vfs_vnops.c revision 331722
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11 * Copyright (c) 2013, 2014 The FreeBSD Foundation
12 *
13 * Portions of this software were developed by Konstantin Belousov
14 * under sponsorship from the FreeBSD Foundation.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: stable/11/sys/kern/vfs_vnops.c 331722 2018-03-29 02:50:57Z eadler $");
45
46#include "opt_hwpmc_hooks.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/disk.h>
51#include <sys/fail.h>
52#include <sys/fcntl.h>
53#include <sys/file.h>
54#include <sys/kdb.h>
55#include <sys/stat.h>
56#include <sys/priv.h>
57#include <sys/proc.h>
58#include <sys/limits.h>
59#include <sys/lock.h>
60#include <sys/mman.h>
61#include <sys/mount.h>
62#include <sys/mutex.h>
63#include <sys/namei.h>
64#include <sys/vnode.h>
65#include <sys/bio.h>
66#include <sys/buf.h>
67#include <sys/filio.h>
68#include <sys/resourcevar.h>
69#include <sys/rwlock.h>
70#include <sys/sx.h>
71#include <sys/sysctl.h>
72#include <sys/ttycom.h>
73#include <sys/conf.h>
74#include <sys/syslog.h>
75#include <sys/unistd.h>
76#include <sys/user.h>
77
78#include <security/audit/audit.h>
79#include <security/mac/mac_framework.h>
80
81#include <vm/vm.h>
82#include <vm/vm_extern.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/vnode_pager.h>
88
89#ifdef HWPMC_HOOKS
90#include <sys/pmckern.h>
91#endif
92
93static fo_rdwr_t	vn_read;
94static fo_rdwr_t	vn_write;
95static fo_rdwr_t	vn_io_fault;
96static fo_truncate_t	vn_truncate;
97static fo_ioctl_t	vn_ioctl;
98static fo_poll_t	vn_poll;
99static fo_kqfilter_t	vn_kqfilter;
100static fo_stat_t	vn_statfile;
101static fo_close_t	vn_closefile;
102static fo_mmap_t	vn_mmap;
103
104struct 	fileops vnops = {
105	.fo_read = vn_io_fault,
106	.fo_write = vn_io_fault,
107	.fo_truncate = vn_truncate,
108	.fo_ioctl = vn_ioctl,
109	.fo_poll = vn_poll,
110	.fo_kqfilter = vn_kqfilter,
111	.fo_stat = vn_statfile,
112	.fo_close = vn_closefile,
113	.fo_chmod = vn_chmod,
114	.fo_chown = vn_chown,
115	.fo_sendfile = vn_sendfile,
116	.fo_seek = vn_seek,
117	.fo_fill_kinfo = vn_fill_kinfo,
118	.fo_mmap = vn_mmap,
119	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
120};
121
122static const int io_hold_cnt = 16;
123static int vn_io_fault_enable = 1;
124SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
125    &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
126static int vn_io_fault_prefault = 0;
127SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
128    &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
129static u_long vn_io_faults_cnt;
130SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
131    &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
132
133/*
134 * Returns true if vn_io_fault mode of handling the i/o request should
135 * be used.
136 */
137static bool
138do_vn_io_fault(struct vnode *vp, struct uio *uio)
139{
140	struct mount *mp;
141
142	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
143	    (mp = vp->v_mount) != NULL &&
144	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
145}
146
147/*
148 * Structure used to pass arguments to vn_io_fault1(), to do either
149 * file- or vnode-based I/O calls.
150 */
151struct vn_io_fault_args {
152	enum {
153		VN_IO_FAULT_FOP,
154		VN_IO_FAULT_VOP
155	} kind;
156	struct ucred *cred;
157	int flags;
158	union {
159		struct fop_args_tag {
160			struct file *fp;
161			fo_rdwr_t *doio;
162		} fop_args;
163		struct vop_args_tag {
164			struct vnode *vp;
165		} vop_args;
166	} args;
167};
168
169static int vn_io_fault1(struct vnode *vp, struct uio *uio,
170    struct vn_io_fault_args *args, struct thread *td);
171
172int
173vn_open(ndp, flagp, cmode, fp)
174	struct nameidata *ndp;
175	int *flagp, cmode;
176	struct file *fp;
177{
178	struct thread *td = ndp->ni_cnd.cn_thread;
179
180	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
181}
182
183/*
184 * Common code for vnode open operations via a name lookup.
185 * Lookup the vnode and invoke VOP_CREATE if needed.
186 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
187 *
188 * Note that this does NOT free nameidata for the successful case,
189 * due to the NDINIT being done elsewhere.
190 */
191int
192vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
193    struct ucred *cred, struct file *fp)
194{
195	struct vnode *vp;
196	struct mount *mp;
197	struct thread *td = ndp->ni_cnd.cn_thread;
198	struct vattr vat;
199	struct vattr *vap = &vat;
200	int fmode, error;
201
202restart:
203	fmode = *flagp;
204	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
205	    O_EXCL | O_DIRECTORY))
206		return (EINVAL);
207	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
208		ndp->ni_cnd.cn_nameiop = CREATE;
209		/*
210		 * Set NOCACHE to avoid flushing the cache when
211		 * rolling in many files at once.
212		*/
213		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
214		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
215			ndp->ni_cnd.cn_flags |= FOLLOW;
216		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
217			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
218		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
219			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
220		bwillwrite();
221		if ((error = namei(ndp)) != 0)
222			return (error);
223		if (ndp->ni_vp == NULL) {
224			VATTR_NULL(vap);
225			vap->va_type = VREG;
226			vap->va_mode = cmode;
227			if (fmode & O_EXCL)
228				vap->va_vaflags |= VA_EXCLUSIVE;
229			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
230				NDFREE(ndp, NDF_ONLY_PNBUF);
231				vput(ndp->ni_dvp);
232				if ((error = vn_start_write(NULL, &mp,
233				    V_XSLEEP | PCATCH)) != 0)
234					return (error);
235				goto restart;
236			}
237			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
238				ndp->ni_cnd.cn_flags |= MAKEENTRY;
239#ifdef MAC
240			error = mac_vnode_check_create(cred, ndp->ni_dvp,
241			    &ndp->ni_cnd, vap);
242			if (error == 0)
243#endif
244				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
245						   &ndp->ni_cnd, vap);
246			vput(ndp->ni_dvp);
247			vn_finished_write(mp);
248			if (error) {
249				NDFREE(ndp, NDF_ONLY_PNBUF);
250				return (error);
251			}
252			fmode &= ~O_TRUNC;
253			vp = ndp->ni_vp;
254		} else {
255			if (ndp->ni_dvp == ndp->ni_vp)
256				vrele(ndp->ni_dvp);
257			else
258				vput(ndp->ni_dvp);
259			ndp->ni_dvp = NULL;
260			vp = ndp->ni_vp;
261			if (fmode & O_EXCL) {
262				error = EEXIST;
263				goto bad;
264			}
265			fmode &= ~O_CREAT;
266		}
267	} else {
268		ndp->ni_cnd.cn_nameiop = LOOKUP;
269		ndp->ni_cnd.cn_flags = ISOPEN |
270		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
271		if (!(fmode & FWRITE))
272			ndp->ni_cnd.cn_flags |= LOCKSHARED;
273		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
274			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
275		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
276			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
277		if ((error = namei(ndp)) != 0)
278			return (error);
279		vp = ndp->ni_vp;
280	}
281	error = vn_open_vnode(vp, fmode, cred, td, fp);
282	if (error)
283		goto bad;
284	*flagp = fmode;
285	return (0);
286bad:
287	NDFREE(ndp, NDF_ONLY_PNBUF);
288	vput(vp);
289	*flagp = fmode;
290	ndp->ni_vp = NULL;
291	return (error);
292}
293
294/*
295 * Common code for vnode open operations once a vnode is located.
296 * Check permissions, and call the VOP_OPEN routine.
297 */
298int
299vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
300    struct thread *td, struct file *fp)
301{
302	accmode_t accmode;
303	struct flock lf;
304	int error, lock_flags, type;
305
306	if (vp->v_type == VLNK)
307		return (EMLINK);
308	if (vp->v_type == VSOCK)
309		return (EOPNOTSUPP);
310	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
311		return (ENOTDIR);
312	accmode = 0;
313	if (fmode & (FWRITE | O_TRUNC)) {
314		if (vp->v_type == VDIR)
315			return (EISDIR);
316		accmode |= VWRITE;
317	}
318	if (fmode & FREAD)
319		accmode |= VREAD;
320	if (fmode & FEXEC)
321		accmode |= VEXEC;
322	if ((fmode & O_APPEND) && (fmode & FWRITE))
323		accmode |= VAPPEND;
324#ifdef MAC
325	if (fmode & O_CREAT)
326		accmode |= VCREAT;
327	if (fmode & O_VERIFY)
328		accmode |= VVERIFY;
329	error = mac_vnode_check_open(cred, vp, accmode);
330	if (error)
331		return (error);
332
333	accmode &= ~(VCREAT | VVERIFY);
334#endif
335	if ((fmode & O_CREAT) == 0) {
336		if (accmode & VWRITE) {
337			error = vn_writechk(vp);
338			if (error)
339				return (error);
340		}
341		if (accmode) {
342		        error = VOP_ACCESS(vp, accmode, cred, td);
343			if (error)
344				return (error);
345		}
346	}
347	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
348		vn_lock(vp, LK_UPGRADE | LK_RETRY);
349	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
350		return (error);
351
352	while ((fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
353		KASSERT(fp != NULL, ("open with flock requires fp"));
354		if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE) {
355			error = EOPNOTSUPP;
356			break;
357		}
358		lock_flags = VOP_ISLOCKED(vp);
359		VOP_UNLOCK(vp, 0);
360		lf.l_whence = SEEK_SET;
361		lf.l_start = 0;
362		lf.l_len = 0;
363		if (fmode & O_EXLOCK)
364			lf.l_type = F_WRLCK;
365		else
366			lf.l_type = F_RDLCK;
367		type = F_FLOCK;
368		if ((fmode & FNONBLOCK) == 0)
369			type |= F_WAIT;
370		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
371		if (error == 0)
372			fp->f_flag |= FHASLOCK;
373		vn_lock(vp, lock_flags | LK_RETRY);
374		if (error != 0)
375			break;
376		if ((vp->v_iflag & VI_DOOMED) != 0) {
377			error = ENOENT;
378			break;
379		}
380
381		/*
382		 * Another thread might have used this vnode as an
383		 * executable while the vnode lock was dropped.
384		 * Ensure the vnode is still able to be opened for
385		 * writing after the lock has been obtained.
386		 */
387		if ((accmode & VWRITE) != 0)
388			error = vn_writechk(vp);
389		break;
390	}
391
392	if (error != 0) {
393		fp->f_flag |= FOPENFAILED;
394		fp->f_vnode = vp;
395		if (fp->f_ops == &badfileops) {
396			fp->f_type = DTYPE_VNODE;
397			fp->f_ops = &vnops;
398		}
399		vref(vp);
400	} else if  ((fmode & FWRITE) != 0) {
401		VOP_ADD_WRITECOUNT(vp, 1);
402		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
403		    __func__, vp, vp->v_writecount);
404	}
405	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
406	return (error);
407}
408
409/*
410 * Check for write permissions on the specified vnode.
411 * Prototype text segments cannot be written.
412 */
413int
414vn_writechk(struct vnode *vp)
415{
416
417	ASSERT_VOP_LOCKED(vp, "vn_writechk");
418	/*
419	 * If there's shared text associated with
420	 * the vnode, try to free it up once.  If
421	 * we fail, we can't allow writing.
422	 */
423	if (VOP_IS_TEXT(vp))
424		return (ETXTBSY);
425
426	return (0);
427}
428
429/*
430 * Vnode close call
431 */
432static int
433vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
434    struct thread *td, bool keep_ref)
435{
436	struct mount *mp;
437	int error, lock_flags;
438
439	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
440	    MNT_EXTENDED_SHARED(vp->v_mount))
441		lock_flags = LK_SHARED;
442	else
443		lock_flags = LK_EXCLUSIVE;
444
445	vn_start_write(vp, &mp, V_WAIT);
446	vn_lock(vp, lock_flags | LK_RETRY);
447	AUDIT_ARG_VNODE1(vp);
448	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
449		VNASSERT(vp->v_writecount > 0, vp,
450		    ("vn_close: negative writecount"));
451		VOP_ADD_WRITECOUNT(vp, -1);
452		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
453		    __func__, vp, vp->v_writecount);
454	}
455	error = VOP_CLOSE(vp, flags, file_cred, td);
456	if (keep_ref)
457		VOP_UNLOCK(vp, 0);
458	else
459		vput(vp);
460	vn_finished_write(mp);
461	return (error);
462}
463
464int
465vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
466    struct thread *td)
467{
468
469	return (vn_close1(vp, flags, file_cred, td, false));
470}
471
472/*
473 * Heuristic to detect sequential operation.
474 */
475static int
476sequential_heuristic(struct uio *uio, struct file *fp)
477{
478
479	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
480	if (fp->f_flag & FRDAHEAD)
481		return (fp->f_seqcount << IO_SEQSHIFT);
482
483	/*
484	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
485	 * that the first I/O is normally considered to be slightly
486	 * sequential.  Seeking to offset 0 doesn't change sequentiality
487	 * unless previous seeks have reduced f_seqcount to 0, in which
488	 * case offset 0 is not special.
489	 */
490	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
491	    uio->uio_offset == fp->f_nextoff) {
492		/*
493		 * f_seqcount is in units of fixed-size blocks so that it
494		 * depends mainly on the amount of sequential I/O and not
495		 * much on the number of sequential I/O's.  The fixed size
496		 * of 16384 is hard-coded here since it is (not quite) just
497		 * a magic size that works well here.  This size is more
498		 * closely related to the best I/O size for real disks than
499		 * to any block size used by software.
500		 */
501		fp->f_seqcount += howmany(uio->uio_resid, 16384);
502		if (fp->f_seqcount > IO_SEQMAX)
503			fp->f_seqcount = IO_SEQMAX;
504		return (fp->f_seqcount << IO_SEQSHIFT);
505	}
506
507	/* Not sequential.  Quickly draw-down sequentiality. */
508	if (fp->f_seqcount > 1)
509		fp->f_seqcount = 1;
510	else
511		fp->f_seqcount = 0;
512	return (0);
513}
514
515/*
516 * Package up an I/O request on a vnode into a uio and do it.
517 */
518int
519vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
520    enum uio_seg segflg, int ioflg, struct ucred *active_cred,
521    struct ucred *file_cred, ssize_t *aresid, struct thread *td)
522{
523	struct uio auio;
524	struct iovec aiov;
525	struct mount *mp;
526	struct ucred *cred;
527	void *rl_cookie;
528	struct vn_io_fault_args args;
529	int error, lock_flags;
530
531	auio.uio_iov = &aiov;
532	auio.uio_iovcnt = 1;
533	aiov.iov_base = base;
534	aiov.iov_len = len;
535	auio.uio_resid = len;
536	auio.uio_offset = offset;
537	auio.uio_segflg = segflg;
538	auio.uio_rw = rw;
539	auio.uio_td = td;
540	error = 0;
541
542	if ((ioflg & IO_NODELOCKED) == 0) {
543		if ((ioflg & IO_RANGELOCKED) == 0) {
544			if (rw == UIO_READ) {
545				rl_cookie = vn_rangelock_rlock(vp, offset,
546				    offset + len);
547			} else {
548				rl_cookie = vn_rangelock_wlock(vp, offset,
549				    offset + len);
550			}
551		} else
552			rl_cookie = NULL;
553		mp = NULL;
554		if (rw == UIO_WRITE) {
555			if (vp->v_type != VCHR &&
556			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
557			    != 0)
558				goto out;
559			if (MNT_SHARED_WRITES(mp) ||
560			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
561				lock_flags = LK_SHARED;
562			else
563				lock_flags = LK_EXCLUSIVE;
564		} else
565			lock_flags = LK_SHARED;
566		vn_lock(vp, lock_flags | LK_RETRY);
567	} else
568		rl_cookie = NULL;
569
570	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
571#ifdef MAC
572	if ((ioflg & IO_NOMACCHECK) == 0) {
573		if (rw == UIO_READ)
574			error = mac_vnode_check_read(active_cred, file_cred,
575			    vp);
576		else
577			error = mac_vnode_check_write(active_cred, file_cred,
578			    vp);
579	}
580#endif
581	if (error == 0) {
582		if (file_cred != NULL)
583			cred = file_cred;
584		else
585			cred = active_cred;
586		if (do_vn_io_fault(vp, &auio)) {
587			args.kind = VN_IO_FAULT_VOP;
588			args.cred = cred;
589			args.flags = ioflg;
590			args.args.vop_args.vp = vp;
591			error = vn_io_fault1(vp, &auio, &args, td);
592		} else if (rw == UIO_READ) {
593			error = VOP_READ(vp, &auio, ioflg, cred);
594		} else /* if (rw == UIO_WRITE) */ {
595			error = VOP_WRITE(vp, &auio, ioflg, cred);
596		}
597	}
598	if (aresid)
599		*aresid = auio.uio_resid;
600	else
601		if (auio.uio_resid && error == 0)
602			error = EIO;
603	if ((ioflg & IO_NODELOCKED) == 0) {
604		VOP_UNLOCK(vp, 0);
605		if (mp != NULL)
606			vn_finished_write(mp);
607	}
608 out:
609	if (rl_cookie != NULL)
610		vn_rangelock_unlock(vp, rl_cookie);
611	return (error);
612}
613
614/*
615 * Package up an I/O request on a vnode into a uio and do it.  The I/O
616 * request is split up into smaller chunks and we try to avoid saturating
617 * the buffer cache while potentially holding a vnode locked, so we
618 * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
619 * to give other processes a chance to lock the vnode (either other processes
620 * core'ing the same binary, or unrelated processes scanning the directory).
621 */
622int
623vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
624    file_cred, aresid, td)
625	enum uio_rw rw;
626	struct vnode *vp;
627	void *base;
628	size_t len;
629	off_t offset;
630	enum uio_seg segflg;
631	int ioflg;
632	struct ucred *active_cred;
633	struct ucred *file_cred;
634	size_t *aresid;
635	struct thread *td;
636{
637	int error = 0;
638	ssize_t iaresid;
639
640	do {
641		int chunk;
642
643		/*
644		 * Force `offset' to a multiple of MAXBSIZE except possibly
645		 * for the first chunk, so that filesystems only need to
646		 * write full blocks except possibly for the first and last
647		 * chunks.
648		 */
649		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
650
651		if (chunk > len)
652			chunk = len;
653		if (rw != UIO_READ && vp->v_type == VREG)
654			bwillwrite();
655		iaresid = 0;
656		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
657		    ioflg, active_cred, file_cred, &iaresid, td);
658		len -= chunk;	/* aresid calc already includes length */
659		if (error)
660			break;
661		offset += chunk;
662		base = (char *)base + chunk;
663		kern_yield(PRI_USER);
664	} while (len);
665	if (aresid)
666		*aresid = len + iaresid;
667	return (error);
668}
669
670off_t
671foffset_lock(struct file *fp, int flags)
672{
673	struct mtx *mtxp;
674	off_t res;
675
676	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
677
678#if OFF_MAX <= LONG_MAX
679	/*
680	 * Caller only wants the current f_offset value.  Assume that
681	 * the long and shorter integer types reads are atomic.
682	 */
683	if ((flags & FOF_NOLOCK) != 0)
684		return (fp->f_offset);
685#endif
686
687	/*
688	 * According to McKusick the vn lock was protecting f_offset here.
689	 * It is now protected by the FOFFSET_LOCKED flag.
690	 */
691	mtxp = mtx_pool_find(mtxpool_sleep, fp);
692	mtx_lock(mtxp);
693	if ((flags & FOF_NOLOCK) == 0) {
694		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
695			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
696			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
697			    "vofflock", 0);
698		}
699		fp->f_vnread_flags |= FOFFSET_LOCKED;
700	}
701	res = fp->f_offset;
702	mtx_unlock(mtxp);
703	return (res);
704}
705
706void
707foffset_unlock(struct file *fp, off_t val, int flags)
708{
709	struct mtx *mtxp;
710
711	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
712
713#if OFF_MAX <= LONG_MAX
714	if ((flags & FOF_NOLOCK) != 0) {
715		if ((flags & FOF_NOUPDATE) == 0)
716			fp->f_offset = val;
717		if ((flags & FOF_NEXTOFF) != 0)
718			fp->f_nextoff = val;
719		return;
720	}
721#endif
722
723	mtxp = mtx_pool_find(mtxpool_sleep, fp);
724	mtx_lock(mtxp);
725	if ((flags & FOF_NOUPDATE) == 0)
726		fp->f_offset = val;
727	if ((flags & FOF_NEXTOFF) != 0)
728		fp->f_nextoff = val;
729	if ((flags & FOF_NOLOCK) == 0) {
730		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
731		    ("Lost FOFFSET_LOCKED"));
732		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
733			wakeup(&fp->f_vnread_flags);
734		fp->f_vnread_flags = 0;
735	}
736	mtx_unlock(mtxp);
737}
738
739void
740foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
741{
742
743	if ((flags & FOF_OFFSET) == 0)
744		uio->uio_offset = foffset_lock(fp, flags);
745}
746
747void
748foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
749{
750
751	if ((flags & FOF_OFFSET) == 0)
752		foffset_unlock(fp, uio->uio_offset, flags);
753}
754
755static int
756get_advice(struct file *fp, struct uio *uio)
757{
758	struct mtx *mtxp;
759	int ret;
760
761	ret = POSIX_FADV_NORMAL;
762	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
763		return (ret);
764
765	mtxp = mtx_pool_find(mtxpool_sleep, fp);
766	mtx_lock(mtxp);
767	if (fp->f_advice != NULL &&
768	    uio->uio_offset >= fp->f_advice->fa_start &&
769	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
770		ret = fp->f_advice->fa_advice;
771	mtx_unlock(mtxp);
772	return (ret);
773}
774
775/*
776 * File table vnode read routine.
777 */
778static int
779vn_read(fp, uio, active_cred, flags, td)
780	struct file *fp;
781	struct uio *uio;
782	struct ucred *active_cred;
783	int flags;
784	struct thread *td;
785{
786	struct vnode *vp;
787	off_t orig_offset;
788	int error, ioflag;
789	int advice;
790
791	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
792	    uio->uio_td, td));
793	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
794	vp = fp->f_vnode;
795	ioflag = 0;
796	if (fp->f_flag & FNONBLOCK)
797		ioflag |= IO_NDELAY;
798	if (fp->f_flag & O_DIRECT)
799		ioflag |= IO_DIRECT;
800	advice = get_advice(fp, uio);
801	vn_lock(vp, LK_SHARED | LK_RETRY);
802
803	switch (advice) {
804	case POSIX_FADV_NORMAL:
805	case POSIX_FADV_SEQUENTIAL:
806	case POSIX_FADV_NOREUSE:
807		ioflag |= sequential_heuristic(uio, fp);
808		break;
809	case POSIX_FADV_RANDOM:
810		/* Disable read-ahead for random I/O. */
811		break;
812	}
813	orig_offset = uio->uio_offset;
814
815#ifdef MAC
816	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
817	if (error == 0)
818#endif
819		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
820	fp->f_nextoff = uio->uio_offset;
821	VOP_UNLOCK(vp, 0);
822	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
823	    orig_offset != uio->uio_offset)
824		/*
825		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
826		 * for the backing file after a POSIX_FADV_NOREUSE
827		 * read(2).
828		 */
829		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
830		    POSIX_FADV_DONTNEED);
831	return (error);
832}
833
834/*
835 * File table vnode write routine.
836 */
837static int
838vn_write(fp, uio, active_cred, flags, td)
839	struct file *fp;
840	struct uio *uio;
841	struct ucred *active_cred;
842	int flags;
843	struct thread *td;
844{
845	struct vnode *vp;
846	struct mount *mp;
847	off_t orig_offset;
848	int error, ioflag, lock_flags;
849	int advice;
850
851	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
852	    uio->uio_td, td));
853	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
854	vp = fp->f_vnode;
855	if (vp->v_type == VREG)
856		bwillwrite();
857	ioflag = IO_UNIT;
858	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
859		ioflag |= IO_APPEND;
860	if (fp->f_flag & FNONBLOCK)
861		ioflag |= IO_NDELAY;
862	if (fp->f_flag & O_DIRECT)
863		ioflag |= IO_DIRECT;
864	if ((fp->f_flag & O_FSYNC) ||
865	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
866		ioflag |= IO_SYNC;
867	mp = NULL;
868	if (vp->v_type != VCHR &&
869	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
870		goto unlock;
871
872	advice = get_advice(fp, uio);
873
874	if (MNT_SHARED_WRITES(mp) ||
875	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
876		lock_flags = LK_SHARED;
877	} else {
878		lock_flags = LK_EXCLUSIVE;
879	}
880
881	vn_lock(vp, lock_flags | LK_RETRY);
882	switch (advice) {
883	case POSIX_FADV_NORMAL:
884	case POSIX_FADV_SEQUENTIAL:
885	case POSIX_FADV_NOREUSE:
886		ioflag |= sequential_heuristic(uio, fp);
887		break;
888	case POSIX_FADV_RANDOM:
889		/* XXX: Is this correct? */
890		break;
891	}
892	orig_offset = uio->uio_offset;
893
894#ifdef MAC
895	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
896	if (error == 0)
897#endif
898		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
899	fp->f_nextoff = uio->uio_offset;
900	VOP_UNLOCK(vp, 0);
901	if (vp->v_type != VCHR)
902		vn_finished_write(mp);
903	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
904	    orig_offset != uio->uio_offset)
905		/*
906		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
907		 * for the backing file after a POSIX_FADV_NOREUSE
908		 * write(2).
909		 */
910		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
911		    POSIX_FADV_DONTNEED);
912unlock:
913	return (error);
914}
915
916/*
917 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
918 * prevent the following deadlock:
919 *
920 * Assume that the thread A reads from the vnode vp1 into userspace
921 * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
922 * currently not resident, then system ends up with the call chain
923 *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
924 *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
925 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
926 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
927 * backed by the pages of vnode vp1, and some page in buf2 is not
928 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
929 *
930 * To prevent the lock order reversal and deadlock, vn_io_fault() does
931 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
932 * Instead, it first tries to do the whole range i/o with pagefaults
933 * disabled. If all pages in the i/o buffer are resident and mapped,
934 * VOP will succeed (ignoring the genuine filesystem errors).
935 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
936 * i/o in chunks, with all pages in the chunk prefaulted and held
937 * using vm_fault_quick_hold_pages().
938 *
939 * Filesystems using this deadlock avoidance scheme should use the
940 * array of the held pages from uio, saved in the curthread->td_ma,
941 * instead of doing uiomove().  A helper function
942 * vn_io_fault_uiomove() converts uiomove request into
943 * uiomove_fromphys() over td_ma array.
944 *
945 * Since vnode locks do not cover the whole i/o anymore, rangelocks
946 * make the current i/o request atomic with respect to other i/os and
947 * truncations.
948 */
949
950/*
951 * Decode vn_io_fault_args and perform the corresponding i/o.
952 */
953static int
954vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
955    struct thread *td)
956{
957
958	switch (args->kind) {
959	case VN_IO_FAULT_FOP:
960		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
961		    uio, args->cred, args->flags, td));
962	case VN_IO_FAULT_VOP:
963		if (uio->uio_rw == UIO_READ) {
964			return (VOP_READ(args->args.vop_args.vp, uio,
965			    args->flags, args->cred));
966		} else if (uio->uio_rw == UIO_WRITE) {
967			return (VOP_WRITE(args->args.vop_args.vp, uio,
968			    args->flags, args->cred));
969		}
970		break;
971	}
972	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
973	    uio->uio_rw);
974}
975
976static int
977vn_io_fault_touch(char *base, const struct uio *uio)
978{
979	int r;
980
981	r = fubyte(base);
982	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
983		return (EFAULT);
984	return (0);
985}
986
987static int
988vn_io_fault_prefault_user(const struct uio *uio)
989{
990	char *base;
991	const struct iovec *iov;
992	size_t len;
993	ssize_t resid;
994	int error, i;
995
996	KASSERT(uio->uio_segflg == UIO_USERSPACE,
997	    ("vn_io_fault_prefault userspace"));
998
999	error = i = 0;
1000	iov = uio->uio_iov;
1001	resid = uio->uio_resid;
1002	base = iov->iov_base;
1003	len = iov->iov_len;
1004	while (resid > 0) {
1005		error = vn_io_fault_touch(base, uio);
1006		if (error != 0)
1007			break;
1008		if (len < PAGE_SIZE) {
1009			if (len != 0) {
1010				error = vn_io_fault_touch(base + len - 1, uio);
1011				if (error != 0)
1012					break;
1013				resid -= len;
1014			}
1015			if (++i >= uio->uio_iovcnt)
1016				break;
1017			iov = uio->uio_iov + i;
1018			base = iov->iov_base;
1019			len = iov->iov_len;
1020		} else {
1021			len -= PAGE_SIZE;
1022			base += PAGE_SIZE;
1023			resid -= PAGE_SIZE;
1024		}
1025	}
1026	return (error);
1027}
1028
1029/*
1030 * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1031 * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1032 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1033 * into args and call vn_io_fault1() to handle faults during the user
1034 * mode buffer accesses.
1035 */
1036static int
1037vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1038    struct thread *td)
1039{
1040	vm_page_t ma[io_hold_cnt + 2];
1041	struct uio *uio_clone, short_uio;
1042	struct iovec short_iovec[1];
1043	vm_page_t *prev_td_ma;
1044	vm_prot_t prot;
1045	vm_offset_t addr, end;
1046	size_t len, resid;
1047	ssize_t adv;
1048	int error, cnt, save, saveheld, prev_td_ma_cnt;
1049
1050	if (vn_io_fault_prefault) {
1051		error = vn_io_fault_prefault_user(uio);
1052		if (error != 0)
1053			return (error); /* Or ignore ? */
1054	}
1055
1056	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1057
1058	/*
1059	 * The UFS follows IO_UNIT directive and replays back both
1060	 * uio_offset and uio_resid if an error is encountered during the
1061	 * operation.  But, since the iovec may be already advanced,
1062	 * uio is still in an inconsistent state.
1063	 *
1064	 * Cache a copy of the original uio, which is advanced to the redo
1065	 * point using UIO_NOCOPY below.
1066	 */
1067	uio_clone = cloneuio(uio);
1068	resid = uio->uio_resid;
1069
1070	short_uio.uio_segflg = UIO_USERSPACE;
1071	short_uio.uio_rw = uio->uio_rw;
1072	short_uio.uio_td = uio->uio_td;
1073
1074	save = vm_fault_disable_pagefaults();
1075	error = vn_io_fault_doio(args, uio, td);
1076	if (error != EFAULT)
1077		goto out;
1078
1079	atomic_add_long(&vn_io_faults_cnt, 1);
1080	uio_clone->uio_segflg = UIO_NOCOPY;
1081	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1082	uio_clone->uio_segflg = uio->uio_segflg;
1083
1084	saveheld = curthread_pflags_set(TDP_UIOHELD);
1085	prev_td_ma = td->td_ma;
1086	prev_td_ma_cnt = td->td_ma_cnt;
1087
1088	while (uio_clone->uio_resid != 0) {
1089		len = uio_clone->uio_iov->iov_len;
1090		if (len == 0) {
1091			KASSERT(uio_clone->uio_iovcnt >= 1,
1092			    ("iovcnt underflow"));
1093			uio_clone->uio_iov++;
1094			uio_clone->uio_iovcnt--;
1095			continue;
1096		}
1097		if (len > io_hold_cnt * PAGE_SIZE)
1098			len = io_hold_cnt * PAGE_SIZE;
1099		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1100		end = round_page(addr + len);
1101		if (end < addr) {
1102			error = EFAULT;
1103			break;
1104		}
1105		cnt = atop(end - trunc_page(addr));
1106		/*
1107		 * A perfectly misaligned address and length could cause
1108		 * both the start and the end of the chunk to use partial
1109		 * page.  +2 accounts for such a situation.
1110		 */
1111		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1112		    addr, len, prot, ma, io_hold_cnt + 2);
1113		if (cnt == -1) {
1114			error = EFAULT;
1115			break;
1116		}
1117		short_uio.uio_iov = &short_iovec[0];
1118		short_iovec[0].iov_base = (void *)addr;
1119		short_uio.uio_iovcnt = 1;
1120		short_uio.uio_resid = short_iovec[0].iov_len = len;
1121		short_uio.uio_offset = uio_clone->uio_offset;
1122		td->td_ma = ma;
1123		td->td_ma_cnt = cnt;
1124
1125		error = vn_io_fault_doio(args, &short_uio, td);
1126		vm_page_unhold_pages(ma, cnt);
1127		adv = len - short_uio.uio_resid;
1128
1129		uio_clone->uio_iov->iov_base =
1130		    (char *)uio_clone->uio_iov->iov_base + adv;
1131		uio_clone->uio_iov->iov_len -= adv;
1132		uio_clone->uio_resid -= adv;
1133		uio_clone->uio_offset += adv;
1134
1135		uio->uio_resid -= adv;
1136		uio->uio_offset += adv;
1137
1138		if (error != 0 || adv == 0)
1139			break;
1140	}
1141	td->td_ma = prev_td_ma;
1142	td->td_ma_cnt = prev_td_ma_cnt;
1143	curthread_pflags_restore(saveheld);
1144out:
1145	vm_fault_enable_pagefaults(save);
1146	free(uio_clone, M_IOV);
1147	return (error);
1148}
1149
1150static int
1151vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1152    int flags, struct thread *td)
1153{
1154	fo_rdwr_t *doio;
1155	struct vnode *vp;
1156	void *rl_cookie;
1157	struct vn_io_fault_args args;
1158	int error;
1159
1160	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1161	vp = fp->f_vnode;
1162	foffset_lock_uio(fp, uio, flags);
1163	if (do_vn_io_fault(vp, uio)) {
1164		args.kind = VN_IO_FAULT_FOP;
1165		args.args.fop_args.fp = fp;
1166		args.args.fop_args.doio = doio;
1167		args.cred = active_cred;
1168		args.flags = flags | FOF_OFFSET;
1169		if (uio->uio_rw == UIO_READ) {
1170			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1171			    uio->uio_offset + uio->uio_resid);
1172		} else if ((fp->f_flag & O_APPEND) != 0 ||
1173		    (flags & FOF_OFFSET) == 0) {
1174			/* For appenders, punt and lock the whole range. */
1175			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1176		} else {
1177			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1178			    uio->uio_offset + uio->uio_resid);
1179		}
1180		error = vn_io_fault1(vp, uio, &args, td);
1181		vn_rangelock_unlock(vp, rl_cookie);
1182	} else {
1183		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1184	}
1185	foffset_unlock_uio(fp, uio, flags);
1186	return (error);
1187}
1188
1189/*
1190 * Helper function to perform the requested uiomove operation using
1191 * the held pages for io->uio_iov[0].iov_base buffer instead of
1192 * copyin/copyout.  Access to the pages with uiomove_fromphys()
1193 * instead of iov_base prevents page faults that could occur due to
1194 * pmap_collect() invalidating the mapping created by
1195 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1196 * object cleanup revoking the write access from page mappings.
1197 *
1198 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1199 * instead of plain uiomove().
1200 */
1201int
1202vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1203{
1204	struct uio transp_uio;
1205	struct iovec transp_iov[1];
1206	struct thread *td;
1207	size_t adv;
1208	int error, pgadv;
1209
1210	td = curthread;
1211	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1212	    uio->uio_segflg != UIO_USERSPACE)
1213		return (uiomove(data, xfersize, uio));
1214
1215	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1216	transp_iov[0].iov_base = data;
1217	transp_uio.uio_iov = &transp_iov[0];
1218	transp_uio.uio_iovcnt = 1;
1219	if (xfersize > uio->uio_resid)
1220		xfersize = uio->uio_resid;
1221	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1222	transp_uio.uio_offset = 0;
1223	transp_uio.uio_segflg = UIO_SYSSPACE;
1224	/*
1225	 * Since transp_iov points to data, and td_ma page array
1226	 * corresponds to original uio->uio_iov, we need to invert the
1227	 * direction of the i/o operation as passed to
1228	 * uiomove_fromphys().
1229	 */
1230	switch (uio->uio_rw) {
1231	case UIO_WRITE:
1232		transp_uio.uio_rw = UIO_READ;
1233		break;
1234	case UIO_READ:
1235		transp_uio.uio_rw = UIO_WRITE;
1236		break;
1237	}
1238	transp_uio.uio_td = uio->uio_td;
1239	error = uiomove_fromphys(td->td_ma,
1240	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1241	    xfersize, &transp_uio);
1242	adv = xfersize - transp_uio.uio_resid;
1243	pgadv =
1244	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1245	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1246	td->td_ma += pgadv;
1247	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1248	    pgadv));
1249	td->td_ma_cnt -= pgadv;
1250	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1251	uio->uio_iov->iov_len -= adv;
1252	uio->uio_resid -= adv;
1253	uio->uio_offset += adv;
1254	return (error);
1255}
1256
1257int
1258vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1259    struct uio *uio)
1260{
1261	struct thread *td;
1262	vm_offset_t iov_base;
1263	int cnt, pgadv;
1264
1265	td = curthread;
1266	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1267	    uio->uio_segflg != UIO_USERSPACE)
1268		return (uiomove_fromphys(ma, offset, xfersize, uio));
1269
1270	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1271	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1272	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1273	switch (uio->uio_rw) {
1274	case UIO_WRITE:
1275		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1276		    offset, cnt);
1277		break;
1278	case UIO_READ:
1279		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1280		    cnt);
1281		break;
1282	}
1283	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1284	td->td_ma += pgadv;
1285	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1286	    pgadv));
1287	td->td_ma_cnt -= pgadv;
1288	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1289	uio->uio_iov->iov_len -= cnt;
1290	uio->uio_resid -= cnt;
1291	uio->uio_offset += cnt;
1292	return (0);
1293}
1294
1295
1296/*
1297 * File table truncate routine.
1298 */
1299static int
1300vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1301    struct thread *td)
1302{
1303	struct vattr vattr;
1304	struct mount *mp;
1305	struct vnode *vp;
1306	void *rl_cookie;
1307	int error;
1308
1309	vp = fp->f_vnode;
1310
1311	/*
1312	 * Lock the whole range for truncation.  Otherwise split i/o
1313	 * might happen partly before and partly after the truncation.
1314	 */
1315	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1316	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1317	if (error)
1318		goto out1;
1319	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1320	if (vp->v_type == VDIR) {
1321		error = EISDIR;
1322		goto out;
1323	}
1324#ifdef MAC
1325	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1326	if (error)
1327		goto out;
1328#endif
1329	error = vn_writechk(vp);
1330	if (error == 0) {
1331		VATTR_NULL(&vattr);
1332		vattr.va_size = length;
1333		if ((fp->f_flag & O_FSYNC) != 0)
1334			vattr.va_vaflags |= VA_SYNC;
1335		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1336	}
1337out:
1338	VOP_UNLOCK(vp, 0);
1339	vn_finished_write(mp);
1340out1:
1341	vn_rangelock_unlock(vp, rl_cookie);
1342	return (error);
1343}
1344
1345/*
1346 * File table vnode stat routine.
1347 */
1348static int
1349vn_statfile(fp, sb, active_cred, td)
1350	struct file *fp;
1351	struct stat *sb;
1352	struct ucred *active_cred;
1353	struct thread *td;
1354{
1355	struct vnode *vp = fp->f_vnode;
1356	int error;
1357
1358	vn_lock(vp, LK_SHARED | LK_RETRY);
1359	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1360	VOP_UNLOCK(vp, 0);
1361
1362	return (error);
1363}
1364
1365/*
1366 * Stat a vnode; implementation for the stat syscall
1367 */
1368int
1369vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred,
1370    struct ucred *file_cred, struct thread *td)
1371{
1372	struct vattr vattr;
1373	struct vattr *vap;
1374	int error;
1375	u_short mode;
1376
1377	AUDIT_ARG_VNODE1(vp);
1378#ifdef MAC
1379	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1380	if (error)
1381		return (error);
1382#endif
1383
1384	vap = &vattr;
1385
1386	/*
1387	 * Initialize defaults for new and unusual fields, so that file
1388	 * systems which don't support these fields don't need to know
1389	 * about them.
1390	 */
1391	vap->va_birthtime.tv_sec = -1;
1392	vap->va_birthtime.tv_nsec = 0;
1393	vap->va_fsid = VNOVAL;
1394	vap->va_rdev = NODEV;
1395
1396	error = VOP_GETATTR(vp, vap, active_cred);
1397	if (error)
1398		return (error);
1399
1400	/*
1401	 * Zero the spare stat fields
1402	 */
1403	bzero(sb, sizeof *sb);
1404
1405	/*
1406	 * Copy from vattr table
1407	 */
1408	if (vap->va_fsid != VNOVAL)
1409		sb->st_dev = vap->va_fsid;
1410	else
1411		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1412	sb->st_ino = vap->va_fileid;
1413	mode = vap->va_mode;
1414	switch (vap->va_type) {
1415	case VREG:
1416		mode |= S_IFREG;
1417		break;
1418	case VDIR:
1419		mode |= S_IFDIR;
1420		break;
1421	case VBLK:
1422		mode |= S_IFBLK;
1423		break;
1424	case VCHR:
1425		mode |= S_IFCHR;
1426		break;
1427	case VLNK:
1428		mode |= S_IFLNK;
1429		break;
1430	case VSOCK:
1431		mode |= S_IFSOCK;
1432		break;
1433	case VFIFO:
1434		mode |= S_IFIFO;
1435		break;
1436	default:
1437		return (EBADF);
1438	}
1439	sb->st_mode = mode;
1440	sb->st_nlink = vap->va_nlink;
1441	sb->st_uid = vap->va_uid;
1442	sb->st_gid = vap->va_gid;
1443	sb->st_rdev = vap->va_rdev;
1444	if (vap->va_size > OFF_MAX)
1445		return (EOVERFLOW);
1446	sb->st_size = vap->va_size;
1447	sb->st_atim = vap->va_atime;
1448	sb->st_mtim = vap->va_mtime;
1449	sb->st_ctim = vap->va_ctime;
1450	sb->st_birthtim = vap->va_birthtime;
1451
1452        /*
1453	 * According to www.opengroup.org, the meaning of st_blksize is
1454	 *   "a filesystem-specific preferred I/O block size for this
1455	 *    object.  In some filesystem types, this may vary from file
1456	 *    to file"
1457	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1458	 */
1459
1460	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1461
1462	sb->st_flags = vap->va_flags;
1463	if (priv_check(td, PRIV_VFS_GENERATION))
1464		sb->st_gen = 0;
1465	else
1466		sb->st_gen = vap->va_gen;
1467
1468	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1469	return (0);
1470}
1471
1472/*
1473 * File table vnode ioctl routine.
1474 */
1475static int
1476vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1477    struct thread *td)
1478{
1479	struct vattr vattr;
1480	struct vnode *vp;
1481	int error;
1482
1483	vp = fp->f_vnode;
1484	switch (vp->v_type) {
1485	case VDIR:
1486	case VREG:
1487		switch (com) {
1488		case FIONREAD:
1489			vn_lock(vp, LK_SHARED | LK_RETRY);
1490			error = VOP_GETATTR(vp, &vattr, active_cred);
1491			VOP_UNLOCK(vp, 0);
1492			if (error == 0)
1493				*(int *)data = vattr.va_size - fp->f_offset;
1494			return (error);
1495		case FIONBIO:
1496		case FIOASYNC:
1497			return (0);
1498		default:
1499			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1500			    active_cred, td));
1501		}
1502	default:
1503		return (ENOTTY);
1504	}
1505}
1506
1507/*
1508 * File table vnode poll routine.
1509 */
1510static int
1511vn_poll(struct file *fp, int events, struct ucred *active_cred,
1512    struct thread *td)
1513{
1514	struct vnode *vp;
1515	int error;
1516
1517	vp = fp->f_vnode;
1518#ifdef MAC
1519	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1520	AUDIT_ARG_VNODE1(vp);
1521	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1522	VOP_UNLOCK(vp, 0);
1523	if (!error)
1524#endif
1525
1526	error = VOP_POLL(vp, events, fp->f_cred, td);
1527	return (error);
1528}
1529
1530/*
1531 * Acquire the requested lock and then check for validity.  LK_RETRY
1532 * permits vn_lock to return doomed vnodes.
1533 */
1534int
1535_vn_lock(struct vnode *vp, int flags, char *file, int line)
1536{
1537	int error;
1538
1539	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1540	    ("vn_lock: no locktype"));
1541	VNASSERT(vp->v_holdcnt != 0, vp, ("vn_lock: zero hold count"));
1542retry:
1543	error = VOP_LOCK1(vp, flags, file, line);
1544	flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1545	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1546	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1547
1548	if ((flags & LK_RETRY) == 0) {
1549		if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
1550			VOP_UNLOCK(vp, 0);
1551			error = ENOENT;
1552		}
1553	} else if (error != 0)
1554		goto retry;
1555	return (error);
1556}
1557
1558/*
1559 * File table vnode close routine.
1560 */
1561static int
1562vn_closefile(struct file *fp, struct thread *td)
1563{
1564	struct vnode *vp;
1565	struct flock lf;
1566	int error;
1567	bool ref;
1568
1569	vp = fp->f_vnode;
1570	fp->f_ops = &badfileops;
1571	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1572
1573	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1574
1575	if (__predict_false(ref)) {
1576		lf.l_whence = SEEK_SET;
1577		lf.l_start = 0;
1578		lf.l_len = 0;
1579		lf.l_type = F_UNLCK;
1580		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1581		vrele(vp);
1582	}
1583	return (error);
1584}
1585
1586static bool
1587vn_suspendable(struct mount *mp)
1588{
1589
1590	return (mp->mnt_op->vfs_susp_clean != NULL);
1591}
1592
1593/*
1594 * Preparing to start a filesystem write operation. If the operation is
1595 * permitted, then we bump the count of operations in progress and
1596 * proceed. If a suspend request is in progress, we wait until the
1597 * suspension is over, and then proceed.
1598 */
1599static int
1600vn_start_write_locked(struct mount *mp, int flags)
1601{
1602	int error, mflags;
1603
1604	mtx_assert(MNT_MTX(mp), MA_OWNED);
1605	error = 0;
1606
1607	/*
1608	 * Check on status of suspension.
1609	 */
1610	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1611	    mp->mnt_susp_owner != curthread) {
1612		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1613		    (flags & PCATCH) : 0) | (PUSER - 1);
1614		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1615			if (flags & V_NOWAIT) {
1616				error = EWOULDBLOCK;
1617				goto unlock;
1618			}
1619			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1620			    "suspfs", 0);
1621			if (error)
1622				goto unlock;
1623		}
1624	}
1625	if (flags & V_XSLEEP)
1626		goto unlock;
1627	mp->mnt_writeopcount++;
1628unlock:
1629	if (error != 0 || (flags & V_XSLEEP) != 0)
1630		MNT_REL(mp);
1631	MNT_IUNLOCK(mp);
1632	return (error);
1633}
1634
1635int
1636vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1637{
1638	struct mount *mp;
1639	int error;
1640
1641	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1642	    ("V_MNTREF requires mp"));
1643
1644	error = 0;
1645	/*
1646	 * If a vnode is provided, get and return the mount point that
1647	 * to which it will write.
1648	 */
1649	if (vp != NULL) {
1650		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1651			*mpp = NULL;
1652			if (error != EOPNOTSUPP)
1653				return (error);
1654			return (0);
1655		}
1656	}
1657	if ((mp = *mpp) == NULL)
1658		return (0);
1659
1660	if (!vn_suspendable(mp)) {
1661		if (vp != NULL || (flags & V_MNTREF) != 0)
1662			vfs_rel(mp);
1663		return (0);
1664	}
1665
1666	/*
1667	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1668	 * a vfs_ref().
1669	 * As long as a vnode is not provided we need to acquire a
1670	 * refcount for the provided mountpoint too, in order to
1671	 * emulate a vfs_ref().
1672	 */
1673	MNT_ILOCK(mp);
1674	if (vp == NULL && (flags & V_MNTREF) == 0)
1675		MNT_REF(mp);
1676
1677	return (vn_start_write_locked(mp, flags));
1678}
1679
1680/*
1681 * Secondary suspension. Used by operations such as vop_inactive
1682 * routines that are needed by the higher level functions. These
1683 * are allowed to proceed until all the higher level functions have
1684 * completed (indicated by mnt_writeopcount dropping to zero). At that
1685 * time, these operations are halted until the suspension is over.
1686 */
1687int
1688vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1689{
1690	struct mount *mp;
1691	int error;
1692
1693	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1694	    ("V_MNTREF requires mp"));
1695
1696 retry:
1697	if (vp != NULL) {
1698		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1699			*mpp = NULL;
1700			if (error != EOPNOTSUPP)
1701				return (error);
1702			return (0);
1703		}
1704	}
1705	/*
1706	 * If we are not suspended or have not yet reached suspended
1707	 * mode, then let the operation proceed.
1708	 */
1709	if ((mp = *mpp) == NULL)
1710		return (0);
1711
1712	if (!vn_suspendable(mp)) {
1713		if (vp != NULL || (flags & V_MNTREF) != 0)
1714			vfs_rel(mp);
1715		return (0);
1716	}
1717
1718	/*
1719	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1720	 * a vfs_ref().
1721	 * As long as a vnode is not provided we need to acquire a
1722	 * refcount for the provided mountpoint too, in order to
1723	 * emulate a vfs_ref().
1724	 */
1725	MNT_ILOCK(mp);
1726	if (vp == NULL && (flags & V_MNTREF) == 0)
1727		MNT_REF(mp);
1728	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1729		mp->mnt_secondary_writes++;
1730		mp->mnt_secondary_accwrites++;
1731		MNT_IUNLOCK(mp);
1732		return (0);
1733	}
1734	if (flags & V_NOWAIT) {
1735		MNT_REL(mp);
1736		MNT_IUNLOCK(mp);
1737		return (EWOULDBLOCK);
1738	}
1739	/*
1740	 * Wait for the suspension to finish.
1741	 */
1742	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1743	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1744	    "suspfs", 0);
1745	vfs_rel(mp);
1746	if (error == 0)
1747		goto retry;
1748	return (error);
1749}
1750
1751/*
1752 * Filesystem write operation has completed. If we are suspending and this
1753 * operation is the last one, notify the suspender that the suspension is
1754 * now in effect.
1755 */
1756void
1757vn_finished_write(struct mount *mp)
1758{
1759	if (mp == NULL || !vn_suspendable(mp))
1760		return;
1761	MNT_ILOCK(mp);
1762	MNT_REL(mp);
1763	mp->mnt_writeopcount--;
1764	if (mp->mnt_writeopcount < 0)
1765		panic("vn_finished_write: neg cnt");
1766	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1767	    mp->mnt_writeopcount <= 0)
1768		wakeup(&mp->mnt_writeopcount);
1769	MNT_IUNLOCK(mp);
1770}
1771
1772
1773/*
1774 * Filesystem secondary write operation has completed. If we are
1775 * suspending and this operation is the last one, notify the suspender
1776 * that the suspension is now in effect.
1777 */
1778void
1779vn_finished_secondary_write(struct mount *mp)
1780{
1781	if (mp == NULL || !vn_suspendable(mp))
1782		return;
1783	MNT_ILOCK(mp);
1784	MNT_REL(mp);
1785	mp->mnt_secondary_writes--;
1786	if (mp->mnt_secondary_writes < 0)
1787		panic("vn_finished_secondary_write: neg cnt");
1788	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1789	    mp->mnt_secondary_writes <= 0)
1790		wakeup(&mp->mnt_secondary_writes);
1791	MNT_IUNLOCK(mp);
1792}
1793
1794
1795
1796/*
1797 * Request a filesystem to suspend write operations.
1798 */
1799int
1800vfs_write_suspend(struct mount *mp, int flags)
1801{
1802	int error;
1803
1804	MPASS(vn_suspendable(mp));
1805
1806	MNT_ILOCK(mp);
1807	if (mp->mnt_susp_owner == curthread) {
1808		MNT_IUNLOCK(mp);
1809		return (EALREADY);
1810	}
1811	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1812		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1813
1814	/*
1815	 * Unmount holds a write reference on the mount point.  If we
1816	 * own busy reference and drain for writers, we deadlock with
1817	 * the reference draining in the unmount path.  Callers of
1818	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1819	 * vfs_busy() reference is owned and caller is not in the
1820	 * unmount context.
1821	 */
1822	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1823	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1824		MNT_IUNLOCK(mp);
1825		return (EBUSY);
1826	}
1827
1828	mp->mnt_kern_flag |= MNTK_SUSPEND;
1829	mp->mnt_susp_owner = curthread;
1830	if (mp->mnt_writeopcount > 0)
1831		(void) msleep(&mp->mnt_writeopcount,
1832		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1833	else
1834		MNT_IUNLOCK(mp);
1835	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1836		vfs_write_resume(mp, 0);
1837	return (error);
1838}
1839
1840/*
1841 * Request a filesystem to resume write operations.
1842 */
1843void
1844vfs_write_resume(struct mount *mp, int flags)
1845{
1846
1847	MPASS(vn_suspendable(mp));
1848
1849	MNT_ILOCK(mp);
1850	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1851		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1852		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1853				       MNTK_SUSPENDED);
1854		mp->mnt_susp_owner = NULL;
1855		wakeup(&mp->mnt_writeopcount);
1856		wakeup(&mp->mnt_flag);
1857		curthread->td_pflags &= ~TDP_IGNSUSP;
1858		if ((flags & VR_START_WRITE) != 0) {
1859			MNT_REF(mp);
1860			mp->mnt_writeopcount++;
1861		}
1862		MNT_IUNLOCK(mp);
1863		if ((flags & VR_NO_SUSPCLR) == 0)
1864			VFS_SUSP_CLEAN(mp);
1865	} else if ((flags & VR_START_WRITE) != 0) {
1866		MNT_REF(mp);
1867		vn_start_write_locked(mp, 0);
1868	} else {
1869		MNT_IUNLOCK(mp);
1870	}
1871}
1872
1873/*
1874 * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1875 * methods.
1876 */
1877int
1878vfs_write_suspend_umnt(struct mount *mp)
1879{
1880	int error;
1881
1882	MPASS(vn_suspendable(mp));
1883	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1884	    ("vfs_write_suspend_umnt: recursed"));
1885
1886	/* dounmount() already called vn_start_write(). */
1887	for (;;) {
1888		vn_finished_write(mp);
1889		error = vfs_write_suspend(mp, 0);
1890		if (error != 0) {
1891			vn_start_write(NULL, &mp, V_WAIT);
1892			return (error);
1893		}
1894		MNT_ILOCK(mp);
1895		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1896			break;
1897		MNT_IUNLOCK(mp);
1898		vn_start_write(NULL, &mp, V_WAIT);
1899	}
1900	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1901	wakeup(&mp->mnt_flag);
1902	MNT_IUNLOCK(mp);
1903	curthread->td_pflags |= TDP_IGNSUSP;
1904	return (0);
1905}
1906
1907/*
1908 * Implement kqueues for files by translating it to vnode operation.
1909 */
1910static int
1911vn_kqfilter(struct file *fp, struct knote *kn)
1912{
1913
1914	return (VOP_KQFILTER(fp->f_vnode, kn));
1915}
1916
1917/*
1918 * Simplified in-kernel wrapper calls for extended attribute access.
1919 * Both calls pass in a NULL credential, authorizing as "kernel" access.
1920 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1921 */
1922int
1923vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1924    const char *attrname, int *buflen, char *buf, struct thread *td)
1925{
1926	struct uio	auio;
1927	struct iovec	iov;
1928	int	error;
1929
1930	iov.iov_len = *buflen;
1931	iov.iov_base = buf;
1932
1933	auio.uio_iov = &iov;
1934	auio.uio_iovcnt = 1;
1935	auio.uio_rw = UIO_READ;
1936	auio.uio_segflg = UIO_SYSSPACE;
1937	auio.uio_td = td;
1938	auio.uio_offset = 0;
1939	auio.uio_resid = *buflen;
1940
1941	if ((ioflg & IO_NODELOCKED) == 0)
1942		vn_lock(vp, LK_SHARED | LK_RETRY);
1943
1944	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1945
1946	/* authorize attribute retrieval as kernel */
1947	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1948	    td);
1949
1950	if ((ioflg & IO_NODELOCKED) == 0)
1951		VOP_UNLOCK(vp, 0);
1952
1953	if (error == 0) {
1954		*buflen = *buflen - auio.uio_resid;
1955	}
1956
1957	return (error);
1958}
1959
1960/*
1961 * XXX failure mode if partially written?
1962 */
1963int
1964vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1965    const char *attrname, int buflen, char *buf, struct thread *td)
1966{
1967	struct uio	auio;
1968	struct iovec	iov;
1969	struct mount	*mp;
1970	int	error;
1971
1972	iov.iov_len = buflen;
1973	iov.iov_base = buf;
1974
1975	auio.uio_iov = &iov;
1976	auio.uio_iovcnt = 1;
1977	auio.uio_rw = UIO_WRITE;
1978	auio.uio_segflg = UIO_SYSSPACE;
1979	auio.uio_td = td;
1980	auio.uio_offset = 0;
1981	auio.uio_resid = buflen;
1982
1983	if ((ioflg & IO_NODELOCKED) == 0) {
1984		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1985			return (error);
1986		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1987	}
1988
1989	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1990
1991	/* authorize attribute setting as kernel */
1992	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1993
1994	if ((ioflg & IO_NODELOCKED) == 0) {
1995		vn_finished_write(mp);
1996		VOP_UNLOCK(vp, 0);
1997	}
1998
1999	return (error);
2000}
2001
2002int
2003vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2004    const char *attrname, struct thread *td)
2005{
2006	struct mount	*mp;
2007	int	error;
2008
2009	if ((ioflg & IO_NODELOCKED) == 0) {
2010		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2011			return (error);
2012		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2013	}
2014
2015	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2016
2017	/* authorize attribute removal as kernel */
2018	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2019	if (error == EOPNOTSUPP)
2020		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2021		    NULL, td);
2022
2023	if ((ioflg & IO_NODELOCKED) == 0) {
2024		vn_finished_write(mp);
2025		VOP_UNLOCK(vp, 0);
2026	}
2027
2028	return (error);
2029}
2030
2031static int
2032vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2033    struct vnode **rvp)
2034{
2035
2036	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2037}
2038
2039int
2040vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2041{
2042
2043	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2044	    lkflags, rvp));
2045}
2046
2047int
2048vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2049    int lkflags, struct vnode **rvp)
2050{
2051	struct mount *mp;
2052	int ltype, error;
2053
2054	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2055	mp = vp->v_mount;
2056	ltype = VOP_ISLOCKED(vp);
2057	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2058	    ("vn_vget_ino: vp not locked"));
2059	error = vfs_busy(mp, MBF_NOWAIT);
2060	if (error != 0) {
2061		vfs_ref(mp);
2062		VOP_UNLOCK(vp, 0);
2063		error = vfs_busy(mp, 0);
2064		vn_lock(vp, ltype | LK_RETRY);
2065		vfs_rel(mp);
2066		if (error != 0)
2067			return (ENOENT);
2068		if (vp->v_iflag & VI_DOOMED) {
2069			vfs_unbusy(mp);
2070			return (ENOENT);
2071		}
2072	}
2073	VOP_UNLOCK(vp, 0);
2074	error = alloc(mp, alloc_arg, lkflags, rvp);
2075	vfs_unbusy(mp);
2076	if (*rvp != vp)
2077		vn_lock(vp, ltype | LK_RETRY);
2078	if (vp->v_iflag & VI_DOOMED) {
2079		if (error == 0) {
2080			if (*rvp == vp)
2081				vunref(vp);
2082			else
2083				vput(*rvp);
2084		}
2085		error = ENOENT;
2086	}
2087	return (error);
2088}
2089
2090int
2091vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2092    struct thread *td)
2093{
2094
2095	if (vp->v_type != VREG || td == NULL)
2096		return (0);
2097	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2098	    lim_cur(td, RLIMIT_FSIZE)) {
2099		PROC_LOCK(td->td_proc);
2100		kern_psignal(td->td_proc, SIGXFSZ);
2101		PROC_UNLOCK(td->td_proc);
2102		return (EFBIG);
2103	}
2104	return (0);
2105}
2106
2107int
2108vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2109    struct thread *td)
2110{
2111	struct vnode *vp;
2112
2113	vp = fp->f_vnode;
2114#ifdef AUDIT
2115	vn_lock(vp, LK_SHARED | LK_RETRY);
2116	AUDIT_ARG_VNODE1(vp);
2117	VOP_UNLOCK(vp, 0);
2118#endif
2119	return (setfmode(td, active_cred, vp, mode));
2120}
2121
2122int
2123vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2124    struct thread *td)
2125{
2126	struct vnode *vp;
2127
2128	vp = fp->f_vnode;
2129#ifdef AUDIT
2130	vn_lock(vp, LK_SHARED | LK_RETRY);
2131	AUDIT_ARG_VNODE1(vp);
2132	VOP_UNLOCK(vp, 0);
2133#endif
2134	return (setfown(td, active_cred, vp, uid, gid));
2135}
2136
2137void
2138vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2139{
2140	vm_object_t object;
2141
2142	if ((object = vp->v_object) == NULL)
2143		return;
2144	VM_OBJECT_WLOCK(object);
2145	vm_object_page_remove(object, start, end, 0);
2146	VM_OBJECT_WUNLOCK(object);
2147}
2148
2149int
2150vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2151{
2152	struct vattr va;
2153	daddr_t bn, bnp;
2154	uint64_t bsize;
2155	off_t noff;
2156	int error;
2157
2158	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2159	    ("Wrong command %lu", cmd));
2160
2161	if (vn_lock(vp, LK_SHARED) != 0)
2162		return (EBADF);
2163	if (vp->v_type != VREG) {
2164		error = ENOTTY;
2165		goto unlock;
2166	}
2167	error = VOP_GETATTR(vp, &va, cred);
2168	if (error != 0)
2169		goto unlock;
2170	noff = *off;
2171	if (noff >= va.va_size) {
2172		error = ENXIO;
2173		goto unlock;
2174	}
2175	bsize = vp->v_mount->mnt_stat.f_iosize;
2176	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2177		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2178		if (error == EOPNOTSUPP) {
2179			error = ENOTTY;
2180			goto unlock;
2181		}
2182		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2183		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2184			noff = bn * bsize;
2185			if (noff < *off)
2186				noff = *off;
2187			goto unlock;
2188		}
2189	}
2190	if (noff > va.va_size)
2191		noff = va.va_size;
2192	/* noff == va.va_size. There is an implicit hole at the end of file. */
2193	if (cmd == FIOSEEKDATA)
2194		error = ENXIO;
2195unlock:
2196	VOP_UNLOCK(vp, 0);
2197	if (error == 0)
2198		*off = noff;
2199	return (error);
2200}
2201
2202int
2203vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2204{
2205	struct ucred *cred;
2206	struct vnode *vp;
2207	struct vattr vattr;
2208	off_t foffset, size;
2209	int error, noneg;
2210
2211	cred = td->td_ucred;
2212	vp = fp->f_vnode;
2213	foffset = foffset_lock(fp, 0);
2214	noneg = (vp->v_type != VCHR);
2215	error = 0;
2216	switch (whence) {
2217	case L_INCR:
2218		if (noneg &&
2219		    (foffset < 0 ||
2220		    (offset > 0 && foffset > OFF_MAX - offset))) {
2221			error = EOVERFLOW;
2222			break;
2223		}
2224		offset += foffset;
2225		break;
2226	case L_XTND:
2227		vn_lock(vp, LK_SHARED | LK_RETRY);
2228		error = VOP_GETATTR(vp, &vattr, cred);
2229		VOP_UNLOCK(vp, 0);
2230		if (error)
2231			break;
2232
2233		/*
2234		 * If the file references a disk device, then fetch
2235		 * the media size and use that to determine the ending
2236		 * offset.
2237		 */
2238		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2239		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2240			vattr.va_size = size;
2241		if (noneg &&
2242		    (vattr.va_size > OFF_MAX ||
2243		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2244			error = EOVERFLOW;
2245			break;
2246		}
2247		offset += vattr.va_size;
2248		break;
2249	case L_SET:
2250		break;
2251	case SEEK_DATA:
2252		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2253		break;
2254	case SEEK_HOLE:
2255		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2256		break;
2257	default:
2258		error = EINVAL;
2259	}
2260	if (error == 0 && noneg && offset < 0)
2261		error = EINVAL;
2262	if (error != 0)
2263		goto drop;
2264	VFS_KNOTE_UNLOCKED(vp, 0);
2265	td->td_uretoff.tdu_off = offset;
2266drop:
2267	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2268	return (error);
2269}
2270
2271int
2272vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2273    struct thread *td)
2274{
2275	int error;
2276
2277	/*
2278	 * Grant permission if the caller is the owner of the file, or
2279	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2280	 * on the file.  If the time pointer is null, then write
2281	 * permission on the file is also sufficient.
2282	 *
2283	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2284	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2285	 * will be allowed to set the times [..] to the current
2286	 * server time.
2287	 */
2288	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2289	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2290		error = VOP_ACCESS(vp, VWRITE, cred, td);
2291	return (error);
2292}
2293
2294int
2295vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2296{
2297	struct vnode *vp;
2298	int error;
2299
2300	if (fp->f_type == DTYPE_FIFO)
2301		kif->kf_type = KF_TYPE_FIFO;
2302	else
2303		kif->kf_type = KF_TYPE_VNODE;
2304	vp = fp->f_vnode;
2305	vref(vp);
2306	FILEDESC_SUNLOCK(fdp);
2307	error = vn_fill_kinfo_vnode(vp, kif);
2308	vrele(vp);
2309	FILEDESC_SLOCK(fdp);
2310	return (error);
2311}
2312
2313static inline void
2314vn_fill_junk(struct kinfo_file *kif)
2315{
2316	size_t len, olen;
2317
2318	/*
2319	 * Simulate vn_fullpath returning changing values for a given
2320	 * vp during e.g. coredump.
2321	 */
2322	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2323	olen = strlen(kif->kf_path);
2324	if (len < olen)
2325		strcpy(&kif->kf_path[len - 1], "$");
2326	else
2327		for (; olen < len; olen++)
2328			strcpy(&kif->kf_path[olen], "A");
2329}
2330
2331int
2332vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2333{
2334	struct vattr va;
2335	char *fullpath, *freepath;
2336	int error;
2337
2338	kif->kf_vnode_type = vntype_to_kinfo(vp->v_type);
2339	freepath = NULL;
2340	fullpath = "-";
2341	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2342	if (error == 0) {
2343		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2344	}
2345	if (freepath != NULL)
2346		free(freepath, M_TEMP);
2347
2348	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2349		vn_fill_junk(kif);
2350	);
2351
2352	/*
2353	 * Retrieve vnode attributes.
2354	 */
2355	va.va_fsid = VNOVAL;
2356	va.va_rdev = NODEV;
2357	vn_lock(vp, LK_SHARED | LK_RETRY);
2358	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2359	VOP_UNLOCK(vp, 0);
2360	if (error != 0)
2361		return (error);
2362	if (va.va_fsid != VNOVAL)
2363		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2364	else
2365		kif->kf_un.kf_file.kf_file_fsid =
2366		    vp->v_mount->mnt_stat.f_fsid.val[0];
2367	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2368	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2369	kif->kf_un.kf_file.kf_file_size = va.va_size;
2370	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2371	return (0);
2372}
2373
2374int
2375vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2376    vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2377    struct thread *td)
2378{
2379#ifdef HWPMC_HOOKS
2380	struct pmckern_map_in pkm;
2381#endif
2382	struct mount *mp;
2383	struct vnode *vp;
2384	vm_object_t object;
2385	vm_prot_t maxprot;
2386	boolean_t writecounted;
2387	int error;
2388
2389#if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2390    defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2391	/*
2392	 * POSIX shared-memory objects are defined to have
2393	 * kernel persistence, and are not defined to support
2394	 * read(2)/write(2) -- or even open(2).  Thus, we can
2395	 * use MAP_ASYNC to trade on-disk coherence for speed.
2396	 * The shm_open(3) library routine turns on the FPOSIXSHM
2397	 * flag to request this behavior.
2398	 */
2399	if ((fp->f_flag & FPOSIXSHM) != 0)
2400		flags |= MAP_NOSYNC;
2401#endif
2402	vp = fp->f_vnode;
2403
2404	/*
2405	 * Ensure that file and memory protections are
2406	 * compatible.  Note that we only worry about
2407	 * writability if mapping is shared; in this case,
2408	 * current and max prot are dictated by the open file.
2409	 * XXX use the vnode instead?  Problem is: what
2410	 * credentials do we use for determination? What if
2411	 * proc does a setuid?
2412	 */
2413	mp = vp->v_mount;
2414	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2415		maxprot = VM_PROT_NONE;
2416		if ((prot & VM_PROT_EXECUTE) != 0)
2417			return (EACCES);
2418	} else
2419		maxprot = VM_PROT_EXECUTE;
2420	if ((fp->f_flag & FREAD) != 0)
2421		maxprot |= VM_PROT_READ;
2422	else if ((prot & VM_PROT_READ) != 0)
2423		return (EACCES);
2424
2425	/*
2426	 * If we are sharing potential changes via MAP_SHARED and we
2427	 * are trying to get write permission although we opened it
2428	 * without asking for it, bail out.
2429	 */
2430	if ((flags & MAP_SHARED) != 0) {
2431		if ((fp->f_flag & FWRITE) != 0)
2432			maxprot |= VM_PROT_WRITE;
2433		else if ((prot & VM_PROT_WRITE) != 0)
2434			return (EACCES);
2435	} else {
2436		maxprot |= VM_PROT_WRITE;
2437		cap_maxprot |= VM_PROT_WRITE;
2438	}
2439	maxprot &= cap_maxprot;
2440
2441	/*
2442	 * For regular files and shared memory, POSIX requires that
2443	 * the value of foff be a legitimate offset within the data
2444	 * object.  In particular, negative offsets are invalid.
2445	 * Blocking negative offsets and overflows here avoids
2446	 * possible wraparound or user-level access into reserved
2447	 * ranges of the data object later.  In contrast, POSIX does
2448	 * not dictate how offsets are used by device drivers, so in
2449	 * the case of a device mapping a negative offset is passed
2450	 * on.
2451	 */
2452	if (
2453#ifdef _LP64
2454	    size > OFF_MAX ||
2455#endif
2456	    foff < 0 || foff > OFF_MAX - size)
2457		return (EINVAL);
2458
2459	writecounted = FALSE;
2460	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2461	    &foff, &object, &writecounted);
2462	if (error != 0)
2463		return (error);
2464	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2465	    foff, writecounted, td);
2466	if (error != 0) {
2467		/*
2468		 * If this mapping was accounted for in the vnode's
2469		 * writecount, then undo that now.
2470		 */
2471		if (writecounted)
2472			vnode_pager_release_writecount(object, 0, size);
2473		vm_object_deallocate(object);
2474	}
2475#ifdef HWPMC_HOOKS
2476	/* Inform hwpmc(4) if an executable is being mapped. */
2477	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2478		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2479			pkm.pm_file = vp;
2480			pkm.pm_address = (uintptr_t) *addr;
2481			PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm);
2482		}
2483	}
2484#endif
2485	return (error);
2486}
2487