pmap.c revision 239964
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 239964 2012-09-01 03:46:28Z alc $");
70
71#include "opt_ddb.h"
72#include "opt_pmap.h"
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/lock.h>
77#include <sys/mman.h>
78#include <sys/msgbuf.h>
79#include <sys/mutex.h>
80#include <sys/pcpu.h>
81#include <sys/proc.h>
82#include <sys/rwlock.h>
83#include <sys/sched.h>
84#ifdef SMP
85#include <sys/smp.h>
86#else
87#include <sys/cpuset.h>
88#endif
89#include <sys/sysctl.h>
90#include <sys/vmmeter.h>
91
92#ifdef DDB
93#include <ddb/ddb.h>
94#endif
95
96#include <vm/vm.h>
97#include <vm/vm_param.h>
98#include <vm/vm_kern.h>
99#include <vm/vm_page.h>
100#include <vm/vm_map.h>
101#include <vm/vm_object.h>
102#include <vm/vm_extern.h>
103#include <vm/vm_pageout.h>
104#include <vm/vm_pager.h>
105#include <vm/uma.h>
106
107#include <machine/cache.h>
108#include <machine/md_var.h>
109#include <machine/tlb.h>
110
111#undef PMAP_DEBUG
112
113#if !defined(DIAGNOSTIC)
114#define	PMAP_INLINE __inline
115#else
116#define	PMAP_INLINE
117#endif
118
119#ifdef PV_STATS
120#define PV_STAT(x)	do { x ; } while (0)
121#else
122#define PV_STAT(x)	do { } while (0)
123#endif
124
125/*
126 * Get PDEs and PTEs for user/kernel address space
127 */
128#define	pmap_seg_index(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
129#define	pmap_pde_index(v)	(((v) >> PDRSHIFT) & (NPDEPG - 1))
130#define	pmap_pte_index(v)	(((v) >> PAGE_SHIFT) & (NPTEPG - 1))
131#define	pmap_pde_pindex(v)	((v) >> PDRSHIFT)
132
133#ifdef __mips_n64
134#define	NUPDE			(NPDEPG * NPDEPG)
135#define	NUSERPGTBLS		(NUPDE + NPDEPG)
136#else
137#define	NUPDE			(NPDEPG)
138#define	NUSERPGTBLS		(NUPDE)
139#endif
140
141#define	is_kernel_pmap(x)	((x) == kernel_pmap)
142
143struct pmap kernel_pmap_store;
144pd_entry_t *kernel_segmap;
145
146vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
147vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
148
149static int nkpt;
150unsigned pmap_max_asid;		/* max ASID supported by the system */
151
152#define	PMAP_ASID_RESERVED	0
153
154vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
155
156static void pmap_asid_alloc(pmap_t pmap);
157
158/*
159 * Isolate the global pv list lock from data and other locks to prevent false
160 * sharing within the cache.
161 */
162static struct {
163	struct rwlock	lock;
164	char		padding[CACHE_LINE_SIZE - sizeof(struct rwlock)];
165} pvh_global __aligned(CACHE_LINE_SIZE);
166
167#define	pvh_global_lock	pvh_global.lock
168
169/*
170 * Data for the pv entry allocation mechanism
171 */
172static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
173static int pv_entry_count;
174
175static void free_pv_chunk(struct pv_chunk *pc);
176static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
177static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
178static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap);
179static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
180static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
181    vm_offset_t va);
182static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
183    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
184static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
185    pd_entry_t pde);
186static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
187static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
188static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
189    vm_offset_t va, vm_page_t m);
190static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
191static void pmap_invalidate_all(pmap_t pmap);
192static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
193static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m);
194
195static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
196static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
197static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
198static pt_entry_t init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot);
199
200#ifdef SMP
201static void pmap_invalidate_page_action(void *arg);
202static void pmap_update_page_action(void *arg);
203#endif
204
205#ifndef __mips_n64
206/*
207 * This structure is for high memory (memory above 512Meg in 32 bit) support.
208 * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
209 * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
210 *
211 * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
212 * access a highmem physical address on a CPU, we map the physical address to
213 * the reserved virtual address for the CPU in the kernel pagetable.  This is
214 * done with interrupts disabled(although a spinlock and sched_pin would be
215 * sufficient).
216 */
217struct local_sysmaps {
218	vm_offset_t	base;
219	uint32_t	saved_intr;
220	uint16_t	valid1, valid2;
221};
222static struct local_sysmaps sysmap_lmem[MAXCPU];
223
224static __inline void
225pmap_alloc_lmem_map(void)
226{
227	int i;
228
229	for (i = 0; i < MAXCPU; i++) {
230		sysmap_lmem[i].base = virtual_avail;
231		virtual_avail += PAGE_SIZE * 2;
232		sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
233	}
234}
235
236static __inline vm_offset_t
237pmap_lmem_map1(vm_paddr_t phys)
238{
239	struct local_sysmaps *sysm;
240	pt_entry_t *pte, npte;
241	vm_offset_t va;
242	uint32_t intr;
243	int cpu;
244
245	intr = intr_disable();
246	cpu = PCPU_GET(cpuid);
247	sysm = &sysmap_lmem[cpu];
248	sysm->saved_intr = intr;
249	va = sysm->base;
250	npte = TLBLO_PA_TO_PFN(phys) |
251	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
252	pte = pmap_pte(kernel_pmap, va);
253	*pte = npte;
254	sysm->valid1 = 1;
255	return (va);
256}
257
258static __inline vm_offset_t
259pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
260{
261	struct local_sysmaps *sysm;
262	pt_entry_t *pte, npte;
263	vm_offset_t va1, va2;
264	uint32_t intr;
265	int cpu;
266
267	intr = intr_disable();
268	cpu = PCPU_GET(cpuid);
269	sysm = &sysmap_lmem[cpu];
270	sysm->saved_intr = intr;
271	va1 = sysm->base;
272	va2 = sysm->base + PAGE_SIZE;
273	npte = TLBLO_PA_TO_PFN(phys1) |
274	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
275	pte = pmap_pte(kernel_pmap, va1);
276	*pte = npte;
277	npte =  TLBLO_PA_TO_PFN(phys2) |
278	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
279	pte = pmap_pte(kernel_pmap, va2);
280	*pte = npte;
281	sysm->valid1 = 1;
282	sysm->valid2 = 1;
283	return (va1);
284}
285
286static __inline void
287pmap_lmem_unmap(void)
288{
289	struct local_sysmaps *sysm;
290	pt_entry_t *pte;
291	int cpu;
292
293	cpu = PCPU_GET(cpuid);
294	sysm = &sysmap_lmem[cpu];
295	pte = pmap_pte(kernel_pmap, sysm->base);
296	*pte = PTE_G;
297	tlb_invalidate_address(kernel_pmap, sysm->base);
298	sysm->valid1 = 0;
299	if (sysm->valid2) {
300		pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
301		*pte = PTE_G;
302		tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
303		sysm->valid2 = 0;
304	}
305	intr_restore(sysm->saved_intr);
306}
307#else  /* __mips_n64 */
308
309static __inline void
310pmap_alloc_lmem_map(void)
311{
312}
313
314static __inline vm_offset_t
315pmap_lmem_map1(vm_paddr_t phys)
316{
317
318	return (0);
319}
320
321static __inline vm_offset_t
322pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
323{
324
325	return (0);
326}
327
328static __inline vm_offset_t
329pmap_lmem_unmap(void)
330{
331
332	return (0);
333}
334#endif /* !__mips_n64 */
335
336/*
337 * Page table entry lookup routines.
338 */
339static __inline pd_entry_t *
340pmap_segmap(pmap_t pmap, vm_offset_t va)
341{
342
343	return (&pmap->pm_segtab[pmap_seg_index(va)]);
344}
345
346#ifdef __mips_n64
347static __inline pd_entry_t *
348pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
349{
350	pd_entry_t *pde;
351
352	pde = (pd_entry_t *)*pdpe;
353	return (&pde[pmap_pde_index(va)]);
354}
355
356static __inline pd_entry_t *
357pmap_pde(pmap_t pmap, vm_offset_t va)
358{
359	pd_entry_t *pdpe;
360
361	pdpe = pmap_segmap(pmap, va);
362	if (pdpe == NULL || *pdpe == NULL)
363		return (NULL);
364
365	return (pmap_pdpe_to_pde(pdpe, va));
366}
367#else
368static __inline pd_entry_t *
369pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
370{
371
372	return (pdpe);
373}
374
375static __inline
376pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
377{
378
379	return (pmap_segmap(pmap, va));
380}
381#endif
382
383static __inline pt_entry_t *
384pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
385{
386	pt_entry_t *pte;
387
388	pte = (pt_entry_t *)*pde;
389	return (&pte[pmap_pte_index(va)]);
390}
391
392pt_entry_t *
393pmap_pte(pmap_t pmap, vm_offset_t va)
394{
395	pd_entry_t *pde;
396
397	pde = pmap_pde(pmap, va);
398	if (pde == NULL || *pde == NULL)
399		return (NULL);
400
401	return (pmap_pde_to_pte(pde, va));
402}
403
404vm_offset_t
405pmap_steal_memory(vm_size_t size)
406{
407	vm_paddr_t bank_size, pa;
408	vm_offset_t va;
409
410	size = round_page(size);
411	bank_size = phys_avail[1] - phys_avail[0];
412	while (size > bank_size) {
413		int i;
414
415		for (i = 0; phys_avail[i + 2]; i += 2) {
416			phys_avail[i] = phys_avail[i + 2];
417			phys_avail[i + 1] = phys_avail[i + 3];
418		}
419		phys_avail[i] = 0;
420		phys_avail[i + 1] = 0;
421		if (!phys_avail[0])
422			panic("pmap_steal_memory: out of memory");
423		bank_size = phys_avail[1] - phys_avail[0];
424	}
425
426	pa = phys_avail[0];
427	phys_avail[0] += size;
428	if (MIPS_DIRECT_MAPPABLE(pa) == 0)
429		panic("Out of memory below 512Meg?");
430	va = MIPS_PHYS_TO_DIRECT(pa);
431	bzero((caddr_t)va, size);
432	return (va);
433}
434
435/*
436 * Bootstrap the system enough to run with virtual memory.  This
437 * assumes that the phys_avail array has been initialized.
438 */
439static void
440pmap_create_kernel_pagetable(void)
441{
442	int i, j;
443	vm_offset_t ptaddr;
444	pt_entry_t *pte;
445#ifdef __mips_n64
446	pd_entry_t *pde;
447	vm_offset_t pdaddr;
448	int npt, npde;
449#endif
450
451	/*
452	 * Allocate segment table for the kernel
453	 */
454	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
455
456	/*
457	 * Allocate second level page tables for the kernel
458	 */
459#ifdef __mips_n64
460	npde = howmany(NKPT, NPDEPG);
461	pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
462#endif
463	nkpt = NKPT;
464	ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
465
466	/*
467	 * The R[4-7]?00 stores only one copy of the Global bit in the
468	 * translation lookaside buffer for each 2 page entry. Thus invalid
469	 * entrys must have the Global bit set so when Entry LO and Entry HI
470	 * G bits are anded together they will produce a global bit to store
471	 * in the tlb.
472	 */
473	for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
474		*pte = PTE_G;
475
476#ifdef __mips_n64
477	for (i = 0,  npt = nkpt; npt > 0; i++) {
478		kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
479		pde = (pd_entry_t *)kernel_segmap[i];
480
481		for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
482			pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
483	}
484#else
485	for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
486		kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
487#endif
488
489	PMAP_LOCK_INIT(kernel_pmap);
490	kernel_pmap->pm_segtab = kernel_segmap;
491	CPU_FILL(&kernel_pmap->pm_active);
492	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
493	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
494	kernel_pmap->pm_asid[0].gen = 0;
495	kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
496}
497
498void
499pmap_bootstrap(void)
500{
501	int i;
502	int need_local_mappings = 0;
503
504	/* Sort. */
505again:
506	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
507		/*
508		 * Keep the memory aligned on page boundary.
509		 */
510		phys_avail[i] = round_page(phys_avail[i]);
511		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
512
513		if (i < 2)
514			continue;
515		if (phys_avail[i - 2] > phys_avail[i]) {
516			vm_paddr_t ptemp[2];
517
518			ptemp[0] = phys_avail[i + 0];
519			ptemp[1] = phys_avail[i + 1];
520
521			phys_avail[i + 0] = phys_avail[i - 2];
522			phys_avail[i + 1] = phys_avail[i - 1];
523
524			phys_avail[i - 2] = ptemp[0];
525			phys_avail[i - 1] = ptemp[1];
526			goto again;
527		}
528	}
529
530       	/*
531	 * In 32 bit, we may have memory which cannot be mapped directly.
532	 * This memory will need temporary mapping before it can be
533	 * accessed.
534	 */
535	if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
536		need_local_mappings = 1;
537
538	/*
539	 * Copy the phys_avail[] array before we start stealing memory from it.
540	 */
541	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
542		physmem_desc[i] = phys_avail[i];
543		physmem_desc[i + 1] = phys_avail[i + 1];
544	}
545
546	Maxmem = atop(phys_avail[i - 1]);
547
548	if (bootverbose) {
549		printf("Physical memory chunk(s):\n");
550		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
551			vm_paddr_t size;
552
553			size = phys_avail[i + 1] - phys_avail[i];
554			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
555			    (uintmax_t) phys_avail[i],
556			    (uintmax_t) phys_avail[i + 1] - 1,
557			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
558		}
559		printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
560	}
561	/*
562	 * Steal the message buffer from the beginning of memory.
563	 */
564	msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
565	msgbufinit(msgbufp, msgbufsize);
566
567	/*
568	 * Steal thread0 kstack.
569	 */
570	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
571
572	virtual_avail = VM_MIN_KERNEL_ADDRESS;
573	virtual_end = VM_MAX_KERNEL_ADDRESS;
574
575#ifdef SMP
576	/*
577	 * Steal some virtual address space to map the pcpu area.
578	 */
579	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
580	pcpup = (struct pcpu *)virtual_avail;
581	virtual_avail += PAGE_SIZE * 2;
582
583	/*
584	 * Initialize the wired TLB entry mapping the pcpu region for
585	 * the BSP at 'pcpup'. Up until this point we were operating
586	 * with the 'pcpup' for the BSP pointing to a virtual address
587	 * in KSEG0 so there was no need for a TLB mapping.
588	 */
589	mips_pcpu_tlb_init(PCPU_ADDR(0));
590
591	if (bootverbose)
592		printf("pcpu is available at virtual address %p.\n", pcpup);
593#endif
594
595	if (need_local_mappings)
596		pmap_alloc_lmem_map();
597	pmap_create_kernel_pagetable();
598	pmap_max_asid = VMNUM_PIDS;
599	mips_wr_entryhi(0);
600	mips_wr_pagemask(0);
601
602 	/*
603	 * Initialize the global pv list lock.
604	 */
605	rw_init(&pvh_global_lock, "pmap pv global");
606}
607
608/*
609 * Initialize a vm_page's machine-dependent fields.
610 */
611void
612pmap_page_init(vm_page_t m)
613{
614
615	TAILQ_INIT(&m->md.pv_list);
616	m->md.pv_flags = 0;
617}
618
619/*
620 *	Initialize the pmap module.
621 *	Called by vm_init, to initialize any structures that the pmap
622 *	system needs to map virtual memory.
623 */
624void
625pmap_init(void)
626{
627}
628
629/***************************************************
630 * Low level helper routines.....
631 ***************************************************/
632
633#ifdef	SMP
634static __inline void
635pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
636{
637	int	cpuid, cpu, self;
638	cpuset_t active_cpus;
639
640	sched_pin();
641	if (is_kernel_pmap(pmap)) {
642		smp_rendezvous(NULL, fn, NULL, arg);
643		goto out;
644	}
645	/* Force ASID update on inactive CPUs */
646	CPU_FOREACH(cpu) {
647		if (!CPU_ISSET(cpu, &pmap->pm_active))
648			pmap->pm_asid[cpu].gen = 0;
649	}
650	cpuid = PCPU_GET(cpuid);
651	/*
652	 * XXX: barrier/locking for active?
653	 *
654	 * Take a snapshot of active here, any further changes are ignored.
655	 * tlb update/invalidate should be harmless on inactive CPUs
656	 */
657	active_cpus = pmap->pm_active;
658	self = CPU_ISSET(cpuid, &active_cpus);
659	CPU_CLR(cpuid, &active_cpus);
660	/* Optimize for the case where this cpu is the only active one */
661	if (CPU_EMPTY(&active_cpus)) {
662		if (self)
663			fn(arg);
664	} else {
665		if (self)
666			CPU_SET(cpuid, &active_cpus);
667		smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
668	}
669out:
670	sched_unpin();
671}
672#else /* !SMP */
673static __inline void
674pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
675{
676	int	cpuid;
677
678	if (is_kernel_pmap(pmap)) {
679		fn(arg);
680		return;
681	}
682	cpuid = PCPU_GET(cpuid);
683	if (!CPU_ISSET(cpuid, &pmap->pm_active))
684		pmap->pm_asid[cpuid].gen = 0;
685	else
686		fn(arg);
687}
688#endif /* SMP */
689
690static void
691pmap_invalidate_all(pmap_t pmap)
692{
693
694	pmap_call_on_active_cpus(pmap,
695	    (void (*)(void *))tlb_invalidate_all_user, pmap);
696}
697
698struct pmap_invalidate_page_arg {
699	pmap_t pmap;
700	vm_offset_t va;
701};
702
703static void
704pmap_invalidate_page_action(void *arg)
705{
706	struct pmap_invalidate_page_arg *p = arg;
707
708	tlb_invalidate_address(p->pmap, p->va);
709}
710
711static void
712pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
713{
714	struct pmap_invalidate_page_arg arg;
715
716	arg.pmap = pmap;
717	arg.va = va;
718	pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
719}
720
721struct pmap_update_page_arg {
722	pmap_t pmap;
723	vm_offset_t va;
724	pt_entry_t pte;
725};
726
727static void
728pmap_update_page_action(void *arg)
729{
730	struct pmap_update_page_arg *p = arg;
731
732	tlb_update(p->pmap, p->va, p->pte);
733}
734
735static void
736pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
737{
738	struct pmap_update_page_arg arg;
739
740	arg.pmap = pmap;
741	arg.va = va;
742	arg.pte = pte;
743	pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
744}
745
746/*
747 *	Routine:	pmap_extract
748 *	Function:
749 *		Extract the physical page address associated
750 *		with the given map/virtual_address pair.
751 */
752vm_paddr_t
753pmap_extract(pmap_t pmap, vm_offset_t va)
754{
755	pt_entry_t *pte;
756	vm_offset_t retval = 0;
757
758	PMAP_LOCK(pmap);
759	pte = pmap_pte(pmap, va);
760	if (pte) {
761		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
762	}
763	PMAP_UNLOCK(pmap);
764	return (retval);
765}
766
767/*
768 *	Routine:	pmap_extract_and_hold
769 *	Function:
770 *		Atomically extract and hold the physical page
771 *		with the given pmap and virtual address pair
772 *		if that mapping permits the given protection.
773 */
774vm_page_t
775pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
776{
777	pt_entry_t *ptep;
778	pt_entry_t pte;
779	vm_page_t m;
780	vm_paddr_t pa;
781
782	m = NULL;
783	pa = 0;
784	PMAP_LOCK(pmap);
785retry:
786	ptep = pmap_pte(pmap, va);
787	if ((ptep != NULL)  && ((pte = *ptep) != 0) &&
788	    pte_test(&pte, PTE_V) &&
789	    (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) {
790		if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
791			goto retry;
792
793		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
794		vm_page_hold(m);
795	}
796	PA_UNLOCK_COND(pa);
797	PMAP_UNLOCK(pmap);
798	return (m);
799}
800
801/***************************************************
802 * Low level mapping routines.....
803 ***************************************************/
804
805/*
806 * add a wired page to the kva
807 */
808void
809pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
810{
811	pt_entry_t *pte;
812	pt_entry_t opte, npte;
813
814#ifdef PMAP_DEBUG
815	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
816#endif
817	npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | attr;
818
819	pte = pmap_pte(kernel_pmap, va);
820	opte = *pte;
821	*pte = npte;
822	if (pte_test(&opte, PTE_V) && opte != npte)
823		pmap_update_page(kernel_pmap, va, npte);
824}
825
826void
827pmap_kenter(vm_offset_t va, vm_paddr_t pa)
828{
829
830	KASSERT(is_cacheable_mem(pa),
831		("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
832
833	pmap_kenter_attr(va, pa, PTE_C_CACHE);
834}
835
836/*
837 * remove a page from the kernel pagetables
838 */
839 /* PMAP_INLINE */ void
840pmap_kremove(vm_offset_t va)
841{
842	pt_entry_t *pte;
843
844	/*
845	 * Write back all caches from the page being destroyed
846	 */
847	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
848
849	pte = pmap_pte(kernel_pmap, va);
850	*pte = PTE_G;
851	pmap_invalidate_page(kernel_pmap, va);
852}
853
854/*
855 *	Used to map a range of physical addresses into kernel
856 *	virtual address space.
857 *
858 *	The value passed in '*virt' is a suggested virtual address for
859 *	the mapping. Architectures which can support a direct-mapped
860 *	physical to virtual region can return the appropriate address
861 *	within that region, leaving '*virt' unchanged. Other
862 *	architectures should map the pages starting at '*virt' and
863 *	update '*virt' with the first usable address after the mapped
864 *	region.
865 *
866 *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
867 */
868vm_offset_t
869pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
870{
871	vm_offset_t va, sva;
872
873	if (MIPS_DIRECT_MAPPABLE(end - 1))
874		return (MIPS_PHYS_TO_DIRECT(start));
875
876	va = sva = *virt;
877	while (start < end) {
878		pmap_kenter(va, start);
879		va += PAGE_SIZE;
880		start += PAGE_SIZE;
881	}
882	*virt = va;
883	return (sva);
884}
885
886/*
887 * Add a list of wired pages to the kva
888 * this routine is only used for temporary
889 * kernel mappings that do not need to have
890 * page modification or references recorded.
891 * Note that old mappings are simply written
892 * over.  The page *must* be wired.
893 */
894void
895pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
896{
897	int i;
898	vm_offset_t origva = va;
899
900	for (i = 0; i < count; i++) {
901		pmap_flush_pvcache(m[i]);
902		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
903		va += PAGE_SIZE;
904	}
905
906	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
907}
908
909/*
910 * this routine jerks page mappings from the
911 * kernel -- it is meant only for temporary mappings.
912 */
913void
914pmap_qremove(vm_offset_t va, int count)
915{
916	/*
917	 * No need to wb/inv caches here,
918	 *   pmap_kremove will do it for us
919	 */
920
921	while (count-- > 0) {
922		pmap_kremove(va);
923		va += PAGE_SIZE;
924	}
925}
926
927/***************************************************
928 * Page table page management routines.....
929 ***************************************************/
930
931/*  Revision 1.507
932 *
933 * Simplify the reference counting of page table pages.	 Specifically, use
934 * the page table page's wired count rather than its hold count to contain
935 * the reference count.
936 */
937
938/*
939 * This routine unholds page table pages, and if the hold count
940 * drops to zero, then it decrements the wire count.
941 */
942static PMAP_INLINE int
943pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
944{
945	--m->wire_count;
946	if (m->wire_count == 0)
947		return (_pmap_unwire_pte_hold(pmap, va, m));
948	else
949		return (0);
950}
951
952static int
953_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
954{
955	pd_entry_t *pde;
956
957	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
958	/*
959	 * unmap the page table page
960	 */
961#ifdef __mips_n64
962	if (m->pindex < NUPDE)
963		pde = pmap_pde(pmap, va);
964	else
965		pde = pmap_segmap(pmap, va);
966#else
967	pde = pmap_pde(pmap, va);
968#endif
969	*pde = 0;
970	pmap->pm_stats.resident_count--;
971
972#ifdef __mips_n64
973	if (m->pindex < NUPDE) {
974		pd_entry_t *pdp;
975		vm_page_t pdpg;
976
977		/*
978		 * Recursively decrement next level pagetable refcount
979		 */
980		pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
981		pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
982		pmap_unwire_pte_hold(pmap, va, pdpg);
983	}
984#endif
985
986	/*
987	 * If the page is finally unwired, simply free it.
988	 */
989	vm_page_free_zero(m);
990	atomic_subtract_int(&cnt.v_wire_count, 1);
991	return (1);
992}
993
994/*
995 * After removing a page table entry, this routine is used to
996 * conditionally free the page, and manage the hold/wire counts.
997 */
998static int
999pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1000{
1001	vm_page_t mpte;
1002
1003	if (va >= VM_MAXUSER_ADDRESS)
1004		return (0);
1005	KASSERT(pde != 0, ("pmap_unuse_pt: pde != 0"));
1006	mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pde));
1007	return (pmap_unwire_pte_hold(pmap, va, mpte));
1008}
1009
1010void
1011pmap_pinit0(pmap_t pmap)
1012{
1013	int i;
1014
1015	PMAP_LOCK_INIT(pmap);
1016	pmap->pm_segtab = kernel_segmap;
1017	CPU_ZERO(&pmap->pm_active);
1018	for (i = 0; i < MAXCPU; i++) {
1019		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1020		pmap->pm_asid[i].gen = 0;
1021	}
1022	PCPU_SET(curpmap, pmap);
1023	TAILQ_INIT(&pmap->pm_pvchunk);
1024	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1025}
1026
1027void
1028pmap_grow_direct_page_cache()
1029{
1030
1031#ifdef __mips_n64
1032	vm_pageout_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
1033#else
1034	vm_pageout_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
1035#endif
1036}
1037
1038vm_page_t
1039pmap_alloc_direct_page(unsigned int index, int req)
1040{
1041	vm_page_t m;
1042
1043	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
1044	    VM_ALLOC_ZERO);
1045	if (m == NULL)
1046		return (NULL);
1047
1048	if ((m->flags & PG_ZERO) == 0)
1049		pmap_zero_page(m);
1050
1051	m->pindex = index;
1052	return (m);
1053}
1054
1055/*
1056 * Initialize a preallocated and zeroed pmap structure,
1057 * such as one in a vmspace structure.
1058 */
1059int
1060pmap_pinit(pmap_t pmap)
1061{
1062	vm_offset_t ptdva;
1063	vm_page_t ptdpg;
1064	int i;
1065
1066	PMAP_LOCK_INIT(pmap);
1067
1068	/*
1069	 * allocate the page directory page
1070	 */
1071	while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
1072	       pmap_grow_direct_page_cache();
1073
1074	ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
1075	pmap->pm_segtab = (pd_entry_t *)ptdva;
1076	CPU_ZERO(&pmap->pm_active);
1077	for (i = 0; i < MAXCPU; i++) {
1078		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1079		pmap->pm_asid[i].gen = 0;
1080	}
1081	TAILQ_INIT(&pmap->pm_pvchunk);
1082	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1083
1084	return (1);
1085}
1086
1087/*
1088 * this routine is called if the page table page is not
1089 * mapped correctly.
1090 */
1091static vm_page_t
1092_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1093{
1094	vm_offset_t pageva;
1095	vm_page_t m;
1096
1097	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1098	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1099	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1100
1101	/*
1102	 * Find or fabricate a new pagetable page
1103	 */
1104	if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1105		if (flags & M_WAITOK) {
1106			PMAP_UNLOCK(pmap);
1107			rw_wunlock(&pvh_global_lock);
1108			pmap_grow_direct_page_cache();
1109			rw_wlock(&pvh_global_lock);
1110			PMAP_LOCK(pmap);
1111		}
1112
1113		/*
1114		 * Indicate the need to retry.	While waiting, the page
1115		 * table page may have been allocated.
1116		 */
1117		return (NULL);
1118	}
1119
1120	/*
1121	 * Map the pagetable page into the process address space, if it
1122	 * isn't already there.
1123	 */
1124	pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1125
1126#ifdef __mips_n64
1127	if (ptepindex >= NUPDE) {
1128		pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
1129	} else {
1130		pd_entry_t *pdep, *pde;
1131		int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
1132		int pdeindex = ptepindex & (NPDEPG - 1);
1133		vm_page_t pg;
1134
1135		pdep = &pmap->pm_segtab[segindex];
1136		if (*pdep == NULL) {
1137			/* recurse for allocating page dir */
1138			if (_pmap_allocpte(pmap, NUPDE + segindex,
1139			    flags) == NULL) {
1140				/* alloc failed, release current */
1141				--m->wire_count;
1142				atomic_subtract_int(&cnt.v_wire_count, 1);
1143				vm_page_free_zero(m);
1144				return (NULL);
1145			}
1146		} else {
1147			pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
1148			pg->wire_count++;
1149		}
1150		/* Next level entry */
1151		pde = (pd_entry_t *)*pdep;
1152		pde[pdeindex] = (pd_entry_t)pageva;
1153	}
1154#else
1155	pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
1156#endif
1157	pmap->pm_stats.resident_count++;
1158	return (m);
1159}
1160
1161static vm_page_t
1162pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1163{
1164	unsigned ptepindex;
1165	pd_entry_t *pde;
1166	vm_page_t m;
1167
1168	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1169	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1170	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1171
1172	/*
1173	 * Calculate pagetable page index
1174	 */
1175	ptepindex = pmap_pde_pindex(va);
1176retry:
1177	/*
1178	 * Get the page directory entry
1179	 */
1180	pde = pmap_pde(pmap, va);
1181
1182	/*
1183	 * If the page table page is mapped, we just increment the hold
1184	 * count, and activate it.
1185	 */
1186	if (pde != NULL && *pde != NULL) {
1187		m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
1188		m->wire_count++;
1189	} else {
1190		/*
1191		 * Here if the pte page isn't mapped, or if it has been
1192		 * deallocated.
1193		 */
1194		m = _pmap_allocpte(pmap, ptepindex, flags);
1195		if (m == NULL && (flags & M_WAITOK))
1196			goto retry;
1197	}
1198	return (m);
1199}
1200
1201
1202/***************************************************
1203 * Pmap allocation/deallocation routines.
1204 ***************************************************/
1205
1206/*
1207 * Release any resources held by the given physical map.
1208 * Called when a pmap initialized by pmap_pinit is being released.
1209 * Should only be called if the map contains no valid mappings.
1210 */
1211void
1212pmap_release(pmap_t pmap)
1213{
1214	vm_offset_t ptdva;
1215	vm_page_t ptdpg;
1216
1217	KASSERT(pmap->pm_stats.resident_count == 0,
1218	    ("pmap_release: pmap resident count %ld != 0",
1219	    pmap->pm_stats.resident_count));
1220
1221	ptdva = (vm_offset_t)pmap->pm_segtab;
1222	ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
1223
1224	ptdpg->wire_count--;
1225	atomic_subtract_int(&cnt.v_wire_count, 1);
1226	vm_page_free_zero(ptdpg);
1227	PMAP_LOCK_DESTROY(pmap);
1228}
1229
1230/*
1231 * grow the number of kernel page table entries, if needed
1232 */
1233void
1234pmap_growkernel(vm_offset_t addr)
1235{
1236	vm_page_t nkpg;
1237	pd_entry_t *pde, *pdpe;
1238	pt_entry_t *pte;
1239	int i;
1240
1241	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1242	addr = roundup2(addr, NBSEG);
1243	if (addr - 1 >= kernel_map->max_offset)
1244		addr = kernel_map->max_offset;
1245	while (kernel_vm_end < addr) {
1246		pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
1247#ifdef __mips_n64
1248		if (*pdpe == 0) {
1249			/* new intermediate page table entry */
1250			nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1251			if (nkpg == NULL)
1252				panic("pmap_growkernel: no memory to grow kernel");
1253			*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1254			continue; /* try again */
1255		}
1256#endif
1257		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1258		if (*pde != 0) {
1259			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1260			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1261				kernel_vm_end = kernel_map->max_offset;
1262				break;
1263			}
1264			continue;
1265		}
1266
1267		/*
1268		 * This index is bogus, but out of the way
1269		 */
1270		nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1271		if (!nkpg)
1272			panic("pmap_growkernel: no memory to grow kernel");
1273		nkpt++;
1274		*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1275
1276		/*
1277		 * The R[4-7]?00 stores only one copy of the Global bit in
1278		 * the translation lookaside buffer for each 2 page entry.
1279		 * Thus invalid entrys must have the Global bit set so when
1280		 * Entry LO and Entry HI G bits are anded together they will
1281		 * produce a global bit to store in the tlb.
1282		 */
1283		pte = (pt_entry_t *)*pde;
1284		for (i = 0; i < NPTEPG; i++)
1285			pte[i] = PTE_G;
1286
1287		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1288		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1289			kernel_vm_end = kernel_map->max_offset;
1290			break;
1291		}
1292	}
1293}
1294
1295/***************************************************
1296 * page management routines.
1297 ***************************************************/
1298
1299CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1300#ifdef __mips_n64
1301CTASSERT(_NPCM == 3);
1302CTASSERT(_NPCPV == 168);
1303#else
1304CTASSERT(_NPCM == 11);
1305CTASSERT(_NPCPV == 336);
1306#endif
1307
1308static __inline struct pv_chunk *
1309pv_to_chunk(pv_entry_t pv)
1310{
1311
1312	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1313}
1314
1315#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1316
1317#ifdef __mips_n64
1318#define	PC_FREE0_1	0xfffffffffffffffful
1319#define	PC_FREE2	0x000000fffffffffful
1320#else
1321#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1322#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1323#endif
1324
1325static const u_long pc_freemask[_NPCM] = {
1326#ifdef __mips_n64
1327	PC_FREE0_1, PC_FREE0_1, PC_FREE2
1328#else
1329	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1330	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1331	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1332	PC_FREE0_9, PC_FREE10
1333#endif
1334};
1335
1336static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
1337
1338SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1339    "Current number of pv entries");
1340
1341#ifdef PV_STATS
1342static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1343
1344SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1345    "Current number of pv entry chunks");
1346SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1347    "Current number of pv entry chunks allocated");
1348SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1349    "Current number of pv entry chunks frees");
1350SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1351    "Number of times tried to get a chunk page but failed.");
1352
1353static long pv_entry_frees, pv_entry_allocs;
1354static int pv_entry_spare;
1355
1356SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1357    "Current number of pv entry frees");
1358SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1359    "Current number of pv entry allocs");
1360SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1361    "Current number of spare pv entries");
1362#endif
1363
1364/*
1365 * We are in a serious low memory condition.  Resort to
1366 * drastic measures to free some pages so we can allocate
1367 * another pv entry chunk.
1368 */
1369static vm_page_t
1370pmap_pv_reclaim(pmap_t locked_pmap)
1371{
1372	struct pch newtail;
1373	struct pv_chunk *pc;
1374	pd_entry_t *pde;
1375	pmap_t pmap;
1376	pt_entry_t *pte, oldpte;
1377	pv_entry_t pv;
1378	vm_offset_t va;
1379	vm_page_t m, m_pc;
1380	u_long inuse;
1381	int bit, field, freed, idx;
1382
1383	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1384	pmap = NULL;
1385	m_pc = NULL;
1386	TAILQ_INIT(&newtail);
1387	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL) {
1388		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1389		if (pmap != pc->pc_pmap) {
1390			if (pmap != NULL) {
1391				pmap_invalidate_all(pmap);
1392				if (pmap != locked_pmap)
1393					PMAP_UNLOCK(pmap);
1394			}
1395			pmap = pc->pc_pmap;
1396			/* Avoid deadlock and lock recursion. */
1397			if (pmap > locked_pmap)
1398				PMAP_LOCK(pmap);
1399			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
1400				pmap = NULL;
1401				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1402				continue;
1403			}
1404		}
1405
1406		/*
1407		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1408		 */
1409		freed = 0;
1410		for (field = 0; field < _NPCM; field++) {
1411			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1412			    inuse != 0; inuse &= ~(1UL << bit)) {
1413				bit = ffsl(inuse) - 1;
1414				idx = field * sizeof(inuse) * NBBY + bit;
1415				pv = &pc->pc_pventry[idx];
1416				va = pv->pv_va;
1417				pde = pmap_pde(pmap, va);
1418				KASSERT(pde != NULL && *pde != 0,
1419				    ("pmap_pv_reclaim: pde"));
1420				pte = pmap_pde_to_pte(pde, va);
1421				oldpte = *pte;
1422				KASSERT(!pte_test(&oldpte, PTE_W),
1423				    ("wired pte for unwired page"));
1424				if (is_kernel_pmap(pmap))
1425					*pte = PTE_G;
1426				else
1427					*pte = 0;
1428				pmap_invalidate_page(pmap, va);
1429				m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(oldpte));
1430				if (pte_test(&oldpte, PTE_D))
1431					vm_page_dirty(m);
1432				if (m->md.pv_flags & PV_TABLE_REF)
1433					vm_page_aflag_set(m, PGA_REFERENCED);
1434				m->md.pv_flags &= ~PV_TABLE_REF;
1435				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1436				if (TAILQ_EMPTY(&m->md.pv_list))
1437					vm_page_aflag_clear(m, PGA_WRITEABLE);
1438				pc->pc_map[field] |= 1UL << bit;
1439				pmap_unuse_pt(pmap, va, *pde);
1440				freed++;
1441			}
1442		}
1443		if (freed == 0) {
1444			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1445			continue;
1446		}
1447		/* Every freed mapping is for a 4 KB page. */
1448		pmap->pm_stats.resident_count -= freed;
1449		PV_STAT(pv_entry_frees += freed);
1450		PV_STAT(pv_entry_spare += freed);
1451		pv_entry_count -= freed;
1452		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1453		for (field = 0; field < _NPCM; field++)
1454			if (pc->pc_map[field] != pc_freemask[field]) {
1455				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
1456				    pc_list);
1457				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1458
1459				/*
1460				 * One freed pv entry in locked_pmap is
1461				 * sufficient.
1462				 */
1463				if (pmap == locked_pmap)
1464					goto out;
1465				break;
1466			}
1467		if (field == _NPCM) {
1468			PV_STAT(pv_entry_spare -= _NPCPV);
1469			PV_STAT(pc_chunk_count--);
1470			PV_STAT(pc_chunk_frees++);
1471			/* Entire chunk is free; return it. */
1472			m_pc = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(
1473			    (vm_offset_t)pc));
1474			break;
1475		}
1476	}
1477out:
1478	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
1479	if (pmap != NULL) {
1480		pmap_invalidate_all(pmap);
1481		if (pmap != locked_pmap)
1482			PMAP_UNLOCK(pmap);
1483	}
1484	return (m_pc);
1485}
1486
1487/*
1488 * free the pv_entry back to the free list
1489 */
1490static void
1491free_pv_entry(pmap_t pmap, pv_entry_t pv)
1492{
1493	struct pv_chunk *pc;
1494	int bit, field, idx;
1495
1496	rw_assert(&pvh_global_lock, RA_WLOCKED);
1497	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1498	PV_STAT(pv_entry_frees++);
1499	PV_STAT(pv_entry_spare++);
1500	pv_entry_count--;
1501	pc = pv_to_chunk(pv);
1502	idx = pv - &pc->pc_pventry[0];
1503	field = idx / (sizeof(u_long) * NBBY);
1504	bit = idx % (sizeof(u_long) * NBBY);
1505	pc->pc_map[field] |= 1ul << bit;
1506	for (idx = 0; idx < _NPCM; idx++)
1507		if (pc->pc_map[idx] != pc_freemask[idx]) {
1508			/*
1509			 * 98% of the time, pc is already at the head of the
1510			 * list.  If it isn't already, move it to the head.
1511			 */
1512			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
1513			    pc)) {
1514				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1515				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
1516				    pc_list);
1517			}
1518			return;
1519		}
1520	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1521	free_pv_chunk(pc);
1522}
1523
1524static void
1525free_pv_chunk(struct pv_chunk *pc)
1526{
1527	vm_page_t m;
1528
1529 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1530	PV_STAT(pv_entry_spare -= _NPCPV);
1531	PV_STAT(pc_chunk_count--);
1532	PV_STAT(pc_chunk_frees++);
1533	/* entire chunk is free, return it */
1534	m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS((vm_offset_t)pc));
1535	vm_page_unwire(m, 0);
1536	vm_page_free(m);
1537}
1538
1539/*
1540 * get a new pv_entry, allocating a block from the system
1541 * when needed.
1542 */
1543static pv_entry_t
1544get_pv_entry(pmap_t pmap, boolean_t try)
1545{
1546	struct pv_chunk *pc;
1547	pv_entry_t pv;
1548	vm_page_t m;
1549	int bit, field, idx;
1550
1551	rw_assert(&pvh_global_lock, RA_WLOCKED);
1552	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1553	PV_STAT(pv_entry_allocs++);
1554	pv_entry_count++;
1555retry:
1556	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1557	if (pc != NULL) {
1558		for (field = 0; field < _NPCM; field++) {
1559			if (pc->pc_map[field]) {
1560				bit = ffsl(pc->pc_map[field]) - 1;
1561				break;
1562			}
1563		}
1564		if (field < _NPCM) {
1565			idx = field * sizeof(pc->pc_map[field]) * NBBY + bit;
1566			pv = &pc->pc_pventry[idx];
1567			pc->pc_map[field] &= ~(1ul << bit);
1568			/* If this was the last item, move it to tail */
1569			for (field = 0; field < _NPCM; field++)
1570				if (pc->pc_map[field] != 0) {
1571					PV_STAT(pv_entry_spare--);
1572					return (pv);	/* not full, return */
1573				}
1574			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1575			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1576			PV_STAT(pv_entry_spare--);
1577			return (pv);
1578		}
1579	}
1580	/* No free items, allocate another chunk */
1581	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, VM_ALLOC_NORMAL |
1582	    VM_ALLOC_WIRED);
1583	if (m == NULL) {
1584		if (try) {
1585			pv_entry_count--;
1586			PV_STAT(pc_chunk_tryfail++);
1587			return (NULL);
1588		}
1589		m = pmap_pv_reclaim(pmap);
1590		if (m == NULL)
1591			goto retry;
1592	}
1593	PV_STAT(pc_chunk_count++);
1594	PV_STAT(pc_chunk_allocs++);
1595	pc = (struct pv_chunk *)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1596	pc->pc_pmap = pmap;
1597	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
1598	for (field = 1; field < _NPCM; field++)
1599		pc->pc_map[field] = pc_freemask[field];
1600	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1601	pv = &pc->pc_pventry[0];
1602	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1603	PV_STAT(pv_entry_spare += _NPCPV - 1);
1604	return (pv);
1605}
1606
1607/*
1608 * If it is the first entry on the list, it is actually
1609 * in the header and we must copy the following entry up
1610 * to the header.  Otherwise we must search the list for
1611 * the entry.  In either case we free the now unused entry.
1612 */
1613
1614static pv_entry_t
1615pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1616{
1617	pv_entry_t pv;
1618
1619	rw_assert(&pvh_global_lock, RA_WLOCKED);
1620	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1621		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1622			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1623			break;
1624		}
1625	}
1626	return (pv);
1627}
1628
1629static void
1630pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1631{
1632	pv_entry_t pv;
1633
1634	pv = pmap_pvh_remove(pvh, pmap, va);
1635	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1636	     (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)),
1637	     (u_long)va));
1638	free_pv_entry(pmap, pv);
1639}
1640
1641static void
1642pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1643{
1644
1645	rw_assert(&pvh_global_lock, RA_WLOCKED);
1646	pmap_pvh_free(&m->md, pmap, va);
1647	if (TAILQ_EMPTY(&m->md.pv_list))
1648		vm_page_aflag_clear(m, PGA_WRITEABLE);
1649}
1650
1651/*
1652 * Conditionally create a pv entry.
1653 */
1654static boolean_t
1655pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1656    vm_page_t m)
1657{
1658	pv_entry_t pv;
1659
1660	rw_assert(&pvh_global_lock, RA_WLOCKED);
1661	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1662	if ((pv = get_pv_entry(pmap, TRUE)) != NULL) {
1663		pv->pv_va = va;
1664		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1665		return (TRUE);
1666	} else
1667		return (FALSE);
1668}
1669
1670/*
1671 * pmap_remove_pte: do the things to unmap a page in a process
1672 */
1673static int
1674pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
1675    pd_entry_t pde)
1676{
1677	pt_entry_t oldpte;
1678	vm_page_t m;
1679	vm_paddr_t pa;
1680
1681	rw_assert(&pvh_global_lock, RA_WLOCKED);
1682	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1683
1684	oldpte = *ptq;
1685	if (is_kernel_pmap(pmap))
1686		*ptq = PTE_G;
1687	else
1688		*ptq = 0;
1689
1690	if (pte_test(&oldpte, PTE_W))
1691		pmap->pm_stats.wired_count -= 1;
1692
1693	pmap->pm_stats.resident_count -= 1;
1694
1695	if (pte_test(&oldpte, PTE_MANAGED)) {
1696		pa = TLBLO_PTE_TO_PA(oldpte);
1697		m = PHYS_TO_VM_PAGE(pa);
1698		if (pte_test(&oldpte, PTE_D)) {
1699			KASSERT(!pte_test(&oldpte, PTE_RO),
1700			    ("%s: modified page not writable: va: %p, pte: %#jx",
1701			    __func__, (void *)va, (uintmax_t)oldpte));
1702			vm_page_dirty(m);
1703		}
1704		if (m->md.pv_flags & PV_TABLE_REF)
1705			vm_page_aflag_set(m, PGA_REFERENCED);
1706		m->md.pv_flags &= ~PV_TABLE_REF;
1707
1708		pmap_remove_entry(pmap, m, va);
1709	}
1710	return (pmap_unuse_pt(pmap, va, pde));
1711}
1712
1713/*
1714 * Remove a single page from a process address space
1715 */
1716static void
1717pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1718{
1719	pd_entry_t *pde;
1720	pt_entry_t *ptq;
1721
1722	rw_assert(&pvh_global_lock, RA_WLOCKED);
1723	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1724	pde = pmap_pde(pmap, va);
1725	if (pde == NULL || *pde == 0)
1726		return;
1727	ptq = pmap_pde_to_pte(pde, va);
1728
1729	/*
1730	 * if there is no pte for this address, just skip it!!!
1731	 */
1732	if (!pte_test(ptq, PTE_V)) {
1733		return;
1734	}
1735
1736	/*
1737	 * Write back all caches from the page being destroyed
1738	 */
1739	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1740
1741	/*
1742	 * get a local va for mappings for this pmap.
1743	 */
1744	(void)pmap_remove_pte(pmap, ptq, va, *pde);
1745	pmap_invalidate_page(pmap, va);
1746
1747	return;
1748}
1749
1750/*
1751 *	Remove the given range of addresses from the specified map.
1752 *
1753 *	It is assumed that the start and end are properly
1754 *	rounded to the page size.
1755 */
1756void
1757pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1758{
1759	vm_offset_t va_next;
1760	pd_entry_t *pde, *pdpe;
1761	pt_entry_t *pte;
1762
1763	if (pmap->pm_stats.resident_count == 0)
1764		return;
1765
1766	rw_wlock(&pvh_global_lock);
1767	PMAP_LOCK(pmap);
1768
1769	/*
1770	 * special handling of removing one page.  a very common operation
1771	 * and easy to short circuit some code.
1772	 */
1773	if ((sva + PAGE_SIZE) == eva) {
1774		pmap_remove_page(pmap, sva);
1775		goto out;
1776	}
1777	for (; sva < eva; sva = va_next) {
1778		pdpe = pmap_segmap(pmap, sva);
1779#ifdef __mips_n64
1780		if (*pdpe == 0) {
1781			va_next = (sva + NBSEG) & ~SEGMASK;
1782			if (va_next < sva)
1783				va_next = eva;
1784			continue;
1785		}
1786#endif
1787		va_next = (sva + NBPDR) & ~PDRMASK;
1788		if (va_next < sva)
1789			va_next = eva;
1790
1791		pde = pmap_pdpe_to_pde(pdpe, sva);
1792		if (*pde == 0)
1793			continue;
1794		if (va_next > eva)
1795			va_next = eva;
1796		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next;
1797		    pte++, sva += PAGE_SIZE) {
1798			pmap_remove_page(pmap, sva);
1799		}
1800	}
1801out:
1802	rw_wunlock(&pvh_global_lock);
1803	PMAP_UNLOCK(pmap);
1804}
1805
1806/*
1807 *	Routine:	pmap_remove_all
1808 *	Function:
1809 *		Removes this physical page from
1810 *		all physical maps in which it resides.
1811 *		Reflects back modify bits to the pager.
1812 *
1813 *	Notes:
1814 *		Original versions of this routine were very
1815 *		inefficient because they iteratively called
1816 *		pmap_remove (slow...)
1817 */
1818
1819void
1820pmap_remove_all(vm_page_t m)
1821{
1822	pv_entry_t pv;
1823	pmap_t pmap;
1824	pd_entry_t *pde;
1825	pt_entry_t *pte, tpte;
1826
1827	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1828	    ("pmap_remove_all: page %p is not managed", m));
1829	rw_wlock(&pvh_global_lock);
1830
1831	if (m->md.pv_flags & PV_TABLE_REF)
1832		vm_page_aflag_set(m, PGA_REFERENCED);
1833
1834	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1835		pmap = PV_PMAP(pv);
1836		PMAP_LOCK(pmap);
1837
1838		/*
1839		 * If it's last mapping writeback all caches from
1840		 * the page being destroyed
1841	 	 */
1842		if (TAILQ_NEXT(pv, pv_list) == NULL)
1843			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1844
1845		pmap->pm_stats.resident_count--;
1846
1847		pde = pmap_pde(pmap, pv->pv_va);
1848		KASSERT(pde != NULL && *pde != 0, ("pmap_remove_all: pde"));
1849		pte = pmap_pde_to_pte(pde, pv->pv_va);
1850
1851		tpte = *pte;
1852		if (is_kernel_pmap(pmap))
1853			*pte = PTE_G;
1854		else
1855			*pte = 0;
1856
1857		if (pte_test(&tpte, PTE_W))
1858			pmap->pm_stats.wired_count--;
1859
1860		/*
1861		 * Update the vm_page_t clean and reference bits.
1862		 */
1863		if (pte_test(&tpte, PTE_D)) {
1864			KASSERT(!pte_test(&tpte, PTE_RO),
1865			    ("%s: modified page not writable: va: %p, pte: %#jx",
1866			    __func__, (void *)pv->pv_va, (uintmax_t)tpte));
1867			vm_page_dirty(m);
1868		}
1869		pmap_invalidate_page(pmap, pv->pv_va);
1870
1871		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1872		pmap_unuse_pt(pmap, pv->pv_va, *pde);
1873		free_pv_entry(pmap, pv);
1874		PMAP_UNLOCK(pmap);
1875	}
1876
1877	vm_page_aflag_clear(m, PGA_WRITEABLE);
1878	m->md.pv_flags &= ~PV_TABLE_REF;
1879	rw_wunlock(&pvh_global_lock);
1880}
1881
1882/*
1883 *	Set the physical protection on the
1884 *	specified range of this map as requested.
1885 */
1886void
1887pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1888{
1889	pt_entry_t *pte;
1890	pd_entry_t *pde, *pdpe;
1891	vm_offset_t va_next;
1892
1893	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1894		pmap_remove(pmap, sva, eva);
1895		return;
1896	}
1897	if (prot & VM_PROT_WRITE)
1898		return;
1899
1900	rw_wlock(&pvh_global_lock);
1901	PMAP_LOCK(pmap);
1902	for (; sva < eva; sva = va_next) {
1903		pt_entry_t pbits;
1904		vm_page_t m;
1905		vm_paddr_t pa;
1906
1907		pdpe = pmap_segmap(pmap, sva);
1908#ifdef __mips_n64
1909		if (*pdpe == 0) {
1910			va_next = (sva + NBSEG) & ~SEGMASK;
1911			if (va_next < sva)
1912				va_next = eva;
1913			continue;
1914		}
1915#endif
1916		va_next = (sva + NBPDR) & ~PDRMASK;
1917		if (va_next < sva)
1918			va_next = eva;
1919
1920		pde = pmap_pdpe_to_pde(pdpe, sva);
1921		if (pde == NULL || *pde == NULL)
1922			continue;
1923		if (va_next > eva)
1924			va_next = eva;
1925
1926		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1927		     sva += PAGE_SIZE) {
1928
1929			/* Skip invalid PTEs */
1930			if (!pte_test(pte, PTE_V))
1931				continue;
1932			pbits = *pte;
1933			if (pte_test(&pbits, PTE_MANAGED | PTE_D)) {
1934				pa = TLBLO_PTE_TO_PA(pbits);
1935				m = PHYS_TO_VM_PAGE(pa);
1936				vm_page_dirty(m);
1937			}
1938			pte_clear(&pbits, PTE_D);
1939			pte_set(&pbits, PTE_RO);
1940
1941			if (pbits != *pte) {
1942				*pte = pbits;
1943				pmap_update_page(pmap, sva, pbits);
1944			}
1945		}
1946	}
1947	rw_wunlock(&pvh_global_lock);
1948	PMAP_UNLOCK(pmap);
1949}
1950
1951/*
1952 *	Insert the given physical page (p) at
1953 *	the specified virtual address (v) in the
1954 *	target physical map with the protection requested.
1955 *
1956 *	If specified, the page will be wired down, meaning
1957 *	that the related pte can not be reclaimed.
1958 *
1959 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1960 *	or lose information.  That is, this routine must actually
1961 *	insert this page into the given map NOW.
1962 */
1963void
1964pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1965    vm_prot_t prot, boolean_t wired)
1966{
1967	vm_paddr_t pa, opa;
1968	pt_entry_t *pte;
1969	pt_entry_t origpte, newpte;
1970	pv_entry_t pv;
1971	vm_page_t mpte, om;
1972	pt_entry_t rw;
1973
1974	va &= ~PAGE_MASK;
1975 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1976	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0,
1977	    ("pmap_enter: page %p is not busy", m));
1978	pa = VM_PAGE_TO_PHYS(m);
1979	newpte = TLBLO_PA_TO_PFN(pa) | PTE_V;
1980
1981	mpte = NULL;
1982
1983	rw_wlock(&pvh_global_lock);
1984	PMAP_LOCK(pmap);
1985
1986	/*
1987	 * In the case that a page table page is not resident, we are
1988	 * creating it here.
1989	 */
1990	if (va < VM_MAXUSER_ADDRESS) {
1991		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1992	}
1993	pte = pmap_pte(pmap, va);
1994
1995	/*
1996	 * Page Directory table entry not valid, we need a new PT page
1997	 */
1998	if (pte == NULL) {
1999		panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
2000		    (void *)pmap->pm_segtab, (void *)va);
2001	}
2002	om = NULL;
2003	origpte = *pte;
2004	opa = TLBLO_PTE_TO_PA(origpte);
2005
2006	/*
2007	 * Mapping has not changed, must be protection or wiring change.
2008	 */
2009	if (pte_test(&origpte, PTE_V) && opa == pa) {
2010		/*
2011		 * Wiring change, just update stats. We don't worry about
2012		 * wiring PT pages as they remain resident as long as there
2013		 * are valid mappings in them. Hence, if a user page is
2014		 * wired, the PT page will be also.
2015		 */
2016		if (wired && !pte_test(&origpte, PTE_W))
2017			pmap->pm_stats.wired_count++;
2018		else if (!wired && pte_test(&origpte, PTE_W))
2019			pmap->pm_stats.wired_count--;
2020
2021		KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
2022		    ("%s: modified page not writable: va: %p, pte: %#jx",
2023		    __func__, (void *)va, (uintmax_t)origpte));
2024
2025		/*
2026		 * Remove extra pte reference
2027		 */
2028		if (mpte)
2029			mpte->wire_count--;
2030
2031		if (pte_test(&origpte, PTE_MANAGED)) {
2032			om = m;
2033			newpte |= PTE_MANAGED;
2034		}
2035		goto validate;
2036	}
2037
2038	pv = NULL;
2039
2040	/*
2041	 * Mapping has changed, invalidate old range and fall through to
2042	 * handle validating new mapping.
2043	 */
2044	if (opa) {
2045		if (pte_test(&origpte, PTE_W))
2046			pmap->pm_stats.wired_count--;
2047
2048		if (pte_test(&origpte, PTE_MANAGED)) {
2049			om = PHYS_TO_VM_PAGE(opa);
2050			pv = pmap_pvh_remove(&om->md, pmap, va);
2051		}
2052		if (mpte != NULL) {
2053			mpte->wire_count--;
2054			KASSERT(mpte->wire_count > 0,
2055			    ("pmap_enter: missing reference to page table page,"
2056			    " va: %p", (void *)va));
2057		}
2058	} else
2059		pmap->pm_stats.resident_count++;
2060
2061	/*
2062	 * Enter on the PV list if part of our managed memory. Note that we
2063	 * raise IPL while manipulating pv_table since pmap_enter can be
2064	 * called at interrupt time.
2065	 */
2066	if ((m->oflags & VPO_UNMANAGED) == 0) {
2067		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2068		    ("pmap_enter: managed mapping within the clean submap"));
2069		if (pv == NULL)
2070			pv = get_pv_entry(pmap, FALSE);
2071		pv->pv_va = va;
2072		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2073		newpte |= PTE_MANAGED;
2074	} else if (pv != NULL)
2075		free_pv_entry(pmap, pv);
2076
2077	/*
2078	 * Increment counters
2079	 */
2080	if (wired)
2081		pmap->pm_stats.wired_count++;
2082
2083validate:
2084	if ((access & VM_PROT_WRITE) != 0)
2085		m->md.pv_flags |= PV_TABLE_REF;
2086	rw = init_pte_prot(m, access, prot);
2087
2088#ifdef PMAP_DEBUG
2089	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
2090#endif
2091	/*
2092	 * Now validate mapping with desired protection/wiring.
2093	 */
2094	newpte |= rw;
2095
2096	if (is_cacheable_mem(pa))
2097		newpte |= PTE_C_CACHE;
2098	else
2099		newpte |= PTE_C_UNCACHED;
2100
2101	if (wired)
2102		newpte |= PTE_W;
2103
2104	if (is_kernel_pmap(pmap))
2105	         newpte |= PTE_G;
2106
2107	/*
2108	 * if the mapping or permission bits are different, we need to
2109	 * update the pte.
2110	 */
2111	if (origpte != newpte) {
2112		if (pte_test(&origpte, PTE_V)) {
2113			*pte = newpte;
2114			if (pte_test(&origpte, PTE_MANAGED) && opa != pa) {
2115				if (om->md.pv_flags & PV_TABLE_REF)
2116					vm_page_aflag_set(om, PGA_REFERENCED);
2117				om->md.pv_flags &= ~PV_TABLE_REF;
2118			}
2119			if (pte_test(&origpte, PTE_D)) {
2120				KASSERT(!pte_test(&origpte, PTE_RO),
2121				    ("pmap_enter: modified page not writable:"
2122				    " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte));
2123				if (pte_test(&origpte, PTE_MANAGED))
2124					vm_page_dirty(om);
2125			}
2126			if (pte_test(&origpte, PTE_MANAGED) &&
2127			    TAILQ_EMPTY(&om->md.pv_list))
2128				vm_page_aflag_clear(om, PGA_WRITEABLE);
2129		} else {
2130			*pte = newpte;
2131		}
2132	}
2133	pmap_update_page(pmap, va, newpte);
2134
2135	/*
2136	 * Sync I & D caches for executable pages.  Do this only if the
2137	 * target pmap belongs to the current process.  Otherwise, an
2138	 * unresolvable TLB miss may occur.
2139	 */
2140	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
2141	    (prot & VM_PROT_EXECUTE)) {
2142		mips_icache_sync_range(va, PAGE_SIZE);
2143		mips_dcache_wbinv_range(va, PAGE_SIZE);
2144	}
2145	rw_wunlock(&pvh_global_lock);
2146	PMAP_UNLOCK(pmap);
2147}
2148
2149/*
2150 * this code makes some *MAJOR* assumptions:
2151 * 1. Current pmap & pmap exists.
2152 * 2. Not wired.
2153 * 3. Read access.
2154 * 4. No page table pages.
2155 * but is *MUCH* faster than pmap_enter...
2156 */
2157
2158void
2159pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2160{
2161
2162	rw_wlock(&pvh_global_lock);
2163	PMAP_LOCK(pmap);
2164	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2165	rw_wunlock(&pvh_global_lock);
2166	PMAP_UNLOCK(pmap);
2167}
2168
2169static vm_page_t
2170pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2171    vm_prot_t prot, vm_page_t mpte)
2172{
2173	pt_entry_t *pte;
2174	vm_paddr_t pa;
2175
2176	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2177	    (m->oflags & VPO_UNMANAGED) != 0,
2178	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2179	rw_assert(&pvh_global_lock, RA_WLOCKED);
2180	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2181
2182	/*
2183	 * In the case that a page table page is not resident, we are
2184	 * creating it here.
2185	 */
2186	if (va < VM_MAXUSER_ADDRESS) {
2187		pd_entry_t *pde;
2188		unsigned ptepindex;
2189
2190		/*
2191		 * Calculate pagetable page index
2192		 */
2193		ptepindex = pmap_pde_pindex(va);
2194		if (mpte && (mpte->pindex == ptepindex)) {
2195			mpte->wire_count++;
2196		} else {
2197			/*
2198			 * Get the page directory entry
2199			 */
2200			pde = pmap_pde(pmap, va);
2201
2202			/*
2203			 * If the page table page is mapped, we just
2204			 * increment the hold count, and activate it.
2205			 */
2206			if (pde && *pde != 0) {
2207				mpte = PHYS_TO_VM_PAGE(
2208				    MIPS_DIRECT_TO_PHYS(*pde));
2209				mpte->wire_count++;
2210			} else {
2211				mpte = _pmap_allocpte(pmap, ptepindex,
2212				    M_NOWAIT);
2213				if (mpte == NULL)
2214					return (mpte);
2215			}
2216		}
2217	} else {
2218		mpte = NULL;
2219	}
2220
2221	pte = pmap_pte(pmap, va);
2222	if (pte_test(pte, PTE_V)) {
2223		if (mpte != NULL) {
2224			mpte->wire_count--;
2225			mpte = NULL;
2226		}
2227		return (mpte);
2228	}
2229
2230	/*
2231	 * Enter on the PV list if part of our managed memory.
2232	 */
2233	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2234	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2235		if (mpte != NULL) {
2236			pmap_unwire_pte_hold(pmap, va, mpte);
2237			mpte = NULL;
2238		}
2239		return (mpte);
2240	}
2241
2242	/*
2243	 * Increment counters
2244	 */
2245	pmap->pm_stats.resident_count++;
2246
2247	pa = VM_PAGE_TO_PHYS(m);
2248
2249	/*
2250	 * Now validate mapping with RO protection
2251	 */
2252	*pte = TLBLO_PA_TO_PFN(pa) | PTE_V;
2253	if ((m->oflags & VPO_UNMANAGED) == 0)
2254		*pte |= PTE_MANAGED;
2255
2256	if (is_cacheable_mem(pa))
2257		*pte |= PTE_C_CACHE;
2258	else
2259		*pte |= PTE_C_UNCACHED;
2260
2261	if (is_kernel_pmap(pmap))
2262		*pte |= PTE_G;
2263	else {
2264		*pte |= PTE_RO;
2265		/*
2266		 * Sync I & D caches.  Do this only if the target pmap
2267		 * belongs to the current process.  Otherwise, an
2268		 * unresolvable TLB miss may occur. */
2269		if (pmap == &curproc->p_vmspace->vm_pmap) {
2270			va &= ~PAGE_MASK;
2271			mips_icache_sync_range(va, PAGE_SIZE);
2272			mips_dcache_wbinv_range(va, PAGE_SIZE);
2273		}
2274	}
2275	return (mpte);
2276}
2277
2278/*
2279 * Make a temporary mapping for a physical address.  This is only intended
2280 * to be used for panic dumps.
2281 *
2282 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2283 */
2284void *
2285pmap_kenter_temporary(vm_paddr_t pa, int i)
2286{
2287	vm_offset_t va;
2288
2289	if (i != 0)
2290		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2291		    __func__);
2292
2293	if (MIPS_DIRECT_MAPPABLE(pa)) {
2294		va = MIPS_PHYS_TO_DIRECT(pa);
2295	} else {
2296#ifndef __mips_n64    /* XXX : to be converted to new style */
2297		int cpu;
2298		register_t intr;
2299		struct local_sysmaps *sysm;
2300		pt_entry_t *pte, npte;
2301
2302		/* If this is used other than for dumps, we may need to leave
2303		 * interrupts disasbled on return. If crash dumps don't work when
2304		 * we get to this point, we might want to consider this (leaving things
2305		 * disabled as a starting point ;-)
2306	 	 */
2307		intr = intr_disable();
2308		cpu = PCPU_GET(cpuid);
2309		sysm = &sysmap_lmem[cpu];
2310		/* Since this is for the debugger, no locks or any other fun */
2311		npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
2312		pte = pmap_pte(kernel_pmap, sysm->base);
2313		*pte = npte;
2314		sysm->valid1 = 1;
2315		pmap_update_page(kernel_pmap, sysm->base, npte);
2316		va = sysm->base;
2317		intr_restore(intr);
2318#endif
2319	}
2320	return ((void *)va);
2321}
2322
2323void
2324pmap_kenter_temporary_free(vm_paddr_t pa)
2325{
2326#ifndef __mips_n64    /* XXX : to be converted to new style */
2327	int cpu;
2328	register_t intr;
2329	struct local_sysmaps *sysm;
2330#endif
2331
2332	if (MIPS_DIRECT_MAPPABLE(pa)) {
2333		/* nothing to do for this case */
2334		return;
2335	}
2336#ifndef __mips_n64    /* XXX : to be converted to new style */
2337	cpu = PCPU_GET(cpuid);
2338	sysm = &sysmap_lmem[cpu];
2339	if (sysm->valid1) {
2340		pt_entry_t *pte;
2341
2342		intr = intr_disable();
2343		pte = pmap_pte(kernel_pmap, sysm->base);
2344		*pte = PTE_G;
2345		pmap_invalidate_page(kernel_pmap, sysm->base);
2346		intr_restore(intr);
2347		sysm->valid1 = 0;
2348	}
2349#endif
2350}
2351
2352/*
2353 * Maps a sequence of resident pages belonging to the same object.
2354 * The sequence begins with the given page m_start.  This page is
2355 * mapped at the given virtual address start.  Each subsequent page is
2356 * mapped at a virtual address that is offset from start by the same
2357 * amount as the page is offset from m_start within the object.  The
2358 * last page in the sequence is the page with the largest offset from
2359 * m_start that can be mapped at a virtual address less than the given
2360 * virtual address end.  Not every virtual page between start and end
2361 * is mapped; only those for which a resident page exists with the
2362 * corresponding offset from m_start are mapped.
2363 */
2364void
2365pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2366    vm_page_t m_start, vm_prot_t prot)
2367{
2368	vm_page_t m, mpte;
2369	vm_pindex_t diff, psize;
2370
2371	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2372	psize = atop(end - start);
2373	mpte = NULL;
2374	m = m_start;
2375	rw_wlock(&pvh_global_lock);
2376	PMAP_LOCK(pmap);
2377	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2378		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2379		    prot, mpte);
2380		m = TAILQ_NEXT(m, listq);
2381	}
2382	rw_wunlock(&pvh_global_lock);
2383 	PMAP_UNLOCK(pmap);
2384}
2385
2386/*
2387 * pmap_object_init_pt preloads the ptes for a given object
2388 * into the specified pmap.  This eliminates the blast of soft
2389 * faults on process startup and immediately after an mmap.
2390 */
2391void
2392pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2393    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2394{
2395	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2396	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2397	    ("pmap_object_init_pt: non-device object"));
2398}
2399
2400/*
2401 *	Routine:	pmap_change_wiring
2402 *	Function:	Change the wiring attribute for a map/virtual-address
2403 *			pair.
2404 *	In/out conditions:
2405 *			The mapping must already exist in the pmap.
2406 */
2407void
2408pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2409{
2410	pt_entry_t *pte;
2411
2412	PMAP_LOCK(pmap);
2413	pte = pmap_pte(pmap, va);
2414
2415	if (wired && !pte_test(pte, PTE_W))
2416		pmap->pm_stats.wired_count++;
2417	else if (!wired && pte_test(pte, PTE_W))
2418		pmap->pm_stats.wired_count--;
2419
2420	/*
2421	 * Wiring is not a hardware characteristic so there is no need to
2422	 * invalidate TLB.
2423	 */
2424	if (wired)
2425		pte_set(pte, PTE_W);
2426	else
2427		pte_clear(pte, PTE_W);
2428	PMAP_UNLOCK(pmap);
2429}
2430
2431/*
2432 *	Copy the range specified by src_addr/len
2433 *	from the source map to the range dst_addr/len
2434 *	in the destination map.
2435 *
2436 *	This routine is only advisory and need not do anything.
2437 */
2438
2439void
2440pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2441    vm_size_t len, vm_offset_t src_addr)
2442{
2443}
2444
2445/*
2446 *	pmap_zero_page zeros the specified hardware page by mapping
2447 *	the page into KVM and using bzero to clear its contents.
2448 *
2449 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2450 */
2451void
2452pmap_zero_page(vm_page_t m)
2453{
2454	vm_offset_t va;
2455	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2456
2457	if (MIPS_DIRECT_MAPPABLE(phys)) {
2458		va = MIPS_PHYS_TO_DIRECT(phys);
2459		bzero((caddr_t)va, PAGE_SIZE);
2460		mips_dcache_wbinv_range(va, PAGE_SIZE);
2461	} else {
2462		va = pmap_lmem_map1(phys);
2463		bzero((caddr_t)va, PAGE_SIZE);
2464		mips_dcache_wbinv_range(va, PAGE_SIZE);
2465		pmap_lmem_unmap();
2466	}
2467}
2468
2469/*
2470 *	pmap_zero_page_area zeros the specified hardware page by mapping
2471 *	the page into KVM and using bzero to clear its contents.
2472 *
2473 *	off and size may not cover an area beyond a single hardware page.
2474 */
2475void
2476pmap_zero_page_area(vm_page_t m, int off, int size)
2477{
2478	vm_offset_t va;
2479	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2480
2481	if (MIPS_DIRECT_MAPPABLE(phys)) {
2482		va = MIPS_PHYS_TO_DIRECT(phys);
2483		bzero((char *)(caddr_t)va + off, size);
2484		mips_dcache_wbinv_range(va + off, size);
2485	} else {
2486		va = pmap_lmem_map1(phys);
2487		bzero((char *)va + off, size);
2488		mips_dcache_wbinv_range(va + off, size);
2489		pmap_lmem_unmap();
2490	}
2491}
2492
2493void
2494pmap_zero_page_idle(vm_page_t m)
2495{
2496	vm_offset_t va;
2497	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2498
2499	if (MIPS_DIRECT_MAPPABLE(phys)) {
2500		va = MIPS_PHYS_TO_DIRECT(phys);
2501		bzero((caddr_t)va, PAGE_SIZE);
2502		mips_dcache_wbinv_range(va, PAGE_SIZE);
2503	} else {
2504		va = pmap_lmem_map1(phys);
2505		bzero((caddr_t)va, PAGE_SIZE);
2506		mips_dcache_wbinv_range(va, PAGE_SIZE);
2507		pmap_lmem_unmap();
2508	}
2509}
2510
2511/*
2512 *	pmap_copy_page copies the specified (machine independent)
2513 *	page by mapping the page into virtual memory and using
2514 *	bcopy to copy the page, one machine dependent page at a
2515 *	time.
2516 *
2517 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2518 */
2519void
2520pmap_copy_page(vm_page_t src, vm_page_t dst)
2521{
2522	vm_offset_t va_src, va_dst;
2523	vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
2524	vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
2525
2526	if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
2527		/* easy case, all can be accessed via KSEG0 */
2528		/*
2529		 * Flush all caches for VA that are mapped to this page
2530		 * to make sure that data in SDRAM is up to date
2531		 */
2532		pmap_flush_pvcache(src);
2533		mips_dcache_wbinv_range_index(
2534		    MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
2535		va_src = MIPS_PHYS_TO_DIRECT(phys_src);
2536		va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
2537		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2538		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2539	} else {
2540		va_src = pmap_lmem_map2(phys_src, phys_dst);
2541		va_dst = va_src + PAGE_SIZE;
2542		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2543		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2544		pmap_lmem_unmap();
2545	}
2546}
2547
2548/*
2549 * Returns true if the pmap's pv is one of the first
2550 * 16 pvs linked to from this page.  This count may
2551 * be changed upwards or downwards in the future; it
2552 * is only necessary that true be returned for a small
2553 * subset of pmaps for proper page aging.
2554 */
2555boolean_t
2556pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2557{
2558	pv_entry_t pv;
2559	int loops = 0;
2560	boolean_t rv;
2561
2562	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2563	    ("pmap_page_exists_quick: page %p is not managed", m));
2564	rv = FALSE;
2565	rw_wlock(&pvh_global_lock);
2566	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2567		if (PV_PMAP(pv) == pmap) {
2568			rv = TRUE;
2569			break;
2570		}
2571		loops++;
2572		if (loops >= 16)
2573			break;
2574	}
2575	rw_wunlock(&pvh_global_lock);
2576	return (rv);
2577}
2578
2579/*
2580 * Remove all pages from specified address space
2581 * this aids process exit speeds.  Also, this code
2582 * is special cased for current process only, but
2583 * can have the more generic (and slightly slower)
2584 * mode enabled.  This is much faster than pmap_remove
2585 * in the case of running down an entire address space.
2586 */
2587void
2588pmap_remove_pages(pmap_t pmap)
2589{
2590	pd_entry_t *pde;
2591	pt_entry_t *pte, tpte;
2592	pv_entry_t pv;
2593	vm_page_t m;
2594	struct pv_chunk *pc, *npc;
2595	u_long inuse, bitmask;
2596	int allfree, bit, field, idx;
2597
2598	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2599		printf("warning: pmap_remove_pages called with non-current pmap\n");
2600		return;
2601	}
2602	rw_wlock(&pvh_global_lock);
2603	PMAP_LOCK(pmap);
2604	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
2605		allfree = 1;
2606		for (field = 0; field < _NPCM; field++) {
2607			inuse = ~pc->pc_map[field] & pc_freemask[field];
2608			while (inuse != 0) {
2609				bit = ffsl(inuse) - 1;
2610				bitmask = 1UL << bit;
2611				idx = field * sizeof(inuse) * NBBY + bit;
2612				pv = &pc->pc_pventry[idx];
2613				inuse &= ~bitmask;
2614
2615				pde = pmap_pde(pmap, pv->pv_va);
2616				KASSERT(pde != NULL && *pde != 0,
2617				    ("pmap_remove_pages: pde"));
2618				pte = pmap_pde_to_pte(pde, pv->pv_va);
2619				if (!pte_test(pte, PTE_V))
2620					panic("pmap_remove_pages: bad pte");
2621				tpte = *pte;
2622
2623/*
2624 * We cannot remove wired pages from a process' mapping at this time
2625 */
2626				if (pte_test(&tpte, PTE_W)) {
2627					allfree = 0;
2628					continue;
2629				}
2630				*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2631
2632				m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2633				KASSERT(m != NULL,
2634				    ("pmap_remove_pages: bad tpte %#jx",
2635				    (uintmax_t)tpte));
2636
2637				/*
2638				 * Update the vm_page_t clean and reference bits.
2639				 */
2640				if (pte_test(&tpte, PTE_D))
2641					vm_page_dirty(m);
2642
2643				/* Mark free */
2644				PV_STAT(pv_entry_frees++);
2645				PV_STAT(pv_entry_spare++);
2646				pv_entry_count--;
2647				pc->pc_map[field] |= bitmask;
2648				pmap->pm_stats.resident_count--;
2649				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2650				if (TAILQ_EMPTY(&m->md.pv_list))
2651					vm_page_aflag_clear(m, PGA_WRITEABLE);
2652				pmap_unuse_pt(pmap, pv->pv_va, *pde);
2653			}
2654		}
2655		if (allfree) {
2656			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2657			free_pv_chunk(pc);
2658		}
2659	}
2660	pmap_invalidate_all(pmap);
2661	PMAP_UNLOCK(pmap);
2662	rw_wunlock(&pvh_global_lock);
2663}
2664
2665/*
2666 * pmap_testbit tests bits in pte's
2667 */
2668static boolean_t
2669pmap_testbit(vm_page_t m, int bit)
2670{
2671	pv_entry_t pv;
2672	pmap_t pmap;
2673	pt_entry_t *pte;
2674	boolean_t rv = FALSE;
2675
2676	if (m->oflags & VPO_UNMANAGED)
2677		return (rv);
2678
2679	rw_assert(&pvh_global_lock, RA_WLOCKED);
2680	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2681		pmap = PV_PMAP(pv);
2682		PMAP_LOCK(pmap);
2683		pte = pmap_pte(pmap, pv->pv_va);
2684		rv = pte_test(pte, bit);
2685		PMAP_UNLOCK(pmap);
2686		if (rv)
2687			break;
2688	}
2689	return (rv);
2690}
2691
2692/*
2693 *	pmap_page_wired_mappings:
2694 *
2695 *	Return the number of managed mappings to the given physical page
2696 *	that are wired.
2697 */
2698int
2699pmap_page_wired_mappings(vm_page_t m)
2700{
2701	pv_entry_t pv;
2702	pmap_t pmap;
2703	pt_entry_t *pte;
2704	int count;
2705
2706	count = 0;
2707	if ((m->oflags & VPO_UNMANAGED) != 0)
2708		return (count);
2709	rw_wlock(&pvh_global_lock);
2710	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2711		pmap = PV_PMAP(pv);
2712		PMAP_LOCK(pmap);
2713		pte = pmap_pte(pmap, pv->pv_va);
2714		if (pte_test(pte, PTE_W))
2715			count++;
2716		PMAP_UNLOCK(pmap);
2717	}
2718	rw_wunlock(&pvh_global_lock);
2719	return (count);
2720}
2721
2722/*
2723 * Clear the write and modified bits in each of the given page's mappings.
2724 */
2725void
2726pmap_remove_write(vm_page_t m)
2727{
2728	pmap_t pmap;
2729	pt_entry_t pbits, *pte;
2730	pv_entry_t pv;
2731
2732	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2733	    ("pmap_remove_write: page %p is not managed", m));
2734
2735	/*
2736	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
2737	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
2738	 * is clear, no page table entries need updating.
2739	 */
2740	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2741	if ((m->oflags & VPO_BUSY) == 0 &&
2742	    (m->aflags & PGA_WRITEABLE) == 0)
2743		return;
2744	rw_wlock(&pvh_global_lock);
2745	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2746		pmap = PV_PMAP(pv);
2747		PMAP_LOCK(pmap);
2748		pte = pmap_pte(pmap, pv->pv_va);
2749		KASSERT(pte != NULL && pte_test(pte, PTE_V),
2750		    ("page on pv_list has no pte"));
2751		pbits = *pte;
2752		if (pte_test(&pbits, PTE_D)) {
2753			pte_clear(&pbits, PTE_D);
2754			vm_page_dirty(m);
2755		}
2756		pte_set(&pbits, PTE_RO);
2757		if (pbits != *pte) {
2758			*pte = pbits;
2759			pmap_update_page(pmap, pv->pv_va, pbits);
2760		}
2761		PMAP_UNLOCK(pmap);
2762	}
2763	vm_page_aflag_clear(m, PGA_WRITEABLE);
2764	rw_wunlock(&pvh_global_lock);
2765}
2766
2767/*
2768 *	pmap_ts_referenced:
2769 *
2770 *	Return the count of reference bits for a page, clearing all of them.
2771 */
2772int
2773pmap_ts_referenced(vm_page_t m)
2774{
2775
2776	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2777	    ("pmap_ts_referenced: page %p is not managed", m));
2778	if (m->md.pv_flags & PV_TABLE_REF) {
2779		rw_wlock(&pvh_global_lock);
2780		m->md.pv_flags &= ~PV_TABLE_REF;
2781		rw_wunlock(&pvh_global_lock);
2782		return (1);
2783	}
2784	return (0);
2785}
2786
2787/*
2788 *	pmap_is_modified:
2789 *
2790 *	Return whether or not the specified physical page was modified
2791 *	in any physical maps.
2792 */
2793boolean_t
2794pmap_is_modified(vm_page_t m)
2795{
2796	boolean_t rv;
2797
2798	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2799	    ("pmap_is_modified: page %p is not managed", m));
2800
2801	/*
2802	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2803	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2804	 * is clear, no PTEs can have PTE_D set.
2805	 */
2806	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2807	if ((m->oflags & VPO_BUSY) == 0 &&
2808	    (m->aflags & PGA_WRITEABLE) == 0)
2809		return (FALSE);
2810	rw_wlock(&pvh_global_lock);
2811	rv = pmap_testbit(m, PTE_D);
2812	rw_wunlock(&pvh_global_lock);
2813	return (rv);
2814}
2815
2816/* N/C */
2817
2818/*
2819 *	pmap_is_prefaultable:
2820 *
2821 *	Return whether or not the specified virtual address is elgible
2822 *	for prefault.
2823 */
2824boolean_t
2825pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2826{
2827	pd_entry_t *pde;
2828	pt_entry_t *pte;
2829	boolean_t rv;
2830
2831	rv = FALSE;
2832	PMAP_LOCK(pmap);
2833	pde = pmap_pde(pmap, addr);
2834	if (pde != NULL && *pde != 0) {
2835		pte = pmap_pde_to_pte(pde, addr);
2836		rv = (*pte == 0);
2837	}
2838	PMAP_UNLOCK(pmap);
2839	return (rv);
2840}
2841
2842/*
2843 *	Clear the modify bits on the specified physical page.
2844 */
2845void
2846pmap_clear_modify(vm_page_t m)
2847{
2848	pmap_t pmap;
2849	pt_entry_t *pte;
2850	pv_entry_t pv;
2851
2852	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2853	    ("pmap_clear_modify: page %p is not managed", m));
2854	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2855	KASSERT((m->oflags & VPO_BUSY) == 0,
2856	    ("pmap_clear_modify: page %p is busy", m));
2857
2858	/*
2859	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
2860	 * If the object containing the page is locked and the page is not
2861	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
2862	 */
2863	if ((m->aflags & PGA_WRITEABLE) == 0)
2864		return;
2865	rw_wlock(&pvh_global_lock);
2866	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2867		pmap = PV_PMAP(pv);
2868		PMAP_LOCK(pmap);
2869		pte = pmap_pte(pmap, pv->pv_va);
2870		if (pte_test(pte, PTE_D)) {
2871			pte_clear(pte, PTE_D);
2872			pmap_update_page(pmap, pv->pv_va, *pte);
2873		}
2874		PMAP_UNLOCK(pmap);
2875	}
2876	rw_wunlock(&pvh_global_lock);
2877}
2878
2879/*
2880 *	pmap_is_referenced:
2881 *
2882 *	Return whether or not the specified physical page was referenced
2883 *	in any physical maps.
2884 */
2885boolean_t
2886pmap_is_referenced(vm_page_t m)
2887{
2888
2889	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2890	    ("pmap_is_referenced: page %p is not managed", m));
2891	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
2892}
2893
2894/*
2895 *	pmap_clear_reference:
2896 *
2897 *	Clear the reference bit on the specified physical page.
2898 */
2899void
2900pmap_clear_reference(vm_page_t m)
2901{
2902
2903	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2904	    ("pmap_clear_reference: page %p is not managed", m));
2905	rw_wlock(&pvh_global_lock);
2906	if (m->md.pv_flags & PV_TABLE_REF) {
2907		m->md.pv_flags &= ~PV_TABLE_REF;
2908	}
2909	rw_wunlock(&pvh_global_lock);
2910}
2911
2912/*
2913 * Miscellaneous support routines follow
2914 */
2915
2916/*
2917 * Map a set of physical memory pages into the kernel virtual
2918 * address space. Return a pointer to where it is mapped. This
2919 * routine is intended to be used for mapping device memory,
2920 * NOT real memory.
2921 */
2922
2923/*
2924 * Map a set of physical memory pages into the kernel virtual
2925 * address space. Return a pointer to where it is mapped. This
2926 * routine is intended to be used for mapping device memory,
2927 * NOT real memory.
2928 *
2929 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
2930 */
2931void *
2932pmap_mapdev(vm_paddr_t pa, vm_size_t size)
2933{
2934        vm_offset_t va, tmpva, offset;
2935
2936	/*
2937	 * KSEG1 maps only first 512M of phys address space. For
2938	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2939	 */
2940	if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
2941		return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
2942	else {
2943		offset = pa & PAGE_MASK;
2944		size = roundup(size + offset, PAGE_SIZE);
2945
2946		va = kmem_alloc_nofault(kernel_map, size);
2947		if (!va)
2948			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2949		pa = trunc_page(pa);
2950		for (tmpva = va; size > 0;) {
2951			pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
2952			size -= PAGE_SIZE;
2953			tmpva += PAGE_SIZE;
2954			pa += PAGE_SIZE;
2955		}
2956	}
2957
2958	return ((void *)(va + offset));
2959}
2960
2961void
2962pmap_unmapdev(vm_offset_t va, vm_size_t size)
2963{
2964#ifndef __mips_n64
2965	vm_offset_t base, offset, tmpva;
2966
2967	/* If the address is within KSEG1 then there is nothing to do */
2968	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2969		return;
2970
2971	base = trunc_page(va);
2972	offset = va & PAGE_MASK;
2973	size = roundup(size + offset, PAGE_SIZE);
2974	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2975		pmap_kremove(tmpva);
2976	kmem_free(kernel_map, base, size);
2977#endif
2978}
2979
2980/*
2981 * perform the pmap work for mincore
2982 */
2983int
2984pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
2985{
2986	pt_entry_t *ptep, pte;
2987	vm_paddr_t pa;
2988	vm_page_t m;
2989	int val;
2990
2991	PMAP_LOCK(pmap);
2992retry:
2993	ptep = pmap_pte(pmap, addr);
2994	pte = (ptep != NULL) ? *ptep : 0;
2995	if (!pte_test(&pte, PTE_V)) {
2996		val = 0;
2997		goto out;
2998	}
2999	val = MINCORE_INCORE;
3000	if (pte_test(&pte, PTE_D))
3001		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
3002	pa = TLBLO_PTE_TO_PA(pte);
3003	if (pte_test(&pte, PTE_MANAGED)) {
3004		/*
3005		 * This may falsely report the given address as
3006		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
3007		 * per-PTE reference information, it is impossible to
3008		 * determine if the address is MINCORE_REFERENCED.
3009		 */
3010		m = PHYS_TO_VM_PAGE(pa);
3011		if ((m->aflags & PGA_REFERENCED) != 0)
3012			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
3013	}
3014	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
3015	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
3016	    pte_test(&pte, PTE_MANAGED)) {
3017		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
3018		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
3019			goto retry;
3020	} else
3021out:
3022		PA_UNLOCK_COND(*locked_pa);
3023	PMAP_UNLOCK(pmap);
3024	return (val);
3025}
3026
3027void
3028pmap_activate(struct thread *td)
3029{
3030	pmap_t pmap, oldpmap;
3031	struct proc *p = td->td_proc;
3032	u_int cpuid;
3033
3034	critical_enter();
3035
3036	pmap = vmspace_pmap(p->p_vmspace);
3037	oldpmap = PCPU_GET(curpmap);
3038	cpuid = PCPU_GET(cpuid);
3039
3040	if (oldpmap)
3041		CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
3042	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
3043	pmap_asid_alloc(pmap);
3044	if (td == curthread) {
3045		PCPU_SET(segbase, pmap->pm_segtab);
3046		mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
3047	}
3048
3049	PCPU_SET(curpmap, pmap);
3050	critical_exit();
3051}
3052
3053void
3054pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3055{
3056}
3057
3058/*
3059 *	Increase the starting virtual address of the given mapping if a
3060 *	different alignment might result in more superpage mappings.
3061 */
3062void
3063pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
3064    vm_offset_t *addr, vm_size_t size)
3065{
3066	vm_offset_t superpage_offset;
3067
3068	if (size < NBSEG)
3069		return;
3070	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3071		offset += ptoa(object->pg_color);
3072	superpage_offset = offset & SEGMASK;
3073	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
3074	    (*addr & SEGMASK) == superpage_offset)
3075		return;
3076	if ((*addr & SEGMASK) < superpage_offset)
3077		*addr = (*addr & ~SEGMASK) + superpage_offset;
3078	else
3079		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
3080}
3081
3082/*
3083 * 	Increase the starting virtual address of the given mapping so
3084 * 	that it is aligned to not be the second page in a TLB entry.
3085 * 	This routine assumes that the length is appropriately-sized so
3086 * 	that the allocation does not share a TLB entry at all if required.
3087 */
3088void
3089pmap_align_tlb(vm_offset_t *addr)
3090{
3091	if ((*addr & PAGE_SIZE) == 0)
3092		return;
3093	*addr += PAGE_SIZE;
3094	return;
3095}
3096
3097#ifdef DDB
3098DB_SHOW_COMMAND(ptable, ddb_pid_dump)
3099{
3100	pmap_t pmap;
3101	struct thread *td = NULL;
3102	struct proc *p;
3103	int i, j, k;
3104	vm_paddr_t pa;
3105	vm_offset_t va;
3106
3107	if (have_addr) {
3108		td = db_lookup_thread(addr, TRUE);
3109		if (td == NULL) {
3110			db_printf("Invalid pid or tid");
3111			return;
3112		}
3113		p = td->td_proc;
3114		if (p->p_vmspace == NULL) {
3115			db_printf("No vmspace for process");
3116			return;
3117		}
3118			pmap = vmspace_pmap(p->p_vmspace);
3119	} else
3120		pmap = kernel_pmap;
3121
3122	db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
3123	    pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
3124	    pmap->pm_asid[0].gen);
3125	for (i = 0; i < NPDEPG; i++) {
3126		pd_entry_t *pdpe;
3127		pt_entry_t *pde;
3128		pt_entry_t pte;
3129
3130		pdpe = (pd_entry_t *)pmap->pm_segtab[i];
3131		if (pdpe == NULL)
3132			continue;
3133		db_printf("[%4d] %p\n", i, pdpe);
3134#ifdef __mips_n64
3135		for (j = 0; j < NPDEPG; j++) {
3136			pde = (pt_entry_t *)pdpe[j];
3137			if (pde == NULL)
3138				continue;
3139			db_printf("\t[%4d] %p\n", j, pde);
3140#else
3141		{
3142			j = 0;
3143			pde =  (pt_entry_t *)pdpe;
3144#endif
3145			for (k = 0; k < NPTEPG; k++) {
3146				pte = pde[k];
3147				if (pte == 0 || !pte_test(&pte, PTE_V))
3148					continue;
3149				pa = TLBLO_PTE_TO_PA(pte);
3150				va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
3151				db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
3152				       k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
3153			}
3154		}
3155	}
3156}
3157#endif
3158
3159#if defined(DEBUG)
3160
3161static void pads(pmap_t pm);
3162void pmap_pvdump(vm_offset_t pa);
3163
3164/* print address space of pmap*/
3165static void
3166pads(pmap_t pm)
3167{
3168	unsigned va, i, j;
3169	pt_entry_t *ptep;
3170
3171	if (pm == kernel_pmap)
3172		return;
3173	for (i = 0; i < NPTEPG; i++)
3174		if (pm->pm_segtab[i])
3175			for (j = 0; j < NPTEPG; j++) {
3176				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3177				if (pm == kernel_pmap && va < KERNBASE)
3178					continue;
3179				if (pm != kernel_pmap &&
3180				    va >= VM_MAXUSER_ADDRESS)
3181					continue;
3182				ptep = pmap_pte(pm, va);
3183				if (pte_test(ptep, PTE_V))
3184					printf("%x:%x ", va, *(int *)ptep);
3185			}
3186
3187}
3188
3189void
3190pmap_pvdump(vm_offset_t pa)
3191{
3192	register pv_entry_t pv;
3193	vm_page_t m;
3194
3195	printf("pa %x", pa);
3196	m = PHYS_TO_VM_PAGE(pa);
3197	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3198	    pv = TAILQ_NEXT(pv, pv_list)) {
3199		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3200		pads(pv->pv_pmap);
3201	}
3202	printf(" ");
3203}
3204
3205/* N/C */
3206#endif
3207
3208
3209/*
3210 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3211 * It takes almost as much or more time to search the TLB for a
3212 * specific ASID and flush those entries as it does to flush the entire TLB.
3213 * Therefore, when we allocate a new ASID, we just take the next number. When
3214 * we run out of numbers, we flush the TLB, increment the generation count
3215 * and start over. ASID zero is reserved for kernel use.
3216 */
3217static void
3218pmap_asid_alloc(pmap)
3219	pmap_t pmap;
3220{
3221	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3222	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3223	else {
3224		if (PCPU_GET(next_asid) == pmap_max_asid) {
3225			tlb_invalidate_all_user(NULL);
3226			PCPU_SET(asid_generation,
3227			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3228			if (PCPU_GET(asid_generation) == 0) {
3229				PCPU_SET(asid_generation, 1);
3230			}
3231			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3232		}
3233		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3234		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3235		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3236	}
3237}
3238
3239static pt_entry_t
3240init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot)
3241{
3242	pt_entry_t rw;
3243
3244	if (!(prot & VM_PROT_WRITE))
3245		rw = PTE_V | PTE_RO;
3246	else if ((m->oflags & VPO_UNMANAGED) == 0) {
3247		if ((access & VM_PROT_WRITE) != 0)
3248			rw = PTE_V | PTE_D;
3249		else
3250			rw = PTE_V;
3251		vm_page_aflag_set(m, PGA_WRITEABLE);
3252	} else
3253		/* Needn't emulate a modified bit for unmanaged pages. */
3254		rw = PTE_V | PTE_D;
3255	return (rw);
3256}
3257
3258/*
3259 * pmap_emulate_modified : do dirty bit emulation
3260 *
3261 * On SMP, update just the local TLB, other CPUs will update their
3262 * TLBs from PTE lazily, if they get the exception.
3263 * Returns 0 in case of sucess, 1 if the page is read only and we
3264 * need to fault.
3265 */
3266int
3267pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
3268{
3269	vm_page_t m;
3270	pt_entry_t *pte;
3271 	vm_paddr_t pa;
3272
3273	PMAP_LOCK(pmap);
3274	pte = pmap_pte(pmap, va);
3275	if (pte == NULL)
3276		panic("pmap_emulate_modified: can't find PTE");
3277#ifdef SMP
3278	/* It is possible that some other CPU changed m-bit */
3279	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
3280		tlb_update(pmap, va, *pte);
3281		PMAP_UNLOCK(pmap);
3282		return (0);
3283	}
3284#else
3285	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
3286		panic("pmap_emulate_modified: invalid pte");
3287#endif
3288	if (pte_test(pte, PTE_RO)) {
3289		/* write to read only page in the kernel */
3290		PMAP_UNLOCK(pmap);
3291		return (1);
3292	}
3293	pte_set(pte, PTE_D);
3294	tlb_update(pmap, va, *pte);
3295	if (!pte_test(pte, PTE_MANAGED))
3296		panic("pmap_emulate_modified: unmanaged page");
3297	pa = TLBLO_PTE_TO_PA(*pte);
3298	m = PHYS_TO_VM_PAGE(pa);
3299	m->md.pv_flags |= PV_TABLE_REF;
3300	PMAP_UNLOCK(pmap);
3301	return (0);
3302}
3303
3304/*
3305 *	Routine:	pmap_kextract
3306 *	Function:
3307 *		Extract the physical page address associated
3308 *		virtual address.
3309 */
3310vm_paddr_t
3311pmap_kextract(vm_offset_t va)
3312{
3313	int mapped;
3314
3315	/*
3316	 * First, the direct-mapped regions.
3317	 */
3318#if defined(__mips_n64)
3319	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3320		return (MIPS_XKPHYS_TO_PHYS(va));
3321#endif
3322	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3323		return (MIPS_KSEG0_TO_PHYS(va));
3324
3325	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3326		return (MIPS_KSEG1_TO_PHYS(va));
3327
3328	/*
3329	 * User virtual addresses.
3330	 */
3331	if (va < VM_MAXUSER_ADDRESS) {
3332		pt_entry_t *ptep;
3333
3334		if (curproc && curproc->p_vmspace) {
3335			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3336			if (ptep) {
3337				return (TLBLO_PTE_TO_PA(*ptep) |
3338				    (va & PAGE_MASK));
3339			}
3340			return (0);
3341		}
3342	}
3343
3344	/*
3345	 * Should be kernel virtual here, otherwise fail
3346	 */
3347	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3348#if defined(__mips_n64)
3349	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3350#endif
3351	/*
3352	 * Kernel virtual.
3353	 */
3354
3355	if (mapped) {
3356		pt_entry_t *ptep;
3357
3358		/* Is the kernel pmap initialized? */
3359		if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
3360			/* It's inside the virtual address range */
3361			ptep = pmap_pte(kernel_pmap, va);
3362			if (ptep) {
3363				return (TLBLO_PTE_TO_PA(*ptep) |
3364				    (va & PAGE_MASK));
3365			}
3366		}
3367		return (0);
3368	}
3369
3370	panic("%s for unknown address space %p.", __func__, (void *)va);
3371}
3372
3373
3374void
3375pmap_flush_pvcache(vm_page_t m)
3376{
3377	pv_entry_t pv;
3378
3379	if (m != NULL) {
3380		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3381		    pv = TAILQ_NEXT(pv, pv_list)) {
3382			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3383		}
3384	}
3385}
3386