pmap.c revision 207441
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 207441 2010-04-30 17:12:20Z rrs $");
70
71#include "opt_ddb.h"
72#include "opt_msgbuf.h"
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/proc.h>
76#include <sys/msgbuf.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/smp.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <vm/vm_kern.h>
86#include <vm/vm_page.h>
87#include <vm/vm_map.h>
88#include <vm/vm_object.h>
89#include <vm/vm_extern.h>
90#include <vm/vm_pageout.h>
91#include <vm/vm_pager.h>
92#include <vm/uma.h>
93#include <sys/pcpu.h>
94#include <sys/sched.h>
95#ifdef SMP
96#include <sys/smp.h>
97#endif
98
99#include <machine/cache.h>
100#include <machine/md_var.h>
101
102#if defined(DIAGNOSTIC)
103#define	PMAP_DIAGNOSTIC
104#endif
105
106#undef PMAP_DEBUG
107
108#ifndef PMAP_SHPGPERPROC
109#define	PMAP_SHPGPERPROC 200
110#endif
111
112#if !defined(PMAP_DIAGNOSTIC)
113#define	PMAP_INLINE __inline
114#else
115#define	PMAP_INLINE
116#endif
117
118/*
119 * Get PDEs and PTEs for user/kernel address space
120 */
121#define	pmap_pde(m, v)	       (&((m)->pm_segtab[(vm_offset_t)(v) >> SEGSHIFT]))
122#define	segtab_pde(m, v)	(m[(vm_offset_t)(v) >> SEGSHIFT])
123
124#define	pmap_pte_w(pte)		((*(int *)pte & PTE_W) != 0)
125#define	pmap_pde_v(pte)		((*(int *)pte) != 0)
126#define	pmap_pte_m(pte)		((*(int *)pte & PTE_M) != 0)
127#define	pmap_pte_v(pte)		((*(int *)pte & PTE_V) != 0)
128
129#define	pmap_pte_set_w(pte, v)	((v)?(*(int *)pte |= PTE_W):(*(int *)pte &= ~PTE_W))
130#define	pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
131
132#define	MIPS_SEGSIZE		(1L << SEGSHIFT)
133#define	mips_segtrunc(va)	((va) & ~(MIPS_SEGSIZE-1))
134#define	pmap_TLB_invalidate_all() MIPS_TBIAP()
135#define	pmap_va_asid(pmap, va)	((va) | ((pmap)->pm_asid[PCPU_GET(cpuid)].asid << VMTLB_PID_SHIFT))
136#define	is_kernel_pmap(x)	((x) == kernel_pmap)
137
138struct pmap kernel_pmap_store;
139pd_entry_t *kernel_segmap;
140
141vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
142vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
143
144static int nkpt;
145unsigned pmap_max_asid;		/* max ASID supported by the system */
146
147
148#define	PMAP_ASID_RESERVED	0
149
150vm_offset_t kernel_vm_end;
151
152static struct tlb tlbstash[MAXCPU][MIPS_MAX_TLB_ENTRIES];
153
154static void pmap_asid_alloc(pmap_t pmap);
155
156/*
157 * Data for the pv entry allocation mechanism
158 */
159static uma_zone_t pvzone;
160static struct vm_object pvzone_obj;
161static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
162
163static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
164static pv_entry_t get_pv_entry(pmap_t locked_pmap);
165static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
166
167static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
168    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
169static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
170static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
171static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
172static boolean_t pmap_testbit(vm_page_t m, int bit);
173static void
174pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
175    vm_page_t m, boolean_t wired);
176static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
177    vm_offset_t va, vm_page_t m);
178
179static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
180
181static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
182static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
183static int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
184static void pmap_TLB_invalidate_kernel(vm_offset_t);
185static void pmap_TLB_update_kernel(vm_offset_t, pt_entry_t);
186
187#ifdef SMP
188static void pmap_invalidate_page_action(void *arg);
189static void pmap_invalidate_all_action(void *arg);
190static void pmap_update_page_action(void *arg);
191
192#endif
193
194struct local_sysmaps {
195	struct mtx lock;
196	vm_offset_t base;
197	uint16_t valid1, valid2;
198};
199
200/* This structure is for large memory
201 * above 512Meg. We can't (in 32 bit mode)
202 * just use the direct mapped MIPS_KSEG0_TO_PHYS()
203 * macros since we can't see the memory and must
204 * map it in when we need to access it. In 64
205 * bit mode this goes away.
206 */
207static struct local_sysmaps sysmap_lmem[MAXCPU];
208caddr_t virtual_sys_start = (caddr_t)0;
209
210#define	PMAP_LMEM_MAP1(va, phys)					\
211	int cpu;							\
212	struct local_sysmaps *sysm;					\
213	pt_entry_t *pte, npte;						\
214									\
215	cpu = PCPU_GET(cpuid);						\
216	sysm = &sysmap_lmem[cpu];					\
217	PMAP_LGMEM_LOCK(sysm);						\
218	intr = intr_disable();						\
219	sched_pin();							\
220	va = sysm->base;						\
221	npte = mips_paddr_to_tlbpfn(phys) |				\
222	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
223	pte = pmap_pte(kernel_pmap, va);				\
224	*pte = npte;							\
225	sysm->valid1 = 1;
226
227#define	PMAP_LMEM_MAP2(va1, phys1, va2, phys2)				\
228	int cpu;							\
229	struct local_sysmaps *sysm;					\
230	pt_entry_t *pte, npte;						\
231									\
232	cpu = PCPU_GET(cpuid);						\
233	sysm = &sysmap_lmem[cpu];					\
234	PMAP_LGMEM_LOCK(sysm);						\
235	intr = intr_disable();						\
236	sched_pin();							\
237	va1 = sysm->base;						\
238	va2 = sysm->base + PAGE_SIZE;					\
239	npte = mips_paddr_to_tlbpfn(phys1) |				\
240	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
241	pte = pmap_pte(kernel_pmap, va1);				\
242	*pte = npte;							\
243	npte = mips_paddr_to_tlbpfn(phys2) |				\
244	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
245	pte = pmap_pte(kernel_pmap, va2);				\
246	*pte = npte;							\
247	sysm->valid1 = 1;						\
248	sysm->valid2 = 1;
249
250#define	PMAP_LMEM_UNMAP()						\
251	pte = pmap_pte(kernel_pmap, sysm->base);			\
252	*pte = PTE_G;							\
253	pmap_TLB_invalidate_kernel(sysm->base);				\
254	sysm->valid1 = 0;						\
255	pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);		\
256	*pte = PTE_G;							\
257	pmap_TLB_invalidate_kernel(sysm->base + PAGE_SIZE);		\
258	sysm->valid2 = 0;						\
259	sched_unpin();							\
260	intr_restore(intr);						\
261	PMAP_LGMEM_UNLOCK(sysm);
262
263pd_entry_t
264pmap_segmap(pmap_t pmap, vm_offset_t va)
265{
266	if (pmap->pm_segtab)
267		return (pmap->pm_segtab[((vm_offset_t)(va) >> SEGSHIFT)]);
268	else
269		return ((pd_entry_t)0);
270}
271
272/*
273 *	Routine:	pmap_pte
274 *	Function:
275 *		Extract the page table entry associated
276 *		with the given map/virtual_address pair.
277 */
278pt_entry_t *
279pmap_pte(pmap_t pmap, vm_offset_t va)
280{
281	pt_entry_t *pdeaddr;
282
283	if (pmap) {
284		pdeaddr = (pt_entry_t *)pmap_segmap(pmap, va);
285		if (pdeaddr) {
286			return pdeaddr + vad_to_pte_offset(va);
287		}
288	}
289	return ((pt_entry_t *)0);
290}
291
292
293vm_offset_t
294pmap_steal_memory(vm_size_t size)
295{
296	vm_size_t bank_size;
297	vm_offset_t pa, va;
298
299	size = round_page(size);
300
301	bank_size = phys_avail[1] - phys_avail[0];
302	while (size > bank_size) {
303		int i;
304
305		for (i = 0; phys_avail[i + 2]; i += 2) {
306			phys_avail[i] = phys_avail[i + 2];
307			phys_avail[i + 1] = phys_avail[i + 3];
308		}
309		phys_avail[i] = 0;
310		phys_avail[i + 1] = 0;
311		if (!phys_avail[0])
312			panic("pmap_steal_memory: out of memory");
313		bank_size = phys_avail[1] - phys_avail[0];
314	}
315
316	pa = phys_avail[0];
317	phys_avail[0] += size;
318	if (pa >= MIPS_KSEG0_LARGEST_PHYS) {
319		panic("Out of memory below 512Meg?");
320	}
321	va = MIPS_PHYS_TO_KSEG0(pa);
322	bzero((caddr_t)va, size);
323	return va;
324}
325
326/*
327 *	Bootstrap the system enough to run with virtual memory.  This
328 * assumes that the phys_avail array has been initialized.
329 */
330void
331pmap_bootstrap(void)
332{
333	pt_entry_t *pgtab;
334	pt_entry_t *pte;
335	int i, j;
336	int memory_larger_than_512meg = 0;
337
338	/* Sort. */
339again:
340	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
341		/*
342		 * Keep the memory aligned on page boundary.
343		 */
344		phys_avail[i] = round_page(phys_avail[i]);
345		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
346
347		if (phys_avail[i + 1] >= MIPS_KSEG0_LARGEST_PHYS)
348			memory_larger_than_512meg++;
349		if (i < 2)
350			continue;
351		if (phys_avail[i - 2] > phys_avail[i]) {
352			vm_paddr_t ptemp[2];
353
354
355			ptemp[0] = phys_avail[i + 0];
356			ptemp[1] = phys_avail[i + 1];
357
358			phys_avail[i + 0] = phys_avail[i - 2];
359			phys_avail[i + 1] = phys_avail[i - 1];
360
361			phys_avail[i - 2] = ptemp[0];
362			phys_avail[i - 1] = ptemp[1];
363			goto again;
364		}
365	}
366
367	/*
368	 * Copy the phys_avail[] array before we start stealing memory from it.
369	 */
370	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
371		physmem_desc[i] = phys_avail[i];
372		physmem_desc[i + 1] = phys_avail[i + 1];
373	}
374
375	Maxmem = atop(phys_avail[i - 1]);
376
377	if (bootverbose) {
378		printf("Physical memory chunk(s):\n");
379		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
380			vm_paddr_t size;
381
382			size = phys_avail[i + 1] - phys_avail[i];
383			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
384			    (uintmax_t) phys_avail[i],
385			    (uintmax_t) phys_avail[i + 1] - 1,
386			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
387		}
388		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
389	}
390	/*
391	 * Steal the message buffer from the beginning of memory.
392	 */
393	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
394	msgbufinit(msgbufp, MSGBUF_SIZE);
395
396	/*
397	 * Steal thread0 kstack.
398	 */
399	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
400
401
402	virtual_avail = VM_MIN_KERNEL_ADDRESS;
403	virtual_end = VM_MAX_KERNEL_ADDRESS;
404
405#ifdef SMP
406	/*
407	 * Steal some virtual address space to map the pcpu area.
408	 */
409	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
410	pcpup = (struct pcpu *)virtual_avail;
411	virtual_avail += PAGE_SIZE * 2;
412
413	/*
414	 * Initialize the wired TLB entry mapping the pcpu region for
415	 * the BSP at 'pcpup'. Up until this point we were operating
416	 * with the 'pcpup' for the BSP pointing to a virtual address
417	 * in KSEG0 so there was no need for a TLB mapping.
418	 */
419	mips_pcpu_tlb_init(PCPU_ADDR(0));
420
421	if (bootverbose)
422		printf("pcpu is available at virtual address %p.\n", pcpup);
423#endif
424
425	/*
426	 * Steal some virtual space that will not be in kernel_segmap. This
427	 * va memory space will be used to map in kernel pages that are
428	 * outside the 512Meg region. Note that we only do this steal when
429	 * we do have memory in this region, that way for systems with
430	 * smaller memory we don't "steal" any va ranges :-)
431	 */
432	if (memory_larger_than_512meg) {
433		for (i = 0; i < MAXCPU; i++) {
434			sysmap_lmem[i].base = virtual_avail;
435			virtual_avail += PAGE_SIZE * 2;
436			sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
437			PMAP_LGMEM_LOCK_INIT(&sysmap_lmem[i]);
438		}
439	}
440	virtual_sys_start = (caddr_t)virtual_avail;
441	/*
442	 * Allocate segment table for the kernel
443	 */
444	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
445
446	/*
447	 * Allocate second level page tables for the kernel
448	 */
449	nkpt = NKPT;
450	if (memory_larger_than_512meg) {
451		/*
452		 * If we have a large memory system we CANNOT afford to hit
453		 * pmap_growkernel() and allocate memory. Since we MAY end
454		 * up with a page that is NOT mappable. For that reason we
455		 * up front grab more. Normall NKPT is 120 (YMMV see pmap.h)
456		 * this gives us 480meg of kernel virtual addresses at the
457		 * cost of 120 pages (each page gets us 4 Meg). Since the
458		 * kernel starts at virtual_avail, we can use this to
459		 * calculate how many entris are left from there to the end
460		 * of the segmap, we want to allocate all of it, which would
461		 * be somewhere above 0xC0000000 - 0xFFFFFFFF which results
462		 * in about 256 entries or so instead of the 120.
463		 */
464		nkpt = (PAGE_SIZE / sizeof(pd_entry_t)) - (virtual_avail >> SEGSHIFT);
465	}
466	pgtab = (pt_entry_t *)pmap_steal_memory(PAGE_SIZE * nkpt);
467
468	/*
469	 * The R[4-7]?00 stores only one copy of the Global bit in the
470	 * translation lookaside buffer for each 2 page entry. Thus invalid
471	 * entrys must have the Global bit set so when Entry LO and Entry HI
472	 * G bits are anded together they will produce a global bit to store
473	 * in the tlb.
474	 */
475	for (i = 0, pte = pgtab; i < (nkpt * NPTEPG); i++, pte++)
476		*pte = PTE_G;
477
478	/*
479	 * The segment table contains the KVA of the pages in the second
480	 * level page table.
481	 */
482	for (i = 0, j = (virtual_avail >> SEGSHIFT); i < nkpt; i++, j++)
483		kernel_segmap[j] = (pd_entry_t)(pgtab + (i * NPTEPG));
484
485	/*
486	 * The kernel's pmap is statically allocated so we don't have to use
487	 * pmap_create, which is unlikely to work correctly at this part of
488	 * the boot sequence (XXX and which no longer exists).
489	 */
490	PMAP_LOCK_INIT(kernel_pmap);
491	kernel_pmap->pm_segtab = kernel_segmap;
492	kernel_pmap->pm_active = ~0;
493	TAILQ_INIT(&kernel_pmap->pm_pvlist);
494	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
495	kernel_pmap->pm_asid[0].gen = 0;
496	pmap_max_asid = VMNUM_PIDS;
497	MachSetPID(0);
498}
499
500/*
501 * Initialize a vm_page's machine-dependent fields.
502 */
503void
504pmap_page_init(vm_page_t m)
505{
506
507	TAILQ_INIT(&m->md.pv_list);
508	m->md.pv_list_count = 0;
509	m->md.pv_flags = 0;
510}
511
512/*
513 *	Initialize the pmap module.
514 *	Called by vm_init, to initialize any structures that the pmap
515 *	system needs to map virtual memory.
516 *	pmap_init has been enhanced to support in a fairly consistant
517 *	way, discontiguous physical memory.
518 */
519void
520pmap_init(void)
521{
522
523	/*
524	 * Initialize the address space (zone) for the pv entries.  Set a
525	 * high water mark so that the system can recover from excessive
526	 * numbers of pv entries.
527	 */
528	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
529	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
530	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
531	pv_entry_high_water = 9 * (pv_entry_max / 10);
532	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
533}
534
535/***************************************************
536 * Low level helper routines.....
537 ***************************************************/
538
539#if defined(PMAP_DIAGNOSTIC)
540
541/*
542 * This code checks for non-writeable/modified pages.
543 * This should be an invalid condition.
544 */
545static int
546pmap_nw_modified(pt_entry_t pte)
547{
548	if ((pte & (PTE_M | PTE_RO)) == (PTE_M | PTE_RO))
549		return (1);
550	else
551		return (0);
552}
553
554#endif
555
556static void
557pmap_invalidate_all(pmap_t pmap)
558{
559#ifdef SMP
560	smp_rendezvous(0, pmap_invalidate_all_action, 0, (void *)pmap);
561}
562
563static void
564pmap_invalidate_all_action(void *arg)
565{
566	pmap_t pmap = (pmap_t)arg;
567
568#endif
569
570	if (pmap->pm_active & PCPU_GET(cpumask)) {
571		pmap_TLB_invalidate_all();
572	} else
573		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
574}
575
576struct pmap_invalidate_page_arg {
577	pmap_t pmap;
578	vm_offset_t va;
579};
580
581static __inline void
582pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
583{
584#ifdef SMP
585	struct pmap_invalidate_page_arg arg;
586
587	arg.pmap = pmap;
588	arg.va = va;
589
590	smp_rendezvous(0, pmap_invalidate_page_action, 0, (void *)&arg);
591}
592
593static void
594pmap_invalidate_page_action(void *arg)
595{
596	pmap_t pmap = ((struct pmap_invalidate_page_arg *)arg)->pmap;
597	vm_offset_t va = ((struct pmap_invalidate_page_arg *)arg)->va;
598
599#endif
600
601	if (is_kernel_pmap(pmap)) {
602		pmap_TLB_invalidate_kernel(va);
603		return;
604	}
605	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
606		return;
607	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
608		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
609		return;
610	}
611	va = pmap_va_asid(pmap, (va & ~PAGE_MASK));
612	mips_TBIS(va);
613}
614
615static void
616pmap_TLB_invalidate_kernel(vm_offset_t va)
617{
618	u_int32_t pid;
619
620	MachTLBGetPID(pid);
621	va = va | (pid << VMTLB_PID_SHIFT);
622	mips_TBIS(va);
623}
624
625struct pmap_update_page_arg {
626	pmap_t pmap;
627	vm_offset_t va;
628	pt_entry_t pte;
629};
630
631void
632pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
633{
634#ifdef SMP
635	struct pmap_update_page_arg arg;
636
637	arg.pmap = pmap;
638	arg.va = va;
639	arg.pte = pte;
640
641	smp_rendezvous(0, pmap_update_page_action, 0, (void *)&arg);
642}
643
644static void
645pmap_update_page_action(void *arg)
646{
647	pmap_t pmap = ((struct pmap_update_page_arg *)arg)->pmap;
648	vm_offset_t va = ((struct pmap_update_page_arg *)arg)->va;
649	pt_entry_t pte = ((struct pmap_update_page_arg *)arg)->pte;
650
651#endif
652	if (is_kernel_pmap(pmap)) {
653		pmap_TLB_update_kernel(va, pte);
654		return;
655	}
656	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
657		return;
658	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
659		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
660		return;
661	}
662	va = pmap_va_asid(pmap, (va & ~PAGE_MASK));
663	MachTLBUpdate(va, pte);
664}
665
666static void
667pmap_TLB_update_kernel(vm_offset_t va, pt_entry_t pte)
668{
669	u_int32_t pid;
670
671	va &= ~PAGE_MASK;
672
673	MachTLBGetPID(pid);
674	va = va | (pid << VMTLB_PID_SHIFT);
675
676	MachTLBUpdate(va, pte);
677}
678
679/*
680 *	Routine:	pmap_extract
681 *	Function:
682 *		Extract the physical page address associated
683 *		with the given map/virtual_address pair.
684 */
685vm_paddr_t
686pmap_extract(pmap_t pmap, vm_offset_t va)
687{
688	pt_entry_t *pte;
689	vm_offset_t retval = 0;
690
691	PMAP_LOCK(pmap);
692	pte = pmap_pte(pmap, va);
693	if (pte) {
694		retval = mips_tlbpfn_to_paddr(*pte) | (va & PAGE_MASK);
695	}
696	PMAP_UNLOCK(pmap);
697	return retval;
698}
699
700/*
701 *	Routine:	pmap_extract_and_hold
702 *	Function:
703 *		Atomically extract and hold the physical page
704 *		with the given pmap and virtual address pair
705 *		if that mapping permits the given protection.
706 */
707vm_page_t
708pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
709{
710	pt_entry_t pte;
711	vm_page_t m;
712	vm_paddr_t pa;
713
714	m = NULL;
715	pa = 0;
716	PMAP_LOCK(pmap);
717retry:
718	pte = *pmap_pte(pmap, va);
719	if (pte != 0 && pmap_pte_v(&pte) &&
720	    ((pte & PTE_RW) || (prot & VM_PROT_WRITE) == 0)) {
721		if (vm_page_pa_tryrelock(pmap, mips_tlbpfn_to_paddr(pte), &pa))
722			goto retry;
723
724		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(pte));
725		vm_page_hold(m);
726	}
727	PA_UNLOCK_COND(pa);
728	PMAP_UNLOCK(pmap);
729	return (m);
730}
731
732/***************************************************
733 * Low level mapping routines.....
734 ***************************************************/
735
736/*
737 * add a wired page to the kva
738 */
739 /* PMAP_INLINE */ void
740pmap_kenter(vm_offset_t va, vm_paddr_t pa)
741{
742	register pt_entry_t *pte;
743	pt_entry_t npte, opte;
744
745#ifdef PMAP_DEBUG
746	printf("pmap_kenter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
747#endif
748	npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W;
749
750	if (is_cacheable_mem(pa))
751		npte |= PTE_CACHE;
752	else
753		npte |= PTE_UNCACHED;
754
755	pte = pmap_pte(kernel_pmap, va);
756	opte = *pte;
757	*pte = npte;
758
759	pmap_update_page(kernel_pmap, va, npte);
760}
761
762/*
763 * remove a page from the kernel pagetables
764 */
765 /* PMAP_INLINE */ void
766pmap_kremove(vm_offset_t va)
767{
768	register pt_entry_t *pte;
769
770	/*
771	 * Write back all caches from the page being destroyed
772	 */
773	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
774
775	pte = pmap_pte(kernel_pmap, va);
776	*pte = PTE_G;
777	pmap_invalidate_page(kernel_pmap, va);
778}
779
780/*
781 *	Used to map a range of physical addresses into kernel
782 *	virtual address space.
783 *
784 *	The value passed in '*virt' is a suggested virtual address for
785 *	the mapping. Architectures which can support a direct-mapped
786 *	physical to virtual region can return the appropriate address
787 *	within that region, leaving '*virt' unchanged. Other
788 *	architectures should map the pages starting at '*virt' and
789 *	update '*virt' with the first usable address after the mapped
790 *	region.
791 */
792vm_offset_t
793pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
794{
795	vm_offset_t va, sva;
796
797	va = sva = *virt;
798	while (start < end) {
799		pmap_kenter(va, start);
800		va += PAGE_SIZE;
801		start += PAGE_SIZE;
802	}
803	*virt = va;
804	return (sva);
805}
806
807/*
808 * Add a list of wired pages to the kva
809 * this routine is only used for temporary
810 * kernel mappings that do not need to have
811 * page modification or references recorded.
812 * Note that old mappings are simply written
813 * over.  The page *must* be wired.
814 */
815void
816pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
817{
818	int i;
819	vm_offset_t origva = va;
820
821	for (i = 0; i < count; i++) {
822		pmap_flush_pvcache(m[i]);
823		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
824		va += PAGE_SIZE;
825	}
826
827	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
828}
829
830/*
831 * this routine jerks page mappings from the
832 * kernel -- it is meant only for temporary mappings.
833 */
834void
835pmap_qremove(vm_offset_t va, int count)
836{
837	/*
838	 * No need to wb/inv caches here,
839	 *   pmap_kremove will do it for us
840	 */
841
842	while (count-- > 0) {
843		pmap_kremove(va);
844		va += PAGE_SIZE;
845	}
846}
847
848/***************************************************
849 * Page table page management routines.....
850 ***************************************************/
851
852/*  Revision 1.507
853 *
854 * Simplify the reference counting of page table pages.	 Specifically, use
855 * the page table page's wired count rather than its hold count to contain
856 * the reference count.
857 */
858
859/*
860 * This routine unholds page table pages, and if the hold count
861 * drops to zero, then it decrements the wire count.
862 */
863static int
864_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
865{
866	vm_offset_t pteva;
867
868	/*
869	 * unmap the page table page
870	 */
871	pteva = (vm_offset_t)pmap->pm_segtab[m->pindex];
872	if (pteva >= VM_MIN_KERNEL_ADDRESS) {
873		pmap_kremove(pteva);
874		kmem_free(kernel_map, pteva, PAGE_SIZE);
875	} else {
876		KASSERT(MIPS_IS_KSEG0_ADDR(pteva),
877		    ("_pmap_unwire_pte_hold: 0x%0lx is not in kseg0",
878		    (long)pteva));
879	}
880
881	pmap->pm_segtab[m->pindex] = 0;
882	--pmap->pm_stats.resident_count;
883
884	if (pmap->pm_ptphint == m)
885		pmap->pm_ptphint = NULL;
886
887	/*
888	 * If the page is finally unwired, simply free it.
889	 */
890	vm_page_free_zero(m);
891	atomic_subtract_int(&cnt.v_wire_count, 1);
892	return (1);
893}
894
895static PMAP_INLINE int
896pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
897{
898	--m->wire_count;
899	if (m->wire_count == 0)
900		return (_pmap_unwire_pte_hold(pmap, m));
901	else
902		return (0);
903}
904
905/*
906 * After removing a page table entry, this routine is used to
907 * conditionally free the page, and manage the hold/wire counts.
908 */
909static int
910pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
911{
912	unsigned ptepindex;
913	pd_entry_t pteva;
914
915	if (va >= VM_MAXUSER_ADDRESS)
916		return (0);
917
918	if (mpte == NULL) {
919		ptepindex = (va >> SEGSHIFT);
920		if (pmap->pm_ptphint &&
921		    (pmap->pm_ptphint->pindex == ptepindex)) {
922			mpte = pmap->pm_ptphint;
923		} else {
924			pteva = *pmap_pde(pmap, va);
925			mpte = PHYS_TO_VM_PAGE(vtophys(pteva));
926			pmap->pm_ptphint = mpte;
927		}
928	}
929	return pmap_unwire_pte_hold(pmap, mpte);
930}
931
932void
933pmap_pinit0(pmap_t pmap)
934{
935	int i;
936
937	PMAP_LOCK_INIT(pmap);
938	pmap->pm_segtab = kernel_segmap;
939	pmap->pm_active = 0;
940	pmap->pm_ptphint = NULL;
941	for (i = 0; i < MAXCPU; i++) {
942		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
943		pmap->pm_asid[i].gen = 0;
944	}
945	PCPU_SET(curpmap, pmap);
946	TAILQ_INIT(&pmap->pm_pvlist);
947	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
948}
949
950/*
951 * Initialize a preallocated and zeroed pmap structure,
952 * such as one in a vmspace structure.
953 */
954int
955pmap_pinit(pmap_t pmap)
956{
957	vm_offset_t ptdva;
958	vm_paddr_t ptdpa;
959	vm_page_t ptdpg;
960	int i;
961	int req;
962
963	PMAP_LOCK_INIT(pmap);
964
965	req = VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL | VM_ALLOC_WIRED |
966	    VM_ALLOC_ZERO;
967
968	/*
969	 * allocate the page directory page
970	 */
971	while ((ptdpg = vm_page_alloc(NULL, NUSERPGTBLS, req)) == NULL)
972		VM_WAIT;
973
974	ptdpg->valid = VM_PAGE_BITS_ALL;
975
976	ptdpa = VM_PAGE_TO_PHYS(ptdpg);
977	if (ptdpa < MIPS_KSEG0_LARGEST_PHYS) {
978		ptdva = MIPS_PHYS_TO_KSEG0(ptdpa);
979	} else {
980		ptdva = kmem_alloc_nofault(kernel_map, PAGE_SIZE);
981		if (ptdva == 0)
982			panic("pmap_pinit: unable to allocate kva");
983		pmap_kenter(ptdva, ptdpa);
984	}
985
986	pmap->pm_segtab = (pd_entry_t *)ptdva;
987	if ((ptdpg->flags & PG_ZERO) == 0)
988		bzero(pmap->pm_segtab, PAGE_SIZE);
989
990	pmap->pm_active = 0;
991	pmap->pm_ptphint = NULL;
992	for (i = 0; i < MAXCPU; i++) {
993		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
994		pmap->pm_asid[i].gen = 0;
995	}
996	TAILQ_INIT(&pmap->pm_pvlist);
997	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
998
999	return (1);
1000}
1001
1002/*
1003 * this routine is called if the page table page is not
1004 * mapped correctly.
1005 */
1006static vm_page_t
1007_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1008{
1009	vm_offset_t pteva, ptepa;
1010	vm_page_t m;
1011	int req;
1012
1013	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1014	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1015	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1016
1017	req = VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ;
1018	/*
1019	 * Find or fabricate a new pagetable page
1020	 */
1021	if ((m = vm_page_alloc(NULL, ptepindex, req)) == NULL) {
1022		if (flags & M_WAITOK) {
1023			PMAP_UNLOCK(pmap);
1024			vm_page_unlock_queues();
1025			VM_WAIT;
1026			vm_page_lock_queues();
1027			PMAP_LOCK(pmap);
1028		}
1029		/*
1030		 * Indicate the need to retry.	While waiting, the page
1031		 * table page may have been allocated.
1032		 */
1033		return (NULL);
1034	}
1035	if ((m->flags & PG_ZERO) == 0)
1036		pmap_zero_page(m);
1037
1038	KASSERT(m->queue == PQ_NONE,
1039	    ("_pmap_allocpte: %p->queue != PQ_NONE", m));
1040
1041	/*
1042	 * Map the pagetable page into the process address space, if it
1043	 * isn't already there.
1044	 */
1045
1046	pmap->pm_stats.resident_count++;
1047
1048	ptepa = VM_PAGE_TO_PHYS(m);
1049	if (ptepa < MIPS_KSEG0_LARGEST_PHYS) {
1050		pteva = MIPS_PHYS_TO_KSEG0(ptepa);
1051	} else {
1052		pteva = kmem_alloc_nofault(kernel_map, PAGE_SIZE);
1053		if (pteva == 0)
1054			panic("_pmap_allocpte: unable to allocate kva");
1055		pmap_kenter(pteva, ptepa);
1056	}
1057
1058	pmap->pm_segtab[ptepindex] = (pd_entry_t)pteva;
1059
1060	/*
1061	 * Set the page table hint
1062	 */
1063	pmap->pm_ptphint = m;
1064
1065	/*
1066	 * Kernel page tables are allocated in pmap_bootstrap() or
1067	 * pmap_growkernel().
1068	 */
1069	if (is_kernel_pmap(pmap))
1070		panic("_pmap_allocpte() called for kernel pmap\n");
1071
1072	m->valid = VM_PAGE_BITS_ALL;
1073	vm_page_flag_clear(m, PG_ZERO);
1074
1075	return (m);
1076}
1077
1078static vm_page_t
1079pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1080{
1081	unsigned ptepindex;
1082	vm_offset_t pteva;
1083	vm_page_t m;
1084
1085	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1086	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1087	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1088
1089	/*
1090	 * Calculate pagetable page index
1091	 */
1092	ptepindex = va >> SEGSHIFT;
1093retry:
1094	/*
1095	 * Get the page directory entry
1096	 */
1097	pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1098
1099	/*
1100	 * If the page table page is mapped, we just increment the hold
1101	 * count, and activate it.
1102	 */
1103	if (pteva) {
1104		/*
1105		 * In order to get the page table page, try the hint first.
1106		 */
1107		if (pmap->pm_ptphint &&
1108		    (pmap->pm_ptphint->pindex == ptepindex)) {
1109			m = pmap->pm_ptphint;
1110		} else {
1111			m = PHYS_TO_VM_PAGE(vtophys(pteva));
1112			pmap->pm_ptphint = m;
1113		}
1114		m->wire_count++;
1115	} else {
1116		/*
1117		 * Here if the pte page isn't mapped, or if it has been
1118		 * deallocated.
1119		 */
1120		m = _pmap_allocpte(pmap, ptepindex, flags);
1121		if (m == NULL && (flags & M_WAITOK))
1122			goto retry;
1123	}
1124	return m;
1125}
1126
1127
1128/***************************************************
1129* Pmap allocation/deallocation routines.
1130 ***************************************************/
1131/*
1132 *  Revision 1.397
1133 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1134 *    called only the page directory page(s) can be left in the pmap pte
1135 *    object, since all page table pages will have been freed by
1136 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1137 *    reference to the pmap and the page directory is wired, so the page(s)
1138 *    can never be busy.  So all there is to do is clear the magic mappings
1139 *    from the page directory and free the page(s).
1140 */
1141
1142
1143/*
1144 * Release any resources held by the given physical map.
1145 * Called when a pmap initialized by pmap_pinit is being released.
1146 * Should only be called if the map contains no valid mappings.
1147 */
1148void
1149pmap_release(pmap_t pmap)
1150{
1151	vm_offset_t ptdva;
1152	vm_page_t ptdpg;
1153
1154	KASSERT(pmap->pm_stats.resident_count == 0,
1155	    ("pmap_release: pmap resident count %ld != 0",
1156	    pmap->pm_stats.resident_count));
1157
1158	ptdva = (vm_offset_t)pmap->pm_segtab;
1159	ptdpg = PHYS_TO_VM_PAGE(vtophys(ptdva));
1160
1161	if (ptdva >= VM_MIN_KERNEL_ADDRESS) {
1162		pmap_kremove(ptdva);
1163		kmem_free(kernel_map, ptdva, PAGE_SIZE);
1164	} else {
1165		KASSERT(MIPS_IS_KSEG0_ADDR(ptdva),
1166		    ("pmap_release: 0x%0lx is not in kseg0", (long)ptdva));
1167	}
1168
1169	ptdpg->wire_count--;
1170	atomic_subtract_int(&cnt.v_wire_count, 1);
1171	vm_page_free_zero(ptdpg);
1172	PMAP_LOCK_DESTROY(pmap);
1173}
1174
1175/*
1176 * grow the number of kernel page table entries, if needed
1177 */
1178void
1179pmap_growkernel(vm_offset_t addr)
1180{
1181	vm_offset_t ptppaddr;
1182	vm_page_t nkpg;
1183	pt_entry_t *pte;
1184	int i, req;
1185
1186	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1187	if (kernel_vm_end == 0) {
1188		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1189		nkpt = 0;
1190		while (segtab_pde(kernel_segmap, kernel_vm_end)) {
1191			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1192			    ~(PAGE_SIZE * NPTEPG - 1);
1193			nkpt++;
1194			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1195				kernel_vm_end = kernel_map->max_offset;
1196				break;
1197			}
1198		}
1199	}
1200	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1201	if (addr - 1 >= kernel_map->max_offset)
1202		addr = kernel_map->max_offset;
1203	while (kernel_vm_end < addr) {
1204		if (segtab_pde(kernel_segmap, kernel_vm_end)) {
1205			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1206			    ~(PAGE_SIZE * NPTEPG - 1);
1207			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1208				kernel_vm_end = kernel_map->max_offset;
1209				break;
1210			}
1211			continue;
1212		}
1213		/*
1214		 * This index is bogus, but out of the way
1215		 */
1216		req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ;
1217		nkpg = vm_page_alloc(NULL, nkpt, req);
1218		if (!nkpg)
1219			panic("pmap_growkernel: no memory to grow kernel");
1220
1221		nkpt++;
1222
1223		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1224		if (ptppaddr >= MIPS_KSEG0_LARGEST_PHYS) {
1225			/*
1226			 * We need to do something here, but I am not sure
1227			 * what. We can access anything in the 0 - 512Meg
1228			 * region, but if we get a page to go in the kernel
1229			 * segmap that is outside of of that we really need
1230			 * to have another mapping beyond the temporary ones
1231			 * I have. Not sure how to do this yet. FIXME FIXME.
1232			 */
1233			panic("Gak, can't handle a k-page table outside of lower 512Meg");
1234		}
1235		pte = (pt_entry_t *)MIPS_PHYS_TO_KSEG0(ptppaddr);
1236		segtab_pde(kernel_segmap, kernel_vm_end) = (pd_entry_t)pte;
1237
1238		/*
1239		 * The R[4-7]?00 stores only one copy of the Global bit in
1240		 * the translation lookaside buffer for each 2 page entry.
1241		 * Thus invalid entrys must have the Global bit set so when
1242		 * Entry LO and Entry HI G bits are anded together they will
1243		 * produce a global bit to store in the tlb.
1244		 */
1245		for (i = 0; i < NPTEPG; i++, pte++)
1246			*pte = PTE_G;
1247
1248		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1249		    ~(PAGE_SIZE * NPTEPG - 1);
1250		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1251			kernel_vm_end = kernel_map->max_offset;
1252			break;
1253		}
1254	}
1255}
1256
1257/***************************************************
1258* page management routines.
1259 ***************************************************/
1260
1261/*
1262 * free the pv_entry back to the free list
1263 */
1264static PMAP_INLINE void
1265free_pv_entry(pv_entry_t pv)
1266{
1267
1268	pv_entry_count--;
1269	uma_zfree(pvzone, pv);
1270}
1271
1272/*
1273 * get a new pv_entry, allocating a block from the system
1274 * when needed.
1275 * the memory allocation is performed bypassing the malloc code
1276 * because of the possibility of allocations at interrupt time.
1277 */
1278static pv_entry_t
1279get_pv_entry(pmap_t locked_pmap)
1280{
1281	static const struct timeval printinterval = { 60, 0 };
1282	static struct timeval lastprint;
1283	struct vpgqueues *vpq;
1284	pt_entry_t *pte, oldpte;
1285	pmap_t pmap;
1286	pv_entry_t allocated_pv, next_pv, pv;
1287	vm_offset_t va;
1288	vm_page_t m;
1289
1290	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1291	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1292	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1293	if (allocated_pv != NULL) {
1294		pv_entry_count++;
1295		if (pv_entry_count > pv_entry_high_water)
1296			pagedaemon_wakeup();
1297		else
1298			return (allocated_pv);
1299	}
1300	/*
1301	 * Reclaim pv entries: At first, destroy mappings to inactive
1302	 * pages.  After that, if a pv entry is still needed, destroy
1303	 * mappings to active pages.
1304	 */
1305	if (ratecheck(&lastprint, &printinterval))
1306		printf("Approaching the limit on PV entries, "
1307		    "increase the vm.pmap.shpgperproc tunable.\n");
1308	vpq = &vm_page_queues[PQ_INACTIVE];
1309retry:
1310	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1311		if (m->hold_count || m->busy)
1312			continue;
1313		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1314			va = pv->pv_va;
1315			pmap = pv->pv_pmap;
1316			/* Avoid deadlock and lock recursion. */
1317			if (pmap > locked_pmap)
1318				PMAP_LOCK(pmap);
1319			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1320				continue;
1321			pmap->pm_stats.resident_count--;
1322			pte = pmap_pte(pmap, va);
1323			KASSERT(pte != NULL, ("pte"));
1324			oldpte = loadandclear((u_int *)pte);
1325			if (is_kernel_pmap(pmap))
1326				*pte = PTE_G;
1327			KASSERT((oldpte & PTE_W) == 0,
1328			    ("wired pte for unwired page"));
1329			if (m->md.pv_flags & PV_TABLE_REF)
1330				vm_page_flag_set(m, PG_REFERENCED);
1331			if (oldpte & PTE_M)
1332				vm_page_dirty(m);
1333			pmap_invalidate_page(pmap, va);
1334			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1335			m->md.pv_list_count--;
1336			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1337			if (TAILQ_EMPTY(&m->md.pv_list)) {
1338				vm_page_flag_clear(m, PG_WRITEABLE);
1339				m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1340			}
1341			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1342			if (pmap != locked_pmap)
1343				PMAP_UNLOCK(pmap);
1344			if (allocated_pv == NULL)
1345				allocated_pv = pv;
1346			else
1347				free_pv_entry(pv);
1348		}
1349	}
1350	if (allocated_pv == NULL) {
1351		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1352			vpq = &vm_page_queues[PQ_ACTIVE];
1353			goto retry;
1354		}
1355		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1356	}
1357	return (allocated_pv);
1358}
1359
1360/*
1361 *  Revision 1.370
1362 *
1363 *  Move pmap_collect() out of the machine-dependent code, rename it
1364 *  to reflect its new location, and add page queue and flag locking.
1365 *
1366 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1367 *  of pmap_collect() in terms of machine-independent interfaces;
1368 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1369 *
1370 *  MIPS implementation was identical to alpha [Junos 8.2]
1371 */
1372
1373/*
1374 * If it is the first entry on the list, it is actually
1375 * in the header and we must copy the following entry up
1376 * to the header.  Otherwise we must search the list for
1377 * the entry.  In either case we free the now unused entry.
1378 */
1379
1380static void
1381pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1382{
1383	pv_entry_t pv;
1384
1385	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1386	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1387	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1388		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1389			if (pmap == pv->pv_pmap && va == pv->pv_va)
1390				break;
1391		}
1392	} else {
1393		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1394			if (va == pv->pv_va)
1395				break;
1396		}
1397	}
1398
1399	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1400	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1401	m->md.pv_list_count--;
1402	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1403		vm_page_flag_clear(m, PG_WRITEABLE);
1404
1405	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1406	free_pv_entry(pv);
1407}
1408
1409/*
1410 * Create a pv entry for page at pa for
1411 * (pmap, va).
1412 */
1413static void
1414pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m,
1415    boolean_t wired)
1416{
1417	pv_entry_t pv;
1418
1419	pv = get_pv_entry(pmap);
1420	pv->pv_va = va;
1421	pv->pv_pmap = pmap;
1422	pv->pv_ptem = mpte;
1423	pv->pv_wired = wired;
1424
1425	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1426	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1427	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1428	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1429	m->md.pv_list_count++;
1430}
1431
1432/*
1433 * Conditionally create a pv entry.
1434 */
1435static boolean_t
1436pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1437    vm_page_t m)
1438{
1439	pv_entry_t pv;
1440
1441	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1442	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1443	if (pv_entry_count < pv_entry_high_water &&
1444	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1445		pv_entry_count++;
1446		pv->pv_va = va;
1447		pv->pv_pmap = pmap;
1448		pv->pv_ptem = mpte;
1449		pv->pv_wired = FALSE;
1450		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1451		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1452		m->md.pv_list_count++;
1453		return (TRUE);
1454	} else
1455		return (FALSE);
1456}
1457
1458/*
1459 * pmap_remove_pte: do the things to unmap a page in a process
1460 */
1461static int
1462pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1463{
1464	pt_entry_t oldpte;
1465	vm_page_t m;
1466	vm_offset_t pa;
1467
1468	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1469	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1470
1471	oldpte = loadandclear((u_int *)ptq);
1472	if (is_kernel_pmap(pmap))
1473		*ptq = PTE_G;
1474
1475	if (oldpte & PTE_W)
1476		pmap->pm_stats.wired_count -= 1;
1477
1478	pmap->pm_stats.resident_count -= 1;
1479	pa = mips_tlbpfn_to_paddr(oldpte);
1480
1481	if (page_is_managed(pa)) {
1482		m = PHYS_TO_VM_PAGE(pa);
1483		if (oldpte & PTE_M) {
1484#if defined(PMAP_DIAGNOSTIC)
1485			if (pmap_nw_modified(oldpte)) {
1486				printf(
1487				    "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1488				    va, oldpte);
1489			}
1490#endif
1491			vm_page_dirty(m);
1492		}
1493		if (m->md.pv_flags & PV_TABLE_REF)
1494			vm_page_flag_set(m, PG_REFERENCED);
1495		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1496
1497		pmap_remove_entry(pmap, m, va);
1498	}
1499	return pmap_unuse_pt(pmap, va, NULL);
1500}
1501
1502/*
1503 * Remove a single page from a process address space
1504 */
1505static void
1506pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1507{
1508	register pt_entry_t *ptq;
1509
1510	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1511	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1512	ptq = pmap_pte(pmap, va);
1513
1514	/*
1515	 * if there is no pte for this address, just skip it!!!
1516	 */
1517	if (!ptq || !pmap_pte_v(ptq)) {
1518		return;
1519	}
1520
1521	/*
1522	 * Write back all caches from the page being destroyed
1523	 */
1524	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1525
1526	/*
1527	 * get a local va for mappings for this pmap.
1528	 */
1529	(void)pmap_remove_pte(pmap, ptq, va);
1530	pmap_invalidate_page(pmap, va);
1531
1532	return;
1533}
1534
1535/*
1536 *	Remove the given range of addresses from the specified map.
1537 *
1538 *	It is assumed that the start and end are properly
1539 *	rounded to the page size.
1540 */
1541void
1542pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1543{
1544	vm_offset_t va, nva;
1545
1546	if (pmap == NULL)
1547		return;
1548
1549	if (pmap->pm_stats.resident_count == 0)
1550		return;
1551
1552	vm_page_lock_queues();
1553	PMAP_LOCK(pmap);
1554
1555	/*
1556	 * special handling of removing one page.  a very common operation
1557	 * and easy to short circuit some code.
1558	 */
1559	if ((sva + PAGE_SIZE) == eva) {
1560		pmap_remove_page(pmap, sva);
1561		goto out;
1562	}
1563	for (va = sva; va < eva; va = nva) {
1564		if (!*pmap_pde(pmap, va)) {
1565			nva = mips_segtrunc(va + MIPS_SEGSIZE);
1566			continue;
1567		}
1568		pmap_remove_page(pmap, va);
1569		nva = va + PAGE_SIZE;
1570	}
1571
1572out:
1573	vm_page_unlock_queues();
1574	PMAP_UNLOCK(pmap);
1575}
1576
1577/*
1578 *	Routine:	pmap_remove_all
1579 *	Function:
1580 *		Removes this physical page from
1581 *		all physical maps in which it resides.
1582 *		Reflects back modify bits to the pager.
1583 *
1584 *	Notes:
1585 *		Original versions of this routine were very
1586 *		inefficient because they iteratively called
1587 *		pmap_remove (slow...)
1588 */
1589
1590void
1591pmap_remove_all(vm_page_t m)
1592{
1593	register pv_entry_t pv;
1594	register pt_entry_t *pte, tpte;
1595
1596	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1597	    ("pmap_remove_all: page %p is fictitious", m));
1598	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1599
1600	if (m->md.pv_flags & PV_TABLE_REF)
1601		vm_page_flag_set(m, PG_REFERENCED);
1602
1603	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1604		PMAP_LOCK(pv->pv_pmap);
1605
1606		/*
1607		 * If it's last mapping writeback all caches from
1608		 * the page being destroyed
1609	 	 */
1610		if (m->md.pv_list_count == 1)
1611			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1612
1613		pv->pv_pmap->pm_stats.resident_count--;
1614
1615		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1616
1617		tpte = loadandclear((u_int *)pte);
1618		if (is_kernel_pmap(pv->pv_pmap))
1619			*pte = PTE_G;
1620
1621		if (tpte & PTE_W)
1622			pv->pv_pmap->pm_stats.wired_count--;
1623
1624		/*
1625		 * Update the vm_page_t clean and reference bits.
1626		 */
1627		if (tpte & PTE_M) {
1628#if defined(PMAP_DIAGNOSTIC)
1629			if (pmap_nw_modified(tpte)) {
1630				printf(
1631				    "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1632				    pv->pv_va, tpte);
1633			}
1634#endif
1635			vm_page_dirty(m);
1636		}
1637		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1638
1639		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1640		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1641		m->md.pv_list_count--;
1642		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1643		PMAP_UNLOCK(pv->pv_pmap);
1644		free_pv_entry(pv);
1645	}
1646
1647	vm_page_flag_clear(m, PG_WRITEABLE);
1648	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1649}
1650
1651/*
1652 *	Set the physical protection on the
1653 *	specified range of this map as requested.
1654 */
1655void
1656pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1657{
1658	pt_entry_t *pte;
1659
1660	if (pmap == NULL)
1661		return;
1662
1663	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1664		pmap_remove(pmap, sva, eva);
1665		return;
1666	}
1667	if (prot & VM_PROT_WRITE)
1668		return;
1669
1670	vm_page_lock_queues();
1671	PMAP_LOCK(pmap);
1672	while (sva < eva) {
1673		pt_entry_t pbits, obits;
1674		vm_page_t m;
1675		vm_offset_t pa;
1676
1677		/*
1678		 * If segment table entry is empty, skip this segment.
1679		 */
1680		if (!*pmap_pde(pmap, sva)) {
1681			sva = mips_segtrunc(sva + MIPS_SEGSIZE);
1682			continue;
1683		}
1684		/*
1685		 * If pte is invalid, skip this page
1686		 */
1687		pte = pmap_pte(pmap, sva);
1688		if (!pmap_pte_v(pte)) {
1689			sva += PAGE_SIZE;
1690			continue;
1691		}
1692retry:
1693		obits = pbits = *pte;
1694		pa = mips_tlbpfn_to_paddr(pbits);
1695
1696		if (page_is_managed(pa) && (pbits & PTE_M) != 0) {
1697			m = PHYS_TO_VM_PAGE(pa);
1698			vm_page_dirty(m);
1699			m->md.pv_flags &= ~PV_TABLE_MOD;
1700		}
1701		pbits = (pbits & ~PTE_M) | PTE_RO;
1702
1703		if (pbits != *pte) {
1704			if (!atomic_cmpset_int((u_int *)pte, obits, pbits))
1705				goto retry;
1706			pmap_update_page(pmap, sva, pbits);
1707		}
1708		sva += PAGE_SIZE;
1709	}
1710	vm_page_unlock_queues();
1711	PMAP_UNLOCK(pmap);
1712}
1713
1714/*
1715 *	Insert the given physical page (p) at
1716 *	the specified virtual address (v) in the
1717 *	target physical map with the protection requested.
1718 *
1719 *	If specified, the page will be wired down, meaning
1720 *	that the related pte can not be reclaimed.
1721 *
1722 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1723 *	or lose information.  That is, this routine must actually
1724 *	insert this page into the given map NOW.
1725 */
1726void
1727pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1728    vm_prot_t prot, boolean_t wired)
1729{
1730	vm_offset_t pa, opa;
1731	register pt_entry_t *pte;
1732	pt_entry_t origpte, newpte;
1733	vm_page_t mpte, om;
1734	int rw = 0;
1735
1736	if (pmap == NULL)
1737		return;
1738
1739	va &= ~PAGE_MASK;
1740#ifdef PMAP_DIAGNOSTIC
1741	if (va > VM_MAX_KERNEL_ADDRESS)
1742		panic("pmap_enter: toobig");
1743#endif
1744
1745	mpte = NULL;
1746
1747	vm_page_lock_queues();
1748	PMAP_LOCK(pmap);
1749
1750	/*
1751	 * In the case that a page table page is not resident, we are
1752	 * creating it here.
1753	 */
1754	if (va < VM_MAXUSER_ADDRESS) {
1755		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1756	}
1757	pte = pmap_pte(pmap, va);
1758
1759	/*
1760	 * Page Directory table entry not valid, we need a new PT page
1761	 */
1762	if (pte == NULL) {
1763		panic("pmap_enter: invalid page directory, pdir=%p, va=%p\n",
1764		    (void *)pmap->pm_segtab, (void *)va);
1765	}
1766	pa = VM_PAGE_TO_PHYS(m);
1767	om = NULL;
1768	origpte = *pte;
1769	opa = mips_tlbpfn_to_paddr(origpte);
1770
1771	/*
1772	 * Mapping has not changed, must be protection or wiring change.
1773	 */
1774	if ((origpte & PTE_V) && (opa == pa)) {
1775		/*
1776		 * Wiring change, just update stats. We don't worry about
1777		 * wiring PT pages as they remain resident as long as there
1778		 * are valid mappings in them. Hence, if a user page is
1779		 * wired, the PT page will be also.
1780		 */
1781		if (wired && ((origpte & PTE_W) == 0))
1782			pmap->pm_stats.wired_count++;
1783		else if (!wired && (origpte & PTE_W))
1784			pmap->pm_stats.wired_count--;
1785
1786#if defined(PMAP_DIAGNOSTIC)
1787		if (pmap_nw_modified(origpte)) {
1788			printf(
1789			    "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1790			    va, origpte);
1791		}
1792#endif
1793
1794		/*
1795		 * Remove extra pte reference
1796		 */
1797		if (mpte)
1798			mpte->wire_count--;
1799
1800		/*
1801		 * We might be turning off write access to the page, so we
1802		 * go ahead and sense modify status.
1803		 */
1804		if (page_is_managed(opa)) {
1805			om = m;
1806		}
1807		goto validate;
1808	}
1809	/*
1810	 * Mapping has changed, invalidate old range and fall through to
1811	 * handle validating new mapping.
1812	 */
1813	if (opa) {
1814		if (origpte & PTE_W)
1815			pmap->pm_stats.wired_count--;
1816
1817		if (page_is_managed(opa)) {
1818			om = PHYS_TO_VM_PAGE(opa);
1819			pmap_remove_entry(pmap, om, va);
1820		}
1821		if (mpte != NULL) {
1822			mpte->wire_count--;
1823			KASSERT(mpte->wire_count > 0,
1824			    ("pmap_enter: missing reference to page table page,"
1825			    " va: %p", (void *)va));
1826		}
1827	} else
1828		pmap->pm_stats.resident_count++;
1829
1830	/*
1831	 * Enter on the PV list if part of our managed memory. Note that we
1832	 * raise IPL while manipulating pv_table since pmap_enter can be
1833	 * called at interrupt time.
1834	 */
1835	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1836		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1837		    ("pmap_enter: managed mapping within the clean submap"));
1838		pmap_insert_entry(pmap, va, mpte, m, wired);
1839	}
1840	/*
1841	 * Increment counters
1842	 */
1843	if (wired)
1844		pmap->pm_stats.wired_count++;
1845
1846validate:
1847	if ((access & VM_PROT_WRITE) != 0)
1848		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1849	rw = init_pte_prot(va, m, prot);
1850
1851#ifdef PMAP_DEBUG
1852	printf("pmap_enter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
1853#endif
1854	/*
1855	 * Now validate mapping with desired protection/wiring.
1856	 */
1857	newpte = mips_paddr_to_tlbpfn(pa) | rw | PTE_V;
1858
1859	if (is_cacheable_mem(pa))
1860		newpte |= PTE_CACHE;
1861	else
1862		newpte |= PTE_UNCACHED;
1863
1864	if (wired)
1865		newpte |= PTE_W;
1866
1867	if (is_kernel_pmap(pmap)) {
1868	         newpte |= PTE_G;
1869	}
1870
1871	/*
1872	 * if the mapping or permission bits are different, we need to
1873	 * update the pte.
1874	 */
1875	if (origpte != newpte) {
1876		if (origpte & PTE_V) {
1877			*pte = newpte;
1878			if (page_is_managed(opa) && (opa != pa)) {
1879				if (om->md.pv_flags & PV_TABLE_REF)
1880					vm_page_flag_set(om, PG_REFERENCED);
1881				om->md.pv_flags &=
1882				    ~(PV_TABLE_REF | PV_TABLE_MOD);
1883			}
1884			if (origpte & PTE_M) {
1885				KASSERT((origpte & PTE_RW),
1886				    ("pmap_enter: modified page not writable:"
1887				    " va: %p, pte: 0x%x", (void *)va, origpte));
1888				if (page_is_managed(opa))
1889					vm_page_dirty(om);
1890			}
1891		} else {
1892			*pte = newpte;
1893		}
1894	}
1895	pmap_update_page(pmap, va, newpte);
1896
1897	/*
1898	 * Sync I & D caches for executable pages.  Do this only if the the
1899	 * target pmap belongs to the current process.  Otherwise, an
1900	 * unresolvable TLB miss may occur.
1901	 */
1902	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
1903	    (prot & VM_PROT_EXECUTE)) {
1904		mips_icache_sync_range(va, PAGE_SIZE);
1905		mips_dcache_wbinv_range(va, PAGE_SIZE);
1906	}
1907	vm_page_unlock_queues();
1908	PMAP_UNLOCK(pmap);
1909}
1910
1911/*
1912 * this code makes some *MAJOR* assumptions:
1913 * 1. Current pmap & pmap exists.
1914 * 2. Not wired.
1915 * 3. Read access.
1916 * 4. No page table pages.
1917 * but is *MUCH* faster than pmap_enter...
1918 */
1919
1920void
1921pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
1922{
1923
1924	PMAP_LOCK(pmap);
1925	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
1926	PMAP_UNLOCK(pmap);
1927}
1928
1929static vm_page_t
1930pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1931    vm_prot_t prot, vm_page_t mpte)
1932{
1933	pt_entry_t *pte;
1934	vm_offset_t pa;
1935
1936	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
1937	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
1938	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
1939	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1940	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1941
1942	/*
1943	 * In the case that a page table page is not resident, we are
1944	 * creating it here.
1945	 */
1946	if (va < VM_MAXUSER_ADDRESS) {
1947		unsigned ptepindex;
1948		vm_offset_t pteva;
1949
1950		/*
1951		 * Calculate pagetable page index
1952		 */
1953		ptepindex = va >> SEGSHIFT;
1954		if (mpte && (mpte->pindex == ptepindex)) {
1955			mpte->wire_count++;
1956		} else {
1957			/*
1958			 * Get the page directory entry
1959			 */
1960			pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1961
1962			/*
1963			 * If the page table page is mapped, we just
1964			 * increment the hold count, and activate it.
1965			 */
1966			if (pteva) {
1967				if (pmap->pm_ptphint &&
1968				    (pmap->pm_ptphint->pindex == ptepindex)) {
1969					mpte = pmap->pm_ptphint;
1970				} else {
1971					mpte = PHYS_TO_VM_PAGE(vtophys(pteva));
1972					pmap->pm_ptphint = mpte;
1973				}
1974				mpte->wire_count++;
1975			} else {
1976				mpte = _pmap_allocpte(pmap, ptepindex,
1977				    M_NOWAIT);
1978				if (mpte == NULL)
1979					return (mpte);
1980			}
1981		}
1982	} else {
1983		mpte = NULL;
1984	}
1985
1986	pte = pmap_pte(pmap, va);
1987	if (pmap_pte_v(pte)) {
1988		if (mpte != NULL) {
1989			mpte->wire_count--;
1990			mpte = NULL;
1991		}
1992		return (mpte);
1993	}
1994
1995	/*
1996	 * Enter on the PV list if part of our managed memory.
1997	 */
1998	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
1999	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2000		if (mpte != NULL) {
2001			pmap_unwire_pte_hold(pmap, mpte);
2002			mpte = NULL;
2003		}
2004		return (mpte);
2005	}
2006
2007	/*
2008	 * Increment counters
2009	 */
2010	pmap->pm_stats.resident_count++;
2011
2012	pa = VM_PAGE_TO_PHYS(m);
2013
2014	/*
2015	 * Now validate mapping with RO protection
2016	 */
2017	*pte = mips_paddr_to_tlbpfn(pa) | PTE_V;
2018
2019	if (is_cacheable_mem(pa))
2020		*pte |= PTE_CACHE;
2021	else
2022		*pte |= PTE_UNCACHED;
2023
2024	if (is_kernel_pmap(pmap))
2025		*pte |= PTE_G;
2026	else {
2027		*pte |= PTE_RO;
2028		/*
2029		 * Sync I & D caches.  Do this only if the the target pmap
2030		 * belongs to the current process.  Otherwise, an
2031		 * unresolvable TLB miss may occur. */
2032		if (pmap == &curproc->p_vmspace->vm_pmap) {
2033			va &= ~PAGE_MASK;
2034			mips_icache_sync_range(va, PAGE_SIZE);
2035			mips_dcache_wbinv_range(va, PAGE_SIZE);
2036		}
2037	}
2038	return (mpte);
2039}
2040
2041/*
2042 * Make a temporary mapping for a physical address.  This is only intended
2043 * to be used for panic dumps.
2044 */
2045void *
2046pmap_kenter_temporary(vm_paddr_t pa, int i)
2047{
2048	vm_offset_t va;
2049	register_t intr;
2050	if (i != 0)
2051		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2052		    __func__);
2053
2054	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2055		va = MIPS_PHYS_TO_KSEG0(pa);
2056	} else {
2057		int cpu;
2058		struct local_sysmaps *sysm;
2059		pt_entry_t *pte, npte;
2060
2061		/* If this is used other than for dumps, we may need to leave
2062		 * interrupts disasbled on return. If crash dumps don't work when
2063		 * we get to this point, we might want to consider this (leaving things
2064		 * disabled as a starting point ;-)
2065	 	 */
2066		intr = intr_disable();
2067		cpu = PCPU_GET(cpuid);
2068		sysm = &sysmap_lmem[cpu];
2069		/* Since this is for the debugger, no locks or any other fun */
2070		npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2071		pte = pmap_pte(kernel_pmap, sysm->base);
2072		*pte = npte;
2073		sysm->valid1 = 1;
2074		pmap_update_page(kernel_pmap, sysm->base, npte);
2075		va = sysm->base;
2076		intr_restore(intr);
2077	}
2078	return ((void *)va);
2079}
2080
2081void
2082pmap_kenter_temporary_free(vm_paddr_t pa)
2083{
2084	int cpu;
2085	register_t intr;
2086	struct local_sysmaps *sysm;
2087
2088	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2089		/* nothing to do for this case */
2090		return;
2091	}
2092	cpu = PCPU_GET(cpuid);
2093	sysm = &sysmap_lmem[cpu];
2094	if (sysm->valid1) {
2095		pt_entry_t *pte;
2096
2097		intr = intr_disable();
2098		pte = pmap_pte(kernel_pmap, sysm->base);
2099		*pte = PTE_G;
2100		pmap_invalidate_page(kernel_pmap, sysm->base);
2101		intr_restore(intr);
2102		sysm->valid1 = 0;
2103	}
2104}
2105
2106/*
2107 * Moved the code to Machine Independent
2108 *	 vm_map_pmap_enter()
2109 */
2110
2111/*
2112 * Maps a sequence of resident pages belonging to the same object.
2113 * The sequence begins with the given page m_start.  This page is
2114 * mapped at the given virtual address start.  Each subsequent page is
2115 * mapped at a virtual address that is offset from start by the same
2116 * amount as the page is offset from m_start within the object.  The
2117 * last page in the sequence is the page with the largest offset from
2118 * m_start that can be mapped at a virtual address less than the given
2119 * virtual address end.  Not every virtual page between start and end
2120 * is mapped; only those for which a resident page exists with the
2121 * corresponding offset from m_start are mapped.
2122 */
2123void
2124pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2125    vm_page_t m_start, vm_prot_t prot)
2126{
2127	vm_page_t m, mpte;
2128	vm_pindex_t diff, psize;
2129
2130	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2131	psize = atop(end - start);
2132	mpte = NULL;
2133	m = m_start;
2134	PMAP_LOCK(pmap);
2135	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2136		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2137		    prot, mpte);
2138		m = TAILQ_NEXT(m, listq);
2139	}
2140 	PMAP_UNLOCK(pmap);
2141}
2142
2143/*
2144 * pmap_object_init_pt preloads the ptes for a given object
2145 * into the specified pmap.  This eliminates the blast of soft
2146 * faults on process startup and immediately after an mmap.
2147 */
2148void
2149pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2150    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2151{
2152	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2153	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2154	    ("pmap_object_init_pt: non-device object"));
2155}
2156
2157/*
2158 *	Routine:	pmap_change_wiring
2159 *	Function:	Change the wiring attribute for a map/virtual-address
2160 *			pair.
2161 *	In/out conditions:
2162 *			The mapping must already exist in the pmap.
2163 */
2164void
2165pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2166{
2167	register pt_entry_t *pte;
2168
2169	if (pmap == NULL)
2170		return;
2171
2172	PMAP_LOCK(pmap);
2173	pte = pmap_pte(pmap, va);
2174
2175	if (wired && !pmap_pte_w(pte))
2176		pmap->pm_stats.wired_count++;
2177	else if (!wired && pmap_pte_w(pte))
2178		pmap->pm_stats.wired_count--;
2179
2180	/*
2181	 * Wiring is not a hardware characteristic so there is no need to
2182	 * invalidate TLB.
2183	 */
2184	pmap_pte_set_w(pte, wired);
2185	PMAP_UNLOCK(pmap);
2186}
2187
2188/*
2189 *	Copy the range specified by src_addr/len
2190 *	from the source map to the range dst_addr/len
2191 *	in the destination map.
2192 *
2193 *	This routine is only advisory and need not do anything.
2194 */
2195
2196void
2197pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2198    vm_size_t len, vm_offset_t src_addr)
2199{
2200}
2201
2202/*
2203 *	pmap_zero_page zeros the specified hardware page by mapping
2204 *	the page into KVM and using bzero to clear its contents.
2205 */
2206void
2207pmap_zero_page(vm_page_t m)
2208{
2209	vm_offset_t va;
2210	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2211	register_t intr;
2212
2213	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2214		va = MIPS_PHYS_TO_KSEG0(phys);
2215
2216		bzero((caddr_t)va, PAGE_SIZE);
2217		mips_dcache_wbinv_range(va, PAGE_SIZE);
2218	} else {
2219		PMAP_LMEM_MAP1(va, phys);
2220
2221		bzero((caddr_t)va, PAGE_SIZE);
2222		mips_dcache_wbinv_range(va, PAGE_SIZE);
2223
2224		PMAP_LMEM_UNMAP();
2225	}
2226}
2227
2228/*
2229 *	pmap_zero_page_area zeros the specified hardware page by mapping
2230 *	the page into KVM and using bzero to clear its contents.
2231 *
2232 *	off and size may not cover an area beyond a single hardware page.
2233 */
2234void
2235pmap_zero_page_area(vm_page_t m, int off, int size)
2236{
2237	vm_offset_t va;
2238	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2239	register_t intr;
2240
2241	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2242		va = MIPS_PHYS_TO_KSEG0(phys);
2243		bzero((char *)(caddr_t)va + off, size);
2244		mips_dcache_wbinv_range(va + off, size);
2245	} else {
2246		PMAP_LMEM_MAP1(va, phys);
2247
2248		bzero((char *)va + off, size);
2249		mips_dcache_wbinv_range(va + off, size);
2250
2251		PMAP_LMEM_UNMAP();
2252	}
2253}
2254
2255void
2256pmap_zero_page_idle(vm_page_t m)
2257{
2258	vm_offset_t va;
2259	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2260	register_t intr;
2261
2262	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2263		va = MIPS_PHYS_TO_KSEG0(phys);
2264		bzero((caddr_t)va, PAGE_SIZE);
2265		mips_dcache_wbinv_range(va, PAGE_SIZE);
2266	} else {
2267		PMAP_LMEM_MAP1(va, phys);
2268
2269		bzero((caddr_t)va, PAGE_SIZE);
2270		mips_dcache_wbinv_range(va, PAGE_SIZE);
2271
2272		PMAP_LMEM_UNMAP();
2273	}
2274}
2275
2276/*
2277 *	pmap_copy_page copies the specified (machine independent)
2278 *	page by mapping the page into virtual memory and using
2279 *	bcopy to copy the page, one machine dependent page at a
2280 *	time.
2281 */
2282void
2283pmap_copy_page(vm_page_t src, vm_page_t dst)
2284{
2285	vm_offset_t va_src, va_dst;
2286	vm_paddr_t phy_src = VM_PAGE_TO_PHYS(src);
2287	vm_paddr_t phy_dst = VM_PAGE_TO_PHYS(dst);
2288	register_t intr;
2289
2290	if ((phy_src < MIPS_KSEG0_LARGEST_PHYS) && (phy_dst < MIPS_KSEG0_LARGEST_PHYS)) {
2291		/* easy case, all can be accessed via KSEG0 */
2292		/*
2293		 * Flush all caches for VA that are mapped to this page
2294		 * to make sure that data in SDRAM is up to date
2295		 */
2296		pmap_flush_pvcache(src);
2297		mips_dcache_wbinv_range_index(
2298		    MIPS_PHYS_TO_KSEG0(phy_dst), PAGE_SIZE);
2299		va_src = MIPS_PHYS_TO_KSEG0(phy_src);
2300		va_dst = MIPS_PHYS_TO_KSEG0(phy_dst);
2301		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2302		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2303	} else {
2304		PMAP_LMEM_MAP2(va_src, phy_src, va_dst, phy_dst);
2305
2306		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2307		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2308
2309		PMAP_LMEM_UNMAP();
2310	}
2311}
2312
2313/*
2314 * Returns true if the pmap's pv is one of the first
2315 * 16 pvs linked to from this page.  This count may
2316 * be changed upwards or downwards in the future; it
2317 * is only necessary that true be returned for a small
2318 * subset of pmaps for proper page aging.
2319 */
2320boolean_t
2321pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2322{
2323	pv_entry_t pv;
2324	int loops = 0;
2325
2326	if (m->flags & PG_FICTITIOUS)
2327		return FALSE;
2328
2329	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2330	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2331		if (pv->pv_pmap == pmap) {
2332			return TRUE;
2333		}
2334		loops++;
2335		if (loops >= 16)
2336			break;
2337	}
2338	return (FALSE);
2339}
2340
2341/*
2342 * Remove all pages from specified address space
2343 * this aids process exit speeds.  Also, this code
2344 * is special cased for current process only, but
2345 * can have the more generic (and slightly slower)
2346 * mode enabled.  This is much faster than pmap_remove
2347 * in the case of running down an entire address space.
2348 */
2349void
2350pmap_remove_pages(pmap_t pmap)
2351{
2352	pt_entry_t *pte, tpte;
2353	pv_entry_t pv, npv;
2354	vm_page_t m;
2355
2356	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2357		printf("warning: pmap_remove_pages called with non-current pmap\n");
2358		return;
2359	}
2360	vm_page_lock_queues();
2361	PMAP_LOCK(pmap);
2362	sched_pin();
2363	//XXX need to be TAILQ_FOREACH_SAFE ?
2364	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2365
2366		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2367		if (!pmap_pte_v(pte))
2368			panic("pmap_remove_pages: page on pm_pvlist has no pte\n");
2369		tpte = *pte;
2370
2371/*
2372 * We cannot remove wired pages from a process' mapping at this time
2373 */
2374		if (tpte & PTE_W) {
2375			npv = TAILQ_NEXT(pv, pv_plist);
2376			continue;
2377		}
2378		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2379
2380		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(tpte));
2381		KASSERT(m != NULL,
2382		    ("pmap_remove_pages: bad tpte %x", tpte));
2383
2384		pv->pv_pmap->pm_stats.resident_count--;
2385
2386		/*
2387		 * Update the vm_page_t clean and reference bits.
2388		 */
2389		if (tpte & PTE_M) {
2390			vm_page_dirty(m);
2391		}
2392		npv = TAILQ_NEXT(pv, pv_plist);
2393		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2394
2395		m->md.pv_list_count--;
2396		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2397		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2398			vm_page_flag_clear(m, PG_WRITEABLE);
2399		}
2400		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2401		free_pv_entry(pv);
2402	}
2403	sched_unpin();
2404	pmap_invalidate_all(pmap);
2405	PMAP_UNLOCK(pmap);
2406	vm_page_unlock_queues();
2407}
2408
2409/*
2410 * pmap_testbit tests bits in pte's
2411 * note that the testbit/changebit routines are inline,
2412 * and a lot of things compile-time evaluate.
2413 */
2414static boolean_t
2415pmap_testbit(vm_page_t m, int bit)
2416{
2417	pv_entry_t pv;
2418	pt_entry_t *pte;
2419	boolean_t rv = FALSE;
2420
2421	if (m->flags & PG_FICTITIOUS)
2422		return rv;
2423
2424	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2425		return rv;
2426
2427	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2428	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2429#if defined(PMAP_DIAGNOSTIC)
2430		if (!pv->pv_pmap) {
2431			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2432			continue;
2433		}
2434#endif
2435		PMAP_LOCK(pv->pv_pmap);
2436		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2437		rv = (*pte & bit) != 0;
2438		PMAP_UNLOCK(pv->pv_pmap);
2439		if (rv)
2440			break;
2441	}
2442	return (rv);
2443}
2444
2445/*
2446 * this routine is used to modify bits in ptes
2447 */
2448static __inline void
2449pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2450{
2451	register pv_entry_t pv;
2452	register pt_entry_t *pte;
2453
2454	if (m->flags & PG_FICTITIOUS)
2455		return;
2456
2457	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2458	/*
2459	 * Loop over all current mappings setting/clearing as appropos If
2460	 * setting RO do we need to clear the VAC?
2461	 */
2462	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2463#if defined(PMAP_DIAGNOSTIC)
2464		if (!pv->pv_pmap) {
2465			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2466			continue;
2467		}
2468#endif
2469
2470		PMAP_LOCK(pv->pv_pmap);
2471		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2472
2473		if (setem) {
2474			*(int *)pte |= bit;
2475			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2476		} else {
2477			vm_offset_t pbits = *(vm_offset_t *)pte;
2478
2479			if (pbits & bit) {
2480				if (bit == PTE_RW) {
2481					if (pbits & PTE_M) {
2482						vm_page_dirty(m);
2483					}
2484					*(int *)pte = (pbits & ~(PTE_M | PTE_RW)) |
2485					    PTE_RO;
2486				} else {
2487					*(int *)pte = pbits & ~bit;
2488				}
2489				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2490			}
2491		}
2492		PMAP_UNLOCK(pv->pv_pmap);
2493	}
2494	if (!setem && bit == PTE_RW)
2495		vm_page_flag_clear(m, PG_WRITEABLE);
2496}
2497
2498/*
2499 *	pmap_page_wired_mappings:
2500 *
2501 *	Return the number of managed mappings to the given physical page
2502 *	that are wired.
2503 */
2504int
2505pmap_page_wired_mappings(vm_page_t m)
2506{
2507	pv_entry_t pv;
2508	int count;
2509
2510	count = 0;
2511	if ((m->flags & PG_FICTITIOUS) != 0)
2512		return (count);
2513	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2514	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2515	    if (pv->pv_wired)
2516		count++;
2517	return (count);
2518}
2519
2520/*
2521 * Clear the write and modified bits in each of the given page's mappings.
2522 */
2523void
2524pmap_remove_write(vm_page_t m)
2525{
2526	pv_entry_t pv, npv;
2527	vm_offset_t va;
2528	pt_entry_t *pte;
2529
2530	if ((m->flags & PG_WRITEABLE) == 0)
2531		return;
2532
2533	/*
2534	 * Loop over all current mappings setting/clearing as appropos.
2535	 */
2536	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2537		npv = TAILQ_NEXT(pv, pv_plist);
2538		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2539
2540		if ((pte == NULL) || !mips_pg_v(*pte))
2541			panic("page on pm_pvlist has no pte\n");
2542
2543		va = pv->pv_va;
2544		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2545		    VM_PROT_READ | VM_PROT_EXECUTE);
2546	}
2547	vm_page_flag_clear(m, PG_WRITEABLE);
2548}
2549
2550/*
2551 *	pmap_ts_referenced:
2552 *
2553 *	Return the count of reference bits for a page, clearing all of them.
2554 */
2555int
2556pmap_ts_referenced(vm_page_t m)
2557{
2558	if (m->flags & PG_FICTITIOUS)
2559		return (0);
2560
2561	if (m->md.pv_flags & PV_TABLE_REF) {
2562		m->md.pv_flags &= ~PV_TABLE_REF;
2563		return 1;
2564	}
2565	return 0;
2566}
2567
2568/*
2569 *	pmap_is_modified:
2570 *
2571 *	Return whether or not the specified physical page was modified
2572 *	in any physical maps.
2573 */
2574boolean_t
2575pmap_is_modified(vm_page_t m)
2576{
2577	if (m->flags & PG_FICTITIOUS)
2578		return FALSE;
2579
2580	if (m->md.pv_flags & PV_TABLE_MOD)
2581		return TRUE;
2582	else
2583		return pmap_testbit(m, PTE_M);
2584}
2585
2586/* N/C */
2587
2588/*
2589 *	pmap_is_prefaultable:
2590 *
2591 *	Return whether or not the specified virtual address is elgible
2592 *	for prefault.
2593 */
2594boolean_t
2595pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2596{
2597	pt_entry_t *pte;
2598	boolean_t rv;
2599
2600	rv = FALSE;
2601	PMAP_LOCK(pmap);
2602	if (*pmap_pde(pmap, addr)) {
2603		pte = pmap_pte(pmap, addr);
2604		rv = (*pte == 0);
2605	}
2606	PMAP_UNLOCK(pmap);
2607	return (rv);
2608}
2609
2610/*
2611 *	Clear the modify bits on the specified physical page.
2612 */
2613void
2614pmap_clear_modify(vm_page_t m)
2615{
2616	if (m->flags & PG_FICTITIOUS)
2617		return;
2618	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2619	if (m->md.pv_flags & PV_TABLE_MOD) {
2620		pmap_changebit(m, PTE_M, FALSE);
2621		m->md.pv_flags &= ~PV_TABLE_MOD;
2622	}
2623}
2624
2625/*
2626 *	pmap_is_referenced:
2627 *
2628 *	Return whether or not the specified physical page was referenced
2629 *	in any physical maps.
2630 */
2631boolean_t
2632pmap_is_referenced(vm_page_t m)
2633{
2634
2635	return ((m->flags & PG_FICTITIOUS) == 0 &&
2636	    (m->md.pv_flags & PV_TABLE_REF) != 0);
2637}
2638
2639/*
2640 *	pmap_clear_reference:
2641 *
2642 *	Clear the reference bit on the specified physical page.
2643 */
2644void
2645pmap_clear_reference(vm_page_t m)
2646{
2647	if (m->flags & PG_FICTITIOUS)
2648		return;
2649
2650	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2651	if (m->md.pv_flags & PV_TABLE_REF) {
2652		m->md.pv_flags &= ~PV_TABLE_REF;
2653	}
2654}
2655
2656/*
2657 * Miscellaneous support routines follow
2658 */
2659
2660/*
2661 * Map a set of physical memory pages into the kernel virtual
2662 * address space. Return a pointer to where it is mapped. This
2663 * routine is intended to be used for mapping device memory,
2664 * NOT real memory.
2665 */
2666
2667/*
2668 * Map a set of physical memory pages into the kernel virtual
2669 * address space. Return a pointer to where it is mapped. This
2670 * routine is intended to be used for mapping device memory,
2671 * NOT real memory.
2672 */
2673void *
2674pmap_mapdev(vm_offset_t pa, vm_size_t size)
2675{
2676        vm_offset_t va, tmpva, offset;
2677
2678	/*
2679	 * KSEG1 maps only first 512M of phys address space. For
2680	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2681	 */
2682	if ((pa + size - 1) < MIPS_KSEG0_LARGEST_PHYS)
2683		return (void *)MIPS_PHYS_TO_KSEG1(pa);
2684	else {
2685		offset = pa & PAGE_MASK;
2686		size = roundup(size + offset, PAGE_SIZE);
2687
2688		va = kmem_alloc_nofault(kernel_map, size);
2689		if (!va)
2690			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2691		pa = trunc_page(pa);
2692		for (tmpva = va; size > 0;) {
2693			pmap_kenter(tmpva, pa);
2694			size -= PAGE_SIZE;
2695			tmpva += PAGE_SIZE;
2696			pa += PAGE_SIZE;
2697		}
2698	}
2699
2700	return ((void *)(va + offset));
2701}
2702
2703void
2704pmap_unmapdev(vm_offset_t va, vm_size_t size)
2705{
2706	vm_offset_t base, offset, tmpva;
2707
2708	/* If the address is within KSEG1 then there is nothing to do */
2709	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2710		return;
2711
2712	base = trunc_page(va);
2713	offset = va & PAGE_MASK;
2714	size = roundup(size + offset, PAGE_SIZE);
2715	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2716		pmap_kremove(tmpva);
2717	kmem_free(kernel_map, base, size);
2718}
2719
2720/*
2721 * perform the pmap work for mincore
2722 */
2723int
2724pmap_mincore(pmap_t pmap, vm_offset_t addr)
2725{
2726
2727	pt_entry_t *ptep, pte;
2728	vm_page_t m;
2729	int val = 0;
2730
2731	PMAP_LOCK(pmap);
2732	ptep = pmap_pte(pmap, addr);
2733	pte = (ptep != NULL) ? *ptep : 0;
2734	PMAP_UNLOCK(pmap);
2735
2736	if (mips_pg_v(pte)) {
2737		vm_offset_t pa;
2738
2739		val = MINCORE_INCORE;
2740		pa = mips_tlbpfn_to_paddr(pte);
2741		if (!page_is_managed(pa))
2742			return val;
2743
2744		m = PHYS_TO_VM_PAGE(pa);
2745
2746		/*
2747		 * Modified by us
2748		 */
2749		if (pte & PTE_M)
2750			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2751		/*
2752		 * Modified by someone
2753		 */
2754		else {
2755			vm_page_lock_queues();
2756			if (m->dirty || pmap_is_modified(m))
2757				val |= MINCORE_MODIFIED_OTHER;
2758			vm_page_unlock_queues();
2759		}
2760		/*
2761		 * Referenced by us or someone
2762		 */
2763		vm_page_lock_queues();
2764		if ((m->flags & PG_REFERENCED) || pmap_is_referenced(m))
2765			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2766		vm_page_unlock_queues();
2767	}
2768	return val;
2769}
2770
2771void
2772pmap_activate(struct thread *td)
2773{
2774	pmap_t pmap, oldpmap;
2775	struct proc *p = td->td_proc;
2776
2777	critical_enter();
2778
2779	pmap = vmspace_pmap(p->p_vmspace);
2780	oldpmap = PCPU_GET(curpmap);
2781
2782	if (oldpmap)
2783		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
2784	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
2785	pmap_asid_alloc(pmap);
2786	if (td == curthread) {
2787		PCPU_SET(segbase, pmap->pm_segtab);
2788		MachSetPID(pmap->pm_asid[PCPU_GET(cpuid)].asid);
2789	}
2790
2791	PCPU_SET(curpmap, pmap);
2792	critical_exit();
2793}
2794
2795void
2796pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2797{
2798}
2799
2800/*
2801 *	Increase the starting virtual address of the given mapping if a
2802 *	different alignment might result in more superpage mappings.
2803 */
2804void
2805pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2806    vm_offset_t *addr, vm_size_t size)
2807{
2808	vm_offset_t superpage_offset;
2809
2810	if (size < NBSEG)
2811		return;
2812	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2813		offset += ptoa(object->pg_color);
2814	superpage_offset = offset & SEGOFSET;
2815	if (size - ((NBSEG - superpage_offset) & SEGOFSET) < NBSEG ||
2816	    (*addr & SEGOFSET) == superpage_offset)
2817		return;
2818	if ((*addr & SEGOFSET) < superpage_offset)
2819		*addr = (*addr & ~SEGOFSET) + superpage_offset;
2820	else
2821		*addr = ((*addr + SEGOFSET) & ~SEGOFSET) + superpage_offset;
2822}
2823
2824/*
2825 * 	Increase the starting virtual address of the given mapping so
2826 * 	that it is aligned to not be the second page in a TLB entry.
2827 * 	This routine assumes that the length is appropriately-sized so
2828 * 	that the allocation does not share a TLB entry at all if required.
2829 */
2830void
2831pmap_align_tlb(vm_offset_t *addr)
2832{
2833	if ((*addr & PAGE_SIZE) == 0)
2834		return;
2835	*addr += PAGE_SIZE;
2836	return;
2837}
2838
2839int pmap_pid_dump(int pid);
2840
2841int
2842pmap_pid_dump(int pid)
2843{
2844	pmap_t pmap;
2845	struct proc *p;
2846	int npte = 0;
2847	int index;
2848
2849	sx_slock(&allproc_lock);
2850	LIST_FOREACH(p, &allproc, p_list) {
2851		if (p->p_pid != pid)
2852			continue;
2853
2854		if (p->p_vmspace) {
2855			int i, j;
2856
2857			printf("vmspace is %p\n",
2858			       p->p_vmspace);
2859			index = 0;
2860			pmap = vmspace_pmap(p->p_vmspace);
2861			printf("pmap asid:%x generation:%x\n",
2862			       pmap->pm_asid[0].asid,
2863			       pmap->pm_asid[0].gen);
2864			for (i = 0; i < NUSERPGTBLS; i++) {
2865				pd_entry_t *pde;
2866				pt_entry_t *pte;
2867				unsigned base = i << SEGSHIFT;
2868
2869				pde = &pmap->pm_segtab[i];
2870				if (pde && pmap_pde_v(pde)) {
2871					for (j = 0; j < 1024; j++) {
2872						vm_offset_t va = base +
2873						(j << PAGE_SHIFT);
2874
2875						pte = pmap_pte(pmap, va);
2876						if (pte && pmap_pte_v(pte)) {
2877							vm_offset_t pa;
2878							vm_page_t m;
2879
2880							pa = mips_tlbpfn_to_paddr(*pte);
2881							m = PHYS_TO_VM_PAGE(pa);
2882							printf("va: %p, pt: %p, h: %d, w: %d, f: 0x%x",
2883							    (void *)va,
2884							    (void *)pa,
2885							    m->hold_count,
2886							    m->wire_count,
2887							    m->flags);
2888							npte++;
2889							index++;
2890							if (index >= 2) {
2891								index = 0;
2892								printf("\n");
2893							} else {
2894								printf(" ");
2895							}
2896						}
2897					}
2898				}
2899			}
2900		} else {
2901		  printf("Process pid:%d has no vm_space\n", pid);
2902		}
2903		break;
2904	}
2905	sx_sunlock(&allproc_lock);
2906	return npte;
2907}
2908
2909
2910#if defined(DEBUG)
2911
2912static void pads(pmap_t pm);
2913void pmap_pvdump(vm_offset_t pa);
2914
2915/* print address space of pmap*/
2916static void
2917pads(pmap_t pm)
2918{
2919	unsigned va, i, j;
2920	pt_entry_t *ptep;
2921
2922	if (pm == kernel_pmap)
2923		return;
2924	for (i = 0; i < NPTEPG; i++)
2925		if (pm->pm_segtab[i])
2926			for (j = 0; j < NPTEPG; j++) {
2927				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
2928				if (pm == kernel_pmap && va < KERNBASE)
2929					continue;
2930				if (pm != kernel_pmap &&
2931				    va >= VM_MAXUSER_ADDRESS)
2932					continue;
2933				ptep = pmap_pte(pm, va);
2934				if (pmap_pte_v(ptep))
2935					printf("%x:%x ", va, *(int *)ptep);
2936			}
2937
2938}
2939
2940void
2941pmap_pvdump(vm_offset_t pa)
2942{
2943	register pv_entry_t pv;
2944	vm_page_t m;
2945
2946	printf("pa %x", pa);
2947	m = PHYS_TO_VM_PAGE(pa);
2948	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
2949	    pv = TAILQ_NEXT(pv, pv_list)) {
2950		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
2951		pads(pv->pv_pmap);
2952	}
2953	printf(" ");
2954}
2955
2956/* N/C */
2957#endif
2958
2959
2960/*
2961 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
2962 * It takes almost as much or more time to search the TLB for a
2963 * specific ASID and flush those entries as it does to flush the entire TLB.
2964 * Therefore, when we allocate a new ASID, we just take the next number. When
2965 * we run out of numbers, we flush the TLB, increment the generation count
2966 * and start over. ASID zero is reserved for kernel use.
2967 */
2968static void
2969pmap_asid_alloc(pmap)
2970	pmap_t pmap;
2971{
2972	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
2973	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
2974	else {
2975		if (PCPU_GET(next_asid) == pmap_max_asid) {
2976			MIPS_TBIAP();
2977			PCPU_SET(asid_generation,
2978			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
2979			if (PCPU_GET(asid_generation) == 0) {
2980				PCPU_SET(asid_generation, 1);
2981			}
2982			PCPU_SET(next_asid, 1);	/* 0 means invalid */
2983		}
2984		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
2985		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
2986		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
2987	}
2988}
2989
2990int
2991page_is_managed(vm_offset_t pa)
2992{
2993	vm_offset_t pgnum = mips_btop(pa);
2994
2995	if (pgnum >= first_page) {
2996		vm_page_t m;
2997
2998		m = PHYS_TO_VM_PAGE(pa);
2999		if (m == NULL)
3000			return 0;
3001		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
3002			return 1;
3003	}
3004	return 0;
3005}
3006
3007static int
3008init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3009{
3010	int rw = 0;
3011
3012	if (!(prot & VM_PROT_WRITE))
3013		rw = PTE_ROPAGE;
3014	else {
3015		if (va >= VM_MIN_KERNEL_ADDRESS) {
3016			/*
3017			 * Don't bother to trap on kernel writes, just
3018			 * record page as dirty.
3019			 */
3020			rw = PTE_RWPAGE;
3021			vm_page_dirty(m);
3022		} else if ((m->md.pv_flags & PV_TABLE_MOD) ||
3023		    m->dirty == VM_PAGE_BITS_ALL)
3024			rw = PTE_RWPAGE;
3025		else
3026			rw = PTE_CWPAGE;
3027		vm_page_flag_set(m, PG_WRITEABLE);
3028	}
3029	return rw;
3030}
3031
3032/*
3033 *	pmap_page_is_free:
3034 *
3035 *	Called when a page is freed to allow pmap to clean up
3036 *	any extra state associated with the page.  In this case
3037 *	clear modified/referenced bits.
3038 */
3039void
3040pmap_page_is_free(vm_page_t m)
3041{
3042
3043	m->md.pv_flags = 0;
3044}
3045
3046/*
3047 *	pmap_set_modified:
3048 *
3049 *	Sets the page modified and reference bits for the specified page.
3050 */
3051void
3052pmap_set_modified(vm_offset_t pa)
3053{
3054
3055	PHYS_TO_VM_PAGE(pa)->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3056}
3057
3058/*
3059 *	Routine:	pmap_kextract
3060 *	Function:
3061 *		Extract the physical page address associated
3062 *		virtual address.
3063 */
3064 /* PMAP_INLINE */ vm_offset_t
3065pmap_kextract(vm_offset_t va)
3066{
3067	vm_offset_t pa = 0;
3068
3069	if (va < MIPS_KSEG0_START) {
3070		/* user virtual address */
3071		pt_entry_t *ptep;
3072
3073		if (curproc && curproc->p_vmspace) {
3074			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3075			if (ptep)
3076				pa = mips_tlbpfn_to_paddr(*ptep) |
3077				    (va & PAGE_MASK);
3078		}
3079	} else if (va >= MIPS_KSEG0_START &&
3080	    va < MIPS_KSEG1_START)
3081		pa = MIPS_KSEG0_TO_PHYS(va);
3082	else if (va >= MIPS_KSEG1_START &&
3083	    va < MIPS_KSEG2_START)
3084		pa = MIPS_KSEG1_TO_PHYS(va);
3085	else if (va >= MIPS_KSEG2_START && va < VM_MAX_KERNEL_ADDRESS) {
3086		pt_entry_t *ptep;
3087
3088		/* Is the kernel pmap initialized? */
3089		if (kernel_pmap->pm_active) {
3090			/* Its inside the virtual address range */
3091			ptep = pmap_pte(kernel_pmap, va);
3092			if (ptep)
3093				pa = mips_tlbpfn_to_paddr(*ptep) |
3094				    (va & PAGE_MASK);
3095		}
3096	}
3097	return pa;
3098}
3099
3100void
3101pmap_flush_pvcache(vm_page_t m)
3102{
3103	pv_entry_t pv;
3104
3105	if (m != NULL) {
3106		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3107	    	    pv = TAILQ_NEXT(pv, pv_list)) {
3108			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3109		}
3110	}
3111}
3112
3113void
3114pmap_save_tlb(void)
3115{
3116	int tlbno, cpu;
3117
3118	cpu = PCPU_GET(cpuid);
3119
3120	for (tlbno = 0; tlbno < num_tlbentries; ++tlbno)
3121		MachTLBRead(tlbno, &tlbstash[cpu][tlbno]);
3122}
3123
3124#ifdef DDB
3125#include <ddb/ddb.h>
3126
3127DB_SHOW_COMMAND(tlb, ddb_dump_tlb)
3128{
3129	int cpu, tlbno;
3130	struct tlb *tlb;
3131
3132	if (have_addr)
3133		cpu = ((addr >> 4) % 16) * 10 + (addr % 16);
3134	else
3135		cpu = PCPU_GET(cpuid);
3136
3137	if (cpu < 0 || cpu >= mp_ncpus) {
3138		db_printf("Invalid CPU %d\n", cpu);
3139		return;
3140	} else
3141		db_printf("CPU %d:\n", cpu);
3142
3143	if (cpu == PCPU_GET(cpuid))
3144		pmap_save_tlb();
3145
3146	for (tlbno = 0; tlbno < num_tlbentries; ++tlbno) {
3147		tlb = &tlbstash[cpu][tlbno];
3148		if (tlb->tlb_lo0 & PTE_V || tlb->tlb_lo1 & PTE_V) {
3149			printf("TLB %2d vad 0x%0lx ",
3150				tlbno, (long)(tlb->tlb_hi & 0xffffff00));
3151		} else {
3152			printf("TLB*%2d vad 0x%0lx ",
3153				tlbno, (long)(tlb->tlb_hi & 0xffffff00));
3154		}
3155		printf("0=0x%0lx ", pfn_to_vad((long)tlb->tlb_lo0));
3156		printf("%c", tlb->tlb_lo0 & PTE_V ? 'V' : '-');
3157		printf("%c", tlb->tlb_lo0 & PTE_M ? 'M' : '-');
3158		printf("%c", tlb->tlb_lo0 & PTE_G ? 'G' : '-');
3159		printf(" atr %x ", (tlb->tlb_lo0 >> 3) & 7);
3160		printf("1=0x%0lx ", pfn_to_vad((long)tlb->tlb_lo1));
3161		printf("%c", tlb->tlb_lo1 & PTE_V ? 'V' : '-');
3162		printf("%c", tlb->tlb_lo1 & PTE_M ? 'M' : '-');
3163		printf("%c", tlb->tlb_lo1 & PTE_G ? 'G' : '-');
3164		printf(" atr %x ", (tlb->tlb_lo1 >> 3) & 7);
3165		printf(" sz=%x pid=%x\n", tlb->tlb_mask,
3166		       (tlb->tlb_hi & 0x000000ff));
3167	}
3168}
3169#endif	/* DDB */
3170