632pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1633{
1634	pv_entry_t pv;
1635
1636	rw_assert(&pvh_global_lock, RA_WLOCKED);
1637	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1638		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1639			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1640			break;
1641		}
1642	}
1643	return (pv);
1644}
1645
1646static void
1647pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1648{
1649	pv_entry_t pv;
1650
1651	pv = pmap_pvh_remove(pvh, pmap, va);
1652	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1653	     (u_long)VM_PAGE_TO_PHYS(__containerof(pvh, struct vm_page, md)),
1654	     (u_long)va));
1655	free_pv_entry(pmap, pv);
1656}
1657
1658static void
1659pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1660{
1661
1662	rw_assert(&pvh_global_lock, RA_WLOCKED);
1663	pmap_pvh_free(&m->md, pmap, va);
1664	if (TAILQ_EMPTY(&m->md.pv_list))
1665		vm_page_aflag_clear(m, PGA_WRITEABLE);
1666}
1667
1668/*
1669 * Conditionally create a pv entry.
1670 */
1671static boolean_t
1672pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1673    vm_page_t m)
1674{
1675	pv_entry_t pv;
1676
1677	rw_assert(&pvh_global_lock, RA_WLOCKED);
1678	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1679	if ((pv = get_pv_entry(pmap, TRUE)) != NULL) {
1680		pv->pv_va = va;
1681		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1682		return (TRUE);
1683	} else
1684		return (FALSE);
1685}
1686
1687/*
1688 * pmap_remove_pte: do the things to unmap a page in a process
1689 */
1690static int
1691pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
1692    pd_entry_t pde)
1693{
1694	pt_entry_t oldpte;
1695	vm_page_t m;
1696	vm_paddr_t pa;
1697
1698	rw_assert(&pvh_global_lock, RA_WLOCKED);
1699	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1700
1701	/*
1702	 * Write back all cache lines from the page being unmapped.
1703	 */
1704	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1705
1706	oldpte = *ptq;
1707	if (is_kernel_pmap(pmap))
1708		*ptq = PTE_G;
1709	else
1710		*ptq = 0;
1711
1712	if (pte_test(&oldpte, PTE_W))
1713		pmap->pm_stats.wired_count -= 1;
1714
1715	pmap->pm_stats.resident_count -= 1;
1716
1717	if (pte_test(&oldpte, PTE_MANAGED)) {
1718		pa = TLBLO_PTE_TO_PA(oldpte);
1719		m = PHYS_TO_VM_PAGE(pa);
1720		if (pte_test(&oldpte, PTE_D)) {
1721			KASSERT(!pte_test(&oldpte, PTE_RO),
1722			    ("%s: modified page not writable: va: %p, pte: %#jx",
1723			    __func__, (void *)va, (uintmax_t)oldpte));
1724			vm_page_dirty(m);
1725		}
1726		if (m->md.pv_flags & PV_TABLE_REF)
1727			vm_page_aflag_set(m, PGA_REFERENCED);
1728		m->md.pv_flags &= ~PV_TABLE_REF;
1729
1730		pmap_remove_entry(pmap, m, va);
1731	}
1732	return (pmap_unuse_pt(pmap, va, pde));
1733}
1734
1735/*
1736 * Remove a single page from a process address space
1737 */
1738static void
1739pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1740{
1741	pd_entry_t *pde;
1742	pt_entry_t *ptq;
1743
1744	rw_assert(&pvh_global_lock, RA_WLOCKED);
1745	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1746	pde = pmap_pde(pmap, va);
1747	if (pde == NULL || *pde == 0)
1748		return;
1749	ptq = pmap_pde_to_pte(pde, va);
1750
1751	/*
1752	 * If there is no pte for this address, just skip it!
1753	 */
1754	if (!pte_test(ptq, PTE_V))
1755		return;
1756
1757	(void)pmap_remove_pte(pmap, ptq, va, *pde);
1758	pmap_invalidate_page(pmap, va);
1759}
1760
1761/*
1762 *	Remove the given range of addresses from the specified map.
1763 *
1764 *	It is assumed that the start and end are properly
1765 *	rounded to the page size.
1766 */
1767void
1768pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1769{
1770	pd_entry_t *pde, *pdpe;
1771	pt_entry_t *pte;
1772	vm_offset_t va, va_next;
1773
1774	/*
1775	 * Perform an unsynchronized read.  This is, however, safe.
1776	 */
1777	if (pmap->pm_stats.resident_count == 0)
1778		return;
1779
1780	rw_wlock(&pvh_global_lock);
1781	PMAP_LOCK(pmap);
1782
1783	/*
1784	 * special handling of removing one page.  a very common operation
1785	 * and easy to short circuit some code.
1786	 */
1787	if ((sva + PAGE_SIZE) == eva) {
1788		pmap_remove_page(pmap, sva);
1789		goto out;
1790	}
1791	for (; sva < eva; sva = va_next) {
1792		pdpe = pmap_segmap(pmap, sva);
1793#ifdef __mips_n64
1794		if (*pdpe == 0) {
1795			va_next = (sva + NBSEG) & ~SEGMASK;
1796			if (va_next < sva)
1797				va_next = eva;
1798			continue;
1799		}
1800#endif
1801		va_next = (sva + NBPDR) & ~PDRMASK;
1802		if (va_next < sva)
1803			va_next = eva;
1804
1805		pde = pmap_pdpe_to_pde(pdpe, sva);
1806		if (*pde == NULL)
1807			continue;
1808
1809		/*
1810		 * Limit our scan to either the end of the va represented
1811		 * by the current page table page, or to the end of the
1812		 * range being removed.
1813		 */
1814		if (va_next > eva)
1815			va_next = eva;
1816
1817		va = va_next;
1818		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1819		    sva += PAGE_SIZE) {
1820			if (!pte_test(pte, PTE_V)) {
1821				if (va != va_next) {
1822					pmap_invalidate_range(pmap, va, sva);
1823					va = va_next;
1824				}
1825				continue;
1826			}
1827			if (va == va_next)
1828				va = sva;
1829			if (pmap_remove_pte(pmap, pte, sva, *pde)) {
1830				sva += PAGE_SIZE;
1831				break;
1832			}
1833		}
1834		if (va != va_next)
1835			pmap_invalidate_range(pmap, va, sva);
1836	}
1837out:
1838	rw_wunlock(&pvh_global_lock);
1839	PMAP_UNLOCK(pmap);
1840}
1841
1842/*
1843 *	Routine:	pmap_remove_all
1844 *	Function:
1845 *		Removes this physical page from
1846 *		all physical maps in which it resides.
1847 *		Reflects back modify bits to the pager.
1848 *
1849 *	Notes:
1850 *		Original versions of this routine were very
1851 *		inefficient because they iteratively called
1852 *		pmap_remove (slow...)
1853 */
1854
1855void
1856pmap_remove_all(vm_page_t m)
1857{
1858	pv_entry_t pv;
1859	pmap_t pmap;
1860	pd_entry_t *pde;
1861	pt_entry_t *pte, tpte;
1862
1863	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1864	    ("pmap_remove_all: page %p is not managed", m));
1865	rw_wlock(&pvh_global_lock);
1866
1867	if (m->md.pv_flags & PV_TABLE_REF)
1868		vm_page_aflag_set(m, PGA_REFERENCED);
1869
1870	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1871		pmap = PV_PMAP(pv);
1872		PMAP_LOCK(pmap);
1873
1874		/*
1875		 * If it's last mapping writeback all caches from
1876		 * the page being destroyed
1877	 	 */
1878		if (TAILQ_NEXT(pv, pv_list) == NULL)
1879			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1880
1881		pmap->pm_stats.resident_count--;
1882
1883		pde = pmap_pde(pmap, pv->pv_va);
1884		KASSERT(pde != NULL && *pde != 0, ("pmap_remove_all: pde"));
1885		pte = pmap_pde_to_pte(pde, pv->pv_va);
1886
1887		tpte = *pte;
1888		if (is_kernel_pmap(pmap))
1889			*pte = PTE_G;
1890		else
1891			*pte = 0;
1892
1893		if (pte_test(&tpte, PTE_W))
1894			pmap->pm_stats.wired_count--;
1895
1896		/*
1897		 * Update the vm_page_t clean and reference bits.
1898		 */
1899		if (pte_test(&tpte, PTE_D)) {
1900			KASSERT(!pte_test(&tpte, PTE_RO),
1901			    ("%s: modified page not writable: va: %p, pte: %#jx",
1902			    __func__, (void *)pv->pv_va, (uintmax_t)tpte));
1903			vm_page_dirty(m);
1904		}
1905		pmap_invalidate_page(pmap, pv->pv_va);
1906
1907		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1908		pmap_unuse_pt(pmap, pv->pv_va, *pde);
1909		free_pv_entry(pmap, pv);
1910		PMAP_UNLOCK(pmap);
1911	}
1912
1913	vm_page_aflag_clear(m, PGA_WRITEABLE);
1914	m->md.pv_flags &= ~PV_TABLE_REF;
1915	rw_wunlock(&pvh_global_lock);
1916}
1917
1918/*
1919 *	Set the physical protection on the
1920 *	specified range of this map as requested.
1921 */
1922void
1923pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1924{
1925	pt_entry_t *pte;
1926	pd_entry_t *pde, *pdpe;
1927	vm_offset_t va_next;
1928
1929	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1930		pmap_remove(pmap, sva, eva);
1931		return;
1932	}
1933	if (prot & VM_PROT_WRITE)
1934		return;
1935
1936	rw_wlock(&pvh_global_lock);
1937	PMAP_LOCK(pmap);
1938	for (; sva < eva; sva = va_next) {
1939		pt_entry_t pbits;
1940		vm_page_t m;
1941		vm_paddr_t pa;
1942
1943		pdpe = pmap_segmap(pmap, sva);
1944#ifdef __mips_n64
1945		if (*pdpe == 0) {
1946			va_next = (sva + NBSEG) & ~SEGMASK;
1947			if (va_next < sva)
1948				va_next = eva;
1949			continue;
1950		}
1951#endif
1952		va_next = (sva + NBPDR) & ~PDRMASK;
1953		if (va_next < sva)
1954			va_next = eva;
1955
1956		pde = pmap_pdpe_to_pde(pdpe, sva);
1957		if (*pde == NULL)
1958			continue;
1959		if (va_next > eva)
1960			va_next = eva;
1961
1962		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1963		     sva += PAGE_SIZE) {
1964
1965			/* Skip invalid PTEs */
1966			if (!pte_test(pte, PTE_V))
1967				continue;
1968			pbits = *pte;
1969			if (pte_test(&pbits, PTE_MANAGED | PTE_D)) {
1970				pa = TLBLO_PTE_TO_PA(pbits);
1971				m = PHYS_TO_VM_PAGE(pa);
1972				vm_page_dirty(m);
1973			}
1974			pte_clear(&pbits, PTE_D);
1975			pte_set(&pbits, PTE_RO);
1976
1977			if (pbits != *pte) {
1978				*pte = pbits;
1979				pmap_update_page(pmap, sva, pbits);
1980			}
1981		}
1982	}
1983	rw_wunlock(&pvh_global_lock);
1984	PMAP_UNLOCK(pmap);
1985}
1986
1987/*
1988 *	Insert the given physical page (p) at
1989 *	the specified virtual address (v) in the
1990 *	target physical map with the protection requested.
1991 *
1992 *	If specified, the page will be wired down, meaning
1993 *	that the related pte can not be reclaimed.
1994 *
1995 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1996 *	or lose information.  That is, this routine must actually
1997 *	insert this page into the given map NOW.
1998 */
1999void
2000pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2001    vm_prot_t prot, boolean_t wired)
2002{
2003	vm_paddr_t pa, opa;
2004	pt_entry_t *pte;
2005	pt_entry_t origpte, newpte;
2006	pv_entry_t pv;
2007	vm_page_t mpte, om;
2008
2009	va &= ~PAGE_MASK;
2010 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2011	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
2012	    va >= kmi.clean_eva,
2013	    ("pmap_enter: managed mapping within the clean submap"));
2014	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0,
2015	    ("pmap_enter: page %p is not busy", m));
2016	pa = VM_PAGE_TO_PHYS(m);
2017	newpte = TLBLO_PA_TO_PFN(pa) | init_pte_prot(m, access, prot);
2018	if (wired)
2019		newpte |= PTE_W;
2020	if (is_kernel_pmap(pmap))
2021		newpte |= PTE_G;
2022	if (is_cacheable_mem(pa))
2023		newpte |= PTE_C_CACHE;
2024	else
2025		newpte |= PTE_C_UNCACHED;
2026
2027	mpte = NULL;
2028
2029	rw_wlock(&pvh_global_lock);
2030	PMAP_LOCK(pmap);
2031
2032	/*
2033	 * In the case that a page table page is not resident, we are
2034	 * creating it here.
2035	 */
2036	if (va < VM_MAXUSER_ADDRESS) {
2037		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2038	}
2039	pte = pmap_pte(pmap, va);
2040
2041	/*
2042	 * Page Directory table entry not valid, we need a new PT page
2043	 */
2044	if (pte == NULL) {
2045		panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
2046		    (void *)pmap->pm_segtab, (void *)va);
2047	}
2048	om = NULL;
2049	origpte = *pte;
2050	opa = TLBLO_PTE_TO_PA(origpte);
2051
2052	/*
2053	 * Mapping has not changed, must be protection or wiring change.
2054	 */
2055	if (pte_test(&origpte, PTE_V) && opa == pa) {
2056		/*
2057		 * Wiring change, just update stats. We don't worry about
2058		 * wiring PT pages as they remain resident as long as there
2059		 * are valid mappings in them. Hence, if a user page is
2060		 * wired, the PT page will be also.
2061		 */
2062		if (wired && !pte_test(&origpte, PTE_W))
2063			pmap->pm_stats.wired_count++;
2064		else if (!wired && pte_test(&origpte, PTE_W))
2065			pmap->pm_stats.wired_count--;
2066
2067		KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
2068		    ("%s: modified page not writable: va: %p, pte: %#jx",
2069		    __func__, (void *)va, (uintmax_t)origpte));
2070
2071		/*
2072		 * Remove extra pte reference
2073		 */
2074		if (mpte)
2075			mpte->wire_count--;
2076
2077		if (pte_test(&origpte, PTE_MANAGED)) {
2078			m->md.pv_flags |= PV_TABLE_REF;
2079			om = m;
2080			newpte |= PTE_MANAGED;
2081			if (!pte_test(&newpte, PTE_RO))
2082				vm_page_aflag_set(m, PGA_WRITEABLE);
2083		}
2084		goto validate;
2085	}
2086
2087	pv = NULL;
2088
2089	/*
2090	 * Mapping has changed, invalidate old range and fall through to
2091	 * handle validating new mapping.
2092	 */
2093	if (opa) {
2094		if (pte_test(&origpte, PTE_W))
2095			pmap->pm_stats.wired_count--;
2096
2097		if (pte_test(&origpte, PTE_MANAGED)) {
2098			om = PHYS_TO_VM_PAGE(opa);
2099			pv = pmap_pvh_remove(&om->md, pmap, va);
2100		}
2101		if (mpte != NULL) {
2102			mpte->wire_count--;
2103			KASSERT(mpte->wire_count > 0,
2104			    ("pmap_enter: missing reference to page table page,"
2105			    " va: %p", (void *)va));
2106		}
2107	} else
2108		pmap->pm_stats.resident_count++;
2109
2110	/*
2111	 * Enter on the PV list if part of our managed memory.
2112	 */
2113	if ((m->oflags & VPO_UNMANAGED) == 0) {
2114		m->md.pv_flags |= PV_TABLE_REF;
2115		if (pv == NULL)
2116			pv = get_pv_entry(pmap, FALSE);
2117		pv->pv_va = va;
2118		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2119		newpte |= PTE_MANAGED;
2120		if (!pte_test(&newpte, PTE_RO))
2121			vm_page_aflag_set(m, PGA_WRITEABLE);
2122	} else if (pv != NULL)
2123		free_pv_entry(pmap, pv);
2124
2125	/*
2126	 * Increment counters
2127	 */
2128	if (wired)
2129		pmap->pm_stats.wired_count++;
2130
2131validate:
2132
2133#ifdef PMAP_DEBUG
2134	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
2135#endif
2136
2137	/*
2138	 * if the mapping or permission bits are different, we need to
2139	 * update the pte.
2140	 */
2141	if (origpte != newpte) {
2142		*pte = newpte;
2143		if (pte_test(&origpte, PTE_V)) {
2144			if (pte_test(&origpte, PTE_MANAGED) && opa != pa) {
2145				if (om->md.pv_flags & PV_TABLE_REF)
2146					vm_page_aflag_set(om, PGA_REFERENCED);
2147				om->md.pv_flags &= ~PV_TABLE_REF;
2148			}
2149			if (pte_test(&origpte, PTE_D)) {
2150				KASSERT(!pte_test(&origpte, PTE_RO),
2151				    ("pmap_enter: modified page not writable:"
2152				    " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte));
2153				if (pte_test(&origpte, PTE_MANAGED))
2154					vm_page_dirty(om);
2155			}
2156			if (pte_test(&origpte, PTE_MANAGED) &&
2157			    TAILQ_EMPTY(&om->md.pv_list))
2158				vm_page_aflag_clear(om, PGA_WRITEABLE);
2159			pmap_update_page(pmap, va, newpte);
2160		}
2161	}
2162
2163	/*
2164	 * Sync I & D caches for executable pages.  Do this only if the
2165	 * target pmap belongs to the current process.  Otherwise, an
2166	 * unresolvable TLB miss may occur.
2167	 */
2168	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
2169	    (prot & VM_PROT_EXECUTE)) {
2170		mips_icache_sync_range(va, PAGE_SIZE);
2171		mips_dcache_wbinv_range(va, PAGE_SIZE);
2172	}
2173	rw_wunlock(&pvh_global_lock);
2174	PMAP_UNLOCK(pmap);
2175}
2176
2177/*
2178 * this code makes some *MAJOR* assumptions:
2179 * 1. Current pmap & pmap exists.
2180 * 2. Not wired.
2181 * 3. Read access.
2182 * 4. No page table pages.
2183 * but is *MUCH* faster than pmap_enter...
2184 */
2185
2186void
2187pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2188{
2189
2190	rw_wlock(&pvh_global_lock);
2191	PMAP_LOCK(pmap);
2192	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2193	rw_wunlock(&pvh_global_lock);
2194	PMAP_UNLOCK(pmap);
2195}
2196
2197static vm_page_t
2198pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2199    vm_prot_t prot, vm_page_t mpte)
2200{
2201	pt_entry_t *pte;
2202	vm_paddr_t pa;
2203
2204	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2205	    (m->oflags & VPO_UNMANAGED) != 0,
2206	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2207	rw_assert(&pvh_global_lock, RA_WLOCKED);
2208	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2209
2210	/*
2211	 * In the case that a page table page is not resident, we are
2212	 * creating it here.
2213	 */
2214	if (va < VM_MAXUSER_ADDRESS) {
2215		pd_entry_t *pde;
2216		unsigned ptepindex;
2217
2218		/*
2219		 * Calculate pagetable page index
2220		 */
2221		ptepindex = pmap_pde_pindex(va);
2222		if (mpte && (mpte->pindex == ptepindex)) {
2223			mpte->wire_count++;
2224		} else {
2225			/*
2226			 * Get the page directory entry
2227			 */
2228			pde = pmap_pde(pmap, va);
2229
2230			/*
2231			 * If the page table page is mapped, we just
2232			 * increment the hold count, and activate it.
2233			 */
2234			if (pde && *pde != 0) {
2235				mpte = PHYS_TO_VM_PAGE(
2236				    MIPS_DIRECT_TO_PHYS(*pde));
2237				mpte->wire_count++;
2238			} else {
2239				mpte = _pmap_allocpte(pmap, ptepindex,
2240				    M_NOWAIT);
2241				if (mpte == NULL)
2242					return (mpte);
2243			}
2244		}
2245	} else {
2246		mpte = NULL;
2247	}
2248
2249	pte = pmap_pte(pmap, va);
2250	if (pte_test(pte, PTE_V)) {
2251		if (mpte != NULL) {
2252			mpte->wire_count--;
2253			mpte = NULL;
2254		}
2255		return (mpte);
2256	}
2257
2258	/*
2259	 * Enter on the PV list if part of our managed memory.
2260	 */
2261	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2262	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2263		if (mpte != NULL) {
2264			pmap_unwire_ptp(pmap, va, mpte);
2265			mpte = NULL;
2266		}
2267		return (mpte);
2268	}
2269
2270	/*
2271	 * Increment counters
2272	 */
2273	pmap->pm_stats.resident_count++;
2274
2275	pa = VM_PAGE_TO_PHYS(m);
2276
2277	/*
2278	 * Now validate mapping with RO protection
2279	 */
2280	*pte = PTE_RO | TLBLO_PA_TO_PFN(pa) | PTE_V;
2281	if ((m->oflags & VPO_UNMANAGED) == 0)
2282		*pte |= PTE_MANAGED;
2283
2284	if (is_cacheable_mem(pa))
2285		*pte |= PTE_C_CACHE;
2286	else
2287		*pte |= PTE_C_UNCACHED;
2288
2289	if (is_kernel_pmap(pmap))
2290		*pte |= PTE_G;
2291	else {
2292		/*
2293		 * Sync I & D caches.  Do this only if the target pmap
2294		 * belongs to the current process.  Otherwise, an
2295		 * unresolvable TLB miss may occur. */
2296		if (pmap == &curproc->p_vmspace->vm_pmap) {
2297			va &= ~PAGE_MASK;
2298			mips_icache_sync_range(va, PAGE_SIZE);
2299			mips_dcache_wbinv_range(va, PAGE_SIZE);
2300		}
2301	}
2302	return (mpte);
2303}
2304
2305/*
2306 * Make a temporary mapping for a physical address.  This is only intended
2307 * to be used for panic dumps.
2308 *
2309 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2310 */
2311void *
2312pmap_kenter_temporary(vm_paddr_t pa, int i)
2313{
2314	vm_offset_t va;
2315
2316	if (i != 0)
2317		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2318		    __func__);
2319
2320	if (MIPS_DIRECT_MAPPABLE(pa)) {
2321		va = MIPS_PHYS_TO_DIRECT(pa);
2322	} else {
2323#ifndef __mips_n64    /* XXX : to be converted to new style */
2324		int cpu;
2325		register_t intr;
2326		struct local_sysmaps *sysm;
2327		pt_entry_t *pte, npte;
2328
2329		/* If this is used other than for dumps, we may need to leave
2330		 * interrupts disasbled on return. If crash dumps don't work when
2331		 * we get to this point, we might want to consider this (leaving things
2332		 * disabled as a starting point ;-)
2333	 	 */
2334		intr = intr_disable();
2335		cpu = PCPU_GET(cpuid);
2336		sysm = &sysmap_lmem[cpu];
2337		/* Since this is for the debugger, no locks or any other fun */
2338		npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
2339		pte = pmap_pte(kernel_pmap, sysm->base);
2340		*pte = npte;
2341		sysm->valid1 = 1;
2342		pmap_update_page(kernel_pmap, sysm->base, npte);
2343		va = sysm->base;
2344		intr_restore(intr);
2345#endif
2346	}
2347	return ((void *)va);
2348}
2349
2350void
2351pmap_kenter_temporary_free(vm_paddr_t pa)
2352{
2353#ifndef __mips_n64    /* XXX : to be converted to new style */
2354	int cpu;
2355	register_t intr;
2356	struct local_sysmaps *sysm;
2357#endif
2358
2359	if (MIPS_DIRECT_MAPPABLE(pa)) {
2360		/* nothing to do for this case */
2361		return;
2362	}
2363#ifndef __mips_n64    /* XXX : to be converted to new style */
2364	cpu = PCPU_GET(cpuid);
2365	sysm = &sysmap_lmem[cpu];
2366	if (sysm->valid1) {
2367		pt_entry_t *pte;
2368
2369		intr = intr_disable();
2370		pte = pmap_pte(kernel_pmap, sysm->base);
2371		*pte = PTE_G;
2372		pmap_invalidate_page(kernel_pmap, sysm->base);
2373		intr_restore(intr);
2374		sysm->valid1 = 0;
2375	}
2376#endif
2377}
2378
2379/*
2380 * Maps a sequence of resident pages belonging to the same object.
2381 * The sequence begins with the given page m_start.  This page is
2382 * mapped at the given virtual address start.  Each subsequent page is
2383 * mapped at a virtual address that is offset from start by the same
2384 * amount as the page is offset from m_start within the object.  The
2385 * last page in the sequence is the page with the largest offset from
2386 * m_start that can be mapped at a virtual address less than the given
2387 * virtual address end.  Not every virtual page between start and end
2388 * is mapped; only those for which a resident page exists with the
2389 * corresponding offset from m_start are mapped.
2390 */
2391void
2392pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2393    vm_page_t m_start, vm_prot_t prot)
2394{
2395	vm_page_t m, mpte;
2396	vm_pindex_t diff, psize;
2397
2398	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2399	psize = atop(end - start);
2400	mpte = NULL;
2401	m = m_start;
2402	rw_wlock(&pvh_global_lock);
2403	PMAP_LOCK(pmap);
2404	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2405		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2406		    prot, mpte);
2407		m = TAILQ_NEXT(m, listq);
2408	}
2409	rw_wunlock(&pvh_global_lock);
2410 	PMAP_UNLOCK(pmap);
2411}
2412
2413/*
2414 * pmap_object_init_pt preloads the ptes for a given object
2415 * into the specified pmap.  This eliminates the blast of soft
2416 * faults on process startup and immediately after an mmap.
2417 */
2418void
2419pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2420    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2421{
2422	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2423	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2424	    ("pmap_object_init_pt: non-device object"));
2425}
2426
2427/*
2428 *	Routine:	pmap_change_wiring
2429 *	Function:	Change the wiring attribute for a map/virtual-address
2430 *			pair.
2431 *	In/out conditions:
2432 *			The mapping must already exist in the pmap.
2433 */
2434void
2435pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2436{
2437	pt_entry_t *pte;
2438
2439	PMAP_LOCK(pmap);
2440	pte = pmap_pte(pmap, va);
2441
2442	if (wired && !pte_test(pte, PTE_W))
2443		pmap->pm_stats.wired_count++;
2444	else if (!wired && pte_test(pte, PTE_W))
2445		pmap->pm_stats.wired_count--;
2446
2447	/*
2448	 * Wiring is not a hardware characteristic so there is no need to
2449	 * invalidate TLB.
2450	 */
2451	if (wired)
2452		pte_set(pte, PTE_W);
2453	else
2454		pte_clear(pte, PTE_W);
2455	PMAP_UNLOCK(pmap);
2456}
2457
2458/*
2459 *	Copy the range specified by src_addr/len
2460 *	from the source map to the range dst_addr/len
2461 *	in the destination map.
2462 *
2463 *	This routine is only advisory and need not do anything.
2464 */
2465
2466void
2467pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2468    vm_size_t len, vm_offset_t src_addr)
2469{
2470}
2471
2472/*
2473 *	pmap_zero_page zeros the specified hardware page by mapping
2474 *	the page into KVM and using bzero to clear its contents.
2475 *
2476 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2477 */
2478void
2479pmap_zero_page(vm_page_t m)
2480{
2481	vm_offset_t va;
2482	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2483
2484	if (MIPS_DIRECT_MAPPABLE(phys)) {
2485		va = MIPS_PHYS_TO_DIRECT(phys);
2486		bzero((caddr_t)va, PAGE_SIZE);
2487		mips_dcache_wbinv_range(va, PAGE_SIZE);
2488	} else {
2489		va = pmap_lmem_map1(phys);
2490		bzero((caddr_t)va, PAGE_SIZE);
2491		mips_dcache_wbinv_range(va, PAGE_SIZE);
2492		pmap_lmem_unmap();
2493	}
2494}
2495
2496/*
2497 *	pmap_zero_page_area zeros the specified hardware page by mapping
2498 *	the page into KVM and using bzero to clear its contents.
2499 *
2500 *	off and size may not cover an area beyond a single hardware page.
2501 */
2502void
2503pmap_zero_page_area(vm_page_t m, int off, int size)
2504{
2505	vm_offset_t va;
2506	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2507
2508	if (MIPS_DIRECT_MAPPABLE(phys)) {
2509		va = MIPS_PHYS_TO_DIRECT(phys);
2510		bzero((char *)(caddr_t)va + off, size);
2511		mips_dcache_wbinv_range(va + off, size);
2512	} else {
2513		va = pmap_lmem_map1(phys);
2514		bzero((char *)va + off, size);
2515		mips_dcache_wbinv_range(va + off, size);
2516		pmap_lmem_unmap();
2517	}
2518}
2519
2520void
2521pmap_zero_page_idle(vm_page_t m)
2522{
2523	vm_offset_t va;
2524	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2525
2526	if (MIPS_DIRECT_MAPPABLE(phys)) {
2527		va = MIPS_PHYS_TO_DIRECT(phys);
2528		bzero((caddr_t)va, PAGE_SIZE);
2529		mips_dcache_wbinv_range(va, PAGE_SIZE);
2530	} else {
2531		va = pmap_lmem_map1(phys);
2532		bzero((caddr_t)va, PAGE_SIZE);
2533		mips_dcache_wbinv_range(va, PAGE_SIZE);
2534		pmap_lmem_unmap();
2535	}
2536}
2537
2538/*
2539 *	pmap_copy_page copies the specified (machine independent)
2540 *	page by mapping the page into virtual memory and using
2541 *	bcopy to copy the page, one machine dependent page at a
2542 *	time.
2543 *
2544 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2545 */
2546void
2547pmap_copy_page(vm_page_t src, vm_page_t dst)
2548{
2549	vm_offset_t va_src, va_dst;
2550	vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
2551	vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
2552
2553	if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
2554		/* easy case, all can be accessed via KSEG0 */
2555		/*
2556		 * Flush all caches for VA that are mapped to this page
2557		 * to make sure that data in SDRAM is up to date
2558		 */
2559		pmap_flush_pvcache(src);
2560		mips_dcache_wbinv_range_index(
2561		    MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
2562		va_src = MIPS_PHYS_TO_DIRECT(phys_src);
2563		va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
2564		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2565		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2566	} else {
2567		va_src = pmap_lmem_map2(phys_src, phys_dst);
2568		va_dst = va_src + PAGE_SIZE;
2569		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2570		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2571		pmap_lmem_unmap();
2572	}
2573}
2574
2575/*
2576 * Returns true if the pmap's pv is one of the first
2577 * 16 pvs linked to from this page.  This count may
2578 * be changed upwards or downwards in the future; it
2579 * is only necessary that true be returned for a small
2580 * subset of pmaps for proper page aging.
2581 */
2582boolean_t
2583pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2584{
2585	pv_entry_t pv;
2586	int loops = 0;
2587	boolean_t rv;
2588
2589	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2590	    ("pmap_page_exists_quick: page %p is not managed", m));
2591	rv = FALSE;
2592	rw_wlock(&pvh_global_lock);
2593	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2594		if (PV_PMAP(pv) == pmap) {
2595			rv = TRUE;
2596			break;
2597		}
2598		loops++;
2599		if (loops >= 16)
2600			break;
2601	}
2602	rw_wunlock(&pvh_global_lock);
2603	return (rv);
2604}
2605
2606/*
2607 * Remove all pages from specified address space
2608 * this aids process exit speeds.  Also, this code
2609 * is special cased for current process only, but
2610 * can have the more generic (and slightly slower)
2611 * mode enabled.  This is much faster than pmap_remove
2612 * in the case of running down an entire address space.
2613 */
2614void
2615pmap_remove_pages(pmap_t pmap)
2616{
2617	pd_entry_t *pde;
2618	pt_entry_t *pte, tpte;
2619	pv_entry_t pv;
2620	vm_page_t m;
2621	struct pv_chunk *pc, *npc;
2622	u_long inuse, bitmask;
2623	int allfree, bit, field, idx;
2624
2625	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2626		printf("warning: pmap_remove_pages called with non-current pmap\n");
2627		return;
2628	}
2629	rw_wlock(&pvh_global_lock);
2630	PMAP_LOCK(pmap);
2631	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
2632		allfree = 1;
2633		for (field = 0; field < _NPCM; field++) {
2634			inuse = ~pc->pc_map[field] & pc_freemask[field];
2635			while (inuse != 0) {
2636				bit = ffsl(inuse) - 1;
2637				bitmask = 1UL << bit;
2638				idx = field * sizeof(inuse) * NBBY + bit;
2639				pv = &pc->pc_pventry[idx];
2640				inuse &= ~bitmask;
2641
2642				pde = pmap_pde(pmap, pv->pv_va);
2643				KASSERT(pde != NULL && *pde != 0,
2644				    ("pmap_remove_pages: pde"));
2645				pte = pmap_pde_to_pte(pde, pv->pv_va);
2646				if (!pte_test(pte, PTE_V))
2647					panic("pmap_remove_pages: bad pte");
2648				tpte = *pte;
2649
2650/*
2651 * We cannot remove wired pages from a process' mapping at this time
2652 */
2653				if (pte_test(&tpte, PTE_W)) {
2654					allfree = 0;
2655					continue;
2656				}
2657				*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2658
2659				m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2660				KASSERT(m != NULL,
2661				    ("pmap_remove_pages: bad tpte %#jx",
2662				    (uintmax_t)tpte));
2663
2664				/*
2665				 * Update the vm_page_t clean and reference bits.
2666				 */
2667				if (pte_test(&tpte, PTE_D))
2668					vm_page_dirty(m);
2669
2670				/* Mark free */
2671				PV_STAT(pv_entry_frees++);
2672				PV_STAT(pv_entry_spare++);
2673				pv_entry_count--;
2674				pc->pc_map[field] |= bitmask;
2675				pmap->pm_stats.resident_count--;
2676				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2677				if (TAILQ_EMPTY(&m->md.pv_list))
2678					vm_page_aflag_clear(m, PGA_WRITEABLE);
2679				pmap_unuse_pt(pmap, pv->pv_va, *pde);
2680			}
2681		}
2682		if (allfree) {
2683			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2684			free_pv_chunk(pc);
2685		}
2686	}
2687	pmap_invalidate_all(pmap);
2688	PMAP_UNLOCK(pmap);
2689	rw_wunlock(&pvh_global_lock);
2690}
2691
2692/*
2693 * pmap_testbit tests bits in pte's
2694 */
2695static boolean_t
2696pmap_testbit(vm_page_t m, int bit)
2697{
2698	pv_entry_t pv;
2699	pmap_t pmap;
2700	pt_entry_t *pte;
2701	boolean_t rv = FALSE;
2702
2703	if (m->oflags & VPO_UNMANAGED)
2704		return (rv);
2705
2706	rw_assert(&pvh_global_lock, RA_WLOCKED);
2707	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2708		pmap = PV_PMAP(pv);
2709		PMAP_LOCK(pmap);
2710		pte = pmap_pte(pmap, pv->pv_va);
2711		rv = pte_test(pte, bit);
2712		PMAP_UNLOCK(pmap);
2713		if (rv)
2714			break;
2715	}
2716	return (rv);
2717}
2718
2719/*
2720 *	pmap_page_wired_mappings:
2721 *
2722 *	Return the number of managed mappings to the given physical page
2723 *	that are wired.
2724 */
2725int
2726pmap_page_wired_mappings(vm_page_t m)
2727{
2728	pv_entry_t pv;
2729	pmap_t pmap;
2730	pt_entry_t *pte;
2731	int count;
2732
2733	count = 0;
2734	if ((m->oflags & VPO_UNMANAGED) != 0)
2735		return (count);
2736	rw_wlock(&pvh_global_lock);
2737	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2738		pmap = PV_PMAP(pv);
2739		PMAP_LOCK(pmap);
2740		pte = pmap_pte(pmap, pv->pv_va);
2741		if (pte_test(pte, PTE_W))
2742			count++;
2743		PMAP_UNLOCK(pmap);
2744	}
2745	rw_wunlock(&pvh_global_lock);
2746	return (count);
2747}
2748
2749/*
2750 * Clear the write and modified bits in each of the given page's mappings.
2751 */
2752void
2753pmap_remove_write(vm_page_t m)
2754{
2755	pmap_t pmap;
2756	pt_entry_t pbits, *pte;
2757	pv_entry_t pv;
2758
2759	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2760	    ("pmap_remove_write: page %p is not managed", m));
2761
2762	/*
2763	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
2764	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
2765	 * is clear, no page table entries need updating.
2766	 */
2767	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2768	if ((m->oflags & VPO_BUSY) == 0 &&
2769	    (m->aflags & PGA_WRITEABLE) == 0)
2770		return;
2771	rw_wlock(&pvh_global_lock);
2772	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2773		pmap = PV_PMAP(pv);
2774		PMAP_LOCK(pmap);
2775		pte = pmap_pte(pmap, pv->pv_va);
2776		KASSERT(pte != NULL && pte_test(pte, PTE_V),
2777		    ("page on pv_list has no pte"));
2778		pbits = *pte;
2779		if (pte_test(&pbits, PTE_D)) {
2780			pte_clear(&pbits, PTE_D);
2781			vm_page_dirty(m);
2782		}
2783		pte_set(&pbits, PTE_RO);
2784		if (pbits != *pte) {
2785			*pte = pbits;
2786			pmap_update_page(pmap, pv->pv_va, pbits);
2787		}
2788		PMAP_UNLOCK(pmap);
2789	}
2790	vm_page_aflag_clear(m, PGA_WRITEABLE);
2791	rw_wunlock(&pvh_global_lock);
2792}
2793
2794/*
2795 *	pmap_ts_referenced:
2796 *
2797 *	Return the count of reference bits for a page, clearing all of them.
2798 */
2799int
2800pmap_ts_referenced(vm_page_t m)
2801{
2802
2803	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2804	    ("pmap_ts_referenced: page %p is not managed", m));
2805	if (m->md.pv_flags & PV_TABLE_REF) {
2806		rw_wlock(&pvh_global_lock);
2807		m->md.pv_flags &= ~PV_TABLE_REF;
2808		rw_wunlock(&pvh_global_lock);
2809		return (1);
2810	}
2811	return (0);
2812}
2813
2814/*
2815 *	pmap_is_modified:
2816 *
2817 *	Return whether or not the specified physical page was modified
2818 *	in any physical maps.
2819 */
2820boolean_t
2821pmap_is_modified(vm_page_t m)
2822{
2823	boolean_t rv;
2824
2825	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2826	    ("pmap_is_modified: page %p is not managed", m));
2827
2828	/*
2829	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2830	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2831	 * is clear, no PTEs can have PTE_D set.
2832	 */
2833	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2834	if ((m->oflags & VPO_BUSY) == 0 &&
2835	    (m->aflags & PGA_WRITEABLE) == 0)
2836		return (FALSE);
2837	rw_wlock(&pvh_global_lock);
2838	rv = pmap_testbit(m, PTE_D);
2839	rw_wunlock(&pvh_global_lock);
2840	return (rv);
2841}
2842
2843/* N/C */
2844
2845/*
2846 *	pmap_is_prefaultable:
2847 *
2848 *	Return whether or not the specified virtual address is elgible
2849 *	for prefault.
2850 */
2851boolean_t
2852pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2853{
2854	pd_entry_t *pde;
2855	pt_entry_t *pte;
2856	boolean_t rv;
2857
2858	rv = FALSE;
2859	PMAP_LOCK(pmap);
2860	pde = pmap_pde(pmap, addr);
2861	if (pde != NULL && *pde != 0) {
2862		pte = pmap_pde_to_pte(pde, addr);
2863		rv = (*pte == 0);
2864	}
2865	PMAP_UNLOCK(pmap);
2866	return (rv);
2867}
2868
2869/*
2870 *	Clear the modify bits on the specified physical page.
2871 */
2872void
2873pmap_clear_modify(vm_page_t m)
2874{
2875	pmap_t pmap;
2876	pt_entry_t *pte;
2877	pv_entry_t pv;
2878
2879	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2880	    ("pmap_clear_modify: page %p is not managed", m));
2881	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2882	KASSERT((m->oflags & VPO_BUSY) == 0,
2883	    ("pmap_clear_modify: page %p is busy", m));
2884
2885	/*
2886	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
2887	 * If the object containing the page is locked and the page is not
2888	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
2889	 */
2890	if ((m->aflags & PGA_WRITEABLE) == 0)
2891		return;
2892	rw_wlock(&pvh_global_lock);
2893	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2894		pmap = PV_PMAP(pv);
2895		PMAP_LOCK(pmap);
2896		pte = pmap_pte(pmap, pv->pv_va);
2897		if (pte_test(pte, PTE_D)) {
2898			pte_clear(pte, PTE_D);
2899			pmap_update_page(pmap, pv->pv_va, *pte);
2900		}
2901		PMAP_UNLOCK(pmap);
2902	}
2903	rw_wunlock(&pvh_global_lock);
2904}
2905
2906/*
2907 *	pmap_is_referenced:
2908 *
2909 *	Return whether or not the specified physical page was referenced
2910 *	in any physical maps.
2911 */
2912boolean_t
2913pmap_is_referenced(vm_page_t m)
2914{
2915
2916	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2917	    ("pmap_is_referenced: page %p is not managed", m));
2918	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
2919}
2920
2921/*
2922 *	pmap_clear_reference:
2923 *
2924 *	Clear the reference bit on the specified physical page.
2925 */
2926void
2927pmap_clear_reference(vm_page_t m)
2928{
2929
2930	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2931	    ("pmap_clear_reference: page %p is not managed", m));
2932	rw_wlock(&pvh_global_lock);
2933	if (m->md.pv_flags & PV_TABLE_REF) {
2934		m->md.pv_flags &= ~PV_TABLE_REF;
2935	}
2936	rw_wunlock(&pvh_global_lock);
2937}
2938
2939/*
2940 * Miscellaneous support routines follow
2941 */
2942
2943/*
2944 * Map a set of physical memory pages into the kernel virtual
2945 * address space. Return a pointer to where it is mapped. This
2946 * routine is intended to be used for mapping device memory,
2947 * NOT real memory.
2948 */
2949
2950/*
2951 * Map a set of physical memory pages into the kernel virtual
2952 * address space. Return a pointer to where it is mapped. This
2953 * routine is intended to be used for mapping device memory,
2954 * NOT real memory.
2955 *
2956 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
2957 */
2958void *
2959pmap_mapdev(vm_paddr_t pa, vm_size_t size)
2960{
2961        vm_offset_t va, tmpva, offset;
2962
2963	/*
2964	 * KSEG1 maps only first 512M of phys address space. For
2965	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2966	 */
2967	if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
2968		return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
2969	else {
2970		offset = pa & PAGE_MASK;
2971		size = roundup(size + offset, PAGE_SIZE);
2972
2973		va = kmem_alloc_nofault(kernel_map, size);
2974		if (!va)
2975			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2976		pa = trunc_page(pa);
2977		for (tmpva = va; size > 0;) {
2978			pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
2979			size -= PAGE_SIZE;
2980			tmpva += PAGE_SIZE;
2981			pa += PAGE_SIZE;
2982		}
2983	}
2984
2985	return ((void *)(va + offset));
2986}
2987
2988void
2989pmap_unmapdev(vm_offset_t va, vm_size_t size)
2990{
2991#ifndef __mips_n64
2992	vm_offset_t base, offset;
2993
2994	/* If the address is within KSEG1 then there is nothing to do */
2995	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2996		return;
2997
2998	base = trunc_page(va);
2999	offset = va & PAGE_MASK;
3000	size = roundup(size + offset, PAGE_SIZE);
3001	kmem_free(kernel_map, base, size);
3002#endif
3003}
3004
3005/*
3006 * perform the pmap work for mincore
3007 */
3008int
3009pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
3010{
3011	pt_entry_t *ptep, pte;
3012	vm_paddr_t pa;
3013	vm_page_t m;
3014	int val;
3015
3016	PMAP_LOCK(pmap);
3017retry:
3018	ptep = pmap_pte(pmap, addr);
3019	pte = (ptep != NULL) ? *ptep : 0;
3020	if (!pte_test(&pte, PTE_V)) {
3021		val = 0;
3022		goto out;
3023	}
3024	val = MINCORE_INCORE;
3025	if (pte_test(&pte, PTE_D))
3026		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
3027	pa = TLBLO_PTE_TO_PA(pte);
3028	if (pte_test(&pte, PTE_MANAGED)) {
3029		/*
3030		 * This may falsely report the given address as
3031		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
3032		 * per-PTE reference information, it is impossible to
3033		 * determine if the address is MINCORE_REFERENCED.
3034		 */
3035		m = PHYS_TO_VM_PAGE(pa);
3036		if ((m->aflags & PGA_REFERENCED) != 0)
3037			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
3038	}
3039	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
3040	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
3041	    pte_test(&pte, PTE_MANAGED)) {
3042		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
3043		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
3044			goto retry;
3045	} else
3046out:
3047		PA_UNLOCK_COND(*locked_pa);
3048	PMAP_UNLOCK(pmap);
3049	return (val);
3050}
3051
3052void
3053pmap_activate(struct thread *td)
3054{
3055	pmap_t pmap, oldpmap;
3056	struct proc *p = td->td_proc;
3057	u_int cpuid;
3058
3059	critical_enter();
3060
3061	pmap = vmspace_pmap(p->p_vmspace);
3062	oldpmap = PCPU_GET(curpmap);
3063	cpuid = PCPU_GET(cpuid);
3064
3065	if (oldpmap)
3066		CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
3067	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
3068	pmap_asid_alloc(pmap);
3069	if (td == curthread) {
3070		PCPU_SET(segbase, pmap->pm_segtab);
3071		mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
3072	}
3073
3074	PCPU_SET(curpmap, pmap);
3075	critical_exit();
3076}
3077
3078void
3079pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3080{
3081}
3082
3083/*
3084 *	Increase the starting virtual address of the given mapping if a
3085 *	different alignment might result in more superpage mappings.
3086 */
3087void
3088pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
3089    vm_offset_t *addr, vm_size_t size)
3090{
3091	vm_offset_t superpage_offset;
3092
3093	if (size < NBSEG)
3094		return;
3095	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3096		offset += ptoa(object->pg_color);
3097	superpage_offset = offset & SEGMASK;
3098	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
3099	    (*addr & SEGMASK) == superpage_offset)
3100		return;
3101	if ((*addr & SEGMASK) < superpage_offset)
3102		*addr = (*addr & ~SEGMASK) + superpage_offset;
3103	else
3104		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
3105}
3106
3107/*
3108 * 	Increase the starting virtual address of the given mapping so
3109 * 	that it is aligned to not be the second page in a TLB entry.
3110 * 	This routine assumes that the length is appropriately-sized so
3111 * 	that the allocation does not share a TLB entry at all if required.
3112 */
3113void
3114pmap_align_tlb(vm_offset_t *addr)
3115{
3116	if ((*addr & PAGE_SIZE) == 0)
3117		return;
3118	*addr += PAGE_SIZE;
3119	return;
3120}
3121
3122#ifdef DDB
3123DB_SHOW_COMMAND(ptable, ddb_pid_dump)
3124{
3125	pmap_t pmap;
3126	struct thread *td = NULL;
3127	struct proc *p;
3128	int i, j, k;
3129	vm_paddr_t pa;
3130	vm_offset_t va;
3131
3132	if (have_addr) {
3133		td = db_lookup_thread(addr, TRUE);
3134		if (td == NULL) {
3135			db_printf("Invalid pid or tid");
3136			return;
3137		}
3138		p = td->td_proc;
3139		if (p->p_vmspace == NULL) {
3140			db_printf("No vmspace for process");
3141			return;
3142		}
3143			pmap = vmspace_pmap(p->p_vmspace);
3144	} else
3145		pmap = kernel_pmap;
3146
3147	db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
3148	    pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
3149	    pmap->pm_asid[0].gen);
3150	for (i = 0; i < NPDEPG; i++) {
3151		pd_entry_t *pdpe;
3152		pt_entry_t *pde;
3153		pt_entry_t pte;
3154
3155		pdpe = (pd_entry_t *)pmap->pm_segtab[i];
3156		if (pdpe == NULL)
3157			continue;
3158		db_printf("[%4d] %p\n", i, pdpe);
3159#ifdef __mips_n64
3160		for (j = 0; j < NPDEPG; j++) {
3161			pde = (pt_entry_t *)pdpe[j];
3162			if (pde == NULL)
3163				continue;
3164			db_printf("\t[%4d] %p\n", j, pde);
3165#else
3166		{
3167			j = 0;
3168			pde =  (pt_entry_t *)pdpe;
3169#endif
3170			for (k = 0; k < NPTEPG; k++) {
3171				pte = pde[k];
3172				if (pte == 0 || !pte_test(&pte, PTE_V))
3173					continue;
3174				pa = TLBLO_PTE_TO_PA(pte);
3175				va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
3176				db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
3177				       k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
3178			}
3179		}
3180	}
3181}
3182#endif
3183
3184#if defined(DEBUG)
3185
3186static void pads(pmap_t pm);
3187void pmap_pvdump(vm_offset_t pa);
3188
3189/* print address space of pmap*/
3190static void
3191pads(pmap_t pm)
3192{
3193	unsigned va, i, j;
3194	pt_entry_t *ptep;
3195
3196	if (pm == kernel_pmap)
3197		return;
3198	for (i = 0; i < NPTEPG; i++)
3199		if (pm->pm_segtab[i])
3200			for (j = 0; j < NPTEPG; j++) {
3201				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3202				if (pm == kernel_pmap && va < KERNBASE)
3203					continue;
3204				if (pm != kernel_pmap &&
3205				    va >= VM_MAXUSER_ADDRESS)
3206					continue;
3207				ptep = pmap_pte(pm, va);
3208				if (pte_test(ptep, PTE_V))
3209					printf("%x:%x ", va, *(int *)ptep);
3210			}
3211
3212}
3213
3214void
3215pmap_pvdump(vm_offset_t pa)
3216{
3217	register pv_entry_t pv;
3218	vm_page_t m;
3219
3220	printf("pa %x", pa);
3221	m = PHYS_TO_VM_PAGE(pa);
3222	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3223	    pv = TAILQ_NEXT(pv, pv_list)) {
3224		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3225		pads(pv->pv_pmap);
3226	}
3227	printf(" ");
3228}
3229
3230/* N/C */
3231#endif
3232
3233
3234/*
3235 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3236 * It takes almost as much or more time to search the TLB for a
3237 * specific ASID and flush those entries as it does to flush the entire TLB.
3238 * Therefore, when we allocate a new ASID, we just take the next number. When
3239 * we run out of numbers, we flush the TLB, increment the generation count
3240 * and start over. ASID zero is reserved for kernel use.
3241 */
3242static void
3243pmap_asid_alloc(pmap)
3244	pmap_t pmap;
3245{
3246	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3247	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3248	else {
3249		if (PCPU_GET(next_asid) == pmap_max_asid) {
3250			tlb_invalidate_all_user(NULL);
3251			PCPU_SET(asid_generation,
3252			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3253			if (PCPU_GET(asid_generation) == 0) {
3254				PCPU_SET(asid_generation, 1);
3255			}
3256			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3257		}
3258		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3259		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3260		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3261	}
3262}
3263
3264static pt_entry_t
3265init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot)
3266{
3267	pt_entry_t rw;
3268
3269	if (!(prot & VM_PROT_WRITE))
3270		rw = PTE_V | PTE_RO;
3271	else if ((m->oflags & VPO_UNMANAGED) == 0) {
3272		if ((access & VM_PROT_WRITE) != 0)
3273			rw = PTE_V | PTE_D;
3274		else
3275			rw = PTE_V;
3276	} else
3277		/* Needn't emulate a modified bit for unmanaged pages. */
3278		rw = PTE_V | PTE_D;
3279	return (rw);
3280}
3281
3282/*
3283 * pmap_emulate_modified : do dirty bit emulation
3284 *
3285 * On SMP, update just the local TLB, other CPUs will update their
3286 * TLBs from PTE lazily, if they get the exception.
3287 * Returns 0 in case of sucess, 1 if the page is read only and we
3288 * need to fault.
3289 */
3290int
3291pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
3292{
3293	pt_entry_t *pte;
3294
3295	PMAP_LOCK(pmap);
3296	pte = pmap_pte(pmap, va);
3297	if (pte == NULL)
3298		panic("pmap_emulate_modified: can't find PTE");
3299#ifdef SMP
3300	/* It is possible that some other CPU changed m-bit */
3301	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
3302		tlb_update(pmap, va, *pte);
3303		PMAP_UNLOCK(pmap);
3304		return (0);
3305	}
3306#else
3307	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
3308		panic("pmap_emulate_modified: invalid pte");
3309#endif
3310	if (pte_test(pte, PTE_RO)) {
3311		PMAP_UNLOCK(pmap);
3312		return (1);
3313	}
3314	pte_set(pte, PTE_D);
3315	tlb_update(pmap, va, *pte);
3316	if (!pte_test(pte, PTE_MANAGED))
3317		panic("pmap_emulate_modified: unmanaged page");
3318	PMAP_UNLOCK(pmap);
3319	return (0);
3320}
3321
3322/*
3323 *	Routine:	pmap_kextract
3324 *	Function:
3325 *		Extract the physical page address associated
3326 *		virtual address.
3327 */
3328vm_paddr_t
3329pmap_kextract(vm_offset_t va)
3330{
3331	int mapped;
3332
3333	/*
3334	 * First, the direct-mapped regions.
3335	 */
3336#if defined(__mips_n64)
3337	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3338		return (MIPS_XKPHYS_TO_PHYS(va));
3339#endif
3340	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3341		return (MIPS_KSEG0_TO_PHYS(va));
3342
3343	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3344		return (MIPS_KSEG1_TO_PHYS(va));
3345
3346	/*
3347	 * User virtual addresses.
3348	 */
3349	if (va < VM_MAXUSER_ADDRESS) {
3350		pt_entry_t *ptep;
3351
3352		if (curproc && curproc->p_vmspace) {
3353			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3354			if (ptep) {
3355				return (TLBLO_PTE_TO_PA(*ptep) |
3356				    (va & PAGE_MASK));
3357			}
3358			return (0);
3359		}
3360	}
3361
3362	/*
3363	 * Should be kernel virtual here, otherwise fail
3364	 */
3365	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3366#if defined(__mips_n64)
3367	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3368#endif
3369	/*
3370	 * Kernel virtual.
3371	 */
3372
3373	if (mapped) {
3374		pt_entry_t *ptep;
3375
3376		/* Is the kernel pmap initialized? */
3377		if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
3378			/* It's inside the virtual address range */
3379			ptep = pmap_pte(kernel_pmap, va);
3380			if (ptep) {
3381				return (TLBLO_PTE_TO_PA(*ptep) |
3382				    (va & PAGE_MASK));
3383			}
3384		}
3385		return (0);
3386	}
3387
3388	panic("%s for unknown address space %p.", __func__, (void *)va);
3389}
3390
3391
3392void
3393pmap_flush_pvcache(vm_page_t m)
3394{
3395	pv_entry_t pv;
3396
3397	if (m != NULL) {
3398		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3399		    pv = TAILQ_NEXT(pv, pv_list)) {
3400			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3401		}
3402	}
3403}
3404