pmap.c revision 202175
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 202175 2010-01-12 21:36:08Z imp $");
70
71#include "opt_ddb.h"
72#include "opt_msgbuf.h"
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/proc.h>
76#include <sys/msgbuf.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <sys/lock.h>
83#include <sys/mutex.h>
84#include <vm/vm_kern.h>
85#include <vm/vm_page.h>
86#include <vm/vm_map.h>
87#include <vm/vm_object.h>
88#include <vm/vm_extern.h>
89#include <vm/vm_pageout.h>
90#include <vm/vm_pager.h>
91#include <vm/uma.h>
92#include <sys/pcpu.h>
93#include <sys/sched.h>
94#ifdef SMP
95#include <sys/smp.h>
96#endif
97
98#include <machine/cache.h>
99#include <machine/md_var.h>
100
101#if defined(DIAGNOSTIC)
102#define	PMAP_DIAGNOSTIC
103#endif
104
105#undef PMAP_DEBUG
106
107#ifndef PMAP_SHPGPERPROC
108#define	PMAP_SHPGPERPROC 200
109#endif
110
111#if !defined(PMAP_DIAGNOSTIC)
112#define	PMAP_INLINE __inline
113#else
114#define	PMAP_INLINE
115#endif
116
117/*
118 * Get PDEs and PTEs for user/kernel address space
119 */
120#define	pmap_pde(m, v)	       (&((m)->pm_segtab[(vm_offset_t)(v) >> SEGSHIFT]))
121#define	segtab_pde(m, v)	(m[(vm_offset_t)(v) >> SEGSHIFT])
122
123#define	pmap_pte_w(pte)		((*(int *)pte & PTE_W) != 0)
124#define	pmap_pde_v(pte)		((*(int *)pte) != 0)
125#define	pmap_pte_m(pte)		((*(int *)pte & PTE_M) != 0)
126#define	pmap_pte_v(pte)		((*(int *)pte & PTE_V) != 0)
127
128#define	pmap_pte_set_w(pte, v)	((v)?(*(int *)pte |= PTE_W):(*(int *)pte &= ~PTE_W))
129#define	pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
130
131#define	MIPS_SEGSIZE		(1L << SEGSHIFT)
132#define	mips_segtrunc(va)	((va) & ~(MIPS_SEGSIZE-1))
133#define	pmap_TLB_invalidate_all() MIPS_TBIAP()
134#define	pmap_va_asid(pmap, va)	((va) | ((pmap)->pm_asid[PCPU_GET(cpuid)].asid << VMTLB_PID_SHIFT))
135#define	is_kernel_pmap(x)	((x) == kernel_pmap)
136
137struct pmap kernel_pmap_store;
138pd_entry_t *kernel_segmap;
139
140vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
141vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
142
143static int nkpt;
144unsigned pmap_max_asid;		/* max ASID supported by the system */
145
146
147#define	PMAP_ASID_RESERVED	0
148
149
150vm_offset_t kernel_vm_end;
151
152static void pmap_asid_alloc(pmap_t pmap);
153
154/*
155 * Data for the pv entry allocation mechanism
156 */
157static uma_zone_t pvzone;
158static struct vm_object pvzone_obj;
159static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
160
161struct fpage fpages_shared[FPAGES_SHARED];
162
163struct sysmaps sysmaps_pcpu[MAXCPU];
164
165static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
166static pv_entry_t get_pv_entry(pmap_t locked_pmap);
167static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
168
169static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
170    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
171static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
172static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
173static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
174static boolean_t pmap_testbit(vm_page_t m, int bit);
175static void
176pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
177    vm_page_t m, boolean_t wired);
178static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
179    vm_offset_t va, vm_page_t m);
180
181static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
182
183static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
184static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
185static int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
186static void pmap_TLB_invalidate_kernel(vm_offset_t);
187static void pmap_TLB_update_kernel(vm_offset_t, pt_entry_t);
188static void pmap_init_fpage(void);
189
190#ifdef SMP
191static void pmap_invalidate_page_action(void *arg);
192static void pmap_invalidate_all_action(void *arg);
193static void pmap_update_page_action(void *arg);
194
195#endif
196
197struct local_sysmaps {
198	struct mtx lock;
199	pt_entry_t CMAP1;
200	pt_entry_t CMAP2;
201	caddr_t CADDR1;
202	caddr_t CADDR2;
203	uint16_t valid1, valid2;
204};
205
206/* This structure is for large memory
207 * above 512Meg. We can't (in 32 bit mode)
208 * just use the direct mapped MIPS_CACHED_TO_PHYS()
209 * macros since we can't see the memory and must
210 * map it in when we need to access it. In 64
211 * bit mode this goes away.
212 */
213static struct local_sysmaps sysmap_lmem[MAXCPU];
214caddr_t virtual_sys_start = (caddr_t)0;
215
216pd_entry_t
217pmap_segmap(pmap_t pmap, vm_offset_t va)
218{
219	if (pmap->pm_segtab)
220		return (pmap->pm_segtab[((vm_offset_t)(va) >> SEGSHIFT)]);
221	else
222		return ((pd_entry_t)0);
223}
224
225/*
226 *	Routine:	pmap_pte
227 *	Function:
228 *		Extract the page table entry associated
229 *		with the given map/virtual_address pair.
230 */
231pt_entry_t *
232pmap_pte(pmap_t pmap, vm_offset_t va)
233{
234	pt_entry_t *pdeaddr;
235
236	if (pmap) {
237		pdeaddr = (pt_entry_t *)pmap_segmap(pmap, va);
238		if (pdeaddr) {
239			return pdeaddr + vad_to_pte_offset(va);
240		}
241	}
242	return ((pt_entry_t *)0);
243}
244
245
246vm_offset_t
247pmap_steal_memory(vm_size_t size)
248{
249	vm_size_t bank_size;
250	vm_offset_t pa, va;
251
252	size = round_page(size);
253
254	bank_size = phys_avail[1] - phys_avail[0];
255	while (size > bank_size) {
256		int i;
257
258		for (i = 0; phys_avail[i + 2]; i += 2) {
259			phys_avail[i] = phys_avail[i + 2];
260			phys_avail[i + 1] = phys_avail[i + 3];
261		}
262		phys_avail[i] = 0;
263		phys_avail[i + 1] = 0;
264		if (!phys_avail[0])
265			panic("pmap_steal_memory: out of memory");
266		bank_size = phys_avail[1] - phys_avail[0];
267	}
268
269	pa = phys_avail[0];
270	phys_avail[0] += size;
271	if (pa >= MIPS_KSEG0_LARGEST_PHYS) {
272		panic("Out of memory below 512Meg?");
273	}
274	va = MIPS_PHYS_TO_CACHED(pa);
275	bzero((caddr_t)va, size);
276	return va;
277}
278
279/*
280 *	Bootstrap the system enough to run with virtual memory.  This
281 * assumes that the phys_avail array has been initialized.
282 */
283void
284pmap_bootstrap(void)
285{
286	pt_entry_t *pgtab;
287	pt_entry_t *pte;
288	int i, j;
289	int memory_larger_than_512meg = 0;
290
291	/* Sort. */
292again:
293	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
294		/*
295		 * Keep the memory aligned on page boundary.
296		 */
297		phys_avail[i] = round_page(phys_avail[i]);
298		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
299
300		if (phys_avail[i + 1] >= MIPS_KSEG0_LARGEST_PHYS)
301			memory_larger_than_512meg++;
302		if (i < 2)
303			continue;
304		if (phys_avail[i - 2] > phys_avail[i]) {
305			vm_paddr_t ptemp[2];
306
307
308			ptemp[0] = phys_avail[i + 0];
309			ptemp[1] = phys_avail[i + 1];
310
311			phys_avail[i + 0] = phys_avail[i - 2];
312			phys_avail[i + 1] = phys_avail[i - 1];
313
314			phys_avail[i - 2] = ptemp[0];
315			phys_avail[i - 1] = ptemp[1];
316			goto again;
317		}
318	}
319
320	/*
321	 * Copy the phys_avail[] array before we start stealing memory from it.
322	 */
323	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
324		physmem_desc[i] = phys_avail[i];
325		physmem_desc[i + 1] = phys_avail[i + 1];
326	}
327
328	Maxmem = atop(phys_avail[i - 1]);
329
330	if (bootverbose) {
331		printf("Physical memory chunk(s):\n");
332		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
333			vm_paddr_t size;
334
335			size = phys_avail[i + 1] - phys_avail[i];
336			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
337			    (uintmax_t) phys_avail[i],
338			    (uintmax_t) phys_avail[i + 1] - 1,
339			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
340		}
341		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
342	}
343	/*
344	 * Steal the message buffer from the beginning of memory.
345	 */
346	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
347	msgbufinit(msgbufp, MSGBUF_SIZE);
348
349	/*
350	 * Steal thread0 kstack.
351	 */
352	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
353
354
355	virtual_avail = VM_MIN_KERNEL_ADDRESS + VM_KERNEL_ALLOC_OFFSET;
356	virtual_end = VM_MAX_KERNEL_ADDRESS;
357
358	/*
359	 * Steal some virtual space that will not be in kernel_segmap. This
360	 * va memory space will be used to map in kernel pages that are
361	 * outside the 512Meg region. Note that we only do this steal when
362	 * we do have memory in this region, that way for systems with
363	 * smaller memory we don't "steal" any va ranges :-)
364	 */
365	if (memory_larger_than_512meg) {
366		for (i = 0; i < MAXCPU; i++) {
367			sysmap_lmem[i].CMAP1 = PTE_G;
368			sysmap_lmem[i].CMAP2 = PTE_G;
369			sysmap_lmem[i].CADDR1 = (caddr_t)virtual_avail;
370			virtual_avail += PAGE_SIZE;
371			sysmap_lmem[i].CADDR2 = (caddr_t)virtual_avail;
372			virtual_avail += PAGE_SIZE;
373			sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
374			PMAP_LGMEM_LOCK_INIT(&sysmap_lmem[i]);
375		}
376	}
377	virtual_sys_start = (caddr_t)virtual_avail;
378	/*
379	 * Allocate segment table for the kernel
380	 */
381	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
382
383	/*
384	 * Allocate second level page tables for the kernel
385	 */
386	nkpt = NKPT;
387	if (memory_larger_than_512meg) {
388		/*
389		 * If we have a large memory system we CANNOT afford to hit
390		 * pmap_growkernel() and allocate memory. Since we MAY end
391		 * up with a page that is NOT mappable. For that reason we
392		 * up front grab more. Normall NKPT is 120 (YMMV see pmap.h)
393		 * this gives us 480meg of kernel virtual addresses at the
394		 * cost of 120 pages (each page gets us 4 Meg). Since the
395		 * kernel starts at virtual_avail, we can use this to
396		 * calculate how many entris are left from there to the end
397		 * of the segmap, we want to allocate all of it, which would
398		 * be somewhere above 0xC0000000 - 0xFFFFFFFF which results
399		 * in about 256 entries or so instead of the 120.
400		 */
401		nkpt = (PAGE_SIZE / sizeof(pd_entry_t)) - (virtual_avail >> SEGSHIFT);
402	}
403	pgtab = (pt_entry_t *)pmap_steal_memory(PAGE_SIZE * nkpt);
404
405	/*
406	 * The R[4-7]?00 stores only one copy of the Global bit in the
407	 * translation lookaside buffer for each 2 page entry. Thus invalid
408	 * entrys must have the Global bit set so when Entry LO and Entry HI
409	 * G bits are anded together they will produce a global bit to store
410	 * in the tlb.
411	 */
412	for (i = 0, pte = pgtab; i < (nkpt * NPTEPG); i++, pte++)
413		*pte = PTE_G;
414
415	/*
416	 * The segment table contains the KVA of the pages in the second
417	 * level page table.
418	 */
419	for (i = 0, j = (virtual_avail >> SEGSHIFT); i < nkpt; i++, j++)
420		kernel_segmap[j] = (pd_entry_t)(pgtab + (i * NPTEPG));
421
422	/*
423	 * The kernel's pmap is statically allocated so we don't have to use
424	 * pmap_create, which is unlikely to work correctly at this part of
425	 * the boot sequence (XXX and which no longer exists).
426	 */
427	PMAP_LOCK_INIT(kernel_pmap);
428	kernel_pmap->pm_segtab = kernel_segmap;
429	kernel_pmap->pm_active = ~0;
430	TAILQ_INIT(&kernel_pmap->pm_pvlist);
431	kernel_pmap->pm_asid[PCPU_GET(cpuid)].asid = PMAP_ASID_RESERVED;
432	kernel_pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
433	pmap_max_asid = VMNUM_PIDS;
434	MachSetPID(0);
435}
436
437/*
438 * Initialize a vm_page's machine-dependent fields.
439 */
440void
441pmap_page_init(vm_page_t m)
442{
443
444	TAILQ_INIT(&m->md.pv_list);
445	m->md.pv_list_count = 0;
446	m->md.pv_flags = 0;
447}
448
449/*
450 *	Initialize the pmap module.
451 *	Called by vm_init, to initialize any structures that the pmap
452 *	system needs to map virtual memory.
453 *	pmap_init has been enhanced to support in a fairly consistant
454 *	way, discontiguous physical memory.
455 */
456void
457pmap_init(void)
458{
459
460	if (need_wired_tlb_page_pool)
461		pmap_init_fpage();
462	/*
463	 * Initialize the address space (zone) for the pv entries.  Set a
464	 * high water mark so that the system can recover from excessive
465	 * numbers of pv entries.
466	 */
467	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
468	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
469	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
470	pv_entry_high_water = 9 * (pv_entry_max / 10);
471	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
472}
473
474/***************************************************
475 * Low level helper routines.....
476 ***************************************************/
477
478#if defined(PMAP_DIAGNOSTIC)
479
480/*
481 * This code checks for non-writeable/modified pages.
482 * This should be an invalid condition.
483 */
484static int
485pmap_nw_modified(pt_entry_t pte)
486{
487	if ((pte & (PTE_M | PTE_RO)) == (PTE_M | PTE_RO))
488		return (1);
489	else
490		return (0);
491}
492
493#endif
494
495static void
496pmap_invalidate_all(pmap_t pmap)
497{
498#ifdef SMP
499	smp_rendezvous(0, pmap_invalidate_all_action, 0, (void *)pmap);
500}
501
502static void
503pmap_invalidate_all_action(void *arg)
504{
505	pmap_t pmap = (pmap_t)arg;
506
507#endif
508
509	if (pmap->pm_active & PCPU_GET(cpumask)) {
510		pmap_TLB_invalidate_all();
511	} else
512		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
513}
514
515struct pmap_invalidate_page_arg {
516	pmap_t pmap;
517	vm_offset_t va;
518};
519
520static __inline void
521pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
522{
523#ifdef SMP
524	struct pmap_invalidate_page_arg arg;
525
526	arg.pmap = pmap;
527	arg.va = va;
528
529	smp_rendezvous(0, pmap_invalidate_page_action, 0, (void *)&arg);
530}
531
532static void
533pmap_invalidate_page_action(void *arg)
534{
535	pmap_t pmap = ((struct pmap_invalidate_page_arg *)arg)->pmap;
536	vm_offset_t va = ((struct pmap_invalidate_page_arg *)arg)->va;
537
538#endif
539
540	if (is_kernel_pmap(pmap)) {
541		pmap_TLB_invalidate_kernel(va);
542		return;
543	}
544	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
545		return;
546	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
547		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
548		return;
549	}
550	va = pmap_va_asid(pmap, (va & ~PGOFSET));
551	mips_TBIS(va);
552}
553
554static void
555pmap_TLB_invalidate_kernel(vm_offset_t va)
556{
557	u_int32_t pid;
558
559	MachTLBGetPID(pid);
560	va = va | (pid << VMTLB_PID_SHIFT);
561	mips_TBIS(va);
562}
563
564struct pmap_update_page_arg {
565	pmap_t pmap;
566	vm_offset_t va;
567	pt_entry_t pte;
568};
569
570void
571pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
572{
573#ifdef SMP
574	struct pmap_update_page_arg arg;
575
576	arg.pmap = pmap;
577	arg.va = va;
578	arg.pte = pte;
579
580	smp_rendezvous(0, pmap_update_page_action, 0, (void *)&arg);
581}
582
583static void
584pmap_update_page_action(void *arg)
585{
586	pmap_t pmap = ((struct pmap_update_page_arg *)arg)->pmap;
587	vm_offset_t va = ((struct pmap_update_page_arg *)arg)->va;
588	pt_entry_t pte = ((struct pmap_update_page_arg *)arg)->pte;
589
590#endif
591	if (is_kernel_pmap(pmap)) {
592		pmap_TLB_update_kernel(va, pte);
593		return;
594	}
595	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
596		return;
597	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
598		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
599		return;
600	}
601	va = pmap_va_asid(pmap, va);
602	MachTLBUpdate(va, pte);
603}
604
605static void
606pmap_TLB_update_kernel(vm_offset_t va, pt_entry_t pte)
607{
608	u_int32_t pid;
609
610	MachTLBGetPID(pid);
611	va = va | (pid << VMTLB_PID_SHIFT);
612
613	MachTLBUpdate(va, pte);
614}
615
616/*
617 *	Routine:	pmap_extract
618 *	Function:
619 *		Extract the physical page address associated
620 *		with the given map/virtual_address pair.
621 */
622vm_paddr_t
623pmap_extract(pmap_t pmap, vm_offset_t va)
624{
625	pt_entry_t *pte;
626	vm_offset_t retval = 0;
627
628	PMAP_LOCK(pmap);
629	pte = pmap_pte(pmap, va);
630	if (pte) {
631		retval = mips_tlbpfn_to_paddr(*pte) | (va & PAGE_MASK);
632	}
633	PMAP_UNLOCK(pmap);
634	return retval;
635}
636
637/*
638 *	Routine:	pmap_extract_and_hold
639 *	Function:
640 *		Atomically extract and hold the physical page
641 *		with the given pmap and virtual address pair
642 *		if that mapping permits the given protection.
643 */
644vm_page_t
645pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
646{
647	pt_entry_t pte;
648	vm_page_t m;
649
650	m = NULL;
651	vm_page_lock_queues();
652	PMAP_LOCK(pmap);
653
654	pte = *pmap_pte(pmap, va);
655	if (pte != 0 && pmap_pte_v(&pte) &&
656	    ((pte & PTE_RW) || (prot & VM_PROT_WRITE) == 0)) {
657		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(pte));
658		vm_page_hold(m);
659	}
660	vm_page_unlock_queues();
661	PMAP_UNLOCK(pmap);
662	return (m);
663}
664
665/***************************************************
666 * Low level mapping routines.....
667 ***************************************************/
668
669/*
670 * add a wired page to the kva
671 */
672 /* PMAP_INLINE */ void
673pmap_kenter(vm_offset_t va, vm_paddr_t pa)
674{
675	register pt_entry_t *pte;
676	pt_entry_t npte, opte;
677
678#ifdef PMAP_DEBUG
679	printf("pmap_kenter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
680#endif
681	npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W;
682
683	if (is_cacheable_mem(pa))
684		npte |= PTE_CACHE;
685	else
686		npte |= PTE_UNCACHED;
687
688	pte = pmap_pte(kernel_pmap, va);
689	opte = *pte;
690	*pte = npte;
691
692	pmap_update_page(kernel_pmap, va, npte);
693}
694
695/*
696 * remove a page from the kernel pagetables
697 */
698 /* PMAP_INLINE */ void
699pmap_kremove(vm_offset_t va)
700{
701	register pt_entry_t *pte;
702
703	/*
704	 * Write back all caches from the page being destroyed
705	 */
706	mips_dcache_wbinv_range_index(va, NBPG);
707
708	pte = pmap_pte(kernel_pmap, va);
709	*pte = PTE_G;
710	pmap_invalidate_page(kernel_pmap, va);
711}
712
713/*
714 *	Used to map a range of physical addresses into kernel
715 *	virtual address space.
716 *
717 *	The value passed in '*virt' is a suggested virtual address for
718 *	the mapping. Architectures which can support a direct-mapped
719 *	physical to virtual region can return the appropriate address
720 *	within that region, leaving '*virt' unchanged. Other
721 *	architectures should map the pages starting at '*virt' and
722 *	update '*virt' with the first usable address after the mapped
723 *	region.
724 */
725vm_offset_t
726pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
727{
728	vm_offset_t va, sva;
729
730	va = sva = *virt;
731	while (start < end) {
732		pmap_kenter(va, start);
733		va += PAGE_SIZE;
734		start += PAGE_SIZE;
735	}
736	*virt = va;
737	return (sva);
738}
739
740/*
741 * Add a list of wired pages to the kva
742 * this routine is only used for temporary
743 * kernel mappings that do not need to have
744 * page modification or references recorded.
745 * Note that old mappings are simply written
746 * over.  The page *must* be wired.
747 */
748void
749pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
750{
751	int i;
752	vm_offset_t origva = va;
753
754	for (i = 0; i < count; i++) {
755		pmap_flush_pvcache(m[i]);
756		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
757		va += PAGE_SIZE;
758	}
759
760	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
761}
762
763/*
764 * this routine jerks page mappings from the
765 * kernel -- it is meant only for temporary mappings.
766 */
767void
768pmap_qremove(vm_offset_t va, int count)
769{
770	/*
771	 * No need to wb/inv caches here,
772	 *   pmap_kremove will do it for us
773	 */
774
775	while (count-- > 0) {
776		pmap_kremove(va);
777		va += PAGE_SIZE;
778	}
779}
780
781/***************************************************
782 * Page table page management routines.....
783 ***************************************************/
784
785/*
786 * floating pages (FPAGES) management routines
787 *
788 * FPAGES are the reserved virtual memory areas which can be
789 * mapped to any physical memory. This gets used typically
790 * in the following functions:
791 *
792 * pmap_zero_page
793 * pmap_copy_page
794 */
795
796/*
797 * Create the floating pages, aka FPAGES!
798 */
799static void
800pmap_init_fpage()
801{
802	vm_offset_t kva;
803	int i, j;
804	struct sysmaps *sysmaps;
805
806	/*
807	 * We allocate a total of (FPAGES*MAXCPU + FPAGES_SHARED + 1) pages
808	 * at first. FPAGES & FPAGES_SHARED should be EVEN Then we'll adjust
809	 * 'kva' to be even-page aligned so that the fpage area can be wired
810	 * in the TLB with a single TLB entry.
811	 */
812	kva = kmem_alloc_nofault(kernel_map,
813	    (FPAGES * MAXCPU + 1 + FPAGES_SHARED) * PAGE_SIZE);
814	if ((void *)kva == NULL)
815		panic("pmap_init_fpage: fpage allocation failed");
816
817	/*
818	 * Make up start at an even page number so we can wire down the
819	 * fpage area in the tlb with a single tlb entry.
820	 */
821	if ((((vm_offset_t)kva) >> PGSHIFT) & 1) {
822		/*
823		 * 'kva' is not even-page aligned. Adjust it and free the
824		 * first page which is unused.
825		 */
826		kmem_free(kernel_map, (vm_offset_t)kva, NBPG);
827		kva = ((vm_offset_t)kva) + NBPG;
828	} else {
829		/*
830		 * 'kva' is even page aligned. We don't need the last page,
831		 * free it.
832		 */
833		kmem_free(kernel_map, ((vm_offset_t)kva) + FSPACE, NBPG);
834	}
835
836	for (i = 0; i < MAXCPU; i++) {
837		sysmaps = &sysmaps_pcpu[i];
838		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
839
840		/* Assign FPAGES pages to the CPU */
841		for (j = 0; j < FPAGES; j++)
842			sysmaps->fp[j].kva = kva + (j) * PAGE_SIZE;
843		kva = ((vm_offset_t)kva) + (FPAGES * PAGE_SIZE);
844	}
845
846	/*
847	 * An additional 2 pages are needed, one for pmap_zero_page_idle()
848	 * and one for coredump. These pages are shared by all cpu's
849	 */
850	fpages_shared[PMAP_FPAGE3].kva = kva;
851	fpages_shared[PMAP_FPAGE_KENTER_TEMP].kva = kva + PAGE_SIZE;
852}
853
854/*
855 * Map the page to the fpage virtual address as specified thru' fpage id
856 */
857vm_offset_t
858pmap_map_fpage(vm_paddr_t pa, struct fpage *fp, boolean_t check_unmaped)
859{
860	vm_offset_t kva;
861	register pt_entry_t *pte;
862	pt_entry_t npte;
863
864	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
865	/*
866	 * Check if the fpage is free
867	 */
868	if (fp->state) {
869		if (check_unmaped == TRUE)
870			pmap_unmap_fpage(pa, fp);
871		else
872			panic("pmap_map_fpage: fpage is busy");
873	}
874	fp->state = TRUE;
875	kva = fp->kva;
876
877	npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
878	pte = pmap_pte(kernel_pmap, kva);
879	*pte = npte;
880
881	pmap_TLB_update_kernel(kva, npte);
882
883	return (kva);
884}
885
886/*
887 * Unmap the page from the fpage virtual address as specified thru' fpage id
888 */
889void
890pmap_unmap_fpage(vm_paddr_t pa, struct fpage *fp)
891{
892	vm_offset_t kva;
893	register pt_entry_t *pte;
894
895	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
896	/*
897	 * Check if the fpage is busy
898	 */
899	if (!(fp->state)) {
900		panic("pmap_unmap_fpage: fpage is free");
901	}
902	kva = fp->kva;
903
904	pte = pmap_pte(kernel_pmap, kva);
905	*pte = PTE_G;
906	pmap_TLB_invalidate_kernel(kva);
907
908	fp->state = FALSE;
909
910	/*
911	 * Should there be any flush operation at the end?
912	 */
913}
914
915/*  Revision 1.507
916 *
917 * Simplify the reference counting of page table pages.	 Specifically, use
918 * the page table page's wired count rather than its hold count to contain
919 * the reference count.
920 */
921
922/*
923 * This routine unholds page table pages, and if the hold count
924 * drops to zero, then it decrements the wire count.
925 */
926static int
927_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
928{
929
930	/*
931	 * unmap the page table page
932	 */
933	pmap->pm_segtab[m->pindex] = 0;
934	--pmap->pm_stats.resident_count;
935
936	if (pmap->pm_ptphint == m)
937		pmap->pm_ptphint = NULL;
938
939	/*
940	 * If the page is finally unwired, simply free it.
941	 */
942	vm_page_free_zero(m);
943	atomic_subtract_int(&cnt.v_wire_count, 1);
944	return (1);
945}
946
947static PMAP_INLINE int
948pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
949{
950	--m->wire_count;
951	if (m->wire_count == 0)
952		return (_pmap_unwire_pte_hold(pmap, m));
953	else
954		return (0);
955}
956
957/*
958 * After removing a page table entry, this routine is used to
959 * conditionally free the page, and manage the hold/wire counts.
960 */
961static int
962pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
963{
964	unsigned ptepindex;
965	pd_entry_t pteva;
966
967	if (va >= VM_MAXUSER_ADDRESS)
968		return (0);
969
970	if (mpte == NULL) {
971		ptepindex = (va >> SEGSHIFT);
972		if (pmap->pm_ptphint &&
973		    (pmap->pm_ptphint->pindex == ptepindex)) {
974			mpte = pmap->pm_ptphint;
975		} else {
976			pteva = *pmap_pde(pmap, va);
977			mpte = PHYS_TO_VM_PAGE(MIPS_CACHED_TO_PHYS(pteva));
978			pmap->pm_ptphint = mpte;
979		}
980	}
981	return pmap_unwire_pte_hold(pmap, mpte);
982}
983
984void
985pmap_pinit0(pmap_t pmap)
986{
987	int i;
988
989	PMAP_LOCK_INIT(pmap);
990	pmap->pm_segtab = kernel_segmap;
991	pmap->pm_active = 0;
992	pmap->pm_ptphint = NULL;
993	for (i = 0; i < MAXCPU; i++) {
994		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
995		pmap->pm_asid[i].gen = 0;
996	}
997	PCPU_SET(curpmap, pmap);
998	TAILQ_INIT(&pmap->pm_pvlist);
999	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1000}
1001
1002/*
1003 * Initialize a preallocated and zeroed pmap structure,
1004 * such as one in a vmspace structure.
1005 */
1006int
1007pmap_pinit(pmap_t pmap)
1008{
1009	vm_page_t ptdpg;
1010	int i;
1011	int req;
1012
1013	PMAP_LOCK_INIT(pmap);
1014
1015	req = VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL | VM_ALLOC_WIRED |
1016	    VM_ALLOC_ZERO;
1017
1018#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
1019	if (need_wired_tlb_page_pool)
1020		req |= VM_ALLOC_WIRED_TLB_PG_POOL;
1021#endif
1022	/*
1023	 * allocate the page directory page
1024	 */
1025	while ((ptdpg = vm_page_alloc(NULL, NUSERPGTBLS, req)) == NULL)
1026		VM_WAIT;
1027
1028	ptdpg->valid = VM_PAGE_BITS_ALL;
1029
1030	pmap->pm_segtab = (pd_entry_t *)
1031	    MIPS_PHYS_TO_CACHED(VM_PAGE_TO_PHYS(ptdpg));
1032	if ((ptdpg->flags & PG_ZERO) == 0)
1033		bzero(pmap->pm_segtab, PAGE_SIZE);
1034
1035	pmap->pm_active = 0;
1036	pmap->pm_ptphint = NULL;
1037	for (i = 0; i < MAXCPU; i++) {
1038		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1039		pmap->pm_asid[i].gen = 0;
1040	}
1041	TAILQ_INIT(&pmap->pm_pvlist);
1042	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1043
1044	return (1);
1045}
1046
1047/*
1048 * this routine is called if the page table page is not
1049 * mapped correctly.
1050 */
1051static vm_page_t
1052_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1053{
1054	vm_offset_t pteva, ptepa;
1055	vm_page_t m;
1056	int req;
1057
1058	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1059	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1060	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1061
1062	req = VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ;
1063#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
1064	if (need_wired_tlb_page_pool)
1065		req |= VM_ALLOC_WIRED_TLB_PG_POOL;
1066#endif
1067	/*
1068	 * Find or fabricate a new pagetable page
1069	 */
1070	if ((m = vm_page_alloc(NULL, ptepindex, req)) == NULL) {
1071		if (flags & M_WAITOK) {
1072			PMAP_UNLOCK(pmap);
1073			vm_page_unlock_queues();
1074			VM_WAIT;
1075			vm_page_lock_queues();
1076			PMAP_LOCK(pmap);
1077		}
1078		/*
1079		 * Indicate the need to retry.	While waiting, the page
1080		 * table page may have been allocated.
1081		 */
1082		return (NULL);
1083	}
1084	if ((m->flags & PG_ZERO) == 0)
1085		pmap_zero_page(m);
1086
1087	KASSERT(m->queue == PQ_NONE,
1088	    ("_pmap_allocpte: %p->queue != PQ_NONE", m));
1089
1090	/*
1091	 * Map the pagetable page into the process address space, if it
1092	 * isn't already there.
1093	 */
1094
1095	pmap->pm_stats.resident_count++;
1096
1097	ptepa = VM_PAGE_TO_PHYS(m);
1098	pteva = MIPS_PHYS_TO_CACHED(ptepa);
1099	pmap->pm_segtab[ptepindex] = (pd_entry_t)pteva;
1100
1101	/*
1102	 * Set the page table hint
1103	 */
1104	pmap->pm_ptphint = m;
1105
1106	/*
1107	 * Kernel page tables are allocated in pmap_bootstrap() or
1108	 * pmap_growkernel().
1109	 */
1110	if (is_kernel_pmap(pmap))
1111		panic("_pmap_allocpte() called for kernel pmap\n");
1112
1113	m->valid = VM_PAGE_BITS_ALL;
1114	vm_page_flag_clear(m, PG_ZERO);
1115
1116	return (m);
1117}
1118
1119static vm_page_t
1120pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1121{
1122	unsigned ptepindex;
1123	vm_offset_t pteva;
1124	vm_page_t m;
1125
1126	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1127	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1128	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1129
1130	/*
1131	 * Calculate pagetable page index
1132	 */
1133	ptepindex = va >> SEGSHIFT;
1134retry:
1135	/*
1136	 * Get the page directory entry
1137	 */
1138	pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1139
1140	/*
1141	 * If the page table page is mapped, we just increment the hold
1142	 * count, and activate it.
1143	 */
1144	if (pteva) {
1145		/*
1146		 * In order to get the page table page, try the hint first.
1147		 */
1148		if (pmap->pm_ptphint &&
1149		    (pmap->pm_ptphint->pindex == ptepindex)) {
1150			m = pmap->pm_ptphint;
1151		} else {
1152			m = PHYS_TO_VM_PAGE(MIPS_CACHED_TO_PHYS(pteva));
1153			pmap->pm_ptphint = m;
1154		}
1155		m->wire_count++;
1156	} else {
1157		/*
1158		 * Here if the pte page isn't mapped, or if it has been
1159		 * deallocated.
1160		 */
1161		m = _pmap_allocpte(pmap, ptepindex, flags);
1162		if (m == NULL && (flags & M_WAITOK))
1163			goto retry;
1164	}
1165	return m;
1166}
1167
1168
1169/***************************************************
1170* Pmap allocation/deallocation routines.
1171 ***************************************************/
1172/*
1173 *  Revision 1.397
1174 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1175 *    called only the page directory page(s) can be left in the pmap pte
1176 *    object, since all page table pages will have been freed by
1177 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1178 *    reference to the pmap and the page directory is wired, so the page(s)
1179 *    can never be busy.  So all there is to do is clear the magic mappings
1180 *    from the page directory and free the page(s).
1181 */
1182
1183
1184/*
1185 * Release any resources held by the given physical map.
1186 * Called when a pmap initialized by pmap_pinit is being released.
1187 * Should only be called if the map contains no valid mappings.
1188 */
1189void
1190pmap_release(pmap_t pmap)
1191{
1192	vm_page_t ptdpg;
1193
1194	KASSERT(pmap->pm_stats.resident_count == 0,
1195	    ("pmap_release: pmap resident count %ld != 0",
1196	    pmap->pm_stats.resident_count));
1197
1198	ptdpg = PHYS_TO_VM_PAGE(MIPS_CACHED_TO_PHYS(pmap->pm_segtab));
1199	ptdpg->wire_count--;
1200	atomic_subtract_int(&cnt.v_wire_count, 1);
1201	vm_page_free_zero(ptdpg);
1202}
1203
1204/*
1205 * grow the number of kernel page table entries, if needed
1206 */
1207void
1208pmap_growkernel(vm_offset_t addr)
1209{
1210	vm_offset_t ptppaddr;
1211	vm_page_t nkpg;
1212	pt_entry_t *pte;
1213	int i, req;
1214
1215	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1216	if (kernel_vm_end == 0) {
1217		kernel_vm_end = VM_MIN_KERNEL_ADDRESS + VM_KERNEL_ALLOC_OFFSET;
1218		nkpt = 0;
1219		while (segtab_pde(kernel_segmap, kernel_vm_end)) {
1220			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1221			    ~(PAGE_SIZE * NPTEPG - 1);
1222			nkpt++;
1223			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1224				kernel_vm_end = kernel_map->max_offset;
1225				break;
1226			}
1227		}
1228	}
1229	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1230	if (addr - 1 >= kernel_map->max_offset)
1231		addr = kernel_map->max_offset;
1232	while (kernel_vm_end < addr) {
1233		if (segtab_pde(kernel_segmap, kernel_vm_end)) {
1234			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1235			    ~(PAGE_SIZE * NPTEPG - 1);
1236			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1237				kernel_vm_end = kernel_map->max_offset;
1238				break;
1239			}
1240			continue;
1241		}
1242		/*
1243		 * This index is bogus, but out of the way
1244		 */
1245		req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ;
1246#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
1247		if (need_wired_tlb_page_pool)
1248			req |= VM_ALLOC_WIRED_TLB_PG_POOL;
1249#endif
1250		nkpg = vm_page_alloc(NULL, nkpt, req);
1251		if (!nkpg)
1252			panic("pmap_growkernel: no memory to grow kernel");
1253
1254		nkpt++;
1255
1256		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1257		if (ptppaddr >= MIPS_KSEG0_LARGEST_PHYS) {
1258			/*
1259			 * We need to do something here, but I am not sure
1260			 * what. We can access anything in the 0 - 512Meg
1261			 * region, but if we get a page to go in the kernel
1262			 * segmap that is outside of of that we really need
1263			 * to have another mapping beyond the temporary ones
1264			 * I have. Not sure how to do this yet. FIXME FIXME.
1265			 */
1266			panic("Gak, can't handle a k-page table outside of lower 512Meg");
1267		}
1268		pte = (pt_entry_t *)MIPS_PHYS_TO_CACHED(ptppaddr);
1269		segtab_pde(kernel_segmap, kernel_vm_end) = (pd_entry_t)pte;
1270
1271		/*
1272		 * The R[4-7]?00 stores only one copy of the Global bit in
1273		 * the translation lookaside buffer for each 2 page entry.
1274		 * Thus invalid entrys must have the Global bit set so when
1275		 * Entry LO and Entry HI G bits are anded together they will
1276		 * produce a global bit to store in the tlb.
1277		 */
1278		for (i = 0; i < NPTEPG; i++, pte++)
1279			*pte = PTE_G;
1280
1281		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1282		    ~(PAGE_SIZE * NPTEPG - 1);
1283		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1284			kernel_vm_end = kernel_map->max_offset;
1285			break;
1286		}
1287	}
1288}
1289
1290/***************************************************
1291* page management routines.
1292 ***************************************************/
1293
1294/*
1295 * free the pv_entry back to the free list
1296 */
1297static PMAP_INLINE void
1298free_pv_entry(pv_entry_t pv)
1299{
1300
1301	pv_entry_count--;
1302	uma_zfree(pvzone, pv);
1303}
1304
1305/*
1306 * get a new pv_entry, allocating a block from the system
1307 * when needed.
1308 * the memory allocation is performed bypassing the malloc code
1309 * because of the possibility of allocations at interrupt time.
1310 */
1311static pv_entry_t
1312get_pv_entry(pmap_t locked_pmap)
1313{
1314	static const struct timeval printinterval = { 60, 0 };
1315	static struct timeval lastprint;
1316	struct vpgqueues *vpq;
1317	pt_entry_t *pte, oldpte;
1318	pmap_t pmap;
1319	pv_entry_t allocated_pv, next_pv, pv;
1320	vm_offset_t va;
1321	vm_page_t m;
1322
1323	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1324	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1325	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1326	if (allocated_pv != NULL) {
1327		pv_entry_count++;
1328		if (pv_entry_count > pv_entry_high_water)
1329			pagedaemon_wakeup();
1330		else
1331			return (allocated_pv);
1332	}
1333	/*
1334	 * Reclaim pv entries: At first, destroy mappings to inactive
1335	 * pages.  After that, if a pv entry is still needed, destroy
1336	 * mappings to active pages.
1337	 */
1338	if (ratecheck(&lastprint, &printinterval))
1339		printf("Approaching the limit on PV entries, "
1340		    "increase the vm.pmap.shpgperproc tunable.\n");
1341	vpq = &vm_page_queues[PQ_INACTIVE];
1342retry:
1343	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1344		if (m->hold_count || m->busy)
1345			continue;
1346		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1347			va = pv->pv_va;
1348			pmap = pv->pv_pmap;
1349			/* Avoid deadlock and lock recursion. */
1350			if (pmap > locked_pmap)
1351				PMAP_LOCK(pmap);
1352			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1353				continue;
1354			pmap->pm_stats.resident_count--;
1355			pte = pmap_pte(pmap, va);
1356			KASSERT(pte != NULL, ("pte"));
1357			oldpte = loadandclear((u_int *)pte);
1358			if (is_kernel_pmap(pmap))
1359				*pte = PTE_G;
1360			KASSERT((oldpte & PTE_W) == 0,
1361			    ("wired pte for unwired page"));
1362			if (m->md.pv_flags & PV_TABLE_REF)
1363				vm_page_flag_set(m, PG_REFERENCED);
1364			if (oldpte & PTE_M)
1365				vm_page_dirty(m);
1366			pmap_invalidate_page(pmap, va);
1367			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1368			m->md.pv_list_count--;
1369			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1370			if (TAILQ_EMPTY(&m->md.pv_list)) {
1371				vm_page_flag_clear(m, PG_WRITEABLE);
1372				m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1373			}
1374			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1375			if (pmap != locked_pmap)
1376				PMAP_UNLOCK(pmap);
1377			if (allocated_pv == NULL)
1378				allocated_pv = pv;
1379			else
1380				free_pv_entry(pv);
1381		}
1382	}
1383	if (allocated_pv == NULL) {
1384		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1385			vpq = &vm_page_queues[PQ_ACTIVE];
1386			goto retry;
1387		}
1388		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1389	}
1390	return (allocated_pv);
1391}
1392
1393/*
1394 *  Revision 1.370
1395 *
1396 *  Move pmap_collect() out of the machine-dependent code, rename it
1397 *  to reflect its new location, and add page queue and flag locking.
1398 *
1399 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1400 *  of pmap_collect() in terms of machine-independent interfaces;
1401 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1402 *
1403 *  MIPS implementation was identical to alpha [Junos 8.2]
1404 */
1405
1406/*
1407 * If it is the first entry on the list, it is actually
1408 * in the header and we must copy the following entry up
1409 * to the header.  Otherwise we must search the list for
1410 * the entry.  In either case we free the now unused entry.
1411 */
1412
1413static void
1414pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1415{
1416	pv_entry_t pv;
1417
1418	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1419	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1420	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1421		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1422			if (pmap == pv->pv_pmap && va == pv->pv_va)
1423				break;
1424		}
1425	} else {
1426		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1427			if (va == pv->pv_va)
1428				break;
1429		}
1430	}
1431
1432	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1433	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1434	m->md.pv_list_count--;
1435	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1436		vm_page_flag_clear(m, PG_WRITEABLE);
1437
1438	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1439	free_pv_entry(pv);
1440}
1441
1442/*
1443 * Create a pv entry for page at pa for
1444 * (pmap, va).
1445 */
1446static void
1447pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m,
1448    boolean_t wired)
1449{
1450	pv_entry_t pv;
1451
1452	pv = get_pv_entry(pmap);
1453	pv->pv_va = va;
1454	pv->pv_pmap = pmap;
1455	pv->pv_ptem = mpte;
1456	pv->pv_wired = wired;
1457
1458	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1459	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1460	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1461	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1462	m->md.pv_list_count++;
1463}
1464
1465/*
1466 * Conditionally create a pv entry.
1467 */
1468static boolean_t
1469pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1470    vm_page_t m)
1471{
1472	pv_entry_t pv;
1473
1474	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1475	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1476	if (pv_entry_count < pv_entry_high_water &&
1477	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1478		pv_entry_count++;
1479		pv->pv_va = va;
1480		pv->pv_pmap = pmap;
1481		pv->pv_ptem = mpte;
1482		pv->pv_wired = FALSE;
1483		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1484		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1485		m->md.pv_list_count++;
1486		return (TRUE);
1487	} else
1488		return (FALSE);
1489}
1490
1491/*
1492 * pmap_remove_pte: do the things to unmap a page in a process
1493 */
1494static int
1495pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1496{
1497	pt_entry_t oldpte;
1498	vm_page_t m;
1499	vm_offset_t pa;
1500
1501	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1502	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1503
1504	oldpte = loadandclear((u_int *)ptq);
1505	if (is_kernel_pmap(pmap))
1506		*ptq = PTE_G;
1507
1508	if (oldpte & PTE_W)
1509		pmap->pm_stats.wired_count -= 1;
1510
1511	pmap->pm_stats.resident_count -= 1;
1512	pa = mips_tlbpfn_to_paddr(oldpte);
1513
1514	if (page_is_managed(pa)) {
1515		m = PHYS_TO_VM_PAGE(pa);
1516		if (oldpte & PTE_M) {
1517#if defined(PMAP_DIAGNOSTIC)
1518			if (pmap_nw_modified(oldpte)) {
1519				printf(
1520				    "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1521				    va, oldpte);
1522			}
1523#endif
1524			vm_page_dirty(m);
1525		}
1526		if (m->md.pv_flags & PV_TABLE_REF)
1527			vm_page_flag_set(m, PG_REFERENCED);
1528		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1529
1530		pmap_remove_entry(pmap, m, va);
1531	}
1532	return pmap_unuse_pt(pmap, va, NULL);
1533}
1534
1535/*
1536 * Remove a single page from a process address space
1537 */
1538static void
1539pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1540{
1541	register pt_entry_t *ptq;
1542
1543	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1544	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1545	ptq = pmap_pte(pmap, va);
1546
1547	/*
1548	 * if there is no pte for this address, just skip it!!!
1549	 */
1550	if (!ptq || !pmap_pte_v(ptq)) {
1551		return;
1552	}
1553
1554	/*
1555	 * Write back all caches from the page being destroyed
1556	 */
1557	mips_dcache_wbinv_range_index(va, NBPG);
1558
1559	/*
1560	 * get a local va for mappings for this pmap.
1561	 */
1562	(void)pmap_remove_pte(pmap, ptq, va);
1563	pmap_invalidate_page(pmap, va);
1564
1565	return;
1566}
1567
1568/*
1569 *	Remove the given range of addresses from the specified map.
1570 *
1571 *	It is assumed that the start and end are properly
1572 *	rounded to the page size.
1573 */
1574void
1575pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1576{
1577	vm_offset_t va, nva;
1578
1579	if (pmap == NULL)
1580		return;
1581
1582	if (pmap->pm_stats.resident_count == 0)
1583		return;
1584
1585	vm_page_lock_queues();
1586	PMAP_LOCK(pmap);
1587
1588	/*
1589	 * special handling of removing one page.  a very common operation
1590	 * and easy to short circuit some code.
1591	 */
1592	if ((sva + PAGE_SIZE) == eva) {
1593		pmap_remove_page(pmap, sva);
1594		goto out;
1595	}
1596	for (va = sva; va < eva; va = nva) {
1597		if (!*pmap_pde(pmap, va)) {
1598			nva = mips_segtrunc(va + MIPS_SEGSIZE);
1599			continue;
1600		}
1601		pmap_remove_page(pmap, va);
1602		nva = va + PAGE_SIZE;
1603	}
1604
1605out:
1606	vm_page_unlock_queues();
1607	PMAP_UNLOCK(pmap);
1608}
1609
1610/*
1611 *	Routine:	pmap_remove_all
1612 *	Function:
1613 *		Removes this physical page from
1614 *		all physical maps in which it resides.
1615 *		Reflects back modify bits to the pager.
1616 *
1617 *	Notes:
1618 *		Original versions of this routine were very
1619 *		inefficient because they iteratively called
1620 *		pmap_remove (slow...)
1621 */
1622
1623void
1624pmap_remove_all(vm_page_t m)
1625{
1626	register pv_entry_t pv;
1627	register pt_entry_t *pte, tpte;
1628
1629	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1630	    ("pmap_remove_all: page %p is fictitious", m));
1631	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1632
1633	if (m->md.pv_flags & PV_TABLE_REF)
1634		vm_page_flag_set(m, PG_REFERENCED);
1635
1636	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1637		PMAP_LOCK(pv->pv_pmap);
1638
1639		/*
1640		 * If it's last mapping writeback all caches from
1641		 * the page being destroyed
1642	 	 */
1643		if (m->md.pv_list_count == 1)
1644			mips_dcache_wbinv_range_index(pv->pv_va, NBPG);
1645
1646		pv->pv_pmap->pm_stats.resident_count--;
1647
1648		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1649
1650		tpte = loadandclear((u_int *)pte);
1651		if (is_kernel_pmap(pv->pv_pmap))
1652			*pte = PTE_G;
1653
1654		if (tpte & PTE_W)
1655			pv->pv_pmap->pm_stats.wired_count--;
1656
1657		/*
1658		 * Update the vm_page_t clean and reference bits.
1659		 */
1660		if (tpte & PTE_M) {
1661#if defined(PMAP_DIAGNOSTIC)
1662			if (pmap_nw_modified(tpte)) {
1663				printf(
1664				    "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1665				    pv->pv_va, tpte);
1666			}
1667#endif
1668			vm_page_dirty(m);
1669		}
1670		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1671
1672		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1673		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1674		m->md.pv_list_count--;
1675		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1676		PMAP_UNLOCK(pv->pv_pmap);
1677		free_pv_entry(pv);
1678	}
1679
1680	vm_page_flag_clear(m, PG_WRITEABLE);
1681	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1682}
1683
1684/*
1685 *	Set the physical protection on the
1686 *	specified range of this map as requested.
1687 */
1688void
1689pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1690{
1691	pt_entry_t *pte;
1692
1693	if (pmap == NULL)
1694		return;
1695
1696	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1697		pmap_remove(pmap, sva, eva);
1698		return;
1699	}
1700	if (prot & VM_PROT_WRITE)
1701		return;
1702
1703	vm_page_lock_queues();
1704	PMAP_LOCK(pmap);
1705	while (sva < eva) {
1706		pt_entry_t pbits, obits;
1707		vm_page_t m;
1708		vm_offset_t pa;
1709
1710		/*
1711		 * If segment table entry is empty, skip this segment.
1712		 */
1713		if (!*pmap_pde(pmap, sva)) {
1714			sva = mips_segtrunc(sva + MIPS_SEGSIZE);
1715			continue;
1716		}
1717		/*
1718		 * If pte is invalid, skip this page
1719		 */
1720		pte = pmap_pte(pmap, sva);
1721		if (!pmap_pte_v(pte)) {
1722			sva += PAGE_SIZE;
1723			continue;
1724		}
1725retry:
1726		obits = pbits = *pte;
1727		pa = mips_tlbpfn_to_paddr(pbits);
1728
1729		if (page_is_managed(pa)) {
1730			m = PHYS_TO_VM_PAGE(pa);
1731			if (m->md.pv_flags & PV_TABLE_REF) {
1732				vm_page_flag_set(m, PG_REFERENCED);
1733				m->md.pv_flags &= ~PV_TABLE_REF;
1734			}
1735			if (pbits & PTE_M) {
1736				vm_page_dirty(m);
1737				m->md.pv_flags &= ~PV_TABLE_MOD;
1738			}
1739		}
1740		pbits = (pbits & ~PTE_M) | PTE_RO;
1741
1742		if (pbits != *pte) {
1743			if (!atomic_cmpset_int((u_int *)pte, obits, pbits))
1744				goto retry;
1745			pmap_update_page(pmap, sva, pbits);
1746		}
1747		sva += PAGE_SIZE;
1748	}
1749	vm_page_unlock_queues();
1750	PMAP_UNLOCK(pmap);
1751}
1752
1753/*
1754 *	Insert the given physical page (p) at
1755 *	the specified virtual address (v) in the
1756 *	target physical map with the protection requested.
1757 *
1758 *	If specified, the page will be wired down, meaning
1759 *	that the related pte can not be reclaimed.
1760 *
1761 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1762 *	or lose information.  That is, this routine must actually
1763 *	insert this page into the given map NOW.
1764 */
1765void
1766pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1767    vm_prot_t prot, boolean_t wired)
1768{
1769	vm_offset_t pa, opa;
1770	register pt_entry_t *pte;
1771	pt_entry_t origpte, newpte;
1772	vm_page_t mpte, om;
1773	int rw = 0;
1774
1775	if (pmap == NULL)
1776		return;
1777
1778	va &= ~PAGE_MASK;
1779#ifdef PMAP_DIAGNOSTIC
1780	if (va > VM_MAX_KERNEL_ADDRESS)
1781		panic("pmap_enter: toobig");
1782#endif
1783
1784	mpte = NULL;
1785
1786	vm_page_lock_queues();
1787	PMAP_LOCK(pmap);
1788
1789	/*
1790	 * In the case that a page table page is not resident, we are
1791	 * creating it here.
1792	 */
1793	if (va < VM_MAXUSER_ADDRESS) {
1794		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1795	}
1796	pte = pmap_pte(pmap, va);
1797
1798	/*
1799	 * Page Directory table entry not valid, we need a new PT page
1800	 */
1801	if (pte == NULL) {
1802		panic("pmap_enter: invalid page directory, pdir=%p, va=%p\n",
1803		    (void *)pmap->pm_segtab, (void *)va);
1804	}
1805	pa = VM_PAGE_TO_PHYS(m);
1806	om = NULL;
1807	origpte = *pte;
1808	opa = mips_tlbpfn_to_paddr(origpte);
1809
1810	/*
1811	 * Mapping has not changed, must be protection or wiring change.
1812	 */
1813	if ((origpte & PTE_V) && (opa == pa)) {
1814		/*
1815		 * Wiring change, just update stats. We don't worry about
1816		 * wiring PT pages as they remain resident as long as there
1817		 * are valid mappings in them. Hence, if a user page is
1818		 * wired, the PT page will be also.
1819		 */
1820		if (wired && ((origpte & PTE_W) == 0))
1821			pmap->pm_stats.wired_count++;
1822		else if (!wired && (origpte & PTE_W))
1823			pmap->pm_stats.wired_count--;
1824
1825#if defined(PMAP_DIAGNOSTIC)
1826		if (pmap_nw_modified(origpte)) {
1827			printf(
1828			    "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1829			    va, origpte);
1830		}
1831#endif
1832
1833		/*
1834		 * Remove extra pte reference
1835		 */
1836		if (mpte)
1837			mpte->wire_count--;
1838
1839		/*
1840		 * We might be turning off write access to the page, so we
1841		 * go ahead and sense modify status.
1842		 */
1843		if (page_is_managed(opa)) {
1844			om = m;
1845		}
1846		goto validate;
1847	}
1848	/*
1849	 * Mapping has changed, invalidate old range and fall through to
1850	 * handle validating new mapping.
1851	 */
1852	if (opa) {
1853		if (origpte & PTE_W)
1854			pmap->pm_stats.wired_count--;
1855
1856		if (page_is_managed(opa)) {
1857			om = PHYS_TO_VM_PAGE(opa);
1858			pmap_remove_entry(pmap, om, va);
1859		}
1860		if (mpte != NULL) {
1861			mpte->wire_count--;
1862			KASSERT(mpte->wire_count > 0,
1863			    ("pmap_enter: missing reference to page table page,"
1864			    " va: %p", (void *)va));
1865		}
1866	} else
1867		pmap->pm_stats.resident_count++;
1868
1869	/*
1870	 * Enter on the PV list if part of our managed memory. Note that we
1871	 * raise IPL while manipulating pv_table since pmap_enter can be
1872	 * called at interrupt time.
1873	 */
1874	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1875		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1876		    ("pmap_enter: managed mapping within the clean submap"));
1877		pmap_insert_entry(pmap, va, mpte, m, wired);
1878	}
1879	/*
1880	 * Increment counters
1881	 */
1882	if (wired)
1883		pmap->pm_stats.wired_count++;
1884
1885validate:
1886	if ((access & VM_PROT_WRITE) != 0)
1887		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1888	rw = init_pte_prot(va, m, prot);
1889
1890#ifdef PMAP_DEBUG
1891	printf("pmap_enter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
1892#endif
1893	/*
1894	 * Now validate mapping with desired protection/wiring.
1895	 */
1896	newpte = mips_paddr_to_tlbpfn(pa) | rw | PTE_V;
1897
1898	if (is_cacheable_mem(pa))
1899		newpte |= PTE_CACHE;
1900	else
1901		newpte |= PTE_UNCACHED;
1902
1903	if (wired)
1904		newpte |= PTE_W;
1905
1906	if (is_kernel_pmap(pmap)) {
1907	         newpte |= PTE_G;
1908	}
1909
1910	/*
1911	 * if the mapping or permission bits are different, we need to
1912	 * update the pte.
1913	 */
1914	if (origpte != newpte) {
1915		if (origpte & PTE_V) {
1916			*pte = newpte;
1917			if (page_is_managed(opa) && (opa != pa)) {
1918				if (om->md.pv_flags & PV_TABLE_REF)
1919					vm_page_flag_set(om, PG_REFERENCED);
1920				om->md.pv_flags &=
1921				    ~(PV_TABLE_REF | PV_TABLE_MOD);
1922			}
1923			if (origpte & PTE_M) {
1924				KASSERT((origpte & PTE_RW),
1925				    ("pmap_enter: modified page not writable:"
1926				    " va: %p, pte: 0x%lx", (void *)va, origpte));
1927				if (page_is_managed(opa))
1928					vm_page_dirty(om);
1929			}
1930		} else {
1931			*pte = newpte;
1932		}
1933	}
1934	pmap_update_page(pmap, va, newpte);
1935
1936	/*
1937	 * Sync I & D caches for executable pages.  Do this only if the the
1938	 * target pmap belongs to the current process.  Otherwise, an
1939	 * unresolvable TLB miss may occur.
1940	 */
1941	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
1942	    (prot & VM_PROT_EXECUTE)) {
1943		mips_icache_sync_range(va, NBPG);
1944		mips_dcache_wbinv_range(va, NBPG);
1945	}
1946	vm_page_unlock_queues();
1947	PMAP_UNLOCK(pmap);
1948}
1949
1950/*
1951 * this code makes some *MAJOR* assumptions:
1952 * 1. Current pmap & pmap exists.
1953 * 2. Not wired.
1954 * 3. Read access.
1955 * 4. No page table pages.
1956 * but is *MUCH* faster than pmap_enter...
1957 */
1958
1959void
1960pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
1961{
1962
1963	PMAP_LOCK(pmap);
1964	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
1965	PMAP_UNLOCK(pmap);
1966}
1967
1968static vm_page_t
1969pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1970    vm_prot_t prot, vm_page_t mpte)
1971{
1972	pt_entry_t *pte;
1973	vm_offset_t pa;
1974
1975	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
1976	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
1977	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
1978	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1979	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1980
1981	/*
1982	 * In the case that a page table page is not resident, we are
1983	 * creating it here.
1984	 */
1985	if (va < VM_MAXUSER_ADDRESS) {
1986		unsigned ptepindex;
1987		vm_offset_t pteva;
1988
1989		/*
1990		 * Calculate pagetable page index
1991		 */
1992		ptepindex = va >> SEGSHIFT;
1993		if (mpte && (mpte->pindex == ptepindex)) {
1994			mpte->wire_count++;
1995		} else {
1996			/*
1997			 * Get the page directory entry
1998			 */
1999			pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
2000
2001			/*
2002			 * If the page table page is mapped, we just
2003			 * increment the hold count, and activate it.
2004			 */
2005			if (pteva) {
2006				if (pmap->pm_ptphint &&
2007				    (pmap->pm_ptphint->pindex == ptepindex)) {
2008					mpte = pmap->pm_ptphint;
2009				} else {
2010					mpte = PHYS_TO_VM_PAGE(MIPS_CACHED_TO_PHYS(pteva));
2011					pmap->pm_ptphint = mpte;
2012				}
2013				mpte->wire_count++;
2014			} else {
2015				mpte = _pmap_allocpte(pmap, ptepindex,
2016				    M_NOWAIT);
2017				if (mpte == NULL)
2018					return (mpte);
2019			}
2020		}
2021	} else {
2022		mpte = NULL;
2023	}
2024
2025	pte = pmap_pte(pmap, va);
2026	if (pmap_pte_v(pte)) {
2027		if (mpte != NULL) {
2028			mpte->wire_count--;
2029			mpte = NULL;
2030		}
2031		return (mpte);
2032	}
2033
2034	/*
2035	 * Enter on the PV list if part of our managed memory.
2036	 */
2037	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2038	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2039		if (mpte != NULL) {
2040			pmap_unwire_pte_hold(pmap, mpte);
2041			mpte = NULL;
2042		}
2043		return (mpte);
2044	}
2045
2046	/*
2047	 * Increment counters
2048	 */
2049	pmap->pm_stats.resident_count++;
2050
2051	pa = VM_PAGE_TO_PHYS(m);
2052
2053	/*
2054	 * Now validate mapping with RO protection
2055	 */
2056	*pte = mips_paddr_to_tlbpfn(pa) | PTE_V;
2057
2058	if (is_cacheable_mem(pa))
2059		*pte |= PTE_CACHE;
2060	else
2061		*pte |= PTE_UNCACHED;
2062
2063	if (is_kernel_pmap(pmap))
2064		*pte |= PTE_G;
2065	else {
2066		*pte |= PTE_RO;
2067		/*
2068		 * Sync I & D caches.  Do this only if the the target pmap
2069		 * belongs to the current process.  Otherwise, an
2070		 * unresolvable TLB miss may occur. */
2071		if (pmap == &curproc->p_vmspace->vm_pmap) {
2072			va &= ~PAGE_MASK;
2073			mips_icache_sync_range(va, NBPG);
2074			mips_dcache_wbinv_range(va, NBPG);
2075		}
2076	}
2077	return (mpte);
2078}
2079
2080/*
2081 * Make a temporary mapping for a physical address.  This is only intended
2082 * to be used for panic dumps.
2083 */
2084void *
2085pmap_kenter_temporary(vm_paddr_t pa, int i)
2086{
2087	vm_offset_t va;
2088
2089	if (i != 0)
2090		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2091		    __func__);
2092
2093#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
2094	if (need_wired_tlb_page_pool) {
2095		va = pmap_map_fpage(pa, &fpages_shared[PMAP_FPAGE_KENTER_TEMP],
2096		    TRUE);
2097	} else
2098#endif
2099	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2100		va = MIPS_PHYS_TO_CACHED(pa);
2101	} else {
2102		int cpu;
2103		struct local_sysmaps *sysm;
2104
2105		cpu = PCPU_GET(cpuid);
2106		sysm = &sysmap_lmem[cpu];
2107		/* Since this is for the debugger, no locks or any other fun */
2108		sysm->CMAP1 = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2109		pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR1, sysm->CMAP1);
2110		sysm->valid1 = 1;
2111		va = (vm_offset_t)sysm->CADDR1;
2112	}
2113	return ((void *)va);
2114}
2115
2116void
2117pmap_kenter_temporary_free(vm_paddr_t pa)
2118{
2119	int cpu;
2120	struct local_sysmaps *sysm;
2121
2122	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2123		/* nothing to do for this case */
2124		return;
2125	}
2126	cpu = PCPU_GET(cpuid);
2127	sysm = &sysmap_lmem[cpu];
2128	if (sysm->valid1) {
2129		pmap_TLB_invalidate_kernel((vm_offset_t)sysm->CADDR1);
2130		sysm->CMAP1 = 0;
2131		sysm->valid1 = 0;
2132	}
2133}
2134
2135/*
2136 * Moved the code to Machine Independent
2137 *	 vm_map_pmap_enter()
2138 */
2139
2140/*
2141 * Maps a sequence of resident pages belonging to the same object.
2142 * The sequence begins with the given page m_start.  This page is
2143 * mapped at the given virtual address start.  Each subsequent page is
2144 * mapped at a virtual address that is offset from start by the same
2145 * amount as the page is offset from m_start within the object.  The
2146 * last page in the sequence is the page with the largest offset from
2147 * m_start that can be mapped at a virtual address less than the given
2148 * virtual address end.  Not every virtual page between start and end
2149 * is mapped; only those for which a resident page exists with the
2150 * corresponding offset from m_start are mapped.
2151 */
2152void
2153pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2154    vm_page_t m_start, vm_prot_t prot)
2155{
2156	vm_page_t m, mpte;
2157	vm_pindex_t diff, psize;
2158
2159	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2160	psize = atop(end - start);
2161	mpte = NULL;
2162	m = m_start;
2163	PMAP_LOCK(pmap);
2164	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2165		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2166		    prot, mpte);
2167		m = TAILQ_NEXT(m, listq);
2168	}
2169 	PMAP_UNLOCK(pmap);
2170}
2171
2172/*
2173 * pmap_object_init_pt preloads the ptes for a given object
2174 * into the specified pmap.  This eliminates the blast of soft
2175 * faults on process startup and immediately after an mmap.
2176 */
2177void
2178pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2179    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2180{
2181	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2182	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2183	    ("pmap_object_init_pt: non-device object"));
2184}
2185
2186/*
2187 *	Routine:	pmap_change_wiring
2188 *	Function:	Change the wiring attribute for a map/virtual-address
2189 *			pair.
2190 *	In/out conditions:
2191 *			The mapping must already exist in the pmap.
2192 */
2193void
2194pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2195{
2196	register pt_entry_t *pte;
2197
2198	if (pmap == NULL)
2199		return;
2200
2201	PMAP_LOCK(pmap);
2202	pte = pmap_pte(pmap, va);
2203
2204	if (wired && !pmap_pte_w(pte))
2205		pmap->pm_stats.wired_count++;
2206	else if (!wired && pmap_pte_w(pte))
2207		pmap->pm_stats.wired_count--;
2208
2209	/*
2210	 * Wiring is not a hardware characteristic so there is no need to
2211	 * invalidate TLB.
2212	 */
2213	pmap_pte_set_w(pte, wired);
2214	PMAP_UNLOCK(pmap);
2215}
2216
2217/*
2218 *	Copy the range specified by src_addr/len
2219 *	from the source map to the range dst_addr/len
2220 *	in the destination map.
2221 *
2222 *	This routine is only advisory and need not do anything.
2223 */
2224
2225void
2226pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2227    vm_size_t len, vm_offset_t src_addr)
2228{
2229}
2230
2231/*
2232 *	pmap_zero_page zeros the specified hardware page by mapping
2233 *	the page into KVM and using bzero to clear its contents.
2234 */
2235void
2236pmap_zero_page(vm_page_t m)
2237{
2238	vm_offset_t va;
2239	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2240
2241#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
2242	if (need_wired_tlb_page_pool) {
2243		struct fpage *fp1;
2244		struct sysmaps *sysmaps;
2245
2246		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2247		mtx_lock(&sysmaps->lock);
2248		sched_pin();
2249
2250		fp1 = &sysmaps->fp[PMAP_FPAGE1];
2251		va = pmap_map_fpage(phys, fp1, FALSE);
2252		bzero((caddr_t)va, PAGE_SIZE);
2253		pmap_unmap_fpage(phys, fp1);
2254		sched_unpin();
2255		mtx_unlock(&sysmaps->lock);
2256		/*
2257		 * Should you do cache flush?
2258		 */
2259	} else
2260#endif
2261	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2262
2263		va = MIPS_PHYS_TO_CACHED(phys);
2264
2265		bzero((caddr_t)va, PAGE_SIZE);
2266		mips_dcache_wbinv_range(va, PAGE_SIZE);
2267	} else {
2268		int cpu;
2269		struct local_sysmaps *sysm;
2270
2271		cpu = PCPU_GET(cpuid);
2272		sysm = &sysmap_lmem[cpu];
2273		PMAP_LGMEM_LOCK(sysm);
2274		sched_pin();
2275		sysm->CMAP1 = mips_paddr_to_tlbpfn(phys) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2276		pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR1, sysm->CMAP1);
2277		sysm->valid1 = 1;
2278		bzero(sysm->CADDR1, PAGE_SIZE);
2279		pmap_TLB_invalidate_kernel((vm_offset_t)sysm->CADDR1);
2280		sysm->CMAP1 = 0;
2281		sysm->valid1 = 0;
2282		sched_unpin();
2283		PMAP_LGMEM_UNLOCK(sysm);
2284	}
2285
2286}
2287
2288/*
2289 *	pmap_zero_page_area zeros the specified hardware page by mapping
2290 *	the page into KVM and using bzero to clear its contents.
2291 *
2292 *	off and size may not cover an area beyond a single hardware page.
2293 */
2294void
2295pmap_zero_page_area(vm_page_t m, int off, int size)
2296{
2297	vm_offset_t va;
2298	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2299
2300#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
2301	if (need_wired_tlb_page_pool) {
2302		struct fpage *fp1;
2303		struct sysmaps *sysmaps;
2304
2305		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2306		mtx_lock(&sysmaps->lock);
2307		sched_pin();
2308
2309		fp1 = &sysmaps->fp[PMAP_FPAGE1];
2310		va = pmap_map_fpage(phys, fp1, FALSE);
2311		bzero((caddr_t)va + off, size);
2312		pmap_unmap_fpage(phys, fp1);
2313
2314		sched_unpin();
2315		mtx_unlock(&sysmaps->lock);
2316	} else
2317#endif
2318	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2319		va = MIPS_PHYS_TO_CACHED(phys);
2320		bzero((char *)(caddr_t)va + off, size);
2321		mips_dcache_wbinv_range(va + off, size);
2322	} else {
2323		int cpu;
2324		struct local_sysmaps *sysm;
2325
2326		cpu = PCPU_GET(cpuid);
2327		sysm = &sysmap_lmem[cpu];
2328		PMAP_LGMEM_LOCK(sysm);
2329		sched_pin();
2330		sysm->CMAP1 = mips_paddr_to_tlbpfn(phys) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2331		pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR1, sysm->CMAP1);
2332		sysm->valid1 = 1;
2333		bzero((char *)sysm->CADDR1 + off, size);
2334		pmap_TLB_invalidate_kernel((vm_offset_t)sysm->CADDR1);
2335		sysm->CMAP1 = 0;
2336		sysm->valid1 = 0;
2337		sched_unpin();
2338		PMAP_LGMEM_UNLOCK(sysm);
2339	}
2340}
2341
2342void
2343pmap_zero_page_idle(vm_page_t m)
2344{
2345	vm_offset_t va;
2346	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2347
2348#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
2349	if (need_wired_tlb_page_pool) {
2350		sched_pin();
2351		va = pmap_map_fpage(phys, &fpages_shared[PMAP_FPAGE3], FALSE);
2352		bzero((caddr_t)va, PAGE_SIZE);
2353		pmap_unmap_fpage(phys, &fpages_shared[PMAP_FPAGE3]);
2354		sched_unpin();
2355	} else
2356#endif
2357	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2358		va = MIPS_PHYS_TO_CACHED(phys);
2359		bzero((caddr_t)va, PAGE_SIZE);
2360		mips_dcache_wbinv_range(va, PAGE_SIZE);
2361	} else {
2362		int cpu;
2363		struct local_sysmaps *sysm;
2364
2365		cpu = PCPU_GET(cpuid);
2366		sysm = &sysmap_lmem[cpu];
2367		PMAP_LGMEM_LOCK(sysm);
2368		sched_pin();
2369		sysm->CMAP1 = mips_paddr_to_tlbpfn(phys) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2370		pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR1, sysm->CMAP1);
2371		sysm->valid1 = 1;
2372		bzero(sysm->CADDR1, PAGE_SIZE);
2373		pmap_TLB_invalidate_kernel((vm_offset_t)sysm->CADDR1);
2374		sysm->CMAP1 = 0;
2375		sysm->valid1 = 0;
2376		sched_unpin();
2377		PMAP_LGMEM_UNLOCK(sysm);
2378	}
2379
2380}
2381
2382/*
2383 *	pmap_copy_page copies the specified (machine independent)
2384 *	page by mapping the page into virtual memory and using
2385 *	bcopy to copy the page, one machine dependent page at a
2386 *	time.
2387 */
2388void
2389pmap_copy_page(vm_page_t src, vm_page_t dst)
2390{
2391	vm_offset_t va_src, va_dst;
2392	vm_paddr_t phy_src = VM_PAGE_TO_PHYS(src);
2393	vm_paddr_t phy_dst = VM_PAGE_TO_PHYS(dst);
2394
2395#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
2396	if (need_wired_tlb_page_pool) {
2397		struct fpage *fp1, *fp2;
2398		struct sysmaps *sysmaps;
2399
2400		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2401		mtx_lock(&sysmaps->lock);
2402		sched_pin();
2403
2404		fp1 = &sysmaps->fp[PMAP_FPAGE1];
2405		fp2 = &sysmaps->fp[PMAP_FPAGE2];
2406
2407		va_src = pmap_map_fpage(phy_src, fp1, FALSE);
2408		va_dst = pmap_map_fpage(phy_dst, fp2, FALSE);
2409
2410		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2411
2412		pmap_unmap_fpage(phy_src, fp1);
2413		pmap_unmap_fpage(phy_dst, fp2);
2414		sched_unpin();
2415		mtx_unlock(&sysmaps->lock);
2416
2417		/*
2418		 * Should you flush the cache?
2419		 */
2420	} else
2421#endif
2422	{
2423		if ((phy_src < MIPS_KSEG0_LARGEST_PHYS) && (phy_dst < MIPS_KSEG0_LARGEST_PHYS)) {
2424			/* easy case, all can be accessed via KSEG0 */
2425			/*
2426			 * Flush all caches for VA that are mapped to this page
2427			 * to make sure that data in SDRAM is up to date
2428			 */
2429			pmap_flush_pvcache(src);
2430			mips_dcache_wbinv_range_index(
2431			    MIPS_PHYS_TO_CACHED(phy_dst), NBPG);
2432			va_src = MIPS_PHYS_TO_CACHED(phy_src);
2433			va_dst = MIPS_PHYS_TO_CACHED(phy_dst);
2434			bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2435			mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2436		} else {
2437			int cpu;
2438			struct local_sysmaps *sysm;
2439
2440			cpu = PCPU_GET(cpuid);
2441			sysm = &sysmap_lmem[cpu];
2442			PMAP_LGMEM_LOCK(sysm);
2443			sched_pin();
2444			if (phy_src < MIPS_KSEG0_LARGEST_PHYS) {
2445				/* one side needs mapping - dest */
2446				va_src = MIPS_PHYS_TO_CACHED(phy_src);
2447				sysm->CMAP2 = mips_paddr_to_tlbpfn(phy_dst) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2448				pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR2, sysm->CMAP2);
2449				sysm->valid2 = 2;
2450				va_dst = (vm_offset_t)sysm->CADDR2;
2451			} else if (phy_dst < MIPS_KSEG0_LARGEST_PHYS) {
2452				/* one side needs mapping - src */
2453				va_dst = MIPS_PHYS_TO_CACHED(phy_dst);
2454				sysm->CMAP1 = mips_paddr_to_tlbpfn(phy_src) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2455				pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR1, sysm->CMAP1);
2456				va_src = (vm_offset_t)sysm->CADDR1;
2457				sysm->valid1 = 1;
2458			} else {
2459				/* all need mapping */
2460				sysm->CMAP1 = mips_paddr_to_tlbpfn(phy_src) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2461				sysm->CMAP2 = mips_paddr_to_tlbpfn(phy_dst) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2462				pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR1, sysm->CMAP1);
2463				pmap_TLB_update_kernel((vm_offset_t)sysm->CADDR2, sysm->CMAP2);
2464				sysm->valid1 = sysm->valid2 = 1;
2465				va_src = (vm_offset_t)sysm->CADDR1;
2466				va_dst = (vm_offset_t)sysm->CADDR2;
2467			}
2468			bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2469			if (sysm->valid1) {
2470				pmap_TLB_invalidate_kernel((vm_offset_t)sysm->CADDR1);
2471				sysm->CMAP1 = 0;
2472				sysm->valid1 = 0;
2473			}
2474			if (sysm->valid2) {
2475				pmap_TLB_invalidate_kernel((vm_offset_t)sysm->CADDR2);
2476				sysm->CMAP2 = 0;
2477				sysm->valid2 = 0;
2478			}
2479			sched_unpin();
2480			PMAP_LGMEM_UNLOCK(sysm);
2481		}
2482	}
2483}
2484
2485/*
2486 * Returns true if the pmap's pv is one of the first
2487 * 16 pvs linked to from this page.  This count may
2488 * be changed upwards or downwards in the future; it
2489 * is only necessary that true be returned for a small
2490 * subset of pmaps for proper page aging.
2491 */
2492boolean_t
2493pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2494{
2495	pv_entry_t pv;
2496	int loops = 0;
2497
2498	if (m->flags & PG_FICTITIOUS)
2499		return FALSE;
2500
2501	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2502	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2503		if (pv->pv_pmap == pmap) {
2504			return TRUE;
2505		}
2506		loops++;
2507		if (loops >= 16)
2508			break;
2509	}
2510	return (FALSE);
2511}
2512
2513/*
2514 * Remove all pages from specified address space
2515 * this aids process exit speeds.  Also, this code
2516 * is special cased for current process only, but
2517 * can have the more generic (and slightly slower)
2518 * mode enabled.  This is much faster than pmap_remove
2519 * in the case of running down an entire address space.
2520 */
2521void
2522pmap_remove_pages(pmap_t pmap)
2523{
2524	pt_entry_t *pte, tpte;
2525	pv_entry_t pv, npv;
2526	vm_page_t m;
2527
2528	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2529		printf("warning: pmap_remove_pages called with non-current pmap\n");
2530		return;
2531	}
2532	vm_page_lock_queues();
2533	PMAP_LOCK(pmap);
2534	sched_pin();
2535	//XXX need to be TAILQ_FOREACH_SAFE ?
2536	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2537
2538		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2539		if (!pmap_pte_v(pte))
2540			panic("pmap_remove_pages: page on pm_pvlist has no pte\n");
2541		tpte = *pte;
2542
2543/*
2544 * We cannot remove wired pages from a process' mapping at this time
2545 */
2546		if (tpte & PTE_W) {
2547			npv = TAILQ_NEXT(pv, pv_plist);
2548			continue;
2549		}
2550		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2551
2552		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(tpte));
2553
2554		KASSERT(m < &vm_page_array[vm_page_array_size],
2555		    ("pmap_remove_pages: bad tpte %lx", tpte));
2556
2557		pv->pv_pmap->pm_stats.resident_count--;
2558
2559		/*
2560		 * Update the vm_page_t clean and reference bits.
2561		 */
2562		if (tpte & PTE_M) {
2563			vm_page_dirty(m);
2564		}
2565		npv = TAILQ_NEXT(pv, pv_plist);
2566		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2567
2568		m->md.pv_list_count--;
2569		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2570		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2571			vm_page_flag_clear(m, PG_WRITEABLE);
2572		}
2573		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2574		free_pv_entry(pv);
2575	}
2576	sched_unpin();
2577	pmap_invalidate_all(pmap);
2578	PMAP_UNLOCK(pmap);
2579	vm_page_unlock_queues();
2580}
2581
2582/*
2583 * pmap_testbit tests bits in pte's
2584 * note that the testbit/changebit routines are inline,
2585 * and a lot of things compile-time evaluate.
2586 */
2587static boolean_t
2588pmap_testbit(vm_page_t m, int bit)
2589{
2590	pv_entry_t pv;
2591	pt_entry_t *pte;
2592	boolean_t rv = FALSE;
2593
2594	if (m->flags & PG_FICTITIOUS)
2595		return rv;
2596
2597	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2598		return rv;
2599
2600	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2601	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2602#if defined(PMAP_DIAGNOSTIC)
2603		if (!pv->pv_pmap) {
2604			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2605			continue;
2606		}
2607#endif
2608		PMAP_LOCK(pv->pv_pmap);
2609		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2610		rv = (*pte & bit) != 0;
2611		PMAP_UNLOCK(pv->pv_pmap);
2612		if (rv)
2613			break;
2614	}
2615	return (rv);
2616}
2617
2618/*
2619 * this routine is used to modify bits in ptes
2620 */
2621static __inline void
2622pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2623{
2624	register pv_entry_t pv;
2625	register pt_entry_t *pte;
2626
2627	if (m->flags & PG_FICTITIOUS)
2628		return;
2629
2630	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2631	/*
2632	 * Loop over all current mappings setting/clearing as appropos If
2633	 * setting RO do we need to clear the VAC?
2634	 */
2635	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2636#if defined(PMAP_DIAGNOSTIC)
2637		if (!pv->pv_pmap) {
2638			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2639			continue;
2640		}
2641#endif
2642
2643		PMAP_LOCK(pv->pv_pmap);
2644		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2645
2646		if (setem) {
2647			*(int *)pte |= bit;
2648			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2649		} else {
2650			vm_offset_t pbits = *(vm_offset_t *)pte;
2651
2652			if (pbits & bit) {
2653				if (bit == PTE_RW) {
2654					if (pbits & PTE_M) {
2655						vm_page_dirty(m);
2656					}
2657					*(int *)pte = (pbits & ~(PTE_M | PTE_RW)) |
2658					    PTE_RO;
2659				} else {
2660					*(int *)pte = pbits & ~bit;
2661				}
2662				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2663			}
2664		}
2665		PMAP_UNLOCK(pv->pv_pmap);
2666	}
2667	if (!setem && bit == PTE_RW)
2668		vm_page_flag_clear(m, PG_WRITEABLE);
2669}
2670
2671/*
2672 *	pmap_page_wired_mappings:
2673 *
2674 *	Return the number of managed mappings to the given physical page
2675 *	that are wired.
2676 */
2677int
2678pmap_page_wired_mappings(vm_page_t m)
2679{
2680	pv_entry_t pv;
2681	int count;
2682
2683	count = 0;
2684	if ((m->flags & PG_FICTITIOUS) != 0)
2685		return (count);
2686	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2687	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2688	    if (pv->pv_wired)
2689		count++;
2690	return (count);
2691}
2692
2693/*
2694 * Clear the write and modified bits in each of the given page's mappings.
2695 */
2696void
2697pmap_remove_write(vm_page_t m)
2698{
2699	pv_entry_t pv, npv;
2700	vm_offset_t va;
2701	pt_entry_t *pte;
2702
2703	if ((m->flags & PG_WRITEABLE) == 0)
2704		return;
2705
2706	/*
2707	 * Loop over all current mappings setting/clearing as appropos.
2708	 */
2709	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2710		npv = TAILQ_NEXT(pv, pv_plist);
2711		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2712
2713		if ((pte == NULL) || !mips_pg_v(*pte))
2714			panic("page on pm_pvlist has no pte\n");
2715
2716		va = pv->pv_va;
2717		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2718		    VM_PROT_READ | VM_PROT_EXECUTE);
2719	}
2720	vm_page_flag_clear(m, PG_WRITEABLE);
2721}
2722
2723/*
2724 *	pmap_ts_referenced:
2725 *
2726 *	Return the count of reference bits for a page, clearing all of them.
2727 */
2728int
2729pmap_ts_referenced(vm_page_t m)
2730{
2731	if (m->flags & PG_FICTITIOUS)
2732		return (0);
2733
2734	if (m->md.pv_flags & PV_TABLE_REF) {
2735		m->md.pv_flags &= ~PV_TABLE_REF;
2736		return 1;
2737	}
2738	return 0;
2739}
2740
2741/*
2742 *	pmap_is_modified:
2743 *
2744 *	Return whether or not the specified physical page was modified
2745 *	in any physical maps.
2746 */
2747boolean_t
2748pmap_is_modified(vm_page_t m)
2749{
2750	if (m->flags & PG_FICTITIOUS)
2751		return FALSE;
2752
2753	if (m->md.pv_flags & PV_TABLE_MOD)
2754		return TRUE;
2755	else
2756		return pmap_testbit(m, PTE_M);
2757}
2758
2759/* N/C */
2760
2761/*
2762 *	pmap_is_prefaultable:
2763 *
2764 *	Return whether or not the specified virtual address is elgible
2765 *	for prefault.
2766 */
2767boolean_t
2768pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2769{
2770	pt_entry_t *pte;
2771	boolean_t rv;
2772
2773	rv = FALSE;
2774	PMAP_LOCK(pmap);
2775	if (*pmap_pde(pmap, addr)) {
2776		pte = pmap_pte(pmap, addr);
2777		rv = (*pte == 0);
2778	}
2779	PMAP_UNLOCK(pmap);
2780	return (rv);
2781}
2782
2783/*
2784 *	Clear the modify bits on the specified physical page.
2785 */
2786void
2787pmap_clear_modify(vm_page_t m)
2788{
2789	if (m->flags & PG_FICTITIOUS)
2790		return;
2791	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2792	if (m->md.pv_flags & PV_TABLE_MOD) {
2793		pmap_changebit(m, PTE_M, FALSE);
2794		m->md.pv_flags &= ~PV_TABLE_MOD;
2795	}
2796}
2797
2798/*
2799 *	pmap_clear_reference:
2800 *
2801 *	Clear the reference bit on the specified physical page.
2802 */
2803void
2804pmap_clear_reference(vm_page_t m)
2805{
2806	if (m->flags & PG_FICTITIOUS)
2807		return;
2808
2809	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2810	if (m->md.pv_flags & PV_TABLE_REF) {
2811		m->md.pv_flags &= ~PV_TABLE_REF;
2812	}
2813}
2814
2815/*
2816 * Miscellaneous support routines follow
2817 */
2818
2819/*
2820 * Map a set of physical memory pages into the kernel virtual
2821 * address space. Return a pointer to where it is mapped. This
2822 * routine is intended to be used for mapping device memory,
2823 * NOT real memory.
2824 */
2825
2826/*
2827 * Map a set of physical memory pages into the kernel virtual
2828 * address space. Return a pointer to where it is mapped. This
2829 * routine is intended to be used for mapping device memory,
2830 * NOT real memory.
2831 */
2832void *
2833pmap_mapdev(vm_offset_t pa, vm_size_t size)
2834{
2835        vm_offset_t va, tmpva, offset;
2836
2837	/*
2838	 * KSEG1 maps only first 512M of phys address space. For
2839	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2840	 */
2841	if ((pa + size - 1) < MIPS_KSEG0_LARGEST_PHYS)
2842		return (void *)MIPS_PHYS_TO_KSEG1(pa);
2843	else {
2844		offset = pa & PAGE_MASK;
2845		size = roundup(size + offset, PAGE_SIZE);
2846
2847		va = kmem_alloc_nofault(kernel_map, size);
2848		if (!va)
2849			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2850		pa = trunc_page(pa);
2851		for (tmpva = va; size > 0;) {
2852			pmap_kenter(tmpva, pa);
2853			size -= PAGE_SIZE;
2854			tmpva += PAGE_SIZE;
2855			pa += PAGE_SIZE;
2856		}
2857	}
2858
2859	return ((void *)(va + offset));
2860}
2861
2862void
2863pmap_unmapdev(vm_offset_t va, vm_size_t size)
2864{
2865	vm_offset_t base, offset, tmpva;
2866
2867	/* If the address is within KSEG1 then there is nothing to do */
2868	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2869		return;
2870
2871	base = trunc_page(va);
2872	offset = va & PAGE_MASK;
2873	size = roundup(size + offset, PAGE_SIZE);
2874	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2875		pmap_kremove(tmpva);
2876	kmem_free(kernel_map, base, size);
2877}
2878
2879/*
2880 * perform the pmap work for mincore
2881 */
2882int
2883pmap_mincore(pmap_t pmap, vm_offset_t addr)
2884{
2885
2886	pt_entry_t *ptep, pte;
2887	vm_page_t m;
2888	int val = 0;
2889
2890	PMAP_LOCK(pmap);
2891	ptep = pmap_pte(pmap, addr);
2892	pte = (ptep != NULL) ? *ptep : 0;
2893	PMAP_UNLOCK(pmap);
2894
2895	if (mips_pg_v(pte)) {
2896		vm_offset_t pa;
2897
2898		val = MINCORE_INCORE;
2899		pa = mips_tlbpfn_to_paddr(pte);
2900		if (!page_is_managed(pa))
2901			return val;
2902
2903		m = PHYS_TO_VM_PAGE(pa);
2904
2905		/*
2906		 * Modified by us
2907		 */
2908		if (pte & PTE_M)
2909			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2910		/*
2911		 * Modified by someone
2912		 */
2913		else {
2914			vm_page_lock_queues();
2915			if (m->dirty || pmap_is_modified(m))
2916				val |= MINCORE_MODIFIED_OTHER;
2917			vm_page_unlock_queues();
2918		}
2919		/*
2920		 * Referenced by us or someone
2921		 */
2922		vm_page_lock_queues();
2923		if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
2924			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2925			vm_page_flag_set(m, PG_REFERENCED);
2926		}
2927		vm_page_unlock_queues();
2928	}
2929	return val;
2930}
2931
2932void
2933pmap_activate(struct thread *td)
2934{
2935	pmap_t pmap, oldpmap;
2936	struct proc *p = td->td_proc;
2937
2938	critical_enter();
2939
2940	pmap = vmspace_pmap(p->p_vmspace);
2941	oldpmap = PCPU_GET(curpmap);
2942
2943	if (oldpmap)
2944		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
2945	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
2946	pmap_asid_alloc(pmap);
2947	if (td == curthread) {
2948		PCPU_SET(segbase, pmap->pm_segtab);
2949		MachSetPID(pmap->pm_asid[PCPU_GET(cpuid)].asid);
2950	}
2951
2952	PCPU_SET(curpmap, pmap);
2953	critical_exit();
2954}
2955
2956void
2957pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2958{
2959}
2960
2961/*
2962 *	Increase the starting virtual address of the given mapping if a
2963 *	different alignment might result in more superpage mappings.
2964 */
2965void
2966pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2967    vm_offset_t *addr, vm_size_t size)
2968{
2969	vm_offset_t superpage_offset;
2970
2971	if (size < NBSEG)
2972		return;
2973	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2974		offset += ptoa(object->pg_color);
2975	superpage_offset = offset & SEGOFSET;
2976	if (size - ((NBSEG - superpage_offset) & SEGOFSET) < NBSEG ||
2977	    (*addr & SEGOFSET) == superpage_offset)
2978		return;
2979	if ((*addr & SEGOFSET) < superpage_offset)
2980		*addr = (*addr & ~SEGOFSET) + superpage_offset;
2981	else
2982		*addr = ((*addr + SEGOFSET) & ~SEGOFSET) + superpage_offset;
2983}
2984
2985int pmap_pid_dump(int pid);
2986
2987int
2988pmap_pid_dump(int pid)
2989{
2990	pmap_t pmap;
2991	struct proc *p;
2992	int npte = 0;
2993	int index;
2994
2995	sx_slock(&allproc_lock);
2996	LIST_FOREACH(p, &allproc, p_list) {
2997		if (p->p_pid != pid)
2998			continue;
2999
3000		if (p->p_vmspace) {
3001			int i, j;
3002
3003			printf("vmspace is %p\n",
3004			       p->p_vmspace);
3005			index = 0;
3006			pmap = vmspace_pmap(p->p_vmspace);
3007			printf("pmap asid:%x generation:%x\n",
3008			       pmap->pm_asid[0].asid,
3009			       pmap->pm_asid[0].gen);
3010			for (i = 0; i < NUSERPGTBLS; i++) {
3011				pd_entry_t *pde;
3012				pt_entry_t *pte;
3013				unsigned base = i << SEGSHIFT;
3014
3015				pde = &pmap->pm_segtab[i];
3016				if (pde && pmap_pde_v(pde)) {
3017					for (j = 0; j < 1024; j++) {
3018						vm_offset_t va = base +
3019						(j << PAGE_SHIFT);
3020
3021						pte = pmap_pte(pmap, va);
3022						if (pte && pmap_pte_v(pte)) {
3023							vm_offset_t pa;
3024							vm_page_t m;
3025
3026							pa = mips_tlbpfn_to_paddr(*pte);
3027							m = PHYS_TO_VM_PAGE(pa);
3028							printf("va: %p, pt: %p, h: %d, w: %d, f: 0x%x",
3029							    (void *)va,
3030							    (void *)pa,
3031							    m->hold_count,
3032							    m->wire_count,
3033							    m->flags);
3034							npte++;
3035							index++;
3036							if (index >= 2) {
3037								index = 0;
3038								printf("\n");
3039							} else {
3040								printf(" ");
3041							}
3042						}
3043					}
3044				}
3045			}
3046		} else {
3047		  printf("Process pid:%d has no vm_space\n", pid);
3048		}
3049		break;
3050	}
3051	sx_sunlock(&allproc_lock);
3052	return npte;
3053}
3054
3055
3056#if defined(DEBUG)
3057
3058static void pads(pmap_t pm);
3059void pmap_pvdump(vm_offset_t pa);
3060
3061/* print address space of pmap*/
3062static void
3063pads(pmap_t pm)
3064{
3065	unsigned va, i, j;
3066	pt_entry_t *ptep;
3067
3068	if (pm == kernel_pmap)
3069		return;
3070	for (i = 0; i < NPTEPG; i++)
3071		if (pm->pm_segtab[i])
3072			for (j = 0; j < NPTEPG; j++) {
3073				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3074				if (pm == kernel_pmap && va < KERNBASE)
3075					continue;
3076				if (pm != kernel_pmap &&
3077				    va >= VM_MAXUSER_ADDRESS)
3078					continue;
3079				ptep = pmap_pte(pm, va);
3080				if (pmap_pte_v(ptep))
3081					printf("%x:%x ", va, *(int *)ptep);
3082			}
3083
3084}
3085
3086void
3087pmap_pvdump(vm_offset_t pa)
3088{
3089	register pv_entry_t pv;
3090	vm_page_t m;
3091
3092	printf("pa %x", pa);
3093	m = PHYS_TO_VM_PAGE(pa);
3094	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3095	    pv = TAILQ_NEXT(pv, pv_list)) {
3096		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3097		pads(pv->pv_pmap);
3098	}
3099	printf(" ");
3100}
3101
3102/* N/C */
3103#endif
3104
3105
3106/*
3107 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3108 * It takes almost as much or more time to search the TLB for a
3109 * specific ASID and flush those entries as it does to flush the entire TLB.
3110 * Therefore, when we allocate a new ASID, we just take the next number. When
3111 * we run out of numbers, we flush the TLB, increment the generation count
3112 * and start over. ASID zero is reserved for kernel use.
3113 */
3114static void
3115pmap_asid_alloc(pmap)
3116	pmap_t pmap;
3117{
3118	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3119	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3120	else {
3121		if (PCPU_GET(next_asid) == pmap_max_asid) {
3122			MIPS_TBIAP();
3123			PCPU_SET(asid_generation,
3124			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3125			if (PCPU_GET(asid_generation) == 0) {
3126				PCPU_SET(asid_generation, 1);
3127			}
3128			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3129		}
3130		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3131		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3132		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3133	}
3134
3135#ifdef DEBUG
3136	if (pmapdebug & (PDB_FOLLOW | PDB_TLBPID)) {
3137		if (curproc)
3138			printf("pmap_asid_alloc: curproc %d '%s' ",
3139			    curproc->p_pid, curproc->p_comm);
3140		else
3141			printf("pmap_asid_alloc: curproc <none> ");
3142		printf("segtab %p asid %d\n", pmap->pm_segtab,
3143		    pmap->pm_asid[PCPU_GET(cpuid)].asid);
3144	}
3145#endif
3146}
3147
3148int
3149page_is_managed(vm_offset_t pa)
3150{
3151	vm_offset_t pgnum = mips_btop(pa);
3152
3153	if (pgnum >= first_page && (pgnum < (first_page + vm_page_array_size))) {
3154		vm_page_t m;
3155
3156		m = PHYS_TO_VM_PAGE(pa);
3157		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
3158			return 1;
3159	}
3160	return 0;
3161}
3162
3163static int
3164init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3165{
3166	int rw = 0;
3167
3168	if (!(prot & VM_PROT_WRITE))
3169		rw = PTE_ROPAGE;
3170	else {
3171		if (va >= VM_MIN_KERNEL_ADDRESS) {
3172			/*
3173			 * Don't bother to trap on kernel writes, just
3174			 * record page as dirty.
3175			 */
3176			rw = PTE_RWPAGE;
3177			vm_page_dirty(m);
3178		} else if ((m->md.pv_flags & PV_TABLE_MOD) ||
3179		    m->dirty == VM_PAGE_BITS_ALL)
3180			rw = PTE_RWPAGE;
3181		else
3182			rw = PTE_CWPAGE;
3183		vm_page_flag_set(m, PG_WRITEABLE);
3184	}
3185	return rw;
3186}
3187
3188/*
3189 *	pmap_page_is_free:
3190 *
3191 *	Called when a page is freed to allow pmap to clean up
3192 *	any extra state associated with the page.  In this case
3193 *	clear modified/referenced bits.
3194 */
3195void
3196pmap_page_is_free(vm_page_t m)
3197{
3198
3199	m->md.pv_flags = 0;
3200}
3201
3202/*
3203 *	pmap_set_modified:
3204 *
3205 *	Sets the page modified and reference bits for the specified page.
3206 */
3207void
3208pmap_set_modified(vm_offset_t pa)
3209{
3210
3211	PHYS_TO_VM_PAGE(pa)->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3212}
3213
3214#include <machine/db_machdep.h>
3215
3216/*
3217 *  Dump the translation buffer (TLB) in readable form.
3218 */
3219
3220void
3221db_dump_tlb(int first, int last)
3222{
3223	struct tlb tlb;
3224	int tlbno;
3225
3226	tlbno = first;
3227
3228	while (tlbno <= last) {
3229		MachTLBRead(tlbno, &tlb);
3230		if (tlb.tlb_lo0 & PTE_V || tlb.tlb_lo1 & PTE_V) {
3231			printf("TLB %2d vad 0x%08x ", tlbno, (tlb.tlb_hi & 0xffffff00));
3232		} else {
3233			printf("TLB*%2d vad 0x%08x ", tlbno, (tlb.tlb_hi & 0xffffff00));
3234		}
3235		printf("0=0x%08x ", pfn_to_vad(tlb.tlb_lo0));
3236		printf("%c", tlb.tlb_lo0 & PTE_M ? 'M' : ' ');
3237		printf("%c", tlb.tlb_lo0 & PTE_G ? 'G' : ' ');
3238		printf(" atr %x ", (tlb.tlb_lo0 >> 3) & 7);
3239		printf("1=0x%08x ", pfn_to_vad(tlb.tlb_lo1));
3240		printf("%c", tlb.tlb_lo1 & PTE_M ? 'M' : ' ');
3241		printf("%c", tlb.tlb_lo1 & PTE_G ? 'G' : ' ');
3242		printf(" atr %x ", (tlb.tlb_lo1 >> 3) & 7);
3243		printf(" sz=%x pid=%x\n", tlb.tlb_mask,
3244		       (tlb.tlb_hi & 0x000000ff)
3245		       );
3246		tlbno++;
3247	}
3248}
3249
3250#ifdef DDB
3251#include <sys/kernel.h>
3252#include <ddb/ddb.h>
3253
3254DB_SHOW_COMMAND(tlb, ddb_dump_tlb)
3255{
3256	db_dump_tlb(0, num_tlbentries - 1);
3257}
3258
3259#endif
3260
3261/*
3262 *	Routine:	pmap_kextract
3263 *	Function:
3264 *		Extract the physical page address associated
3265 *		virtual address.
3266 */
3267 /* PMAP_INLINE */ vm_offset_t
3268pmap_kextract(vm_offset_t va)
3269{
3270	vm_offset_t pa = 0;
3271
3272	if (va < MIPS_CACHED_MEMORY_ADDR) {
3273		/* user virtual address */
3274		pt_entry_t *ptep;
3275
3276		if (curproc && curproc->p_vmspace) {
3277			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3278			if (ptep)
3279				pa = mips_tlbpfn_to_paddr(*ptep) |
3280				    (va & PAGE_MASK);
3281		}
3282	} else if (va >= MIPS_CACHED_MEMORY_ADDR &&
3283	    va < MIPS_UNCACHED_MEMORY_ADDR)
3284		pa = MIPS_CACHED_TO_PHYS(va);
3285	else if (va >= MIPS_UNCACHED_MEMORY_ADDR &&
3286	    va < MIPS_KSEG2_START)
3287		pa = MIPS_UNCACHED_TO_PHYS(va);
3288#ifdef VM_ALLOC_WIRED_TLB_PG_POOL
3289	else if (need_wired_tlb_page_pool && ((va >= VM_MIN_KERNEL_ADDRESS) &&
3290	    (va < (VM_MIN_KERNEL_ADDRESS + VM_KERNEL_ALLOC_OFFSET))))
3291		pa = MIPS_CACHED_TO_PHYS(va);
3292#endif
3293	else if (va >= MIPS_KSEG2_START && va < VM_MAX_KERNEL_ADDRESS) {
3294		pt_entry_t *ptep;
3295
3296		/* Is the kernel pmap initialized? */
3297		if (kernel_pmap->pm_active) {
3298			if (va >= (vm_offset_t)virtual_sys_start) {
3299				/* Its inside the virtual address range */
3300				ptep = pmap_pte(kernel_pmap, va);
3301				if (ptep)
3302					pa = mips_tlbpfn_to_paddr(*ptep) |
3303					    (va & PAGE_MASK);
3304			} else {
3305				int i;
3306
3307				/*
3308				 * its inside the special mapping area, I
3309				 * don't think this should happen, but if it
3310				 * does I want it toa all work right :-)
3311				 * Note if it does happen, we assume the
3312				 * caller has the lock? FIXME, this needs to
3313				 * be checked FIXEM - RRS.
3314				 */
3315				for (i = 0; i < MAXCPU; i++) {
3316					if ((sysmap_lmem[i].valid1) && ((vm_offset_t)sysmap_lmem[i].CADDR1 == va)) {
3317						pa = mips_tlbpfn_to_paddr(sysmap_lmem[i].CMAP1);
3318						break;
3319					}
3320					if ((sysmap_lmem[i].valid2) && ((vm_offset_t)sysmap_lmem[i].CADDR2 == va)) {
3321						pa = mips_tlbpfn_to_paddr(sysmap_lmem[i].CMAP2);
3322						break;
3323					}
3324				}
3325			}
3326		}
3327	}
3328	return pa;
3329}
3330
3331void
3332pmap_flush_pvcache(vm_page_t m)
3333{
3334	pv_entry_t pv;
3335
3336	if (m != NULL) {
3337		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3338	    	    pv = TAILQ_NEXT(pv, pv_list)) {
3339			mips_dcache_wbinv_range_index(pv->pv_va, NBPG);
3340		}
3341	}
3342}
3343