vfs_cluster.c revision 137724
1/*-
2 * Copyright (c) 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Modifications/enhancements:
5 * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/kern/vfs_cluster.c 137724 2004-11-15 08:38:50Z phk $");
36
37#include "opt_debug_cluster.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/proc.h>
43#include <sys/bio.h>
44#include <sys/buf.h>
45#include <sys/vnode.h>
46#include <sys/malloc.h>
47#include <sys/mount.h>
48#include <sys/resourcevar.h>
49#include <sys/vmmeter.h>
50#include <vm/vm.h>
51#include <vm/vm_object.h>
52#include <vm/vm_page.h>
53#include <sys/sysctl.h>
54
55#if defined(CLUSTERDEBUG)
56static int	rcluster= 0;
57SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0,
58    "Debug VFS clustering code");
59#endif
60
61static MALLOC_DEFINE(M_SEGMENT, "cluster_save buffer", "cluster_save buffer");
62
63static struct cluster_save *
64	cluster_collectbufs(struct vnode *vp, struct buf *last_bp);
65static struct buf *
66	cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn,
67			 daddr_t blkno, long size, int run, struct buf *fbp);
68
69static int write_behind = 1;
70SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0,
71    "Cluster write-behind; 0: disable, 1: enable, 2: backed off");
72
73static int read_max = 8;
74SYSCTL_INT(_vfs, OID_AUTO, read_max, CTLFLAG_RW, &read_max, 0,
75    "Cluster read-ahead max block count");
76
77/* Page expended to mark partially backed buffers */
78extern vm_page_t	bogus_page;
79
80/*
81 * Number of physical bufs (pbufs) this subsystem is allowed.
82 * Manipulated by vm_pager.c
83 */
84extern int cluster_pbuf_freecnt;
85
86/*
87 * Read data to a buf, including read-ahead if we find this to be beneficial.
88 * cluster_read replaces bread.
89 */
90int
91cluster_read(vp, filesize, lblkno, size, cred, totread, seqcount, bpp)
92	struct vnode *vp;
93	u_quad_t filesize;
94	daddr_t lblkno;
95	long size;
96	struct ucred *cred;
97	long totread;
98	int seqcount;
99	struct buf **bpp;
100{
101	struct buf *bp, *rbp, *reqbp;
102	daddr_t blkno, origblkno;
103	int maxra, racluster;
104	int error, ncontig;
105	int i;
106
107	error = 0;
108
109	/*
110	 * Try to limit the amount of read-ahead by a few
111	 * ad-hoc parameters.  This needs work!!!
112	 */
113	racluster = vp->v_mount->mnt_iosize_max / size;
114	maxra = seqcount;
115	maxra = min(read_max, maxra);
116	maxra = min(nbuf/8, maxra);
117	if (((u_quad_t)(lblkno + maxra + 1) * size) > filesize)
118		maxra = (filesize / size) - lblkno;
119
120	/*
121	 * get the requested block
122	 */
123	*bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0, 0);
124	origblkno = lblkno;
125
126	/*
127	 * if it is in the cache, then check to see if the reads have been
128	 * sequential.  If they have, then try some read-ahead, otherwise
129	 * back-off on prospective read-aheads.
130	 */
131	if (bp->b_flags & B_CACHE) {
132		if (!seqcount) {
133			return 0;
134		} else if ((bp->b_flags & B_RAM) == 0) {
135			return 0;
136		} else {
137			int s;
138			bp->b_flags &= ~B_RAM;
139			/*
140			 * We do the spl here so that there is no window
141			 * between the incore and the b_usecount increment
142			 * below.  We opt to keep the spl out of the loop
143			 * for efficiency.
144			 */
145			s = splbio();
146			VI_LOCK(vp);
147			for (i = 1; i < maxra; i++) {
148				/*
149				 * Stop if the buffer does not exist or it
150				 * is invalid (about to go away?)
151				 */
152				rbp = gbincore(&vp->v_bufobj, lblkno+i);
153				if (rbp == NULL || (rbp->b_flags & B_INVAL))
154					break;
155
156				/*
157				 * Set another read-ahead mark so we know
158				 * to check again.
159				 */
160				if (((i % racluster) == (racluster - 1)) ||
161					(i == (maxra - 1)))
162					rbp->b_flags |= B_RAM;
163			}
164			VI_UNLOCK(vp);
165			splx(s);
166			if (i >= maxra) {
167				return 0;
168			}
169			lblkno += i;
170		}
171		reqbp = bp = NULL;
172	/*
173	 * If it isn't in the cache, then get a chunk from
174	 * disk if sequential, otherwise just get the block.
175	 */
176	} else {
177		off_t firstread = bp->b_offset;
178		int nblks;
179
180		KASSERT(bp->b_offset != NOOFFSET,
181		    ("cluster_read: no buffer offset"));
182
183		ncontig = 0;
184
185		/*
186		 * Compute the total number of blocks that we should read
187		 * synchronously.
188		 */
189		if (firstread + totread > filesize)
190			totread = filesize - firstread;
191		nblks = howmany(totread, size);
192		if (nblks > racluster)
193			nblks = racluster;
194
195		/*
196		 * Now compute the number of contiguous blocks.
197		 */
198		if (nblks > 1) {
199	    		error = VOP_BMAP(vp, lblkno, NULL,
200				&blkno, &ncontig, NULL);
201			/*
202			 * If this failed to map just do the original block.
203			 */
204			if (error || blkno == -1)
205				ncontig = 0;
206		}
207
208		/*
209		 * If we have contiguous data available do a cluster
210		 * otherwise just read the requested block.
211		 */
212		if (ncontig) {
213			/* Account for our first block. */
214			ncontig = min(ncontig + 1, nblks);
215			if (ncontig < nblks)
216				nblks = ncontig;
217			bp = cluster_rbuild(vp, filesize, lblkno,
218				blkno, size, nblks, bp);
219			lblkno += (bp->b_bufsize / size);
220		} else {
221			bp->b_flags |= B_RAM;
222			bp->b_iocmd = BIO_READ;
223			lblkno += 1;
224		}
225	}
226
227	/*
228	 * handle the synchronous read so that it is available ASAP.
229	 */
230	if (bp) {
231		if ((bp->b_flags & B_CLUSTER) == 0) {
232			vfs_busy_pages(bp, 0);
233		}
234		bp->b_flags &= ~B_INVAL;
235		bp->b_ioflags &= ~BIO_ERROR;
236		if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL)
237			BUF_KERNPROC(bp);
238		bp->b_iooffset = dbtob(bp->b_blkno);
239		bstrategy(bp);
240		curproc->p_stats->p_ru.ru_inblock++;
241	}
242
243	/*
244	 * If we have been doing sequential I/O, then do some read-ahead.
245	 */
246	while (lblkno < (origblkno + maxra)) {
247		error = VOP_BMAP(vp, lblkno, NULL, &blkno, &ncontig, NULL);
248		if (error)
249			break;
250
251		if (blkno == -1)
252			break;
253
254		/*
255		 * We could throttle ncontig here by maxra but we might as
256		 * well read the data if it is contiguous.  We're throttled
257		 * by racluster anyway.
258		 */
259		if (ncontig) {
260			ncontig = min(ncontig + 1, racluster);
261			rbp = cluster_rbuild(vp, filesize, lblkno, blkno,
262				size, ncontig, NULL);
263			lblkno += (rbp->b_bufsize / size);
264			if (rbp->b_flags & B_DELWRI) {
265				bqrelse(rbp);
266				continue;
267			}
268		} else {
269			rbp = getblk(vp, lblkno, size, 0, 0, 0);
270			lblkno += 1;
271			if (rbp->b_flags & B_DELWRI) {
272				bqrelse(rbp);
273				continue;
274			}
275			rbp->b_flags |= B_ASYNC | B_RAM;
276			rbp->b_iocmd = BIO_READ;
277			rbp->b_blkno = blkno;
278		}
279		if (rbp->b_flags & B_CACHE) {
280			rbp->b_flags &= ~B_ASYNC;
281			bqrelse(rbp);
282			continue;
283		}
284		if ((rbp->b_flags & B_CLUSTER) == 0) {
285			vfs_busy_pages(rbp, 0);
286		}
287		rbp->b_flags &= ~B_INVAL;
288		rbp->b_ioflags &= ~BIO_ERROR;
289		if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL)
290			BUF_KERNPROC(rbp);
291		rbp->b_iooffset = dbtob(rbp->b_blkno);
292		bstrategy(rbp);
293		curproc->p_stats->p_ru.ru_inblock++;
294	}
295
296	if (reqbp)
297		return (bufwait(reqbp));
298	else
299		return (error);
300}
301
302/*
303 * If blocks are contiguous on disk, use this to provide clustered
304 * read ahead.  We will read as many blocks as possible sequentially
305 * and then parcel them up into logical blocks in the buffer hash table.
306 */
307static struct buf *
308cluster_rbuild(vp, filesize, lbn, blkno, size, run, fbp)
309	struct vnode *vp;
310	u_quad_t filesize;
311	daddr_t lbn;
312	daddr_t blkno;
313	long size;
314	int run;
315	struct buf *fbp;
316{
317	struct buf *bp, *tbp;
318	daddr_t bn;
319	int i, inc, j;
320
321	GIANT_REQUIRED;
322
323	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
324	    ("cluster_rbuild: size %ld != filesize %jd\n",
325	    size, (intmax_t)vp->v_mount->mnt_stat.f_iosize));
326
327	/*
328	 * avoid a division
329	 */
330	while ((u_quad_t) size * (lbn + run) > filesize) {
331		--run;
332	}
333
334	if (fbp) {
335		tbp = fbp;
336		tbp->b_iocmd = BIO_READ;
337	} else {
338		tbp = getblk(vp, lbn, size, 0, 0, 0);
339		if (tbp->b_flags & B_CACHE)
340			return tbp;
341		tbp->b_flags |= B_ASYNC | B_RAM;
342		tbp->b_iocmd = BIO_READ;
343	}
344
345	tbp->b_blkno = blkno;
346	if( (tbp->b_flags & B_MALLOC) ||
347		((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
348		return tbp;
349
350	bp = trypbuf(&cluster_pbuf_freecnt);
351	if (bp == 0)
352		return tbp;
353
354	/*
355	 * We are synthesizing a buffer out of vm_page_t's, but
356	 * if the block size is not page aligned then the starting
357	 * address may not be either.  Inherit the b_data offset
358	 * from the original buffer.
359	 */
360	bp->b_data = (char *)((vm_offset_t)bp->b_data |
361	    ((vm_offset_t)tbp->b_data & PAGE_MASK));
362	bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO;
363	bp->b_iocmd = BIO_READ;
364	bp->b_iodone = cluster_callback;
365	bp->b_blkno = blkno;
366	bp->b_lblkno = lbn;
367	bp->b_offset = tbp->b_offset;
368	KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset"));
369	pbgetvp(vp, bp);
370
371	TAILQ_INIT(&bp->b_cluster.cluster_head);
372
373	bp->b_bcount = 0;
374	bp->b_bufsize = 0;
375	bp->b_npages = 0;
376
377	inc = btodb(size);
378	for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
379		if (i != 0) {
380			if ((bp->b_npages * PAGE_SIZE) +
381			    round_page(size) > vp->v_mount->mnt_iosize_max) {
382				break;
383			}
384
385			tbp = getblk(vp, lbn + i, size, 0, 0, GB_LOCK_NOWAIT);
386
387			/* Don't wait around for locked bufs. */
388			if (tbp == NULL)
389				break;
390
391			/*
392			 * Stop scanning if the buffer is fully valid
393			 * (marked B_CACHE), or locked (may be doing a
394			 * background write), or if the buffer is not
395			 * VMIO backed.  The clustering code can only deal
396			 * with VMIO-backed buffers.
397			 */
398			VI_LOCK(vp);
399			if ((tbp->b_vflags & BV_BKGRDINPROG) ||
400			    (tbp->b_flags & B_CACHE) ||
401			    (tbp->b_flags & B_VMIO) == 0) {
402				VI_UNLOCK(vp);
403				bqrelse(tbp);
404				break;
405			}
406			VI_UNLOCK(vp);
407
408			/*
409			 * The buffer must be completely invalid in order to
410			 * take part in the cluster.  If it is partially valid
411			 * then we stop.
412			 */
413			VM_OBJECT_LOCK(tbp->b_bufobj->bo_object);
414			for (j = 0;j < tbp->b_npages; j++) {
415				VM_OBJECT_LOCK_ASSERT(tbp->b_pages[j]->object,
416				    MA_OWNED);
417				if (tbp->b_pages[j]->valid)
418					break;
419			}
420			VM_OBJECT_UNLOCK(tbp->b_bufobj->bo_object);
421			if (j != tbp->b_npages) {
422				bqrelse(tbp);
423				break;
424			}
425
426			/*
427			 * Set a read-ahead mark as appropriate
428			 */
429			if ((fbp && (i == 1)) || (i == (run - 1)))
430				tbp->b_flags |= B_RAM;
431
432			/*
433			 * Set the buffer up for an async read (XXX should
434			 * we do this only if we do not wind up brelse()ing?).
435			 * Set the block number if it isn't set, otherwise
436			 * if it is make sure it matches the block number we
437			 * expect.
438			 */
439			tbp->b_flags |= B_ASYNC;
440			tbp->b_iocmd = BIO_READ;
441			if (tbp->b_blkno == tbp->b_lblkno) {
442				tbp->b_blkno = bn;
443			} else if (tbp->b_blkno != bn) {
444				brelse(tbp);
445				break;
446			}
447		}
448		/*
449		 * XXX fbp from caller may not be B_ASYNC, but we are going
450		 * to biodone() it in cluster_callback() anyway
451		 */
452		BUF_KERNPROC(tbp);
453		TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
454			tbp, b_cluster.cluster_entry);
455		VM_OBJECT_LOCK(tbp->b_bufobj->bo_object);
456		vm_page_lock_queues();
457		for (j = 0; j < tbp->b_npages; j += 1) {
458			vm_page_t m;
459			m = tbp->b_pages[j];
460			vm_page_io_start(m);
461			vm_object_pip_add(m->object, 1);
462			if ((bp->b_npages == 0) ||
463				(bp->b_pages[bp->b_npages-1] != m)) {
464				bp->b_pages[bp->b_npages] = m;
465				bp->b_npages++;
466			}
467			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
468				tbp->b_pages[j] = bogus_page;
469		}
470		vm_page_unlock_queues();
471		VM_OBJECT_UNLOCK(tbp->b_bufobj->bo_object);
472		/*
473		 * XXX shouldn't this be += size for both, like in
474		 * cluster_wbuild()?
475		 *
476		 * Don't inherit tbp->b_bufsize as it may be larger due to
477		 * a non-page-aligned size.  Instead just aggregate using
478		 * 'size'.
479		 */
480		if (tbp->b_bcount != size)
481			printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size);
482		if (tbp->b_bufsize != size)
483			printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size);
484		bp->b_bcount += size;
485		bp->b_bufsize += size;
486	}
487
488	/*
489	 * Fully valid pages in the cluster are already good and do not need
490	 * to be re-read from disk.  Replace the page with bogus_page
491	 */
492	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
493	for (j = 0; j < bp->b_npages; j++) {
494		VM_OBJECT_LOCK_ASSERT(bp->b_pages[j]->object, MA_OWNED);
495		if ((bp->b_pages[j]->valid & VM_PAGE_BITS_ALL) ==
496		    VM_PAGE_BITS_ALL) {
497			bp->b_pages[j] = bogus_page;
498		}
499	}
500	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
501	if (bp->b_bufsize > bp->b_kvasize)
502		panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
503		    bp->b_bufsize, bp->b_kvasize);
504	bp->b_kvasize = bp->b_bufsize;
505
506	pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
507		(vm_page_t *)bp->b_pages, bp->b_npages);
508	return (bp);
509}
510
511/*
512 * Cleanup after a clustered read or write.
513 * This is complicated by the fact that any of the buffers might have
514 * extra memory (if there were no empty buffer headers at allocbuf time)
515 * that we will need to shift around.
516 */
517void
518cluster_callback(bp)
519	struct buf *bp;
520{
521	struct buf *nbp, *tbp;
522	int error = 0;
523
524	GIANT_REQUIRED;
525
526	/*
527	 * Must propogate errors to all the components.
528	 */
529	if (bp->b_ioflags & BIO_ERROR)
530		error = bp->b_error;
531
532	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
533	/*
534	 * Move memory from the large cluster buffer into the component
535	 * buffers and mark IO as done on these.
536	 */
537	for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head);
538		tbp; tbp = nbp) {
539		nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry);
540		if (error) {
541			tbp->b_ioflags |= BIO_ERROR;
542			tbp->b_error = error;
543		} else {
544			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
545			tbp->b_flags &= ~B_INVAL;
546			tbp->b_ioflags &= ~BIO_ERROR;
547			/*
548			 * XXX the bdwrite()/bqrelse() issued during
549			 * cluster building clears B_RELBUF (see bqrelse()
550			 * comment).  If direct I/O was specified, we have
551			 * to restore it here to allow the buffer and VM
552			 * to be freed.
553			 */
554			if (tbp->b_flags & B_DIRECT)
555				tbp->b_flags |= B_RELBUF;
556		}
557		bufdone(tbp);
558	}
559	pbrelvp(bp);
560	relpbuf(bp, &cluster_pbuf_freecnt);
561}
562
563/*
564 *	cluster_wbuild_wb:
565 *
566 *	Implement modified write build for cluster.
567 *
568 *		write_behind = 0	write behind disabled
569 *		write_behind = 1	write behind normal (default)
570 *		write_behind = 2	write behind backed-off
571 */
572
573static __inline int
574cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len)
575{
576	int r = 0;
577
578	switch(write_behind) {
579	case 2:
580		if (start_lbn < len)
581			break;
582		start_lbn -= len;
583		/* FALLTHROUGH */
584	case 1:
585		r = cluster_wbuild(vp, size, start_lbn, len);
586		/* FALLTHROUGH */
587	default:
588		/* FALLTHROUGH */
589		break;
590	}
591	return(r);
592}
593
594/*
595 * Do clustered write for FFS.
596 *
597 * Three cases:
598 *	1. Write is not sequential (write asynchronously)
599 *	Write is sequential:
600 *	2.	beginning of cluster - begin cluster
601 *	3.	middle of a cluster - add to cluster
602 *	4.	end of a cluster - asynchronously write cluster
603 */
604void
605cluster_write(struct vnode *vp, struct buf *bp, u_quad_t filesize, int seqcount)
606{
607	daddr_t lbn;
608	int maxclen, cursize;
609	int lblocksize;
610	int async;
611
612	if (vp->v_type == VREG) {
613		async = vp->v_mount->mnt_flag & MNT_ASYNC;
614		lblocksize = vp->v_mount->mnt_stat.f_iosize;
615	} else {
616		async = 0;
617		lblocksize = bp->b_bufsize;
618	}
619	lbn = bp->b_lblkno;
620	KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset"));
621
622	/* Initialize vnode to beginning of file. */
623	if (lbn == 0)
624		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
625
626	if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
627	    (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) {
628		maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1;
629		if (vp->v_clen != 0) {
630			/*
631			 * Next block is not sequential.
632			 *
633			 * If we are not writing at end of file, the process
634			 * seeked to another point in the file since its last
635			 * write, or we have reached our maximum cluster size,
636			 * then push the previous cluster. Otherwise try
637			 * reallocating to make it sequential.
638			 *
639			 * Change to algorithm: only push previous cluster if
640			 * it was sequential from the point of view of the
641			 * seqcount heuristic, otherwise leave the buffer
642			 * intact so we can potentially optimize the I/O
643			 * later on in the buf_daemon or update daemon
644			 * flush.
645			 */
646			cursize = vp->v_lastw - vp->v_cstart + 1;
647			if (((u_quad_t) bp->b_offset + lblocksize) != filesize ||
648			    lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
649				if (!async && seqcount > 0) {
650					cluster_wbuild_wb(vp, lblocksize,
651						vp->v_cstart, cursize);
652				}
653			} else {
654				struct buf **bpp, **endbp;
655				struct cluster_save *buflist;
656
657				buflist = cluster_collectbufs(vp, bp);
658				endbp = &buflist->bs_children
659				    [buflist->bs_nchildren - 1];
660				if (VOP_REALLOCBLKS(vp, buflist)) {
661					/*
662					 * Failed, push the previous cluster
663					 * if *really* writing sequentially
664					 * in the logical file (seqcount > 1),
665					 * otherwise delay it in the hopes that
666					 * the low level disk driver can
667					 * optimize the write ordering.
668					 */
669					for (bpp = buflist->bs_children;
670					     bpp < endbp; bpp++)
671						brelse(*bpp);
672					free(buflist, M_SEGMENT);
673					if (seqcount > 1) {
674						cluster_wbuild_wb(vp,
675						    lblocksize, vp->v_cstart,
676						    cursize);
677					}
678				} else {
679					/*
680					 * Succeeded, keep building cluster.
681					 */
682					for (bpp = buflist->bs_children;
683					     bpp <= endbp; bpp++)
684						bdwrite(*bpp);
685					free(buflist, M_SEGMENT);
686					vp->v_lastw = lbn;
687					vp->v_lasta = bp->b_blkno;
688					return;
689				}
690			}
691		}
692		/*
693		 * Consider beginning a cluster. If at end of file, make
694		 * cluster as large as possible, otherwise find size of
695		 * existing cluster.
696		 */
697		if ((vp->v_type == VREG) &&
698			((u_quad_t) bp->b_offset + lblocksize) != filesize &&
699		    (bp->b_blkno == bp->b_lblkno) &&
700		    (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) ||
701		     bp->b_blkno == -1)) {
702			bawrite(bp);
703			vp->v_clen = 0;
704			vp->v_lasta = bp->b_blkno;
705			vp->v_cstart = lbn + 1;
706			vp->v_lastw = lbn;
707			return;
708		}
709		vp->v_clen = maxclen;
710		if (!async && maxclen == 0) {	/* I/O not contiguous */
711			vp->v_cstart = lbn + 1;
712			bawrite(bp);
713		} else {	/* Wait for rest of cluster */
714			vp->v_cstart = lbn;
715			bdwrite(bp);
716		}
717	} else if (lbn == vp->v_cstart + vp->v_clen) {
718		/*
719		 * At end of cluster, write it out if seqcount tells us we
720		 * are operating sequentially, otherwise let the buf or
721		 * update daemon handle it.
722		 */
723		bdwrite(bp);
724		if (seqcount > 1)
725			cluster_wbuild_wb(vp, lblocksize, vp->v_cstart, vp->v_clen + 1);
726		vp->v_clen = 0;
727		vp->v_cstart = lbn + 1;
728	} else if (vm_page_count_severe()) {
729		/*
730		 * We are low on memory, get it going NOW
731		 */
732		bawrite(bp);
733	} else {
734		/*
735		 * In the middle of a cluster, so just delay the I/O for now.
736		 */
737		bdwrite(bp);
738	}
739	vp->v_lastw = lbn;
740	vp->v_lasta = bp->b_blkno;
741}
742
743
744/*
745 * This is an awful lot like cluster_rbuild...wish they could be combined.
746 * The last lbn argument is the current block on which I/O is being
747 * performed.  Check to see that it doesn't fall in the middle of
748 * the current block (if last_bp == NULL).
749 */
750int
751cluster_wbuild(vp, size, start_lbn, len)
752	struct vnode *vp;
753	long size;
754	daddr_t start_lbn;
755	int len;
756{
757	struct buf *bp, *tbp;
758	int i, j, s;
759	int totalwritten = 0;
760	int dbsize = btodb(size);
761
762	GIANT_REQUIRED;
763
764	while (len > 0) {
765		s = splbio();
766		/*
767		 * If the buffer is not delayed-write (i.e. dirty), or it
768		 * is delayed-write but either locked or inval, it cannot
769		 * partake in the clustered write.
770		 */
771		VI_LOCK(vp);
772		if ((tbp = gbincore(&vp->v_bufobj, start_lbn)) == NULL ||
773		    (tbp->b_vflags & BV_BKGRDINPROG)) {
774			VI_UNLOCK(vp);
775			++start_lbn;
776			--len;
777			splx(s);
778			continue;
779		}
780		if (BUF_LOCK(tbp,
781		    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, VI_MTX(vp))) {
782			++start_lbn;
783			--len;
784			splx(s);
785			continue;
786		}
787		if ((tbp->b_flags & (B_INVAL | B_DELWRI)) != B_DELWRI) {
788			BUF_UNLOCK(tbp);
789			++start_lbn;
790			--len;
791			splx(s);
792			continue;
793		}
794		bremfree(tbp);
795		tbp->b_flags &= ~B_DONE;
796		splx(s);
797
798		/*
799		 * Extra memory in the buffer, punt on this buffer.
800		 * XXX we could handle this in most cases, but we would
801		 * have to push the extra memory down to after our max
802		 * possible cluster size and then potentially pull it back
803		 * up if the cluster was terminated prematurely--too much
804		 * hassle.
805		 */
806		if (((tbp->b_flags & (B_CLUSTEROK | B_MALLOC | B_VMIO)) !=
807		     (B_CLUSTEROK | B_VMIO)) ||
808		  (tbp->b_bcount != tbp->b_bufsize) ||
809		  (tbp->b_bcount != size) ||
810		  (len == 1) ||
811		  ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
812			totalwritten += tbp->b_bufsize;
813			bawrite(tbp);
814			++start_lbn;
815			--len;
816			continue;
817		}
818
819		/*
820		 * We got a pbuf to make the cluster in.
821		 * so initialise it.
822		 */
823		TAILQ_INIT(&bp->b_cluster.cluster_head);
824		bp->b_bcount = 0;
825		bp->b_bufsize = 0;
826		bp->b_npages = 0;
827		if (tbp->b_wcred != NOCRED)
828			bp->b_wcred = crhold(tbp->b_wcred);
829
830		bp->b_blkno = tbp->b_blkno;
831		bp->b_lblkno = tbp->b_lblkno;
832		bp->b_offset = tbp->b_offset;
833
834		/*
835		 * We are synthesizing a buffer out of vm_page_t's, but
836		 * if the block size is not page aligned then the starting
837		 * address may not be either.  Inherit the b_data offset
838		 * from the original buffer.
839		 */
840		bp->b_data = (char *)((vm_offset_t)bp->b_data |
841		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
842		bp->b_flags |= B_CLUSTER |
843				(tbp->b_flags & (B_VMIO | B_NEEDCOMMIT));
844		bp->b_iodone = cluster_callback;
845		pbgetvp(vp, bp);
846		/*
847		 * From this location in the file, scan forward to see
848		 * if there are buffers with adjacent data that need to
849		 * be written as well.
850		 */
851		for (i = 0; i < len; ++i, ++start_lbn) {
852			if (i != 0) { /* If not the first buffer */
853				s = splbio();
854				/*
855				 * If the adjacent data is not even in core it
856				 * can't need to be written.
857				 */
858				VI_LOCK(vp);
859				if ((tbp = gbincore(&vp->v_bufobj, start_lbn)) == NULL ||
860				    (tbp->b_vflags & BV_BKGRDINPROG)) {
861					VI_UNLOCK(vp);
862					splx(s);
863					break;
864				}
865
866				/*
867				 * If it IS in core, but has different
868				 * characteristics, or is locked (which
869				 * means it could be undergoing a background
870				 * I/O or be in a weird state), then don't
871				 * cluster with it.
872				 */
873				if (BUF_LOCK(tbp,
874				    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK,
875				    VI_MTX(vp))) {
876					splx(s);
877					break;
878				}
879
880				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
881				    B_INVAL | B_DELWRI | B_NEEDCOMMIT))
882				    != (B_DELWRI | B_CLUSTEROK |
883				    (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
884				    tbp->b_wcred != bp->b_wcred) {
885					BUF_UNLOCK(tbp);
886					splx(s);
887					break;
888				}
889
890				/*
891				 * Check that the combined cluster
892				 * would make sense with regard to pages
893				 * and would not be too large
894				 */
895				if ((tbp->b_bcount != size) ||
896				  ((bp->b_blkno + (dbsize * i)) !=
897				    tbp->b_blkno) ||
898				  ((tbp->b_npages + bp->b_npages) >
899				    (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
900					BUF_UNLOCK(tbp);
901					splx(s);
902					break;
903				}
904				/*
905				 * Ok, it's passed all the tests,
906				 * so remove it from the free list
907				 * and mark it busy. We will use it.
908				 */
909				bremfree(tbp);
910				tbp->b_flags &= ~B_DONE;
911				splx(s);
912			} /* end of code for non-first buffers only */
913			/* check for latent dependencies to be handled */
914			if ((LIST_FIRST(&tbp->b_dep)) != NULL) {
915				tbp->b_iocmd = BIO_WRITE;
916				buf_start(tbp);
917			}
918			/*
919			 * If the IO is via the VM then we do some
920			 * special VM hackery (yuck).  Since the buffer's
921			 * block size may not be page-aligned it is possible
922			 * for a page to be shared between two buffers.  We
923			 * have to get rid of the duplication when building
924			 * the cluster.
925			 */
926			if (tbp->b_flags & B_VMIO) {
927				vm_page_t m;
928
929				VM_OBJECT_LOCK(tbp->b_bufobj->bo_object);
930				if (i != 0) { /* if not first buffer */
931					for (j = 0; j < tbp->b_npages; j += 1) {
932						m = tbp->b_pages[j];
933						if (m->flags & PG_BUSY) {
934							VM_OBJECT_UNLOCK(
935							    tbp->b_object);
936							bqrelse(tbp);
937							goto finishcluster;
938						}
939					}
940				}
941				vm_page_lock_queues();
942				for (j = 0; j < tbp->b_npages; j += 1) {
943					m = tbp->b_pages[j];
944					vm_page_io_start(m);
945					vm_object_pip_add(m->object, 1);
946					if ((bp->b_npages == 0) ||
947					  (bp->b_pages[bp->b_npages - 1] != m)) {
948						bp->b_pages[bp->b_npages] = m;
949						bp->b_npages++;
950					}
951				}
952				vm_page_unlock_queues();
953				VM_OBJECT_UNLOCK(tbp->b_bufobj->bo_object);
954			}
955			bp->b_bcount += size;
956			bp->b_bufsize += size;
957
958			s = splbio();
959			bundirty(tbp);
960			tbp->b_flags &= ~B_DONE;
961			tbp->b_ioflags &= ~BIO_ERROR;
962			tbp->b_flags |= B_ASYNC;
963			tbp->b_iocmd = BIO_WRITE;
964			reassignbuf(tbp);		/* put on clean list */
965			bufobj_wref(tbp->b_bufobj);
966			splx(s);
967			BUF_KERNPROC(tbp);
968			TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
969				tbp, b_cluster.cluster_entry);
970		}
971	finishcluster:
972		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
973			(vm_page_t *) bp->b_pages, bp->b_npages);
974		if (bp->b_bufsize > bp->b_kvasize)
975			panic(
976			    "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
977			    bp->b_bufsize, bp->b_kvasize);
978		bp->b_kvasize = bp->b_bufsize;
979		totalwritten += bp->b_bufsize;
980		bp->b_dirtyoff = 0;
981		bp->b_dirtyend = bp->b_bufsize;
982		bawrite(bp);
983
984		len -= i;
985	}
986	return totalwritten;
987}
988
989/*
990 * Collect together all the buffers in a cluster.
991 * Plus add one additional buffer.
992 */
993static struct cluster_save *
994cluster_collectbufs(vp, last_bp)
995	struct vnode *vp;
996	struct buf *last_bp;
997{
998	struct cluster_save *buflist;
999	struct buf *bp;
1000	daddr_t lbn;
1001	int i, len;
1002
1003	len = vp->v_lastw - vp->v_cstart + 1;
1004	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
1005	    M_SEGMENT, M_WAITOK);
1006	buflist->bs_nchildren = 0;
1007	buflist->bs_children = (struct buf **) (buflist + 1);
1008	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) {
1009		(void) bread(vp, lbn, last_bp->b_bcount, NOCRED, &bp);
1010		buflist->bs_children[i] = bp;
1011		if (bp->b_blkno == bp->b_lblkno)
1012			VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1013				NULL, NULL);
1014	}
1015	buflist->bs_children[i] = bp = last_bp;
1016	if (bp->b_blkno == bp->b_lblkno)
1017		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1018	buflist->bs_nchildren = i + 1;
1019	return (buflist);
1020}
1021