vfs_cluster.c revision 1817
1/*-
2 * Copyright (c) 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
34 * $Id$
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/proc.h>
40#include <sys/buf.h>
41#include <sys/vnode.h>
42#include <sys/mount.h>
43#include <sys/trace.h>
44#include <sys/malloc.h>
45#include <sys/resourcevar.h>
46
47#ifdef DEBUG
48#include <vm/vm.h>
49#include <sys/sysctl.h>
50int doreallocblks = 1;
51struct ctldebug debug13 = { "doreallocblks", &doreallocblks };
52#else
53/* XXX for cluster_write */
54#define doreallocblks 1
55#endif
56
57/*
58 * Local declarations
59 */
60struct buf *cluster_newbuf __P((struct vnode *, struct buf *, long, daddr_t,
61	    daddr_t, long, int));
62struct buf *cluster_rbuild __P((struct vnode *, u_quad_t, struct buf *,
63	    daddr_t, daddr_t, long, int, long));
64void	    cluster_wbuild __P((struct vnode *, struct buf *, long,
65	    daddr_t, int, daddr_t));
66struct cluster_save *cluster_collectbufs __P((struct vnode *, struct buf *));
67
68#ifdef DIAGNOSTIC
69/*
70 * Set to 1 if reads of block zero should cause readahead to be done.
71 * Set to 0 treats a read of block zero as a non-sequential read.
72 *
73 * Setting to one assumes that most reads of block zero of files are due to
74 * sequential passes over the files (e.g. cat, sum) where additional blocks
75 * will soon be needed.  Setting to zero assumes that the majority are
76 * surgical strikes to get particular info (e.g. size, file) where readahead
77 * blocks will not be used and, in fact, push out other potentially useful
78 * blocks from the cache.  The former seems intuitive, but some quick tests
79 * showed that the latter performed better from a system-wide point of view.
80 */
81int	doclusterraz = 0;
82#define ISSEQREAD(vp, blk) \
83	(((blk) != 0 || doclusterraz) && \
84	 ((blk) == (vp)->v_lastr + 1 || (blk) == (vp)->v_lastr))
85#else
86#define ISSEQREAD(vp, blk) \
87	((blk) != 0 && ((blk) == (vp)->v_lastr + 1 || (blk) == (vp)->v_lastr))
88#endif
89
90/*
91 * This replaces bread.  If this is a bread at the beginning of a file and
92 * lastr is 0, we assume this is the first read and we'll read up to two
93 * blocks if they are sequential.  After that, we'll do regular read ahead
94 * in clustered chunks.
95 *
96 * There are 4 or 5 cases depending on how you count:
97 *	Desired block is in the cache:
98 *	    1 Not sequential access (0 I/Os).
99 *	    2 Access is sequential, do read-ahead (1 ASYNC).
100 *	Desired block is not in cache:
101 *	    3 Not sequential access (1 SYNC).
102 *	    4 Sequential access, next block is contiguous (1 SYNC).
103 *	    5 Sequential access, next block is not contiguous (1 SYNC, 1 ASYNC)
104 *
105 * There are potentially two buffers that require I/O.
106 * 	bp is the block requested.
107 *	rbp is the read-ahead block.
108 *	If either is NULL, then you don't have to do the I/O.
109 */
110int
111cluster_read(vp, filesize, lblkno, size, cred, bpp)
112	struct vnode *vp;
113	u_quad_t filesize;
114	daddr_t lblkno;
115	long size;
116	struct ucred *cred;
117	struct buf **bpp;
118{
119	struct buf *bp, *rbp;
120	daddr_t blkno, ioblkno;
121	long flags;
122	int error, num_ra, alreadyincore;
123
124#ifdef DIAGNOSTIC
125	if (size == 0)
126		panic("cluster_read: size = 0");
127#endif
128
129	error = 0;
130	flags = B_READ;
131	*bpp = bp = getblk(vp, lblkno, size, 0, 0);
132	if (bp->b_flags & B_CACHE) {
133		/*
134		 * Desired block is in cache; do any readahead ASYNC.
135		 * Case 1, 2.
136		 */
137		trace(TR_BREADHIT, pack(vp, size), lblkno);
138		flags |= B_ASYNC;
139		ioblkno = lblkno + (vp->v_ralen ? vp->v_ralen : 1);
140		alreadyincore = (int)incore(vp, ioblkno);
141		bp = NULL;
142	} else {
143		/* Block wasn't in cache, case 3, 4, 5. */
144		trace(TR_BREADMISS, pack(vp, size), lblkno);
145		bp->b_flags |= B_READ;
146		ioblkno = lblkno;
147		alreadyincore = 0;
148		curproc->p_stats->p_ru.ru_inblock++;		/* XXX */
149	}
150	/*
151	 * XXX
152	 * Replace 1 with a window size based on some permutation of
153	 * maxcontig and rot_delay.  This will let you figure out how
154	 * many blocks you should read-ahead (case 2, 4, 5).
155	 *
156	 * If the access isn't sequential, reset the window to 1.
157	 * Note that a read to the same block is considered sequential.
158	 * This catches the case where the file is being read sequentially,
159	 * but at smaller than the filesystem block size.
160	 */
161	rbp = NULL;
162	if (!ISSEQREAD(vp, lblkno)) {
163		vp->v_ralen = 0;
164		vp->v_maxra = lblkno;
165	} else if ((ioblkno + 1) * size <= filesize && !alreadyincore &&
166	    !(error = VOP_BMAP(vp, ioblkno, NULL, &blkno, &num_ra)) &&
167	    blkno != -1) {
168		/*
169		 * Reading sequentially, and the next block is not in the
170		 * cache.  We are going to try reading ahead.
171		 */
172		if (num_ra) {
173			/*
174			 * If our desired readahead block had been read
175			 * in a previous readahead but is no longer in
176			 * core, then we may be reading ahead too far
177			 * or are not using our readahead very rapidly.
178			 * In this case we scale back the window.
179			 */
180			if (!alreadyincore && ioblkno <= vp->v_maxra)
181				vp->v_ralen = max(vp->v_ralen >> 1, 1);
182			/*
183			 * There are more sequential blocks than our current
184			 * window allows, scale up.  Ideally we want to get
185			 * in sync with the filesystem maxcontig value.
186			 */
187			else if (num_ra > vp->v_ralen && lblkno != vp->v_lastr)
188				vp->v_ralen = vp->v_ralen ?
189					min(num_ra, vp->v_ralen << 1) : 1;
190
191			if (num_ra > vp->v_ralen)
192				num_ra = vp->v_ralen;
193		}
194
195		if (num_ra)				/* case 2, 4 */
196			rbp = cluster_rbuild(vp, filesize,
197			    bp, ioblkno, blkno, size, num_ra, flags);
198		else if (ioblkno == lblkno) {
199			bp->b_blkno = blkno;
200			/* Case 5: check how many blocks to read ahead */
201			++ioblkno;
202			if ((ioblkno + 1) * size > filesize ||
203			    incore(vp, ioblkno) || (error = VOP_BMAP(vp,
204			     ioblkno, NULL, &blkno, &num_ra)) || blkno == -1)
205				goto skip_readahead;
206			/*
207			 * Adjust readahead as above
208			 */
209			if (num_ra) {
210				if (!alreadyincore && ioblkno <= vp->v_maxra)
211					vp->v_ralen = max(vp->v_ralen >> 1, 1);
212				else if (num_ra > vp->v_ralen &&
213					 lblkno != vp->v_lastr)
214					vp->v_ralen = vp->v_ralen ?
215						min(num_ra,vp->v_ralen<<1) : 1;
216				if (num_ra > vp->v_ralen)
217					num_ra = vp->v_ralen;
218			}
219			flags |= B_ASYNC;
220			if (num_ra)
221				rbp = cluster_rbuild(vp, filesize,
222				    NULL, ioblkno, blkno, size, num_ra, flags);
223			else {
224				rbp = getblk(vp, ioblkno, size, 0, 0);
225				rbp->b_flags |= flags;
226				rbp->b_blkno = blkno;
227			}
228		} else {
229			/* case 2; read ahead single block */
230			rbp = getblk(vp, ioblkno, size, 0, 0);
231			rbp->b_flags |= flags;
232			rbp->b_blkno = blkno;
233		}
234
235		if (rbp == bp)			/* case 4 */
236			rbp = NULL;
237		else if (rbp) {			/* case 2, 5 */
238			trace(TR_BREADMISSRA,
239			    pack(vp, (num_ra + 1) * size), ioblkno);
240			curproc->p_stats->p_ru.ru_inblock++;	/* XXX */
241		}
242	}
243
244	/* XXX Kirk, do we need to make sure the bp has creds? */
245skip_readahead:
246	if (bp)
247		if (bp->b_flags & (B_DONE | B_DELWRI))
248			panic("cluster_read: DONE bp");
249		else
250			error = VOP_STRATEGY(bp);
251
252	if (rbp)
253		if (error || rbp->b_flags & (B_DONE | B_DELWRI)) {
254			rbp->b_flags &= ~(B_ASYNC | B_READ);
255			brelse(rbp);
256		} else
257			(void) VOP_STRATEGY(rbp);
258
259	/*
260	 * Recalculate our maximum readahead
261	 */
262	if (rbp == NULL)
263		rbp = bp;
264	if (rbp)
265		vp->v_maxra = rbp->b_lblkno + (rbp->b_bufsize / size) - 1;
266
267	if (bp)
268		return(biowait(bp));
269	return(error);
270}
271
272/*
273 * If blocks are contiguous on disk, use this to provide clustered
274 * read ahead.  We will read as many blocks as possible sequentially
275 * and then parcel them up into logical blocks in the buffer hash table.
276 */
277struct buf *
278cluster_rbuild(vp, filesize, bp, lbn, blkno, size, run, flags)
279	struct vnode *vp;
280	u_quad_t filesize;
281	struct buf *bp;
282	daddr_t lbn;
283	daddr_t blkno;
284	long size;
285	int run;
286	long flags;
287{
288	struct cluster_save *b_save;
289	struct buf *tbp;
290	daddr_t bn;
291	int i, inc;
292
293#ifdef DIAGNOSTIC
294	if (size != vp->v_mount->mnt_stat.f_iosize)
295		panic("cluster_rbuild: size %d != filesize %d\n",
296			size, vp->v_mount->mnt_stat.f_iosize);
297#endif
298	if (size * (lbn + run + 1) > filesize)
299		--run;
300	if (run == 0) {
301		if (!bp) {
302			bp = getblk(vp, lbn, size, 0, 0);
303			bp->b_blkno = blkno;
304			bp->b_flags |= flags;
305		}
306		return(bp);
307	}
308
309	bp = cluster_newbuf(vp, bp, flags, blkno, lbn, size, run + 1);
310	if (bp->b_flags & (B_DONE | B_DELWRI))
311		return (bp);
312
313	b_save = malloc(sizeof(struct buf *) * run + sizeof(struct cluster_save),
314	    M_SEGMENT, M_WAITOK);
315	b_save->bs_bufsize = b_save->bs_bcount = size;
316	b_save->bs_nchildren = 0;
317	b_save->bs_children = (struct buf **)(b_save + 1);
318	b_save->bs_saveaddr = bp->b_saveaddr;
319	bp->b_saveaddr = (caddr_t) b_save;
320
321	inc = btodb(size);
322	for (bn = blkno + inc, i = 1; i <= run; ++i, bn += inc) {
323		if (incore(vp, lbn + i)) {
324			if (i == 1) {
325				bp->b_saveaddr = b_save->bs_saveaddr;
326				bp->b_flags &= ~B_CALL;
327				bp->b_iodone = NULL;
328				allocbuf(bp, size);
329				free(b_save, M_SEGMENT);
330			} else
331				allocbuf(bp, size * i);
332			break;
333		}
334		tbp = getblk(vp, lbn + i, 0, 0, 0);
335		/*
336		 * getblk may return some memory in the buffer if there were
337		 * no empty buffers to shed it to.  If there is currently
338		 * memory in the buffer, we move it down size bytes to make
339		 * room for the valid pages that cluster_callback will insert.
340		 * We do this now so we don't have to do it at interrupt time
341		 * in the callback routine.
342		 */
343		if (tbp->b_bufsize != 0) {
344			caddr_t bdata = (char *)tbp->b_data;
345
346			if (tbp->b_bufsize + size > MAXBSIZE)
347				panic("cluster_rbuild: too much memory");
348			if (tbp->b_bufsize > size) {
349				/*
350				 * XXX if the source and destination regions
351				 * overlap we have to copy backward to avoid
352				 * clobbering any valid pages (i.e. pagemove
353				 * implementations typically can't handle
354				 * overlap).
355				 */
356				bdata += tbp->b_bufsize;
357				while (bdata > (char *)tbp->b_data) {
358					bdata -= CLBYTES;
359					pagemove(bdata, bdata + size, CLBYTES);
360				}
361			} else
362				pagemove(bdata, bdata + size, tbp->b_bufsize);
363		}
364		tbp->b_blkno = bn;
365		tbp->b_flags |= flags | B_READ | B_ASYNC;
366		++b_save->bs_nchildren;
367		b_save->bs_children[i - 1] = tbp;
368	}
369	return(bp);
370}
371
372/*
373 * Either get a new buffer or grow the existing one.
374 */
375struct buf *
376cluster_newbuf(vp, bp, flags, blkno, lblkno, size, run)
377	struct vnode *vp;
378	struct buf *bp;
379	long flags;
380	daddr_t blkno;
381	daddr_t lblkno;
382	long size;
383	int run;
384{
385	if (!bp) {
386		bp = getblk(vp, lblkno, size, 0, 0);
387		if (bp->b_flags & (B_DONE | B_DELWRI)) {
388			bp->b_blkno = blkno;
389			return(bp);
390		}
391	}
392	allocbuf(bp, run * size);
393	bp->b_blkno = blkno;
394	bp->b_iodone = cluster_callback;
395	bp->b_flags |= flags | B_CALL;
396	return(bp);
397}
398
399/*
400 * Cleanup after a clustered read or write.
401 * This is complicated by the fact that any of the buffers might have
402 * extra memory (if there were no empty buffer headers at allocbuf time)
403 * that we will need to shift around.
404 */
405void
406cluster_callback(bp)
407	struct buf *bp;
408{
409	struct cluster_save *b_save;
410	struct buf **bpp, *tbp;
411	long bsize;
412	caddr_t cp;
413	int error = 0;
414
415	/*
416	 * Must propogate errors to all the components.
417	 */
418	if (bp->b_flags & B_ERROR)
419		error = bp->b_error;
420
421	b_save = (struct cluster_save *)(bp->b_saveaddr);
422	bp->b_saveaddr = b_save->bs_saveaddr;
423
424	bsize = b_save->bs_bufsize;
425	cp = (char *)bp->b_data + bsize;
426	/*
427	 * Move memory from the large cluster buffer into the component
428	 * buffers and mark IO as done on these.
429	 */
430	for (bpp = b_save->bs_children; b_save->bs_nchildren--; ++bpp) {
431		tbp = *bpp;
432		pagemove(cp, tbp->b_data, bsize);
433		tbp->b_bufsize += bsize;
434		tbp->b_bcount = bsize;
435		if (error) {
436			tbp->b_flags |= B_ERROR;
437			tbp->b_error = error;
438		}
439		biodone(tbp);
440		bp->b_bufsize -= bsize;
441		cp += bsize;
442	}
443	/*
444	 * If there was excess memory in the cluster buffer,
445	 * slide it up adjacent to the remaining valid data.
446	 */
447	if (bp->b_bufsize != bsize) {
448		if (bp->b_bufsize < bsize)
449			panic("cluster_callback: too little memory");
450		pagemove(cp, (char *)bp->b_data + bsize, bp->b_bufsize - bsize);
451	}
452	bp->b_bcount = bsize;
453	bp->b_iodone = NULL;
454	free(b_save, M_SEGMENT);
455	if (bp->b_flags & B_ASYNC)
456		brelse(bp);
457	else {
458		bp->b_flags &= ~B_WANTED;
459		wakeup((caddr_t)bp);
460	}
461}
462
463/*
464 * Do clustered write for FFS.
465 *
466 * Three cases:
467 *	1. Write is not sequential (write asynchronously)
468 *	Write is sequential:
469 *	2.	beginning of cluster - begin cluster
470 *	3.	middle of a cluster - add to cluster
471 *	4.	end of a cluster - asynchronously write cluster
472 */
473void
474cluster_write(bp, filesize)
475        struct buf *bp;
476	u_quad_t filesize;
477{
478        struct vnode *vp;
479        daddr_t lbn;
480        int maxclen, cursize;
481
482        vp = bp->b_vp;
483        lbn = bp->b_lblkno;
484
485	/* Initialize vnode to beginning of file. */
486	if (lbn == 0)
487		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
488
489        if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
490	    (bp->b_blkno != vp->v_lasta + btodb(bp->b_bcount))) {
491		maxclen = MAXBSIZE / vp->v_mount->mnt_stat.f_iosize - 1;
492		if (vp->v_clen != 0) {
493			/*
494			 * Next block is not sequential.
495			 *
496			 * If we are not writing at end of file, the process
497			 * seeked to another point in the file since its
498			 * last write, or we have reached our maximum
499			 * cluster size, then push the previous cluster.
500			 * Otherwise try reallocating to make it sequential.
501			 */
502			cursize = vp->v_lastw - vp->v_cstart + 1;
503			if (!doreallocblks ||
504			    (lbn + 1) * bp->b_bcount != filesize ||
505			    lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
506				cluster_wbuild(vp, NULL, bp->b_bcount,
507				    vp->v_cstart, cursize, lbn);
508			} else {
509				struct buf **bpp, **endbp;
510				struct cluster_save *buflist;
511
512				buflist = cluster_collectbufs(vp, bp);
513				endbp = &buflist->bs_children
514				    [buflist->bs_nchildren - 1];
515				if (VOP_REALLOCBLKS(vp, buflist)) {
516					/*
517					 * Failed, push the previous cluster.
518					 */
519					for (bpp = buflist->bs_children;
520					     bpp < endbp; bpp++)
521						brelse(*bpp);
522					free(buflist, M_SEGMENT);
523					cluster_wbuild(vp, NULL, bp->b_bcount,
524					    vp->v_cstart, cursize, lbn);
525				} else {
526					/*
527					 * Succeeded, keep building cluster.
528					 */
529					for (bpp = buflist->bs_children;
530					     bpp <= endbp; bpp++)
531						bdwrite(*bpp);
532					free(buflist, M_SEGMENT);
533					vp->v_lastw = lbn;
534					vp->v_lasta = bp->b_blkno;
535					return;
536				}
537			}
538		}
539		/*
540		 * Consider beginning a cluster.
541		 * If at end of file, make cluster as large as possible,
542		 * otherwise find size of existing cluster.
543		 */
544		if ((lbn + 1) * bp->b_bcount != filesize &&
545		    (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen) ||
546		     bp->b_blkno == -1)) {
547			bawrite(bp);
548			vp->v_clen = 0;
549			vp->v_lasta = bp->b_blkno;
550			vp->v_cstart = lbn + 1;
551			vp->v_lastw = lbn;
552			return;
553		}
554                vp->v_clen = maxclen;
555                if (maxclen == 0) {		/* I/O not contiguous */
556			vp->v_cstart = lbn + 1;
557                        bawrite(bp);
558                } else {			/* Wait for rest of cluster */
559			vp->v_cstart = lbn;
560                        bdwrite(bp);
561		}
562	} else if (lbn == vp->v_cstart + vp->v_clen) {
563		/*
564		 * At end of cluster, write it out.
565		 */
566		cluster_wbuild(vp, bp, bp->b_bcount, vp->v_cstart,
567		    vp->v_clen + 1, lbn);
568		vp->v_clen = 0;
569		vp->v_cstart = lbn + 1;
570	} else
571		/*
572		 * In the middle of a cluster, so just delay the
573		 * I/O for now.
574		 */
575		bdwrite(bp);
576	vp->v_lastw = lbn;
577	vp->v_lasta = bp->b_blkno;
578}
579
580
581/*
582 * This is an awful lot like cluster_rbuild...wish they could be combined.
583 * The last lbn argument is the current block on which I/O is being
584 * performed.  Check to see that it doesn't fall in the middle of
585 * the current block (if last_bp == NULL).
586 */
587void
588cluster_wbuild(vp, last_bp, size, start_lbn, len, lbn)
589	struct vnode *vp;
590	struct buf *last_bp;
591	long size;
592	daddr_t start_lbn;
593	int len;
594	daddr_t	lbn;
595{
596	struct cluster_save *b_save;
597	struct buf *bp, *tbp;
598	caddr_t	cp;
599	int i, s;
600
601#ifdef DIAGNOSTIC
602	if (size != vp->v_mount->mnt_stat.f_iosize)
603		panic("cluster_wbuild: size %d != filesize %d\n",
604			size, vp->v_mount->mnt_stat.f_iosize);
605#endif
606redo:
607	while ((!incore(vp, start_lbn) || start_lbn == lbn) && len) {
608		++start_lbn;
609		--len;
610	}
611
612	/* Get more memory for current buffer */
613	if (len <= 1) {
614		if (last_bp) {
615			bawrite(last_bp);
616		} else if (len) {
617			bp = getblk(vp, start_lbn, size, 0, 0);
618			bawrite(bp);
619		}
620		return;
621	}
622
623	bp = getblk(vp, start_lbn, size, 0, 0);
624	if (!(bp->b_flags & B_DELWRI)) {
625		++start_lbn;
626		--len;
627		brelse(bp);
628		goto redo;
629	}
630
631	/*
632	 * Extra memory in the buffer, punt on this buffer.
633	 * XXX we could handle this in most cases, but we would have to
634	 * push the extra memory down to after our max possible cluster
635	 * size and then potentially pull it back up if the cluster was
636	 * terminated prematurely--too much hassle.
637	 */
638	if (bp->b_bcount != bp->b_bufsize) {
639		++start_lbn;
640		--len;
641		bawrite(bp);
642		goto redo;
643	}
644
645	--len;
646	b_save = malloc(sizeof(struct buf *) * len + sizeof(struct cluster_save),
647	    M_SEGMENT, M_WAITOK);
648	b_save->bs_bcount = bp->b_bcount;
649	b_save->bs_bufsize = bp->b_bufsize;
650	b_save->bs_nchildren = 0;
651	b_save->bs_children = (struct buf **)(b_save + 1);
652	b_save->bs_saveaddr = bp->b_saveaddr;
653	bp->b_saveaddr = (caddr_t) b_save;
654
655	bp->b_flags |= B_CALL;
656	bp->b_iodone = cluster_callback;
657	cp = (char *)bp->b_data + size;
658	for (++start_lbn, i = 0; i < len; ++i, ++start_lbn) {
659		/*
660		 * Block is not in core or the non-sequential block
661		 * ending our cluster was part of the cluster (in which
662		 * case we don't want to write it twice).
663		 */
664		if (!incore(vp, start_lbn) ||
665		    last_bp == NULL && start_lbn == lbn)
666			break;
667
668		/*
669		 * Get the desired block buffer (unless it is the final
670		 * sequential block whose buffer was passed in explictly
671		 * as last_bp).
672		 */
673		if (last_bp == NULL || start_lbn != lbn) {
674			tbp = getblk(vp, start_lbn, size, 0, 0);
675			if (!(tbp->b_flags & B_DELWRI)) {
676				brelse(tbp);
677				break;
678			}
679		} else
680			tbp = last_bp;
681
682		++b_save->bs_nchildren;
683
684		/* Move memory from children to parent */
685		if (tbp->b_blkno != (bp->b_blkno + btodb(bp->b_bufsize))) {
686			printf("Clustered Block: %d addr %x bufsize: %d\n",
687			    bp->b_lblkno, bp->b_blkno, bp->b_bufsize);
688			printf("Child Block: %d addr: %x\n", tbp->b_lblkno,
689			    tbp->b_blkno);
690			panic("Clustered write to wrong blocks");
691		}
692
693		pagemove(tbp->b_data, cp, size);
694		bp->b_bcount += size;
695		bp->b_bufsize += size;
696
697		tbp->b_bufsize -= size;
698		tbp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
699		tbp->b_flags |= (B_ASYNC | B_AGE);
700		s = splbio();
701		reassignbuf(tbp, tbp->b_vp);		/* put on clean list */
702		++tbp->b_vp->v_numoutput;
703		splx(s);
704		b_save->bs_children[i] = tbp;
705
706		cp += size;
707	}
708
709	if (i == 0) {
710		/* None to cluster */
711		bp->b_saveaddr = b_save->bs_saveaddr;
712		bp->b_flags &= ~B_CALL;
713		bp->b_iodone = NULL;
714		free(b_save, M_SEGMENT);
715	}
716	bawrite(bp);
717	if (i < len) {
718		len -= i + 1;
719		start_lbn += 1;
720		goto redo;
721	}
722}
723
724/*
725 * Collect together all the buffers in a cluster.
726 * Plus add one additional buffer.
727 */
728struct cluster_save *
729cluster_collectbufs(vp, last_bp)
730	struct vnode *vp;
731	struct buf *last_bp;
732{
733	struct cluster_save *buflist;
734	daddr_t	lbn;
735	int i, len;
736
737	len = vp->v_lastw - vp->v_cstart + 1;
738	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
739	    M_SEGMENT, M_WAITOK);
740	buflist->bs_nchildren = 0;
741	buflist->bs_children = (struct buf **)(buflist + 1);
742	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++)
743		    (void)bread(vp, lbn, last_bp->b_bcount, NOCRED,
744			&buflist->bs_children[i]);
745	buflist->bs_children[i] = last_bp;
746	buflist->bs_nchildren = i + 1;
747	return (buflist);
748}
749