if_arge.c revision 220355
1/*-
2 * Copyright (c) 2009, Oleksandr Tymoshenko
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/mips/atheros/if_arge.c 220355 2011-04-05 05:29:10Z adrian $");
30
31/*
32 * AR71XX gigabit ethernet driver
33 */
34#ifdef HAVE_KERNEL_OPTION_HEADERS
35#include "opt_device_polling.h"
36#endif
37
38#include <sys/param.h>
39#include <sys/endian.h>
40#include <sys/systm.h>
41#include <sys/sockio.h>
42#include <sys/mbuf.h>
43#include <sys/malloc.h>
44#include <sys/kernel.h>
45#include <sys/module.h>
46#include <sys/socket.h>
47#include <sys/taskqueue.h>
48#include <sys/sysctl.h>
49
50#include <net/if.h>
51#include <net/if_arp.h>
52#include <net/ethernet.h>
53#include <net/if_dl.h>
54#include <net/if_media.h>
55#include <net/if_types.h>
56
57#include <net/bpf.h>
58
59#include <machine/bus.h>
60#include <machine/cache.h>
61#include <machine/resource.h>
62#include <vm/vm_param.h>
63#include <vm/vm.h>
64#include <vm/pmap.h>
65#include <machine/pmap.h>
66#include <sys/bus.h>
67#include <sys/rman.h>
68
69#include <dev/mii/mii.h>
70#include <dev/mii/miivar.h>
71
72#include <dev/pci/pcireg.h>
73#include <dev/pci/pcivar.h>
74
75MODULE_DEPEND(arge, ether, 1, 1, 1);
76MODULE_DEPEND(arge, miibus, 1, 1, 1);
77
78#include "miibus_if.h"
79
80#include <mips/atheros/ar71xxreg.h>
81#include <mips/atheros/if_argevar.h>
82#include <mips/atheros/ar71xx_setup.h>
83#include <mips/atheros/ar71xx_cpudef.h>
84
85typedef enum {
86	ARGE_DBG_MII 	=	0x00000001,
87	ARGE_DBG_INTR	=	0x00000002
88} arge_debug_flags;
89
90#ifdef ARGE_DEBUG
91#define	ARGEDEBUG(_sc, _m, ...) 					\
92	do {								\
93		if ((_m) & (_sc)->arge_debug)				\
94			device_printf((_sc)->arge_dev, __VA_ARGS__);	\
95	} while (0)
96#else
97#define	ARGEDEBUG(_sc, _m, ...)
98#endif
99
100static int arge_attach(device_t);
101static int arge_detach(device_t);
102static void arge_flush_ddr(struct arge_softc *);
103static int arge_ifmedia_upd(struct ifnet *);
104static void arge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
105static int arge_ioctl(struct ifnet *, u_long, caddr_t);
106static void arge_init(void *);
107static void arge_init_locked(struct arge_softc *);
108static void arge_link_task(void *, int);
109static void arge_set_pll(struct arge_softc *, int, int);
110static int arge_miibus_readreg(device_t, int, int);
111static void arge_miibus_statchg(device_t);
112static int arge_miibus_writereg(device_t, int, int, int);
113static int arge_probe(device_t);
114static void arge_reset_dma(struct arge_softc *);
115static int arge_resume(device_t);
116static int arge_rx_ring_init(struct arge_softc *);
117static int arge_tx_ring_init(struct arge_softc *);
118#ifdef DEVICE_POLLING
119static int arge_poll(struct ifnet *, enum poll_cmd, int);
120#endif
121static int arge_shutdown(device_t);
122static void arge_start(struct ifnet *);
123static void arge_start_locked(struct ifnet *);
124static void arge_stop(struct arge_softc *);
125static int arge_suspend(device_t);
126
127static int arge_rx_locked(struct arge_softc *);
128static void arge_tx_locked(struct arge_softc *);
129static void arge_intr(void *);
130static int arge_intr_filter(void *);
131static void arge_tick(void *);
132
133/*
134 * ifmedia callbacks for multiPHY MAC
135 */
136void arge_multiphy_mediastatus(struct ifnet *, struct ifmediareq *);
137int arge_multiphy_mediachange(struct ifnet *);
138
139static void arge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
140static int arge_dma_alloc(struct arge_softc *);
141static void arge_dma_free(struct arge_softc *);
142static int arge_newbuf(struct arge_softc *, int);
143static __inline void arge_fixup_rx(struct mbuf *);
144
145static device_method_t arge_methods[] = {
146	/* Device interface */
147	DEVMETHOD(device_probe,		arge_probe),
148	DEVMETHOD(device_attach,	arge_attach),
149	DEVMETHOD(device_detach,	arge_detach),
150	DEVMETHOD(device_suspend,	arge_suspend),
151	DEVMETHOD(device_resume,	arge_resume),
152	DEVMETHOD(device_shutdown,	arge_shutdown),
153
154	/* bus interface */
155	DEVMETHOD(bus_print_child,	bus_generic_print_child),
156	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
157
158	/* MII interface */
159	DEVMETHOD(miibus_readreg,	arge_miibus_readreg),
160	DEVMETHOD(miibus_writereg,	arge_miibus_writereg),
161	DEVMETHOD(miibus_statchg,	arge_miibus_statchg),
162
163	{ 0, 0 }
164};
165
166static driver_t arge_driver = {
167	"arge",
168	arge_methods,
169	sizeof(struct arge_softc)
170};
171
172static devclass_t arge_devclass;
173
174DRIVER_MODULE(arge, nexus, arge_driver, arge_devclass, 0, 0);
175DRIVER_MODULE(miibus, arge, miibus_driver, miibus_devclass, 0, 0);
176
177/*
178 * RedBoot passes MAC address to entry point as environment
179 * variable. platfrom_start parses it and stores in this variable
180 */
181extern uint32_t ar711_base_mac[ETHER_ADDR_LEN];
182
183static struct mtx miibus_mtx;
184
185MTX_SYSINIT(miibus_mtx, &miibus_mtx, "arge mii lock", MTX_DEF);
186
187
188/*
189 * Flushes all
190 */
191static void
192arge_flush_ddr(struct arge_softc *sc)
193{
194	if (sc->arge_mac_unit == 0)
195		ar71xx_device_flush_ddr_ge0();
196	else
197		ar71xx_device_flush_ddr_ge1();
198}
199
200static int
201arge_probe(device_t dev)
202{
203
204	device_set_desc(dev, "Atheros AR71xx built-in ethernet interface");
205	return (0);
206}
207
208static void
209arge_attach_sysctl(device_t dev)
210{
211	struct arge_softc *sc = device_get_softc(dev);
212	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
213	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
214
215#ifdef	ARGE_DEBUG
216	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
217		"debug", CTLFLAG_RW, &sc->arge_debug, 0,
218		"arge interface debugging flags");
219#endif
220
221	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
222		"tx_pkts_aligned", CTLFLAG_RW, &sc->stats.tx_pkts_aligned, 0,
223		"number of TX aligned packets");
224
225	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
226		"tx_pkts_unaligned", CTLFLAG_RW, &sc->stats.tx_pkts_unaligned, 0,
227		"number of TX unaligned packets");
228
229#ifdef	ARGE_DEBUG
230	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_prod",
231	    CTLFLAG_RW, &sc->arge_cdata.arge_tx_prod, 0, "");
232	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_cons",
233	    CTLFLAG_RW, &sc->arge_cdata.arge_tx_cons, 0, "");
234	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_cnt",
235	    CTLFLAG_RW, &sc->arge_cdata.arge_tx_cnt, 0, "");
236#endif
237}
238
239static int
240arge_attach(device_t dev)
241{
242	uint8_t			eaddr[ETHER_ADDR_LEN];
243	struct ifnet		*ifp;
244	struct arge_softc	*sc;
245	int			error = 0, rid, phymask;
246	uint32_t		reg, rnd;
247	int			is_base_mac_empty, i, phys_total;
248	uint32_t		hint;
249	long			eeprom_mac_addr = 0;
250
251	sc = device_get_softc(dev);
252	sc->arge_dev = dev;
253	sc->arge_mac_unit = device_get_unit(dev);
254
255	/*
256	 * Some units (eg the TP-Link WR-1043ND) do not have a convenient
257	 * EEPROM location to read the ethernet MAC address from.
258	 * OpenWRT simply snaffles it from a fixed location.
259	 *
260	 * Since multiple units seem to use this feature, include
261	 * a method of setting the MAC address based on an flash location
262	 * in CPU address space.
263	 */
264	if (sc->arge_mac_unit == 0 &&
265	    resource_long_value(device_get_name(dev), device_get_unit(dev),
266	    "eeprommac", &eeprom_mac_addr) == 0) {
267		int i;
268		const char *mac = (const char *) MIPS_PHYS_TO_KSEG1(eeprom_mac_addr);
269		device_printf(dev, "Overriding MAC from EEPROM\n");
270		for (i = 0; i < 6; i++) {
271			ar711_base_mac[i] = mac[i];
272		}
273	}
274
275	KASSERT(((sc->arge_mac_unit == 0) || (sc->arge_mac_unit == 1)),
276	    ("if_arge: Only MAC0 and MAC1 supported"));
277
278	/*
279	 *  Get which PHY of 5 available we should use for this unit
280	 */
281	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
282	    "phymask", &phymask) != 0) {
283		/*
284		 * Use port 4 (WAN) for GE0. For any other port use
285		 * its PHY the same as its unit number
286		 */
287		if (sc->arge_mac_unit == 0)
288			phymask = (1 << 4);
289		else
290			/* Use all phys up to 4 */
291			phymask = (1 << 4) - 1;
292
293		device_printf(dev, "No PHY specified, using mask %d\n", phymask);
294	}
295
296	/*
297	 *  Get default media & duplex mode, by default its Base100T
298	 *  and full duplex
299	 */
300	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
301	    "media", &hint) != 0)
302		hint = 0;
303
304	if (hint == 1000)
305		sc->arge_media_type = IFM_1000_T;
306	else
307		sc->arge_media_type = IFM_100_TX;
308
309	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
310	    "fduplex", &hint) != 0)
311		hint = 1;
312
313	if (hint)
314		sc->arge_duplex_mode = IFM_FDX;
315	else
316		sc->arge_duplex_mode = 0;
317
318	sc->arge_phymask = phymask;
319
320	mtx_init(&sc->arge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
321	    MTX_DEF);
322	callout_init_mtx(&sc->arge_stat_callout, &sc->arge_mtx, 0);
323	TASK_INIT(&sc->arge_link_task, 0, arge_link_task, sc);
324
325	/* Map control/status registers. */
326	sc->arge_rid = 0;
327	sc->arge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
328	    &sc->arge_rid, RF_ACTIVE);
329
330	if (sc->arge_res == NULL) {
331		device_printf(dev, "couldn't map memory\n");
332		error = ENXIO;
333		goto fail;
334	}
335
336	/* Allocate interrupts */
337	rid = 0;
338	sc->arge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
339	    RF_SHAREABLE | RF_ACTIVE);
340
341	if (sc->arge_irq == NULL) {
342		device_printf(dev, "couldn't map interrupt\n");
343		error = ENXIO;
344		goto fail;
345	}
346
347	/* Allocate ifnet structure. */
348	ifp = sc->arge_ifp = if_alloc(IFT_ETHER);
349
350	if (ifp == NULL) {
351		device_printf(dev, "couldn't allocate ifnet structure\n");
352		error = ENOSPC;
353		goto fail;
354	}
355
356	ifp->if_softc = sc;
357	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
358	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
359	ifp->if_ioctl = arge_ioctl;
360	ifp->if_start = arge_start;
361	ifp->if_init = arge_init;
362	sc->arge_if_flags = ifp->if_flags;
363
364	/* XXX: add real size */
365	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
366	ifp->if_snd.ifq_maxlen = ifqmaxlen;
367	IFQ_SET_READY(&ifp->if_snd);
368
369	ifp->if_capenable = ifp->if_capabilities;
370#ifdef DEVICE_POLLING
371	ifp->if_capabilities |= IFCAP_POLLING;
372#endif
373
374	is_base_mac_empty = 1;
375	for (i = 0; i < ETHER_ADDR_LEN; i++) {
376		eaddr[i] = ar711_base_mac[i] & 0xff;
377		if (eaddr[i] != 0)
378			is_base_mac_empty = 0;
379	}
380
381	if (is_base_mac_empty) {
382		/*
383		 * No MAC address configured. Generate the random one.
384		 */
385		if  (bootverbose)
386			device_printf(dev,
387			    "Generating random ethernet address.\n");
388
389		rnd = arc4random();
390		eaddr[0] = 'b';
391		eaddr[1] = 's';
392		eaddr[2] = 'd';
393		eaddr[3] = (rnd >> 24) & 0xff;
394		eaddr[4] = (rnd >> 16) & 0xff;
395		eaddr[5] = (rnd >> 8) & 0xff;
396	}
397
398	if (sc->arge_mac_unit != 0)
399		eaddr[5] +=  sc->arge_mac_unit;
400
401	if (arge_dma_alloc(sc) != 0) {
402		error = ENXIO;
403		goto fail;
404	}
405
406	/* Initialize the MAC block */
407
408	/* Step 1. Soft-reset MAC */
409	ARGE_SET_BITS(sc, AR71XX_MAC_CFG1, MAC_CFG1_SOFT_RESET);
410	DELAY(20);
411
412	/* Step 2. Punt the MAC core from the central reset register */
413	ar71xx_device_stop(sc->arge_mac_unit == 0 ? RST_RESET_GE0_MAC : RST_RESET_GE1_MAC);
414	DELAY(100);
415	ar71xx_device_start(sc->arge_mac_unit == 0 ? RST_RESET_GE0_MAC : RST_RESET_GE1_MAC);
416
417	/* Step 3. Reconfigure MAC block */
418	ARGE_WRITE(sc, AR71XX_MAC_CFG1,
419		MAC_CFG1_SYNC_RX | MAC_CFG1_RX_ENABLE |
420		MAC_CFG1_SYNC_TX | MAC_CFG1_TX_ENABLE);
421
422	reg = ARGE_READ(sc, AR71XX_MAC_CFG2);
423	reg |= MAC_CFG2_ENABLE_PADCRC | MAC_CFG2_LENGTH_FIELD ;
424	ARGE_WRITE(sc, AR71XX_MAC_CFG2, reg);
425
426	ARGE_WRITE(sc, AR71XX_MAC_MAX_FRAME_LEN, 1536);
427
428	/* Reset MII bus */
429	ARGE_WRITE(sc, AR71XX_MAC_MII_CFG, MAC_MII_CFG_RESET);
430	DELAY(100);
431	ARGE_WRITE(sc, AR71XX_MAC_MII_CFG, MAC_MII_CFG_CLOCK_DIV_28);
432	DELAY(100);
433
434	/*
435	 * Set all Ethernet address registers to the same initial values
436	 * set all four addresses to 66-88-aa-cc-dd-ee
437	 */
438	ARGE_WRITE(sc, AR71XX_MAC_STA_ADDR1,
439	    (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8)  | eaddr[5]);
440	ARGE_WRITE(sc, AR71XX_MAC_STA_ADDR2, (eaddr[0] << 8) | eaddr[1]);
441
442	ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG0,
443	    FIFO_CFG0_ALL << FIFO_CFG0_ENABLE_SHIFT);
444
445	switch (ar71xx_soc) {
446		case AR71XX_SOC_AR7240:
447		case AR71XX_SOC_AR7241:
448		case AR71XX_SOC_AR7242:
449			ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG1, 0x0010ffff);
450			ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG2, 0x015500aa);
451			break;
452		default:
453			ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG1, 0x0fff0000);
454			ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG2, 0x00001fff);
455	}
456
457	ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMATCH,
458	    FIFO_RX_FILTMATCH_DEFAULT);
459
460	ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMASK,
461	    FIFO_RX_FILTMASK_DEFAULT);
462
463	/*
464	 * Check if we have single-PHY MAC or multi-PHY
465	 */
466	phys_total = 0;
467	for (i = 0; i < ARGE_NPHY; i++)
468		if (phymask & (1 << i))
469			phys_total ++;
470
471	if (phys_total == 0) {
472		error = EINVAL;
473		goto fail;
474	}
475
476	if (phys_total == 1) {
477		/* Do MII setup. */
478		error = mii_attach(dev, &sc->arge_miibus, ifp,
479		    arge_ifmedia_upd, arge_ifmedia_sts, BMSR_DEFCAPMASK,
480		    MII_PHY_ANY, MII_OFFSET_ANY, 0);
481		if (error != 0) {
482			device_printf(dev, "attaching PHYs failed\n");
483			goto fail;
484		}
485	}
486	else {
487		ifmedia_init(&sc->arge_ifmedia, 0,
488		    arge_multiphy_mediachange,
489		    arge_multiphy_mediastatus);
490		ifmedia_add(&sc->arge_ifmedia,
491		    IFM_ETHER | sc->arge_media_type  | sc->arge_duplex_mode,
492		    0, NULL);
493		ifmedia_set(&sc->arge_ifmedia,
494		    IFM_ETHER | sc->arge_media_type  | sc->arge_duplex_mode);
495		arge_set_pll(sc, sc->arge_media_type, sc->arge_duplex_mode);
496	}
497
498	/* Call MI attach routine. */
499	ether_ifattach(ifp, eaddr);
500
501	/* Hook interrupt last to avoid having to lock softc */
502	error = bus_setup_intr(dev, sc->arge_irq, INTR_TYPE_NET | INTR_MPSAFE,
503	    arge_intr_filter, arge_intr, sc, &sc->arge_intrhand);
504
505	if (error) {
506		device_printf(dev, "couldn't set up irq\n");
507		ether_ifdetach(ifp);
508		goto fail;
509	}
510
511	/* setup sysctl variables */
512	arge_attach_sysctl(dev);
513
514fail:
515	if (error)
516		arge_detach(dev);
517
518	return (error);
519}
520
521static int
522arge_detach(device_t dev)
523{
524	struct arge_softc	*sc = device_get_softc(dev);
525	struct ifnet		*ifp = sc->arge_ifp;
526
527	KASSERT(mtx_initialized(&sc->arge_mtx), ("arge mutex not initialized"));
528
529	/* These should only be active if attach succeeded */
530	if (device_is_attached(dev)) {
531		ARGE_LOCK(sc);
532		sc->arge_detach = 1;
533#ifdef DEVICE_POLLING
534		if (ifp->if_capenable & IFCAP_POLLING)
535			ether_poll_deregister(ifp);
536#endif
537
538		arge_stop(sc);
539		ARGE_UNLOCK(sc);
540		taskqueue_drain(taskqueue_swi, &sc->arge_link_task);
541		ether_ifdetach(ifp);
542	}
543
544	if (sc->arge_miibus)
545		device_delete_child(dev, sc->arge_miibus);
546
547	bus_generic_detach(dev);
548
549	if (sc->arge_intrhand)
550		bus_teardown_intr(dev, sc->arge_irq, sc->arge_intrhand);
551
552	if (sc->arge_res)
553		bus_release_resource(dev, SYS_RES_MEMORY, sc->arge_rid,
554		    sc->arge_res);
555
556	if (ifp)
557		if_free(ifp);
558
559	arge_dma_free(sc);
560
561	mtx_destroy(&sc->arge_mtx);
562
563	return (0);
564
565}
566
567static int
568arge_suspend(device_t dev)
569{
570
571	panic("%s", __func__);
572	return 0;
573}
574
575static int
576arge_resume(device_t dev)
577{
578
579	panic("%s", __func__);
580	return 0;
581}
582
583static int
584arge_shutdown(device_t dev)
585{
586	struct arge_softc	*sc;
587
588	sc = device_get_softc(dev);
589
590	ARGE_LOCK(sc);
591	arge_stop(sc);
592	ARGE_UNLOCK(sc);
593
594	return (0);
595}
596
597static int
598arge_miibus_readreg(device_t dev, int phy, int reg)
599{
600	struct arge_softc * sc = device_get_softc(dev);
601	int i, result;
602	uint32_t addr = (phy << MAC_MII_PHY_ADDR_SHIFT)
603	    | (reg & MAC_MII_REG_MASK);
604
605	if ((sc->arge_phymask  & (1 << phy)) == 0)
606		return (0);
607
608	mtx_lock(&miibus_mtx);
609	ARGE_MII_WRITE(AR71XX_MAC_MII_CMD, MAC_MII_CMD_WRITE);
610	ARGE_MII_WRITE(AR71XX_MAC_MII_ADDR, addr);
611	ARGE_MII_WRITE(AR71XX_MAC_MII_CMD, MAC_MII_CMD_READ);
612
613	i = ARGE_MII_TIMEOUT;
614	while ((ARGE_MII_READ(AR71XX_MAC_MII_INDICATOR) &
615	    MAC_MII_INDICATOR_BUSY) && (i--))
616		DELAY(5);
617
618	if (i < 0) {
619		mtx_unlock(&miibus_mtx);
620		ARGEDEBUG(sc, ARGE_DBG_MII, "%s timedout\n", __func__);
621		/* XXX: return ERRNO istead? */
622		return (-1);
623	}
624
625	result = ARGE_MII_READ(AR71XX_MAC_MII_STATUS) & MAC_MII_STATUS_MASK;
626	ARGE_MII_WRITE(AR71XX_MAC_MII_CMD, MAC_MII_CMD_WRITE);
627	mtx_unlock(&miibus_mtx);
628
629	ARGEDEBUG(sc, ARGE_DBG_MII, "%s: phy=%d, reg=%02x, value[%08x]=%04x\n", __func__,
630		 phy, reg, addr, result);
631
632	return (result);
633}
634
635static int
636arge_miibus_writereg(device_t dev, int phy, int reg, int data)
637{
638	struct arge_softc * sc = device_get_softc(dev);
639	int i;
640	uint32_t addr =
641	    (phy << MAC_MII_PHY_ADDR_SHIFT) | (reg & MAC_MII_REG_MASK);
642
643
644	if ((sc->arge_phymask  & (1 << phy)) == 0)
645		return (-1);
646
647	ARGEDEBUG(sc, ARGE_DBG_MII, "%s: phy=%d, reg=%02x, value=%04x\n", __func__,
648	    phy, reg, data);
649
650	mtx_lock(&miibus_mtx);
651	ARGE_MII_WRITE(AR71XX_MAC_MII_ADDR, addr);
652	ARGE_MII_WRITE(AR71XX_MAC_MII_CONTROL, data);
653
654	i = ARGE_MII_TIMEOUT;
655	while ((ARGE_MII_READ(AR71XX_MAC_MII_INDICATOR) &
656	    MAC_MII_INDICATOR_BUSY) && (i--))
657		DELAY(5);
658
659	mtx_unlock(&miibus_mtx);
660
661	if (i < 0) {
662		ARGEDEBUG(sc, ARGE_DBG_MII, "%s timedout\n", __func__);
663		/* XXX: return ERRNO istead? */
664		return (-1);
665	}
666
667	return (0);
668}
669
670static void
671arge_miibus_statchg(device_t dev)
672{
673	struct arge_softc		*sc;
674
675	sc = device_get_softc(dev);
676	taskqueue_enqueue(taskqueue_swi, &sc->arge_link_task);
677}
678
679static void
680arge_link_task(void *arg, int pending)
681{
682	struct arge_softc	*sc;
683	struct mii_data		*mii;
684	struct ifnet		*ifp;
685	uint32_t		media, duplex;
686
687	sc = (struct arge_softc *)arg;
688
689	ARGE_LOCK(sc);
690	mii = device_get_softc(sc->arge_miibus);
691	ifp = sc->arge_ifp;
692	if (mii == NULL || ifp == NULL ||
693	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
694		ARGE_UNLOCK(sc);
695		return;
696	}
697
698	if (mii->mii_media_status & IFM_ACTIVE) {
699
700		media = IFM_SUBTYPE(mii->mii_media_active);
701
702		if (media != IFM_NONE) {
703			sc->arge_link_status = 1;
704			duplex = mii->mii_media_active & IFM_GMASK;
705			arge_set_pll(sc, media, duplex);
706		}
707	} else
708		sc->arge_link_status = 0;
709
710	ARGE_UNLOCK(sc);
711}
712
713static void
714arge_set_pll(struct arge_softc *sc, int media, int duplex)
715{
716	uint32_t		cfg, ifcontrol, rx_filtmask;
717	uint32_t		fifo_tx;
718	int if_speed;
719
720	cfg = ARGE_READ(sc, AR71XX_MAC_CFG2);
721	cfg &= ~(MAC_CFG2_IFACE_MODE_1000
722	    | MAC_CFG2_IFACE_MODE_10_100
723	    | MAC_CFG2_FULL_DUPLEX);
724
725	if (duplex == IFM_FDX)
726		cfg |= MAC_CFG2_FULL_DUPLEX;
727
728	ifcontrol = ARGE_READ(sc, AR71XX_MAC_IFCONTROL);
729	ifcontrol &= ~MAC_IFCONTROL_SPEED;
730	rx_filtmask =
731	    ARGE_READ(sc, AR71XX_MAC_FIFO_RX_FILTMASK);
732	rx_filtmask &= ~FIFO_RX_MASK_BYTE_MODE;
733
734	switch(media) {
735	case IFM_10_T:
736		cfg |= MAC_CFG2_IFACE_MODE_10_100;
737		if_speed = 10;
738		break;
739	case IFM_100_TX:
740		cfg |= MAC_CFG2_IFACE_MODE_10_100;
741		ifcontrol |= MAC_IFCONTROL_SPEED;
742		if_speed = 100;
743		break;
744	case IFM_1000_T:
745	case IFM_1000_SX:
746		cfg |= MAC_CFG2_IFACE_MODE_1000;
747		rx_filtmask |= FIFO_RX_MASK_BYTE_MODE;
748		if_speed = 1000;
749		break;
750	default:
751		if_speed = 100;
752		device_printf(sc->arge_dev,
753		    "Unknown media %d\n", media);
754	}
755
756	switch (ar71xx_soc) {
757		case AR71XX_SOC_AR7240:
758		case AR71XX_SOC_AR7241:
759		case AR71XX_SOC_AR7242:
760			fifo_tx = 0x01f00140;
761			break;
762		case AR71XX_SOC_AR9130:
763		case AR71XX_SOC_AR9132:
764			fifo_tx = 0x00780fff;
765			break;
766		default:
767			fifo_tx = 0x008001ff;
768	}
769
770	ARGE_WRITE(sc, AR71XX_MAC_CFG2, cfg);
771	ARGE_WRITE(sc, AR71XX_MAC_IFCONTROL, ifcontrol);
772	ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMASK,
773	    rx_filtmask);
774	ARGE_WRITE(sc, AR71XX_MAC_FIFO_TX_THRESHOLD, fifo_tx);
775
776	/* set PLL registers */
777	if (sc->arge_mac_unit == 0)
778		ar71xx_device_set_pll_ge0(if_speed);
779	else
780		ar71xx_device_set_pll_ge1(if_speed);
781}
782
783
784static void
785arge_reset_dma(struct arge_softc *sc)
786{
787	ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, 0);
788	ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, 0);
789
790	ARGE_WRITE(sc, AR71XX_DMA_RX_DESC, 0);
791	ARGE_WRITE(sc, AR71XX_DMA_TX_DESC, 0);
792
793	/* Clear all possible RX interrupts */
794	while(ARGE_READ(sc, AR71XX_DMA_RX_STATUS) & DMA_RX_STATUS_PKT_RECVD)
795		ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_PKT_RECVD);
796
797	/*
798	 * Clear all possible TX interrupts
799	 */
800	while(ARGE_READ(sc, AR71XX_DMA_TX_STATUS) & DMA_TX_STATUS_PKT_SENT)
801		ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_PKT_SENT);
802
803	/*
804	 * Now Rx/Tx errors
805	 */
806	ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS,
807	    DMA_RX_STATUS_BUS_ERROR | DMA_RX_STATUS_OVERFLOW);
808	ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS,
809	    DMA_TX_STATUS_BUS_ERROR | DMA_TX_STATUS_UNDERRUN);
810}
811
812
813
814static void
815arge_init(void *xsc)
816{
817	struct arge_softc	 *sc = xsc;
818
819	ARGE_LOCK(sc);
820	arge_init_locked(sc);
821	ARGE_UNLOCK(sc);
822}
823
824static void
825arge_init_locked(struct arge_softc *sc)
826{
827	struct ifnet		*ifp = sc->arge_ifp;
828	struct mii_data		*mii;
829
830	ARGE_LOCK_ASSERT(sc);
831
832	arge_stop(sc);
833
834	/* Init circular RX list. */
835	if (arge_rx_ring_init(sc) != 0) {
836		device_printf(sc->arge_dev,
837		    "initialization failed: no memory for rx buffers\n");
838		arge_stop(sc);
839		return;
840	}
841
842	/* Init tx descriptors. */
843	arge_tx_ring_init(sc);
844
845	arge_reset_dma(sc);
846
847
848	if (sc->arge_miibus) {
849		sc->arge_link_status = 0;
850		mii = device_get_softc(sc->arge_miibus);
851		mii_mediachg(mii);
852	}
853	else {
854		/*
855		 * Sun always shines over multiPHY interface
856		 */
857		sc->arge_link_status = 1;
858	}
859
860	ifp->if_drv_flags |= IFF_DRV_RUNNING;
861	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
862
863	if (sc->arge_miibus)
864		callout_reset(&sc->arge_stat_callout, hz, arge_tick, sc);
865
866	ARGE_WRITE(sc, AR71XX_DMA_TX_DESC, ARGE_TX_RING_ADDR(sc, 0));
867	ARGE_WRITE(sc, AR71XX_DMA_RX_DESC, ARGE_RX_RING_ADDR(sc, 0));
868
869	/* Start listening */
870	ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, DMA_RX_CONTROL_EN);
871
872	/* Enable interrupts */
873	ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
874}
875
876/*
877 * Return whether the mbuf chain is correctly aligned
878 * for the arge TX engine.
879 *
880 * The TX engine requires each fragment to be aligned to a
881 * 4 byte boundary and the size of each fragment except
882 * the last to be a multiple of 4 bytes.
883 */
884static int
885arge_mbuf_chain_is_tx_aligned(struct mbuf *m0)
886{
887	struct mbuf *m;
888
889	for (m = m0; m != NULL; m = m->m_next) {
890		if((mtod(m, intptr_t) & 3) != 0)
891			return 0;
892		if ((m->m_next != NULL) && ((m->m_len & 0x03) != 0))
893			return 0;
894	}
895	return 1;
896}
897
898/*
899 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
900 * pointers to the fragment pointers.
901 */
902static int
903arge_encap(struct arge_softc *sc, struct mbuf **m_head)
904{
905	struct arge_txdesc	*txd;
906	struct arge_desc	*desc, *prev_desc;
907	bus_dma_segment_t	txsegs[ARGE_MAXFRAGS];
908	int			error, i, nsegs, prod, prev_prod;
909	struct mbuf		*m;
910
911	ARGE_LOCK_ASSERT(sc);
912
913	/*
914	 * Fix mbuf chain, all fragments should be 4 bytes aligned and
915	 * even 4 bytes
916	 */
917	m = *m_head;
918	if (! arge_mbuf_chain_is_tx_aligned(m)) {
919		sc->stats.tx_pkts_unaligned++;
920		m = m_defrag(*m_head, M_DONTWAIT);
921		if (m == NULL) {
922			*m_head = NULL;
923			return (ENOBUFS);
924		}
925		*m_head = m;
926	} else
927		sc->stats.tx_pkts_aligned++;
928
929	prod = sc->arge_cdata.arge_tx_prod;
930	txd = &sc->arge_cdata.arge_txdesc[prod];
931	error = bus_dmamap_load_mbuf_sg(sc->arge_cdata.arge_tx_tag,
932	    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
933
934	if (error == EFBIG) {
935		panic("EFBIG");
936	} else if (error != 0)
937		return (error);
938
939	if (nsegs == 0) {
940		m_freem(*m_head);
941		*m_head = NULL;
942		return (EIO);
943	}
944
945	/* Check number of available descriptors. */
946	if (sc->arge_cdata.arge_tx_cnt + nsegs >= (ARGE_TX_RING_COUNT - 1)) {
947		bus_dmamap_unload(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap);
948		return (ENOBUFS);
949	}
950
951	txd->tx_m = *m_head;
952	bus_dmamap_sync(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap,
953	    BUS_DMASYNC_PREWRITE);
954
955	/*
956	 * Make a list of descriptors for this packet. DMA controller will
957	 * walk through it while arge_link is not zero.
958	 */
959	prev_prod = prod;
960	desc = prev_desc = NULL;
961	for (i = 0; i < nsegs; i++) {
962		desc = &sc->arge_rdata.arge_tx_ring[prod];
963		desc->packet_ctrl = ARGE_DMASIZE(txsegs[i].ds_len);
964
965		if (txsegs[i].ds_addr & 3)
966			panic("TX packet address unaligned\n");
967
968		desc->packet_addr = txsegs[i].ds_addr;
969
970		/* link with previous descriptor */
971		if (prev_desc)
972			prev_desc->packet_ctrl |= ARGE_DESC_MORE;
973
974		sc->arge_cdata.arge_tx_cnt++;
975		prev_desc = desc;
976		ARGE_INC(prod, ARGE_TX_RING_COUNT);
977	}
978
979	/* Update producer index. */
980	sc->arge_cdata.arge_tx_prod = prod;
981
982	/* Sync descriptors. */
983	bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
984	    sc->arge_cdata.arge_tx_ring_map,
985	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
986
987	/* Start transmitting */
988	ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, DMA_TX_CONTROL_EN);
989	return (0);
990}
991
992static void
993arge_start(struct ifnet *ifp)
994{
995	struct arge_softc	 *sc;
996
997	sc = ifp->if_softc;
998
999	ARGE_LOCK(sc);
1000	arge_start_locked(ifp);
1001	ARGE_UNLOCK(sc);
1002}
1003
1004static void
1005arge_start_locked(struct ifnet *ifp)
1006{
1007	struct arge_softc	*sc;
1008	struct mbuf		*m_head;
1009	int			enq;
1010
1011	sc = ifp->if_softc;
1012
1013	ARGE_LOCK_ASSERT(sc);
1014
1015	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1016	    IFF_DRV_RUNNING || sc->arge_link_status == 0 )
1017		return;
1018
1019	arge_flush_ddr(sc);
1020
1021	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1022	    sc->arge_cdata.arge_tx_cnt < ARGE_TX_RING_COUNT - 2; ) {
1023		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1024		if (m_head == NULL)
1025			break;
1026
1027
1028		/*
1029		 * Pack the data into the transmit ring.
1030		 */
1031		if (arge_encap(sc, &m_head)) {
1032			if (m_head == NULL)
1033				break;
1034			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1035			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1036			break;
1037		}
1038
1039		enq++;
1040		/*
1041		 * If there's a BPF listener, bounce a copy of this frame
1042		 * to him.
1043		 */
1044		ETHER_BPF_MTAP(ifp, m_head);
1045	}
1046}
1047
1048static void
1049arge_stop(struct arge_softc *sc)
1050{
1051	struct ifnet	    *ifp;
1052
1053	ARGE_LOCK_ASSERT(sc);
1054
1055	ifp = sc->arge_ifp;
1056	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1057	if (sc->arge_miibus)
1058		callout_stop(&sc->arge_stat_callout);
1059
1060	/* mask out interrupts */
1061	ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
1062
1063	arge_reset_dma(sc);
1064}
1065
1066
1067static int
1068arge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1069{
1070	struct arge_softc		*sc = ifp->if_softc;
1071	struct ifreq		*ifr = (struct ifreq *) data;
1072	struct mii_data		*mii;
1073	int			error;
1074#ifdef DEVICE_POLLING
1075	int			mask;
1076#endif
1077
1078	switch (command) {
1079	case SIOCSIFFLAGS:
1080		ARGE_LOCK(sc);
1081		if ((ifp->if_flags & IFF_UP) != 0) {
1082			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1083				if (((ifp->if_flags ^ sc->arge_if_flags)
1084				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1085					/* XXX: handle promisc & multi flags */
1086				}
1087
1088			} else {
1089				if (!sc->arge_detach)
1090					arge_init_locked(sc);
1091			}
1092		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1093			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1094			arge_stop(sc);
1095		}
1096		sc->arge_if_flags = ifp->if_flags;
1097		ARGE_UNLOCK(sc);
1098		error = 0;
1099		break;
1100	case SIOCADDMULTI:
1101	case SIOCDELMULTI:
1102		/* XXX: implement SIOCDELMULTI */
1103		error = 0;
1104		break;
1105	case SIOCGIFMEDIA:
1106	case SIOCSIFMEDIA:
1107		if (sc->arge_miibus) {
1108			mii = device_get_softc(sc->arge_miibus);
1109			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1110		}
1111		else
1112			error = ifmedia_ioctl(ifp, ifr, &sc->arge_ifmedia, command);
1113		break;
1114	case SIOCSIFCAP:
1115		/* XXX: Check other capabilities */
1116#ifdef DEVICE_POLLING
1117		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1118		if (mask & IFCAP_POLLING) {
1119			if (ifr->ifr_reqcap & IFCAP_POLLING) {
1120				ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
1121				error = ether_poll_register(arge_poll, ifp);
1122				if (error)
1123					return error;
1124				ARGE_LOCK(sc);
1125				ifp->if_capenable |= IFCAP_POLLING;
1126				ARGE_UNLOCK(sc);
1127			} else {
1128				ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
1129				error = ether_poll_deregister(ifp);
1130				ARGE_LOCK(sc);
1131				ifp->if_capenable &= ~IFCAP_POLLING;
1132				ARGE_UNLOCK(sc);
1133			}
1134		}
1135		error = 0;
1136		break;
1137#endif
1138	default:
1139		error = ether_ioctl(ifp, command, data);
1140		break;
1141	}
1142
1143	return (error);
1144}
1145
1146/*
1147 * Set media options.
1148 */
1149static int
1150arge_ifmedia_upd(struct ifnet *ifp)
1151{
1152	struct arge_softc		*sc;
1153	struct mii_data		*mii;
1154	struct mii_softc	*miisc;
1155	int			error;
1156
1157	sc = ifp->if_softc;
1158	ARGE_LOCK(sc);
1159	mii = device_get_softc(sc->arge_miibus);
1160	if (mii->mii_instance) {
1161		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1162			mii_phy_reset(miisc);
1163	}
1164	error = mii_mediachg(mii);
1165	ARGE_UNLOCK(sc);
1166
1167	return (error);
1168}
1169
1170/*
1171 * Report current media status.
1172 */
1173static void
1174arge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1175{
1176	struct arge_softc		*sc = ifp->if_softc;
1177	struct mii_data		*mii;
1178
1179	mii = device_get_softc(sc->arge_miibus);
1180	ARGE_LOCK(sc);
1181	mii_pollstat(mii);
1182	ARGE_UNLOCK(sc);
1183	ifmr->ifm_active = mii->mii_media_active;
1184	ifmr->ifm_status = mii->mii_media_status;
1185}
1186
1187struct arge_dmamap_arg {
1188	bus_addr_t	arge_busaddr;
1189};
1190
1191static void
1192arge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1193{
1194	struct arge_dmamap_arg	*ctx;
1195
1196	if (error != 0)
1197		return;
1198	ctx = arg;
1199	ctx->arge_busaddr = segs[0].ds_addr;
1200}
1201
1202static int
1203arge_dma_alloc(struct arge_softc *sc)
1204{
1205	struct arge_dmamap_arg	ctx;
1206	struct arge_txdesc	*txd;
1207	struct arge_rxdesc	*rxd;
1208	int			error, i;
1209
1210	/* Create parent DMA tag. */
1211	error = bus_dma_tag_create(
1212	    bus_get_dma_tag(sc->arge_dev),	/* parent */
1213	    1, 0,			/* alignment, boundary */
1214	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1215	    BUS_SPACE_MAXADDR,		/* highaddr */
1216	    NULL, NULL,			/* filter, filterarg */
1217	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1218	    0,				/* nsegments */
1219	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1220	    0,				/* flags */
1221	    NULL, NULL,			/* lockfunc, lockarg */
1222	    &sc->arge_cdata.arge_parent_tag);
1223	if (error != 0) {
1224		device_printf(sc->arge_dev, "failed to create parent DMA tag\n");
1225		goto fail;
1226	}
1227	/* Create tag for Tx ring. */
1228	error = bus_dma_tag_create(
1229	    sc->arge_cdata.arge_parent_tag,	/* parent */
1230	    ARGE_RING_ALIGN, 0,		/* alignment, boundary */
1231	    BUS_SPACE_MAXADDR,		/* lowaddr */
1232	    BUS_SPACE_MAXADDR,		/* highaddr */
1233	    NULL, NULL,			/* filter, filterarg */
1234	    ARGE_TX_DMA_SIZE,		/* maxsize */
1235	    1,				/* nsegments */
1236	    ARGE_TX_DMA_SIZE,		/* maxsegsize */
1237	    0,				/* flags */
1238	    NULL, NULL,			/* lockfunc, lockarg */
1239	    &sc->arge_cdata.arge_tx_ring_tag);
1240	if (error != 0) {
1241		device_printf(sc->arge_dev, "failed to create Tx ring DMA tag\n");
1242		goto fail;
1243	}
1244
1245	/* Create tag for Rx ring. */
1246	error = bus_dma_tag_create(
1247	    sc->arge_cdata.arge_parent_tag,	/* parent */
1248	    ARGE_RING_ALIGN, 0,		/* alignment, boundary */
1249	    BUS_SPACE_MAXADDR,		/* lowaddr */
1250	    BUS_SPACE_MAXADDR,		/* highaddr */
1251	    NULL, NULL,			/* filter, filterarg */
1252	    ARGE_RX_DMA_SIZE,		/* maxsize */
1253	    1,				/* nsegments */
1254	    ARGE_RX_DMA_SIZE,		/* maxsegsize */
1255	    0,				/* flags */
1256	    NULL, NULL,			/* lockfunc, lockarg */
1257	    &sc->arge_cdata.arge_rx_ring_tag);
1258	if (error != 0) {
1259		device_printf(sc->arge_dev, "failed to create Rx ring DMA tag\n");
1260		goto fail;
1261	}
1262
1263	/* Create tag for Tx buffers. */
1264	error = bus_dma_tag_create(
1265	    sc->arge_cdata.arge_parent_tag,	/* parent */
1266	    sizeof(uint32_t), 0,	/* alignment, boundary */
1267	    BUS_SPACE_MAXADDR,		/* lowaddr */
1268	    BUS_SPACE_MAXADDR,		/* highaddr */
1269	    NULL, NULL,			/* filter, filterarg */
1270	    MCLBYTES * ARGE_MAXFRAGS,	/* maxsize */
1271	    ARGE_MAXFRAGS,		/* nsegments */
1272	    MCLBYTES,			/* maxsegsize */
1273	    0,				/* flags */
1274	    NULL, NULL,			/* lockfunc, lockarg */
1275	    &sc->arge_cdata.arge_tx_tag);
1276	if (error != 0) {
1277		device_printf(sc->arge_dev, "failed to create Tx DMA tag\n");
1278		goto fail;
1279	}
1280
1281	/* Create tag for Rx buffers. */
1282	error = bus_dma_tag_create(
1283	    sc->arge_cdata.arge_parent_tag,	/* parent */
1284	    ARGE_RX_ALIGN, 0,		/* alignment, boundary */
1285	    BUS_SPACE_MAXADDR,		/* lowaddr */
1286	    BUS_SPACE_MAXADDR,		/* highaddr */
1287	    NULL, NULL,			/* filter, filterarg */
1288	    MCLBYTES,			/* maxsize */
1289	    ARGE_MAXFRAGS,		/* nsegments */
1290	    MCLBYTES,			/* maxsegsize */
1291	    0,				/* flags */
1292	    NULL, NULL,			/* lockfunc, lockarg */
1293	    &sc->arge_cdata.arge_rx_tag);
1294	if (error != 0) {
1295		device_printf(sc->arge_dev, "failed to create Rx DMA tag\n");
1296		goto fail;
1297	}
1298
1299	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1300	error = bus_dmamem_alloc(sc->arge_cdata.arge_tx_ring_tag,
1301	    (void **)&sc->arge_rdata.arge_tx_ring, BUS_DMA_WAITOK |
1302	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->arge_cdata.arge_tx_ring_map);
1303	if (error != 0) {
1304		device_printf(sc->arge_dev,
1305		    "failed to allocate DMA'able memory for Tx ring\n");
1306		goto fail;
1307	}
1308
1309	ctx.arge_busaddr = 0;
1310	error = bus_dmamap_load(sc->arge_cdata.arge_tx_ring_tag,
1311	    sc->arge_cdata.arge_tx_ring_map, sc->arge_rdata.arge_tx_ring,
1312	    ARGE_TX_DMA_SIZE, arge_dmamap_cb, &ctx, 0);
1313	if (error != 0 || ctx.arge_busaddr == 0) {
1314		device_printf(sc->arge_dev,
1315		    "failed to load DMA'able memory for Tx ring\n");
1316		goto fail;
1317	}
1318	sc->arge_rdata.arge_tx_ring_paddr = ctx.arge_busaddr;
1319
1320	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1321	error = bus_dmamem_alloc(sc->arge_cdata.arge_rx_ring_tag,
1322	    (void **)&sc->arge_rdata.arge_rx_ring, BUS_DMA_WAITOK |
1323	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->arge_cdata.arge_rx_ring_map);
1324	if (error != 0) {
1325		device_printf(sc->arge_dev,
1326		    "failed to allocate DMA'able memory for Rx ring\n");
1327		goto fail;
1328	}
1329
1330	ctx.arge_busaddr = 0;
1331	error = bus_dmamap_load(sc->arge_cdata.arge_rx_ring_tag,
1332	    sc->arge_cdata.arge_rx_ring_map, sc->arge_rdata.arge_rx_ring,
1333	    ARGE_RX_DMA_SIZE, arge_dmamap_cb, &ctx, 0);
1334	if (error != 0 || ctx.arge_busaddr == 0) {
1335		device_printf(sc->arge_dev,
1336		    "failed to load DMA'able memory for Rx ring\n");
1337		goto fail;
1338	}
1339	sc->arge_rdata.arge_rx_ring_paddr = ctx.arge_busaddr;
1340
1341	/* Create DMA maps for Tx buffers. */
1342	for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
1343		txd = &sc->arge_cdata.arge_txdesc[i];
1344		txd->tx_m = NULL;
1345		txd->tx_dmamap = NULL;
1346		error = bus_dmamap_create(sc->arge_cdata.arge_tx_tag, 0,
1347		    &txd->tx_dmamap);
1348		if (error != 0) {
1349			device_printf(sc->arge_dev,
1350			    "failed to create Tx dmamap\n");
1351			goto fail;
1352		}
1353	}
1354	/* Create DMA maps for Rx buffers. */
1355	if ((error = bus_dmamap_create(sc->arge_cdata.arge_rx_tag, 0,
1356	    &sc->arge_cdata.arge_rx_sparemap)) != 0) {
1357		device_printf(sc->arge_dev,
1358		    "failed to create spare Rx dmamap\n");
1359		goto fail;
1360	}
1361	for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
1362		rxd = &sc->arge_cdata.arge_rxdesc[i];
1363		rxd->rx_m = NULL;
1364		rxd->rx_dmamap = NULL;
1365		error = bus_dmamap_create(sc->arge_cdata.arge_rx_tag, 0,
1366		    &rxd->rx_dmamap);
1367		if (error != 0) {
1368			device_printf(sc->arge_dev,
1369			    "failed to create Rx dmamap\n");
1370			goto fail;
1371		}
1372	}
1373
1374fail:
1375	return (error);
1376}
1377
1378static void
1379arge_dma_free(struct arge_softc *sc)
1380{
1381	struct arge_txdesc	*txd;
1382	struct arge_rxdesc	*rxd;
1383	int			i;
1384
1385	/* Tx ring. */
1386	if (sc->arge_cdata.arge_tx_ring_tag) {
1387		if (sc->arge_cdata.arge_tx_ring_map)
1388			bus_dmamap_unload(sc->arge_cdata.arge_tx_ring_tag,
1389			    sc->arge_cdata.arge_tx_ring_map);
1390		if (sc->arge_cdata.arge_tx_ring_map &&
1391		    sc->arge_rdata.arge_tx_ring)
1392			bus_dmamem_free(sc->arge_cdata.arge_tx_ring_tag,
1393			    sc->arge_rdata.arge_tx_ring,
1394			    sc->arge_cdata.arge_tx_ring_map);
1395		sc->arge_rdata.arge_tx_ring = NULL;
1396		sc->arge_cdata.arge_tx_ring_map = NULL;
1397		bus_dma_tag_destroy(sc->arge_cdata.arge_tx_ring_tag);
1398		sc->arge_cdata.arge_tx_ring_tag = NULL;
1399	}
1400	/* Rx ring. */
1401	if (sc->arge_cdata.arge_rx_ring_tag) {
1402		if (sc->arge_cdata.arge_rx_ring_map)
1403			bus_dmamap_unload(sc->arge_cdata.arge_rx_ring_tag,
1404			    sc->arge_cdata.arge_rx_ring_map);
1405		if (sc->arge_cdata.arge_rx_ring_map &&
1406		    sc->arge_rdata.arge_rx_ring)
1407			bus_dmamem_free(sc->arge_cdata.arge_rx_ring_tag,
1408			    sc->arge_rdata.arge_rx_ring,
1409			    sc->arge_cdata.arge_rx_ring_map);
1410		sc->arge_rdata.arge_rx_ring = NULL;
1411		sc->arge_cdata.arge_rx_ring_map = NULL;
1412		bus_dma_tag_destroy(sc->arge_cdata.arge_rx_ring_tag);
1413		sc->arge_cdata.arge_rx_ring_tag = NULL;
1414	}
1415	/* Tx buffers. */
1416	if (sc->arge_cdata.arge_tx_tag) {
1417		for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
1418			txd = &sc->arge_cdata.arge_txdesc[i];
1419			if (txd->tx_dmamap) {
1420				bus_dmamap_destroy(sc->arge_cdata.arge_tx_tag,
1421				    txd->tx_dmamap);
1422				txd->tx_dmamap = NULL;
1423			}
1424		}
1425		bus_dma_tag_destroy(sc->arge_cdata.arge_tx_tag);
1426		sc->arge_cdata.arge_tx_tag = NULL;
1427	}
1428	/* Rx buffers. */
1429	if (sc->arge_cdata.arge_rx_tag) {
1430		for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
1431			rxd = &sc->arge_cdata.arge_rxdesc[i];
1432			if (rxd->rx_dmamap) {
1433				bus_dmamap_destroy(sc->arge_cdata.arge_rx_tag,
1434				    rxd->rx_dmamap);
1435				rxd->rx_dmamap = NULL;
1436			}
1437		}
1438		if (sc->arge_cdata.arge_rx_sparemap) {
1439			bus_dmamap_destroy(sc->arge_cdata.arge_rx_tag,
1440			    sc->arge_cdata.arge_rx_sparemap);
1441			sc->arge_cdata.arge_rx_sparemap = 0;
1442		}
1443		bus_dma_tag_destroy(sc->arge_cdata.arge_rx_tag);
1444		sc->arge_cdata.arge_rx_tag = NULL;
1445	}
1446
1447	if (sc->arge_cdata.arge_parent_tag) {
1448		bus_dma_tag_destroy(sc->arge_cdata.arge_parent_tag);
1449		sc->arge_cdata.arge_parent_tag = NULL;
1450	}
1451}
1452
1453/*
1454 * Initialize the transmit descriptors.
1455 */
1456static int
1457arge_tx_ring_init(struct arge_softc *sc)
1458{
1459	struct arge_ring_data	*rd;
1460	struct arge_txdesc	*txd;
1461	bus_addr_t		addr;
1462	int			i;
1463
1464	sc->arge_cdata.arge_tx_prod = 0;
1465	sc->arge_cdata.arge_tx_cons = 0;
1466	sc->arge_cdata.arge_tx_cnt = 0;
1467
1468	rd = &sc->arge_rdata;
1469	bzero(rd->arge_tx_ring, sizeof(rd->arge_tx_ring));
1470	for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
1471		if (i == ARGE_TX_RING_COUNT - 1)
1472			addr = ARGE_TX_RING_ADDR(sc, 0);
1473		else
1474			addr = ARGE_TX_RING_ADDR(sc, i + 1);
1475		rd->arge_tx_ring[i].packet_ctrl = ARGE_DESC_EMPTY;
1476		rd->arge_tx_ring[i].next_desc = addr;
1477		txd = &sc->arge_cdata.arge_txdesc[i];
1478		txd->tx_m = NULL;
1479	}
1480
1481	bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
1482	    sc->arge_cdata.arge_tx_ring_map,
1483	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1484
1485	return (0);
1486}
1487
1488/*
1489 * Initialize the RX descriptors and allocate mbufs for them. Note that
1490 * we arrange the descriptors in a closed ring, so that the last descriptor
1491 * points back to the first.
1492 */
1493static int
1494arge_rx_ring_init(struct arge_softc *sc)
1495{
1496	struct arge_ring_data	*rd;
1497	struct arge_rxdesc	*rxd;
1498	bus_addr_t		addr;
1499	int			i;
1500
1501	sc->arge_cdata.arge_rx_cons = 0;
1502
1503	rd = &sc->arge_rdata;
1504	bzero(rd->arge_rx_ring, sizeof(rd->arge_rx_ring));
1505	for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
1506		rxd = &sc->arge_cdata.arge_rxdesc[i];
1507		rxd->rx_m = NULL;
1508		rxd->desc = &rd->arge_rx_ring[i];
1509		if (i == ARGE_RX_RING_COUNT - 1)
1510			addr = ARGE_RX_RING_ADDR(sc, 0);
1511		else
1512			addr = ARGE_RX_RING_ADDR(sc, i + 1);
1513		rd->arge_rx_ring[i].next_desc = addr;
1514		if (arge_newbuf(sc, i) != 0) {
1515			return (ENOBUFS);
1516		}
1517	}
1518
1519	bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
1520	    sc->arge_cdata.arge_rx_ring_map,
1521	    BUS_DMASYNC_PREWRITE);
1522
1523	return (0);
1524}
1525
1526/*
1527 * Initialize an RX descriptor and attach an MBUF cluster.
1528 */
1529static int
1530arge_newbuf(struct arge_softc *sc, int idx)
1531{
1532	struct arge_desc		*desc;
1533	struct arge_rxdesc	*rxd;
1534	struct mbuf		*m;
1535	bus_dma_segment_t	segs[1];
1536	bus_dmamap_t		map;
1537	int			nsegs;
1538
1539	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1540	if (m == NULL)
1541		return (ENOBUFS);
1542	m->m_len = m->m_pkthdr.len = MCLBYTES;
1543	m_adj(m, sizeof(uint64_t));
1544
1545	if (bus_dmamap_load_mbuf_sg(sc->arge_cdata.arge_rx_tag,
1546	    sc->arge_cdata.arge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1547		m_freem(m);
1548		return (ENOBUFS);
1549	}
1550	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1551
1552	rxd = &sc->arge_cdata.arge_rxdesc[idx];
1553	if (rxd->rx_m != NULL) {
1554		bus_dmamap_unload(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap);
1555	}
1556	map = rxd->rx_dmamap;
1557	rxd->rx_dmamap = sc->arge_cdata.arge_rx_sparemap;
1558	sc->arge_cdata.arge_rx_sparemap = map;
1559	rxd->rx_m = m;
1560	desc = rxd->desc;
1561	if (segs[0].ds_addr & 3)
1562		panic("RX packet address unaligned");
1563	desc->packet_addr = segs[0].ds_addr;
1564	desc->packet_ctrl = ARGE_DESC_EMPTY | ARGE_DMASIZE(segs[0].ds_len);
1565
1566	bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
1567	    sc->arge_cdata.arge_rx_ring_map,
1568	    BUS_DMASYNC_PREWRITE);
1569
1570	return (0);
1571}
1572
1573static __inline void
1574arge_fixup_rx(struct mbuf *m)
1575{
1576	int		i;
1577	uint16_t	*src, *dst;
1578
1579	src = mtod(m, uint16_t *);
1580	dst = src - 1;
1581
1582	for (i = 0; i < m->m_len / sizeof(uint16_t); i++) {
1583		*dst++ = *src++;
1584	}
1585
1586	if (m->m_len % sizeof(uint16_t))
1587		*(uint8_t *)dst = *(uint8_t *)src;
1588
1589	m->m_data -= ETHER_ALIGN;
1590}
1591
1592#ifdef DEVICE_POLLING
1593static int
1594arge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1595{
1596	struct arge_softc *sc = ifp->if_softc;
1597	int rx_npkts = 0;
1598
1599	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1600		ARGE_LOCK(sc);
1601		arge_tx_locked(sc);
1602		rx_npkts = arge_rx_locked(sc);
1603		ARGE_UNLOCK(sc);
1604	}
1605
1606	return (rx_npkts);
1607}
1608#endif /* DEVICE_POLLING */
1609
1610
1611static void
1612arge_tx_locked(struct arge_softc *sc)
1613{
1614	struct arge_txdesc	*txd;
1615	struct arge_desc	*cur_tx;
1616	struct ifnet		*ifp;
1617	uint32_t		ctrl;
1618	int			cons, prod;
1619
1620	ARGE_LOCK_ASSERT(sc);
1621
1622	cons = sc->arge_cdata.arge_tx_cons;
1623	prod = sc->arge_cdata.arge_tx_prod;
1624	if (cons == prod)
1625		return;
1626
1627	bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
1628	    sc->arge_cdata.arge_tx_ring_map,
1629	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1630
1631	ifp = sc->arge_ifp;
1632	/*
1633	 * Go through our tx list and free mbufs for those
1634	 * frames that have been transmitted.
1635	 */
1636	for (; cons != prod; ARGE_INC(cons, ARGE_TX_RING_COUNT)) {
1637		cur_tx = &sc->arge_rdata.arge_tx_ring[cons];
1638		ctrl = cur_tx->packet_ctrl;
1639		/* Check if descriptor has "finished" flag */
1640		if ((ctrl & ARGE_DESC_EMPTY) == 0)
1641			break;
1642
1643		ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_PKT_SENT);
1644
1645		sc->arge_cdata.arge_tx_cnt--;
1646		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1647
1648		txd = &sc->arge_cdata.arge_txdesc[cons];
1649
1650		ifp->if_opackets++;
1651
1652		bus_dmamap_sync(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap,
1653		    BUS_DMASYNC_POSTWRITE);
1654		bus_dmamap_unload(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap);
1655
1656		/* Free only if it's first descriptor in list */
1657		if (txd->tx_m)
1658			m_freem(txd->tx_m);
1659		txd->tx_m = NULL;
1660
1661		/* reset descriptor */
1662		cur_tx->packet_addr = 0;
1663	}
1664
1665	sc->arge_cdata.arge_tx_cons = cons;
1666
1667	bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
1668	    sc->arge_cdata.arge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1669}
1670
1671
1672static int
1673arge_rx_locked(struct arge_softc *sc)
1674{
1675	struct arge_rxdesc	*rxd;
1676	struct ifnet		*ifp = sc->arge_ifp;
1677	int			cons, prog, packet_len, i;
1678	struct arge_desc	*cur_rx;
1679	struct mbuf		*m;
1680	int			rx_npkts = 0;
1681
1682	ARGE_LOCK_ASSERT(sc);
1683
1684	cons = sc->arge_cdata.arge_rx_cons;
1685
1686	bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
1687	    sc->arge_cdata.arge_rx_ring_map,
1688	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1689
1690	for (prog = 0; prog < ARGE_RX_RING_COUNT;
1691	    ARGE_INC(cons, ARGE_RX_RING_COUNT)) {
1692		cur_rx = &sc->arge_rdata.arge_rx_ring[cons];
1693		rxd = &sc->arge_cdata.arge_rxdesc[cons];
1694		m = rxd->rx_m;
1695
1696		if ((cur_rx->packet_ctrl & ARGE_DESC_EMPTY) != 0)
1697		       break;
1698
1699		ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_PKT_RECVD);
1700
1701		prog++;
1702
1703		packet_len = ARGE_DMASIZE(cur_rx->packet_ctrl);
1704		bus_dmamap_sync(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap,
1705		    BUS_DMASYNC_POSTREAD);
1706		m = rxd->rx_m;
1707
1708		arge_fixup_rx(m);
1709		m->m_pkthdr.rcvif = ifp;
1710		/* Skip 4 bytes of CRC */
1711		m->m_pkthdr.len = m->m_len = packet_len - ETHER_CRC_LEN;
1712		ifp->if_ipackets++;
1713		rx_npkts++;
1714
1715		ARGE_UNLOCK(sc);
1716		(*ifp->if_input)(ifp, m);
1717		ARGE_LOCK(sc);
1718		cur_rx->packet_addr = 0;
1719	}
1720
1721	if (prog > 0) {
1722
1723		i = sc->arge_cdata.arge_rx_cons;
1724		for (; prog > 0 ; prog--) {
1725			if (arge_newbuf(sc, i) != 0) {
1726				device_printf(sc->arge_dev,
1727				    "Failed to allocate buffer\n");
1728				break;
1729			}
1730			ARGE_INC(i, ARGE_RX_RING_COUNT);
1731		}
1732
1733		bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
1734		    sc->arge_cdata.arge_rx_ring_map,
1735		    BUS_DMASYNC_PREWRITE);
1736
1737		sc->arge_cdata.arge_rx_cons = cons;
1738	}
1739
1740	return (rx_npkts);
1741}
1742
1743static int
1744arge_intr_filter(void *arg)
1745{
1746	struct arge_softc	*sc = arg;
1747	uint32_t		status, ints;
1748
1749	status = ARGE_READ(sc, AR71XX_DMA_INTR_STATUS);
1750	ints = ARGE_READ(sc, AR71XX_DMA_INTR);
1751
1752	ARGEDEBUG(sc, ARGE_DBG_INTR, "int mask(filter) = %b\n", ints,
1753	    "\20\10RX_BUS_ERROR\7RX_OVERFLOW\5RX_PKT_RCVD"
1754	    "\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
1755	ARGEDEBUG(sc, ARGE_DBG_INTR, "status(filter) = %b\n", status,
1756	    "\20\10RX_BUS_ERROR\7RX_OVERFLOW\5RX_PKT_RCVD"
1757	    "\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
1758
1759	if (status & DMA_INTR_ALL) {
1760		sc->arge_intr_status |= status;
1761		ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
1762		return (FILTER_SCHEDULE_THREAD);
1763	}
1764
1765	sc->arge_intr_status = 0;
1766	return (FILTER_STRAY);
1767}
1768
1769static void
1770arge_intr(void *arg)
1771{
1772	struct arge_softc	*sc = arg;
1773	uint32_t		status;
1774
1775	status = ARGE_READ(sc, AR71XX_DMA_INTR_STATUS);
1776	status |= sc->arge_intr_status;
1777
1778	ARGEDEBUG(sc, ARGE_DBG_INTR, "int status(intr) = %b\n", status,
1779	    "\20\10\7RX_OVERFLOW\5RX_PKT_RCVD"
1780	    "\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
1781
1782	/*
1783	 * Is it our interrupt at all?
1784	 */
1785	if (status == 0)
1786		return;
1787
1788	if (status & DMA_INTR_RX_BUS_ERROR) {
1789		ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_BUS_ERROR);
1790		device_printf(sc->arge_dev, "RX bus error");
1791		return;
1792	}
1793
1794	if (status & DMA_INTR_TX_BUS_ERROR) {
1795		ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_BUS_ERROR);
1796		device_printf(sc->arge_dev, "TX bus error");
1797		return;
1798	}
1799
1800	ARGE_LOCK(sc);
1801
1802	if (status & DMA_INTR_RX_PKT_RCVD)
1803		arge_rx_locked(sc);
1804
1805	/*
1806	 * RX overrun disables the receiver.
1807	 * Clear indication and re-enable rx.
1808	 */
1809	if ( status & DMA_INTR_RX_OVERFLOW) {
1810		ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_OVERFLOW);
1811		ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, DMA_RX_CONTROL_EN);
1812	}
1813
1814	if (status & DMA_INTR_TX_PKT_SENT)
1815		arge_tx_locked(sc);
1816	/*
1817	 * Underrun turns off TX. Clear underrun indication.
1818	 * If there's anything left in the ring, reactivate the tx.
1819	 */
1820	if (status & DMA_INTR_TX_UNDERRUN) {
1821		ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_UNDERRUN);
1822		if (sc->arge_cdata.arge_tx_cnt > 0 ) {
1823			ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL,
1824			    DMA_TX_CONTROL_EN);
1825		}
1826	}
1827
1828	/*
1829	 * We handled all bits, clear status
1830	 */
1831	sc->arge_intr_status = 0;
1832	ARGE_UNLOCK(sc);
1833	/*
1834	 * re-enable all interrupts
1835	 */
1836	ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
1837}
1838
1839
1840static void
1841arge_tick(void *xsc)
1842{
1843	struct arge_softc	*sc = xsc;
1844	struct mii_data		*mii;
1845
1846	ARGE_LOCK_ASSERT(sc);
1847
1848	if (sc->arge_miibus) {
1849		mii = device_get_softc(sc->arge_miibus);
1850		mii_tick(mii);
1851		callout_reset(&sc->arge_stat_callout, hz, arge_tick, sc);
1852	}
1853}
1854
1855int
1856arge_multiphy_mediachange(struct ifnet *ifp)
1857{
1858	struct arge_softc *sc = ifp->if_softc;
1859	struct ifmedia *ifm = &sc->arge_ifmedia;
1860	struct ifmedia_entry *ife = ifm->ifm_cur;
1861
1862	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1863		return (EINVAL);
1864
1865	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
1866		device_printf(sc->arge_dev,
1867		    "AUTO is not supported for multiphy MAC");
1868		return (EINVAL);
1869	}
1870
1871	/*
1872	 * Ignore everything
1873	 */
1874	return (0);
1875}
1876
1877void
1878arge_multiphy_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1879{
1880	struct arge_softc *sc = ifp->if_softc;
1881
1882	ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
1883	ifmr->ifm_active = IFM_ETHER | sc->arge_media_type |
1884	    sc->arge_duplex_mode;
1885}
1886
1887