uipc_mbuf.c revision 248315
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/uipc_mbuf.c 248315 2013-03-15 10:15:07Z glebius $");
34
35#include "opt_param.h"
36#include "opt_mbuf_stress_test.h"
37#include "opt_mbuf_profiling.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/limits.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/sysctl.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/uio.h>
50
51int	max_linkhdr;
52int	max_protohdr;
53int	max_hdr;
54int	max_datalen;
55#ifdef MBUF_STRESS_TEST
56int	m_defragpackets;
57int	m_defragbytes;
58int	m_defraguseless;
59int	m_defragfailure;
60int	m_defragrandomfailures;
61#endif
62
63/*
64 * sysctl(8) exported objects
65 */
66SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67	   &max_linkhdr, 0, "Size of largest link layer header");
68SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69	   &max_protohdr, 0, "Size of largest protocol layer header");
70SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71	   &max_hdr, 0, "Size of largest link plus protocol header");
72SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74#ifdef MBUF_STRESS_TEST
75SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76	   &m_defragpackets, 0, "");
77SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78	   &m_defragbytes, 0, "");
79SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80	   &m_defraguseless, 0, "");
81SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82	   &m_defragfailure, 0, "");
83SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84	   &m_defragrandomfailures, 0, "");
85#endif
86
87/*
88 * m_get2() allocates minimum mbuf that would fit "size" argument.
89 */
90struct mbuf *
91m_get2(int size, int how, short type, int flags)
92{
93	struct mb_args args;
94	struct mbuf *m, *n;
95
96	args.flags = flags;
97	args.type = type;
98
99	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
100		return (uma_zalloc_arg(zone_mbuf, &args, how));
101	if (size <= MCLBYTES)
102		return (uma_zalloc_arg(zone_pack, &args, how));
103
104	if (size > MJUMPAGESIZE)
105		return (NULL);
106
107	m = uma_zalloc_arg(zone_mbuf, &args, how);
108	if (m == NULL)
109		return (NULL);
110
111	n = uma_zalloc_arg(zone_jumbop, m, how);
112	if (n == NULL) {
113		uma_zfree(zone_mbuf, m);
114		return (NULL);
115	}
116
117	return (m);
118}
119
120/*
121 * m_getjcl() returns an mbuf with a cluster of the specified size attached.
122 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
123 */
124struct mbuf *
125m_getjcl(int how, short type, int flags, int size)
126{
127	struct mb_args args;
128	struct mbuf *m, *n;
129	uma_zone_t zone;
130
131	if (size == MCLBYTES)
132		return m_getcl(how, type, flags);
133
134	args.flags = flags;
135	args.type = type;
136
137	m = uma_zalloc_arg(zone_mbuf, &args, how);
138	if (m == NULL)
139		return (NULL);
140
141	zone = m_getzone(size);
142	n = uma_zalloc_arg(zone, m, how);
143	if (n == NULL) {
144		uma_zfree(zone_mbuf, m);
145		return (NULL);
146	}
147	return (m);
148}
149
150/*
151 * Allocate a given length worth of mbufs and/or clusters (whatever fits
152 * best) and return a pointer to the top of the allocated chain.  If an
153 * existing mbuf chain is provided, then we will append the new chain
154 * to the existing one but still return the top of the newly allocated
155 * chain.
156 */
157struct mbuf *
158m_getm2(struct mbuf *m, int len, int how, short type, int flags)
159{
160	struct mbuf *mb, *nm = NULL, *mtail = NULL;
161
162	KASSERT(len >= 0, ("%s: len is < 0", __func__));
163
164	/* Validate flags. */
165	flags &= (M_PKTHDR | M_EOR);
166
167	/* Packet header mbuf must be first in chain. */
168	if ((flags & M_PKTHDR) && m != NULL)
169		flags &= ~M_PKTHDR;
170
171	/* Loop and append maximum sized mbufs to the chain tail. */
172	while (len > 0) {
173		if (len > MCLBYTES)
174			mb = m_getjcl(how, type, (flags & M_PKTHDR),
175			    MJUMPAGESIZE);
176		else if (len >= MINCLSIZE)
177			mb = m_getcl(how, type, (flags & M_PKTHDR));
178		else if (flags & M_PKTHDR)
179			mb = m_gethdr(how, type);
180		else
181			mb = m_get(how, type);
182
183		/* Fail the whole operation if one mbuf can't be allocated. */
184		if (mb == NULL) {
185			if (nm != NULL)
186				m_freem(nm);
187			return (NULL);
188		}
189
190		/* Book keeping. */
191		len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
192			((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
193		if (mtail != NULL)
194			mtail->m_next = mb;
195		else
196			nm = mb;
197		mtail = mb;
198		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
199	}
200	if (flags & M_EOR)
201		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
202
203	/* If mbuf was supplied, append new chain to the end of it. */
204	if (m != NULL) {
205		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
206			;
207		mtail->m_next = nm;
208		mtail->m_flags &= ~M_EOR;
209	} else
210		m = nm;
211
212	return (m);
213}
214
215/*
216 * Free an entire chain of mbufs and associated external buffers, if
217 * applicable.
218 */
219void
220m_freem(struct mbuf *mb)
221{
222
223	while (mb != NULL)
224		mb = m_free(mb);
225}
226
227/*-
228 * Configure a provided mbuf to refer to the provided external storage
229 * buffer and setup a reference count for said buffer.  If the setting
230 * up of the reference count fails, the M_EXT bit will not be set.  If
231 * successfull, the M_EXT bit is set in the mbuf's flags.
232 *
233 * Arguments:
234 *    mb     The existing mbuf to which to attach the provided buffer.
235 *    buf    The address of the provided external storage buffer.
236 *    size   The size of the provided buffer.
237 *    freef  A pointer to a routine that is responsible for freeing the
238 *           provided external storage buffer.
239 *    args   A pointer to an argument structure (of any type) to be passed
240 *           to the provided freef routine (may be NULL).
241 *    flags  Any other flags to be passed to the provided mbuf.
242 *    type   The type that the external storage buffer should be
243 *           labeled with.
244 *
245 * Returns:
246 *    Nothing.
247 */
248int
249m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
250    void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type,
251    int wait)
252{
253	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
254
255	if (type != EXT_EXTREF)
256		mb->m_ext.ref_cnt = uma_zalloc(zone_ext_refcnt, wait);
257
258	if (mb->m_ext.ref_cnt == NULL)
259		return (ENOMEM);
260
261	*(mb->m_ext.ref_cnt) = 1;
262	mb->m_flags |= (M_EXT | flags);
263	mb->m_ext.ext_buf = buf;
264	mb->m_data = mb->m_ext.ext_buf;
265	mb->m_ext.ext_size = size;
266	mb->m_ext.ext_free = freef;
267	mb->m_ext.ext_arg1 = arg1;
268	mb->m_ext.ext_arg2 = arg2;
269	mb->m_ext.ext_type = type;
270
271	return (0);
272}
273
274/*
275 * Non-directly-exported function to clean up after mbufs with M_EXT
276 * storage attached to them if the reference count hits 1.
277 */
278void
279mb_free_ext(struct mbuf *m)
280{
281	int skipmbuf;
282
283	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
284	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
285
286
287	/*
288	 * check if the header is embedded in the cluster
289	 */
290	skipmbuf = (m->m_flags & M_NOFREE);
291
292	/* Free attached storage if this mbuf is the only reference to it. */
293	if (*(m->m_ext.ref_cnt) == 1 ||
294	    atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
295		switch (m->m_ext.ext_type) {
296		case EXT_PACKET:	/* The packet zone is special. */
297			if (*(m->m_ext.ref_cnt) == 0)
298				*(m->m_ext.ref_cnt) = 1;
299			uma_zfree(zone_pack, m);
300			return;		/* Job done. */
301		case EXT_CLUSTER:
302			uma_zfree(zone_clust, m->m_ext.ext_buf);
303			break;
304		case EXT_JUMBOP:
305			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
306			break;
307		case EXT_JUMBO9:
308			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
309			break;
310		case EXT_JUMBO16:
311			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
312			break;
313		case EXT_SFBUF:
314		case EXT_NET_DRV:
315		case EXT_MOD_TYPE:
316		case EXT_DISPOSABLE:
317			*(m->m_ext.ref_cnt) = 0;
318			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
319				m->m_ext.ref_cnt));
320			/* FALLTHROUGH */
321		case EXT_EXTREF:
322			KASSERT(m->m_ext.ext_free != NULL,
323				("%s: ext_free not set", __func__));
324			(*(m->m_ext.ext_free))(m->m_ext.ext_arg1,
325			    m->m_ext.ext_arg2);
326			break;
327		default:
328			KASSERT(m->m_ext.ext_type == 0,
329				("%s: unknown ext_type", __func__));
330		}
331	}
332	if (skipmbuf)
333		return;
334
335	/*
336	 * Free this mbuf back to the mbuf zone with all m_ext
337	 * information purged.
338	 */
339	m->m_ext.ext_buf = NULL;
340	m->m_ext.ext_free = NULL;
341	m->m_ext.ext_arg1 = NULL;
342	m->m_ext.ext_arg2 = NULL;
343	m->m_ext.ref_cnt = NULL;
344	m->m_ext.ext_size = 0;
345	m->m_ext.ext_type = 0;
346	m->m_flags &= ~M_EXT;
347	uma_zfree(zone_mbuf, m);
348}
349
350/*
351 * Attach the cluster from *m to *n, set up m_ext in *n
352 * and bump the refcount of the cluster.
353 */
354static void
355mb_dupcl(struct mbuf *n, struct mbuf *m)
356{
357	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
358	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
359	KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
360
361	if (*(m->m_ext.ref_cnt) == 1)
362		*(m->m_ext.ref_cnt) += 1;
363	else
364		atomic_add_int(m->m_ext.ref_cnt, 1);
365	n->m_ext.ext_buf = m->m_ext.ext_buf;
366	n->m_ext.ext_free = m->m_ext.ext_free;
367	n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
368	n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
369	n->m_ext.ext_size = m->m_ext.ext_size;
370	n->m_ext.ref_cnt = m->m_ext.ref_cnt;
371	n->m_ext.ext_type = m->m_ext.ext_type;
372	n->m_flags |= M_EXT;
373	n->m_flags |= m->m_flags & M_RDONLY;
374}
375
376/*
377 * Clean up mbuf (chain) from any tags and packet headers.
378 * If "all" is set then the first mbuf in the chain will be
379 * cleaned too.
380 */
381void
382m_demote(struct mbuf *m0, int all)
383{
384	struct mbuf *m;
385
386	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
387		if (m->m_flags & M_PKTHDR) {
388			m_tag_delete_chain(m, NULL);
389			m->m_flags &= ~M_PKTHDR;
390			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
391		}
392		if (m != m0 && m->m_nextpkt != NULL) {
393			KASSERT(m->m_nextpkt == NULL,
394			    ("%s: m_nextpkt not NULL", __func__));
395			m_freem(m->m_nextpkt);
396			m->m_nextpkt = NULL;
397		}
398		m->m_flags = m->m_flags & (M_EXT|M_RDONLY|M_FREELIST|M_NOFREE);
399	}
400}
401
402/*
403 * Sanity checks on mbuf (chain) for use in KASSERT() and general
404 * debugging.
405 * Returns 0 or panics when bad and 1 on all tests passed.
406 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
407 * blow up later.
408 */
409int
410m_sanity(struct mbuf *m0, int sanitize)
411{
412	struct mbuf *m;
413	caddr_t a, b;
414	int pktlen = 0;
415
416#ifdef INVARIANTS
417#define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
418#else
419#define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
420#endif
421
422	for (m = m0; m != NULL; m = m->m_next) {
423		/*
424		 * Basic pointer checks.  If any of these fails then some
425		 * unrelated kernel memory before or after us is trashed.
426		 * No way to recover from that.
427		 */
428		a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
429			((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
430			 (caddr_t)(&m->m_dat)) );
431		b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
432			((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
433		if ((caddr_t)m->m_data < a)
434			M_SANITY_ACTION("m_data outside mbuf data range left");
435		if ((caddr_t)m->m_data > b)
436			M_SANITY_ACTION("m_data outside mbuf data range right");
437		if ((caddr_t)m->m_data + m->m_len > b)
438			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
439		if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) {
440			if ((caddr_t)m->m_pkthdr.header < a ||
441			    (caddr_t)m->m_pkthdr.header > b)
442				M_SANITY_ACTION("m_pkthdr.header outside mbuf data range");
443		}
444
445		/* m->m_nextpkt may only be set on first mbuf in chain. */
446		if (m != m0 && m->m_nextpkt != NULL) {
447			if (sanitize) {
448				m_freem(m->m_nextpkt);
449				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
450			} else
451				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
452		}
453
454		/* packet length (not mbuf length!) calculation */
455		if (m0->m_flags & M_PKTHDR)
456			pktlen += m->m_len;
457
458		/* m_tags may only be attached to first mbuf in chain. */
459		if (m != m0 && m->m_flags & M_PKTHDR &&
460		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
461			if (sanitize) {
462				m_tag_delete_chain(m, NULL);
463				/* put in 0xDEADC0DE perhaps? */
464			} else
465				M_SANITY_ACTION("m_tags on in-chain mbuf");
466		}
467
468		/* M_PKTHDR may only be set on first mbuf in chain */
469		if (m != m0 && m->m_flags & M_PKTHDR) {
470			if (sanitize) {
471				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
472				m->m_flags &= ~M_PKTHDR;
473				/* put in 0xDEADCODE and leave hdr flag in */
474			} else
475				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
476		}
477	}
478	m = m0;
479	if (pktlen && pktlen != m->m_pkthdr.len) {
480		if (sanitize)
481			m->m_pkthdr.len = 0;
482		else
483			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
484	}
485	return 1;
486
487#undef	M_SANITY_ACTION
488}
489
490
491/*
492 * "Move" mbuf pkthdr from "from" to "to".
493 * "from" must have M_PKTHDR set, and "to" must be empty.
494 */
495void
496m_move_pkthdr(struct mbuf *to, struct mbuf *from)
497{
498
499#if 0
500	/* see below for why these are not enabled */
501	M_ASSERTPKTHDR(to);
502	/* Note: with MAC, this may not be a good assertion. */
503	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
504	    ("m_move_pkthdr: to has tags"));
505#endif
506#ifdef MAC
507	/*
508	 * XXXMAC: It could be this should also occur for non-MAC?
509	 */
510	if (to->m_flags & M_PKTHDR)
511		m_tag_delete_chain(to, NULL);
512#endif
513	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
514	if ((to->m_flags & M_EXT) == 0)
515		to->m_data = to->m_pktdat;
516	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
517	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
518	from->m_flags &= ~M_PKTHDR;
519}
520
521/*
522 * Duplicate "from"'s mbuf pkthdr in "to".
523 * "from" must have M_PKTHDR set, and "to" must be empty.
524 * In particular, this does a deep copy of the packet tags.
525 */
526int
527m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
528{
529
530#if 0
531	/*
532	 * The mbuf allocator only initializes the pkthdr
533	 * when the mbuf is allocated with MGETHDR. Many users
534	 * (e.g. m_copy*, m_prepend) use MGET and then
535	 * smash the pkthdr as needed causing these
536	 * assertions to trip.  For now just disable them.
537	 */
538	M_ASSERTPKTHDR(to);
539	/* Note: with MAC, this may not be a good assertion. */
540	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
541#endif
542	MBUF_CHECKSLEEP(how);
543#ifdef MAC
544	if (to->m_flags & M_PKTHDR)
545		m_tag_delete_chain(to, NULL);
546#endif
547	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
548	if ((to->m_flags & M_EXT) == 0)
549		to->m_data = to->m_pktdat;
550	to->m_pkthdr = from->m_pkthdr;
551	SLIST_INIT(&to->m_pkthdr.tags);
552	return (m_tag_copy_chain(to, from, MBTOM(how)));
553}
554
555/*
556 * Lesser-used path for M_PREPEND:
557 * allocate new mbuf to prepend to chain,
558 * copy junk along.
559 */
560struct mbuf *
561m_prepend(struct mbuf *m, int len, int how)
562{
563	struct mbuf *mn;
564
565	if (m->m_flags & M_PKTHDR)
566		MGETHDR(mn, how, m->m_type);
567	else
568		MGET(mn, how, m->m_type);
569	if (mn == NULL) {
570		m_freem(m);
571		return (NULL);
572	}
573	if (m->m_flags & M_PKTHDR)
574		M_MOVE_PKTHDR(mn, m);
575	mn->m_next = m;
576	m = mn;
577	if(m->m_flags & M_PKTHDR) {
578		if (len < MHLEN)
579			MH_ALIGN(m, len);
580	} else {
581		if (len < MLEN)
582			M_ALIGN(m, len);
583	}
584	m->m_len = len;
585	return (m);
586}
587
588/*
589 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
590 * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
591 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
592 * Note that the copy is read-only, because clusters are not copied,
593 * only their reference counts are incremented.
594 */
595struct mbuf *
596m_copym(struct mbuf *m, int off0, int len, int wait)
597{
598	struct mbuf *n, **np;
599	int off = off0;
600	struct mbuf *top;
601	int copyhdr = 0;
602
603	KASSERT(off >= 0, ("m_copym, negative off %d", off));
604	KASSERT(len >= 0, ("m_copym, negative len %d", len));
605	MBUF_CHECKSLEEP(wait);
606	if (off == 0 && m->m_flags & M_PKTHDR)
607		copyhdr = 1;
608	while (off > 0) {
609		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
610		if (off < m->m_len)
611			break;
612		off -= m->m_len;
613		m = m->m_next;
614	}
615	np = &top;
616	top = 0;
617	while (len > 0) {
618		if (m == NULL) {
619			KASSERT(len == M_COPYALL,
620			    ("m_copym, length > size of mbuf chain"));
621			break;
622		}
623		if (copyhdr)
624			MGETHDR(n, wait, m->m_type);
625		else
626			MGET(n, wait, m->m_type);
627		*np = n;
628		if (n == NULL)
629			goto nospace;
630		if (copyhdr) {
631			if (!m_dup_pkthdr(n, m, wait))
632				goto nospace;
633			if (len == M_COPYALL)
634				n->m_pkthdr.len -= off0;
635			else
636				n->m_pkthdr.len = len;
637			copyhdr = 0;
638		}
639		n->m_len = min(len, m->m_len - off);
640		if (m->m_flags & M_EXT) {
641			n->m_data = m->m_data + off;
642			mb_dupcl(n, m);
643		} else
644			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
645			    (u_int)n->m_len);
646		if (len != M_COPYALL)
647			len -= n->m_len;
648		off = 0;
649		m = m->m_next;
650		np = &n->m_next;
651	}
652	if (top == NULL)
653		mbstat.m_mcfail++;	/* XXX: No consistency. */
654
655	return (top);
656nospace:
657	m_freem(top);
658	mbstat.m_mcfail++;	/* XXX: No consistency. */
659	return (NULL);
660}
661
662/*
663 * Returns mbuf chain with new head for the prepending case.
664 * Copies from mbuf (chain) n from off for len to mbuf (chain) m
665 * either prepending or appending the data.
666 * The resulting mbuf (chain) m is fully writeable.
667 * m is destination (is made writeable)
668 * n is source, off is offset in source, len is len from offset
669 * dir, 0 append, 1 prepend
670 * how, wait or nowait
671 */
672
673static int
674m_bcopyxxx(void *s, void *t, u_int len)
675{
676	bcopy(s, t, (size_t)len);
677	return 0;
678}
679
680struct mbuf *
681m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
682    int prep, int how)
683{
684	struct mbuf *mm, *x, *z, *prev = NULL;
685	caddr_t p;
686	int i, nlen = 0;
687	caddr_t buf[MLEN];
688
689	KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
690	KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
691	KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
692	KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
693
694	mm = m;
695	if (!prep) {
696		while(mm->m_next) {
697			prev = mm;
698			mm = mm->m_next;
699		}
700	}
701	for (z = n; z != NULL; z = z->m_next)
702		nlen += z->m_len;
703	if (len == M_COPYALL)
704		len = nlen - off;
705	if (off + len > nlen || len < 1)
706		return NULL;
707
708	if (!M_WRITABLE(mm)) {
709		/* XXX: Use proper m_xxx function instead. */
710		x = m_getcl(how, MT_DATA, mm->m_flags);
711		if (x == NULL)
712			return NULL;
713		bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
714		p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
715		x->m_data = p;
716		mm->m_next = NULL;
717		if (mm != m)
718			prev->m_next = x;
719		m_free(mm);
720		mm = x;
721	}
722
723	/*
724	 * Append/prepend the data.  Allocating mbufs as necessary.
725	 */
726	/* Shortcut if enough free space in first/last mbuf. */
727	if (!prep && M_TRAILINGSPACE(mm) >= len) {
728		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
729			 mm->m_len);
730		mm->m_len += len;
731		mm->m_pkthdr.len += len;
732		return m;
733	}
734	if (prep && M_LEADINGSPACE(mm) >= len) {
735		mm->m_data = mtod(mm, caddr_t) - len;
736		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
737		mm->m_len += len;
738		mm->m_pkthdr.len += len;
739		return mm;
740	}
741
742	/* Expand first/last mbuf to cluster if possible. */
743	if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
744		bcopy(mm->m_data, &buf, mm->m_len);
745		m_clget(mm, how);
746		if (!(mm->m_flags & M_EXT))
747			return NULL;
748		bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
749		mm->m_data = mm->m_ext.ext_buf;
750		mm->m_pkthdr.header = NULL;
751	}
752	if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
753		bcopy(mm->m_data, &buf, mm->m_len);
754		m_clget(mm, how);
755		if (!(mm->m_flags & M_EXT))
756			return NULL;
757		bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
758		       mm->m_ext.ext_size - mm->m_len, mm->m_len);
759		mm->m_data = (caddr_t)mm->m_ext.ext_buf +
760			      mm->m_ext.ext_size - mm->m_len;
761		mm->m_pkthdr.header = NULL;
762	}
763
764	/* Append/prepend as many mbuf (clusters) as necessary to fit len. */
765	if (!prep && len > M_TRAILINGSPACE(mm)) {
766		if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
767			return NULL;
768	}
769	if (prep && len > M_LEADINGSPACE(mm)) {
770		if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
771			return NULL;
772		i = 0;
773		for (x = z; x != NULL; x = x->m_next) {
774			i += x->m_flags & M_EXT ? x->m_ext.ext_size :
775			      (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
776			if (!x->m_next)
777				break;
778		}
779		z->m_data += i - len;
780		m_move_pkthdr(mm, z);
781		x->m_next = mm;
782		mm = z;
783	}
784
785	/* Seek to start position in source mbuf. Optimization for long chains. */
786	while (off > 0) {
787		if (off < n->m_len)
788			break;
789		off -= n->m_len;
790		n = n->m_next;
791	}
792
793	/* Copy data into target mbuf. */
794	z = mm;
795	while (len > 0) {
796		KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
797		i = M_TRAILINGSPACE(z);
798		m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
799		z->m_len += i;
800		/* fixup pkthdr.len if necessary */
801		if ((prep ? mm : m)->m_flags & M_PKTHDR)
802			(prep ? mm : m)->m_pkthdr.len += i;
803		off += i;
804		len -= i;
805		z = z->m_next;
806	}
807	return (prep ? mm : m);
808}
809
810/*
811 * Copy an entire packet, including header (which must be present).
812 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
813 * Note that the copy is read-only, because clusters are not copied,
814 * only their reference counts are incremented.
815 * Preserve alignment of the first mbuf so if the creator has left
816 * some room at the beginning (e.g. for inserting protocol headers)
817 * the copies still have the room available.
818 */
819struct mbuf *
820m_copypacket(struct mbuf *m, int how)
821{
822	struct mbuf *top, *n, *o;
823
824	MBUF_CHECKSLEEP(how);
825	MGET(n, how, m->m_type);
826	top = n;
827	if (n == NULL)
828		goto nospace;
829
830	if (!m_dup_pkthdr(n, m, how))
831		goto nospace;
832	n->m_len = m->m_len;
833	if (m->m_flags & M_EXT) {
834		n->m_data = m->m_data;
835		mb_dupcl(n, m);
836	} else {
837		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
838		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
839	}
840
841	m = m->m_next;
842	while (m) {
843		MGET(o, how, m->m_type);
844		if (o == NULL)
845			goto nospace;
846
847		n->m_next = o;
848		n = n->m_next;
849
850		n->m_len = m->m_len;
851		if (m->m_flags & M_EXT) {
852			n->m_data = m->m_data;
853			mb_dupcl(n, m);
854		} else {
855			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
856		}
857
858		m = m->m_next;
859	}
860	return top;
861nospace:
862	m_freem(top);
863	mbstat.m_mcfail++;	/* XXX: No consistency. */
864	return (NULL);
865}
866
867/*
868 * Copy data from an mbuf chain starting "off" bytes from the beginning,
869 * continuing for "len" bytes, into the indicated buffer.
870 */
871void
872m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
873{
874	u_int count;
875
876	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
877	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
878	while (off > 0) {
879		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
880		if (off < m->m_len)
881			break;
882		off -= m->m_len;
883		m = m->m_next;
884	}
885	while (len > 0) {
886		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
887		count = min(m->m_len - off, len);
888		bcopy(mtod(m, caddr_t) + off, cp, count);
889		len -= count;
890		cp += count;
891		off = 0;
892		m = m->m_next;
893	}
894}
895
896/*
897 * Copy a packet header mbuf chain into a completely new chain, including
898 * copying any mbuf clusters.  Use this instead of m_copypacket() when
899 * you need a writable copy of an mbuf chain.
900 */
901struct mbuf *
902m_dup(struct mbuf *m, int how)
903{
904	struct mbuf **p, *top = NULL;
905	int remain, moff, nsize;
906
907	MBUF_CHECKSLEEP(how);
908	/* Sanity check */
909	if (m == NULL)
910		return (NULL);
911	M_ASSERTPKTHDR(m);
912
913	/* While there's more data, get a new mbuf, tack it on, and fill it */
914	remain = m->m_pkthdr.len;
915	moff = 0;
916	p = &top;
917	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
918		struct mbuf *n;
919
920		/* Get the next new mbuf */
921		if (remain >= MINCLSIZE) {
922			n = m_getcl(how, m->m_type, 0);
923			nsize = MCLBYTES;
924		} else {
925			n = m_get(how, m->m_type);
926			nsize = MLEN;
927		}
928		if (n == NULL)
929			goto nospace;
930
931		if (top == NULL) {		/* First one, must be PKTHDR */
932			if (!m_dup_pkthdr(n, m, how)) {
933				m_free(n);
934				goto nospace;
935			}
936			if ((n->m_flags & M_EXT) == 0)
937				nsize = MHLEN;
938		}
939		n->m_len = 0;
940
941		/* Link it into the new chain */
942		*p = n;
943		p = &n->m_next;
944
945		/* Copy data from original mbuf(s) into new mbuf */
946		while (n->m_len < nsize && m != NULL) {
947			int chunk = min(nsize - n->m_len, m->m_len - moff);
948
949			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
950			moff += chunk;
951			n->m_len += chunk;
952			remain -= chunk;
953			if (moff == m->m_len) {
954				m = m->m_next;
955				moff = 0;
956			}
957		}
958
959		/* Check correct total mbuf length */
960		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
961		    	("%s: bogus m_pkthdr.len", __func__));
962	}
963	return (top);
964
965nospace:
966	m_freem(top);
967	mbstat.m_mcfail++;	/* XXX: No consistency. */
968	return (NULL);
969}
970
971/*
972 * Concatenate mbuf chain n to m.
973 * Both chains must be of the same type (e.g. MT_DATA).
974 * Any m_pkthdr is not updated.
975 */
976void
977m_cat(struct mbuf *m, struct mbuf *n)
978{
979	while (m->m_next)
980		m = m->m_next;
981	while (n) {
982		if (!M_WRITABLE(m) ||
983		    M_TRAILINGSPACE(m) < n->m_len) {
984			/* just join the two chains */
985			m->m_next = n;
986			return;
987		}
988		/* splat the data from one into the other */
989		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
990		    (u_int)n->m_len);
991		m->m_len += n->m_len;
992		n = m_free(n);
993	}
994}
995
996void
997m_adj(struct mbuf *mp, int req_len)
998{
999	int len = req_len;
1000	struct mbuf *m;
1001	int count;
1002
1003	if ((m = mp) == NULL)
1004		return;
1005	if (len >= 0) {
1006		/*
1007		 * Trim from head.
1008		 */
1009		while (m != NULL && len > 0) {
1010			if (m->m_len <= len) {
1011				len -= m->m_len;
1012				m->m_len = 0;
1013				m = m->m_next;
1014			} else {
1015				m->m_len -= len;
1016				m->m_data += len;
1017				len = 0;
1018			}
1019		}
1020		if (mp->m_flags & M_PKTHDR)
1021			mp->m_pkthdr.len -= (req_len - len);
1022	} else {
1023		/*
1024		 * Trim from tail.  Scan the mbuf chain,
1025		 * calculating its length and finding the last mbuf.
1026		 * If the adjustment only affects this mbuf, then just
1027		 * adjust and return.  Otherwise, rescan and truncate
1028		 * after the remaining size.
1029		 */
1030		len = -len;
1031		count = 0;
1032		for (;;) {
1033			count += m->m_len;
1034			if (m->m_next == (struct mbuf *)0)
1035				break;
1036			m = m->m_next;
1037		}
1038		if (m->m_len >= len) {
1039			m->m_len -= len;
1040			if (mp->m_flags & M_PKTHDR)
1041				mp->m_pkthdr.len -= len;
1042			return;
1043		}
1044		count -= len;
1045		if (count < 0)
1046			count = 0;
1047		/*
1048		 * Correct length for chain is "count".
1049		 * Find the mbuf with last data, adjust its length,
1050		 * and toss data from remaining mbufs on chain.
1051		 */
1052		m = mp;
1053		if (m->m_flags & M_PKTHDR)
1054			m->m_pkthdr.len = count;
1055		for (; m; m = m->m_next) {
1056			if (m->m_len >= count) {
1057				m->m_len = count;
1058				if (m->m_next != NULL) {
1059					m_freem(m->m_next);
1060					m->m_next = NULL;
1061				}
1062				break;
1063			}
1064			count -= m->m_len;
1065		}
1066	}
1067}
1068
1069/*
1070 * Rearange an mbuf chain so that len bytes are contiguous
1071 * and in the data area of an mbuf (so that mtod will work
1072 * for a structure of size len).  Returns the resulting
1073 * mbuf chain on success, frees it and returns null on failure.
1074 * If there is room, it will add up to max_protohdr-len extra bytes to the
1075 * contiguous region in an attempt to avoid being called next time.
1076 */
1077struct mbuf *
1078m_pullup(struct mbuf *n, int len)
1079{
1080	struct mbuf *m;
1081	int count;
1082	int space;
1083
1084	/*
1085	 * If first mbuf has no cluster, and has room for len bytes
1086	 * without shifting current data, pullup into it,
1087	 * otherwise allocate a new mbuf to prepend to the chain.
1088	 */
1089	if ((n->m_flags & M_EXT) == 0 &&
1090	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1091		if (n->m_len >= len)
1092			return (n);
1093		m = n;
1094		n = n->m_next;
1095		len -= m->m_len;
1096	} else {
1097		if (len > MHLEN)
1098			goto bad;
1099		MGET(m, M_NOWAIT, n->m_type);
1100		if (m == NULL)
1101			goto bad;
1102		m->m_len = 0;
1103		if (n->m_flags & M_PKTHDR)
1104			M_MOVE_PKTHDR(m, n);
1105	}
1106	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1107	do {
1108		count = min(min(max(len, max_protohdr), space), n->m_len);
1109		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1110		  (u_int)count);
1111		len -= count;
1112		m->m_len += count;
1113		n->m_len -= count;
1114		space -= count;
1115		if (n->m_len)
1116			n->m_data += count;
1117		else
1118			n = m_free(n);
1119	} while (len > 0 && n);
1120	if (len > 0) {
1121		(void) m_free(m);
1122		goto bad;
1123	}
1124	m->m_next = n;
1125	return (m);
1126bad:
1127	m_freem(n);
1128	mbstat.m_mpfail++;	/* XXX: No consistency. */
1129	return (NULL);
1130}
1131
1132/*
1133 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1134 * the amount of empty space before the data in the new mbuf to be specified
1135 * (in the event that the caller expects to prepend later).
1136 */
1137int MSFail;
1138
1139struct mbuf *
1140m_copyup(struct mbuf *n, int len, int dstoff)
1141{
1142	struct mbuf *m;
1143	int count, space;
1144
1145	if (len > (MHLEN - dstoff))
1146		goto bad;
1147	MGET(m, M_NOWAIT, n->m_type);
1148	if (m == NULL)
1149		goto bad;
1150	m->m_len = 0;
1151	if (n->m_flags & M_PKTHDR)
1152		M_MOVE_PKTHDR(m, n);
1153	m->m_data += dstoff;
1154	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1155	do {
1156		count = min(min(max(len, max_protohdr), space), n->m_len);
1157		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1158		    (unsigned)count);
1159		len -= count;
1160		m->m_len += count;
1161		n->m_len -= count;
1162		space -= count;
1163		if (n->m_len)
1164			n->m_data += count;
1165		else
1166			n = m_free(n);
1167	} while (len > 0 && n);
1168	if (len > 0) {
1169		(void) m_free(m);
1170		goto bad;
1171	}
1172	m->m_next = n;
1173	return (m);
1174 bad:
1175	m_freem(n);
1176	MSFail++;
1177	return (NULL);
1178}
1179
1180/*
1181 * Partition an mbuf chain in two pieces, returning the tail --
1182 * all but the first len0 bytes.  In case of failure, it returns NULL and
1183 * attempts to restore the chain to its original state.
1184 *
1185 * Note that the resulting mbufs might be read-only, because the new
1186 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1187 * the "breaking point" happens to lie within a cluster mbuf. Use the
1188 * M_WRITABLE() macro to check for this case.
1189 */
1190struct mbuf *
1191m_split(struct mbuf *m0, int len0, int wait)
1192{
1193	struct mbuf *m, *n;
1194	u_int len = len0, remain;
1195
1196	MBUF_CHECKSLEEP(wait);
1197	for (m = m0; m && len > m->m_len; m = m->m_next)
1198		len -= m->m_len;
1199	if (m == NULL)
1200		return (NULL);
1201	remain = m->m_len - len;
1202	if (m0->m_flags & M_PKTHDR) {
1203		MGETHDR(n, wait, m0->m_type);
1204		if (n == NULL)
1205			return (NULL);
1206		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1207		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1208		m0->m_pkthdr.len = len0;
1209		if (m->m_flags & M_EXT)
1210			goto extpacket;
1211		if (remain > MHLEN) {
1212			/* m can't be the lead packet */
1213			MH_ALIGN(n, 0);
1214			n->m_next = m_split(m, len, wait);
1215			if (n->m_next == NULL) {
1216				(void) m_free(n);
1217				return (NULL);
1218			} else {
1219				n->m_len = 0;
1220				return (n);
1221			}
1222		} else
1223			MH_ALIGN(n, remain);
1224	} else if (remain == 0) {
1225		n = m->m_next;
1226		m->m_next = NULL;
1227		return (n);
1228	} else {
1229		MGET(n, wait, m->m_type);
1230		if (n == NULL)
1231			return (NULL);
1232		M_ALIGN(n, remain);
1233	}
1234extpacket:
1235	if (m->m_flags & M_EXT) {
1236		n->m_data = m->m_data + len;
1237		mb_dupcl(n, m);
1238	} else {
1239		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1240	}
1241	n->m_len = remain;
1242	m->m_len = len;
1243	n->m_next = m->m_next;
1244	m->m_next = NULL;
1245	return (n);
1246}
1247/*
1248 * Routine to copy from device local memory into mbufs.
1249 * Note that `off' argument is offset into first mbuf of target chain from
1250 * which to begin copying the data to.
1251 */
1252struct mbuf *
1253m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1254    void (*copy)(char *from, caddr_t to, u_int len))
1255{
1256	struct mbuf *m;
1257	struct mbuf *top = NULL, **mp = &top;
1258	int len;
1259
1260	if (off < 0 || off > MHLEN)
1261		return (NULL);
1262
1263	while (totlen > 0) {
1264		if (top == NULL) {	/* First one, must be PKTHDR */
1265			if (totlen + off >= MINCLSIZE) {
1266				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1267				len = MCLBYTES;
1268			} else {
1269				m = m_gethdr(M_NOWAIT, MT_DATA);
1270				len = MHLEN;
1271
1272				/* Place initial small packet/header at end of mbuf */
1273				if (m && totlen + off + max_linkhdr <= MLEN) {
1274					m->m_data += max_linkhdr;
1275					len -= max_linkhdr;
1276				}
1277			}
1278			if (m == NULL)
1279				return NULL;
1280			m->m_pkthdr.rcvif = ifp;
1281			m->m_pkthdr.len = totlen;
1282		} else {
1283			if (totlen + off >= MINCLSIZE) {
1284				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1285				len = MCLBYTES;
1286			} else {
1287				m = m_get(M_NOWAIT, MT_DATA);
1288				len = MLEN;
1289			}
1290			if (m == NULL) {
1291				m_freem(top);
1292				return NULL;
1293			}
1294		}
1295		if (off) {
1296			m->m_data += off;
1297			len -= off;
1298			off = 0;
1299		}
1300		m->m_len = len = min(totlen, len);
1301		if (copy)
1302			copy(buf, mtod(m, caddr_t), (u_int)len);
1303		else
1304			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1305		buf += len;
1306		*mp = m;
1307		mp = &m->m_next;
1308		totlen -= len;
1309	}
1310	return (top);
1311}
1312
1313/*
1314 * Copy data from a buffer back into the indicated mbuf chain,
1315 * starting "off" bytes from the beginning, extending the mbuf
1316 * chain if necessary.
1317 */
1318void
1319m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1320{
1321	int mlen;
1322	struct mbuf *m = m0, *n;
1323	int totlen = 0;
1324
1325	if (m0 == NULL)
1326		return;
1327	while (off > (mlen = m->m_len)) {
1328		off -= mlen;
1329		totlen += mlen;
1330		if (m->m_next == NULL) {
1331			n = m_get(M_NOWAIT, m->m_type);
1332			if (n == NULL)
1333				goto out;
1334			bzero(mtod(n, caddr_t), MLEN);
1335			n->m_len = min(MLEN, len + off);
1336			m->m_next = n;
1337		}
1338		m = m->m_next;
1339	}
1340	while (len > 0) {
1341		if (m->m_next == NULL && (len > m->m_len - off)) {
1342			m->m_len += min(len - (m->m_len - off),
1343			    M_TRAILINGSPACE(m));
1344		}
1345		mlen = min (m->m_len - off, len);
1346		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1347		cp += mlen;
1348		len -= mlen;
1349		mlen += off;
1350		off = 0;
1351		totlen += mlen;
1352		if (len == 0)
1353			break;
1354		if (m->m_next == NULL) {
1355			n = m_get(M_NOWAIT, m->m_type);
1356			if (n == NULL)
1357				break;
1358			n->m_len = min(MLEN, len);
1359			m->m_next = n;
1360		}
1361		m = m->m_next;
1362	}
1363out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1364		m->m_pkthdr.len = totlen;
1365}
1366
1367/*
1368 * Append the specified data to the indicated mbuf chain,
1369 * Extend the mbuf chain if the new data does not fit in
1370 * existing space.
1371 *
1372 * Return 1 if able to complete the job; otherwise 0.
1373 */
1374int
1375m_append(struct mbuf *m0, int len, c_caddr_t cp)
1376{
1377	struct mbuf *m, *n;
1378	int remainder, space;
1379
1380	for (m = m0; m->m_next != NULL; m = m->m_next)
1381		;
1382	remainder = len;
1383	space = M_TRAILINGSPACE(m);
1384	if (space > 0) {
1385		/*
1386		 * Copy into available space.
1387		 */
1388		if (space > remainder)
1389			space = remainder;
1390		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1391		m->m_len += space;
1392		cp += space, remainder -= space;
1393	}
1394	while (remainder > 0) {
1395		/*
1396		 * Allocate a new mbuf; could check space
1397		 * and allocate a cluster instead.
1398		 */
1399		n = m_get(M_NOWAIT, m->m_type);
1400		if (n == NULL)
1401			break;
1402		n->m_len = min(MLEN, remainder);
1403		bcopy(cp, mtod(n, caddr_t), n->m_len);
1404		cp += n->m_len, remainder -= n->m_len;
1405		m->m_next = n;
1406		m = n;
1407	}
1408	if (m0->m_flags & M_PKTHDR)
1409		m0->m_pkthdr.len += len - remainder;
1410	return (remainder == 0);
1411}
1412
1413/*
1414 * Apply function f to the data in an mbuf chain starting "off" bytes from
1415 * the beginning, continuing for "len" bytes.
1416 */
1417int
1418m_apply(struct mbuf *m, int off, int len,
1419    int (*f)(void *, void *, u_int), void *arg)
1420{
1421	u_int count;
1422	int rval;
1423
1424	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1425	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1426	while (off > 0) {
1427		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1428		if (off < m->m_len)
1429			break;
1430		off -= m->m_len;
1431		m = m->m_next;
1432	}
1433	while (len > 0) {
1434		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1435		count = min(m->m_len - off, len);
1436		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1437		if (rval)
1438			return (rval);
1439		len -= count;
1440		off = 0;
1441		m = m->m_next;
1442	}
1443	return (0);
1444}
1445
1446/*
1447 * Return a pointer to mbuf/offset of location in mbuf chain.
1448 */
1449struct mbuf *
1450m_getptr(struct mbuf *m, int loc, int *off)
1451{
1452
1453	while (loc >= 0) {
1454		/* Normal end of search. */
1455		if (m->m_len > loc) {
1456			*off = loc;
1457			return (m);
1458		} else {
1459			loc -= m->m_len;
1460			if (m->m_next == NULL) {
1461				if (loc == 0) {
1462					/* Point at the end of valid data. */
1463					*off = m->m_len;
1464					return (m);
1465				}
1466				return (NULL);
1467			}
1468			m = m->m_next;
1469		}
1470	}
1471	return (NULL);
1472}
1473
1474void
1475m_print(const struct mbuf *m, int maxlen)
1476{
1477	int len;
1478	int pdata;
1479	const struct mbuf *m2;
1480
1481	if (m == NULL) {
1482		printf("mbuf: %p\n", m);
1483		return;
1484	}
1485
1486	if (m->m_flags & M_PKTHDR)
1487		len = m->m_pkthdr.len;
1488	else
1489		len = -1;
1490	m2 = m;
1491	while (m2 != NULL && (len == -1 || len)) {
1492		pdata = m2->m_len;
1493		if (maxlen != -1 && pdata > maxlen)
1494			pdata = maxlen;
1495		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1496		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1497		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1498		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1499		if (pdata)
1500			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1501		if (len != -1)
1502			len -= m2->m_len;
1503		m2 = m2->m_next;
1504	}
1505	if (len > 0)
1506		printf("%d bytes unaccounted for.\n", len);
1507	return;
1508}
1509
1510u_int
1511m_fixhdr(struct mbuf *m0)
1512{
1513	u_int len;
1514
1515	len = m_length(m0, NULL);
1516	m0->m_pkthdr.len = len;
1517	return (len);
1518}
1519
1520u_int
1521m_length(struct mbuf *m0, struct mbuf **last)
1522{
1523	struct mbuf *m;
1524	u_int len;
1525
1526	len = 0;
1527	for (m = m0; m != NULL; m = m->m_next) {
1528		len += m->m_len;
1529		if (m->m_next == NULL)
1530			break;
1531	}
1532	if (last != NULL)
1533		*last = m;
1534	return (len);
1535}
1536
1537/*
1538 * Defragment a mbuf chain, returning the shortest possible
1539 * chain of mbufs and clusters.  If allocation fails and
1540 * this cannot be completed, NULL will be returned, but
1541 * the passed in chain will be unchanged.  Upon success,
1542 * the original chain will be freed, and the new chain
1543 * will be returned.
1544 *
1545 * If a non-packet header is passed in, the original
1546 * mbuf (chain?) will be returned unharmed.
1547 */
1548struct mbuf *
1549m_defrag(struct mbuf *m0, int how)
1550{
1551	struct mbuf *m_new = NULL, *m_final = NULL;
1552	int progress = 0, length;
1553
1554	MBUF_CHECKSLEEP(how);
1555	if (!(m0->m_flags & M_PKTHDR))
1556		return (m0);
1557
1558	m_fixhdr(m0); /* Needed sanity check */
1559
1560#ifdef MBUF_STRESS_TEST
1561	if (m_defragrandomfailures) {
1562		int temp = arc4random() & 0xff;
1563		if (temp == 0xba)
1564			goto nospace;
1565	}
1566#endif
1567
1568	if (m0->m_pkthdr.len > MHLEN)
1569		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1570	else
1571		m_final = m_gethdr(how, MT_DATA);
1572
1573	if (m_final == NULL)
1574		goto nospace;
1575
1576	if (m_dup_pkthdr(m_final, m0, how) == 0)
1577		goto nospace;
1578
1579	m_new = m_final;
1580
1581	while (progress < m0->m_pkthdr.len) {
1582		length = m0->m_pkthdr.len - progress;
1583		if (length > MCLBYTES)
1584			length = MCLBYTES;
1585
1586		if (m_new == NULL) {
1587			if (length > MLEN)
1588				m_new = m_getcl(how, MT_DATA, 0);
1589			else
1590				m_new = m_get(how, MT_DATA);
1591			if (m_new == NULL)
1592				goto nospace;
1593		}
1594
1595		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1596		progress += length;
1597		m_new->m_len = length;
1598		if (m_new != m_final)
1599			m_cat(m_final, m_new);
1600		m_new = NULL;
1601	}
1602#ifdef MBUF_STRESS_TEST
1603	if (m0->m_next == NULL)
1604		m_defraguseless++;
1605#endif
1606	m_freem(m0);
1607	m0 = m_final;
1608#ifdef MBUF_STRESS_TEST
1609	m_defragpackets++;
1610	m_defragbytes += m0->m_pkthdr.len;
1611#endif
1612	return (m0);
1613nospace:
1614#ifdef MBUF_STRESS_TEST
1615	m_defragfailure++;
1616#endif
1617	if (m_final)
1618		m_freem(m_final);
1619	return (NULL);
1620}
1621
1622/*
1623 * Defragment an mbuf chain, returning at most maxfrags separate
1624 * mbufs+clusters.  If this is not possible NULL is returned and
1625 * the original mbuf chain is left in it's present (potentially
1626 * modified) state.  We use two techniques: collapsing consecutive
1627 * mbufs and replacing consecutive mbufs by a cluster.
1628 *
1629 * NB: this should really be named m_defrag but that name is taken
1630 */
1631struct mbuf *
1632m_collapse(struct mbuf *m0, int how, int maxfrags)
1633{
1634	struct mbuf *m, *n, *n2, **prev;
1635	u_int curfrags;
1636
1637	/*
1638	 * Calculate the current number of frags.
1639	 */
1640	curfrags = 0;
1641	for (m = m0; m != NULL; m = m->m_next)
1642		curfrags++;
1643	/*
1644	 * First, try to collapse mbufs.  Note that we always collapse
1645	 * towards the front so we don't need to deal with moving the
1646	 * pkthdr.  This may be suboptimal if the first mbuf has much
1647	 * less data than the following.
1648	 */
1649	m = m0;
1650again:
1651	for (;;) {
1652		n = m->m_next;
1653		if (n == NULL)
1654			break;
1655		if (M_WRITABLE(m) &&
1656		    n->m_len < M_TRAILINGSPACE(m)) {
1657			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1658				n->m_len);
1659			m->m_len += n->m_len;
1660			m->m_next = n->m_next;
1661			m_free(n);
1662			if (--curfrags <= maxfrags)
1663				return m0;
1664		} else
1665			m = n;
1666	}
1667	KASSERT(maxfrags > 1,
1668		("maxfrags %u, but normal collapse failed", maxfrags));
1669	/*
1670	 * Collapse consecutive mbufs to a cluster.
1671	 */
1672	prev = &m0->m_next;		/* NB: not the first mbuf */
1673	while ((n = *prev) != NULL) {
1674		if ((n2 = n->m_next) != NULL &&
1675		    n->m_len + n2->m_len < MCLBYTES) {
1676			m = m_getcl(how, MT_DATA, 0);
1677			if (m == NULL)
1678				goto bad;
1679			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1680			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1681				n2->m_len);
1682			m->m_len = n->m_len + n2->m_len;
1683			m->m_next = n2->m_next;
1684			*prev = m;
1685			m_free(n);
1686			m_free(n2);
1687			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1688				return m0;
1689			/*
1690			 * Still not there, try the normal collapse
1691			 * again before we allocate another cluster.
1692			 */
1693			goto again;
1694		}
1695		prev = &n->m_next;
1696	}
1697	/*
1698	 * No place where we can collapse to a cluster; punt.
1699	 * This can occur if, for example, you request 2 frags
1700	 * but the packet requires that both be clusters (we
1701	 * never reallocate the first mbuf to avoid moving the
1702	 * packet header).
1703	 */
1704bad:
1705	return NULL;
1706}
1707
1708#ifdef MBUF_STRESS_TEST
1709
1710/*
1711 * Fragment an mbuf chain.  There's no reason you'd ever want to do
1712 * this in normal usage, but it's great for stress testing various
1713 * mbuf consumers.
1714 *
1715 * If fragmentation is not possible, the original chain will be
1716 * returned.
1717 *
1718 * Possible length values:
1719 * 0	 no fragmentation will occur
1720 * > 0	each fragment will be of the specified length
1721 * -1	each fragment will be the same random value in length
1722 * -2	each fragment's length will be entirely random
1723 * (Random values range from 1 to 256)
1724 */
1725struct mbuf *
1726m_fragment(struct mbuf *m0, int how, int length)
1727{
1728	struct mbuf *m_new = NULL, *m_final = NULL;
1729	int progress = 0;
1730
1731	if (!(m0->m_flags & M_PKTHDR))
1732		return (m0);
1733
1734	if ((length == 0) || (length < -2))
1735		return (m0);
1736
1737	m_fixhdr(m0); /* Needed sanity check */
1738
1739	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1740
1741	if (m_final == NULL)
1742		goto nospace;
1743
1744	if (m_dup_pkthdr(m_final, m0, how) == 0)
1745		goto nospace;
1746
1747	m_new = m_final;
1748
1749	if (length == -1)
1750		length = 1 + (arc4random() & 255);
1751
1752	while (progress < m0->m_pkthdr.len) {
1753		int fraglen;
1754
1755		if (length > 0)
1756			fraglen = length;
1757		else
1758			fraglen = 1 + (arc4random() & 255);
1759		if (fraglen > m0->m_pkthdr.len - progress)
1760			fraglen = m0->m_pkthdr.len - progress;
1761
1762		if (fraglen > MCLBYTES)
1763			fraglen = MCLBYTES;
1764
1765		if (m_new == NULL) {
1766			m_new = m_getcl(how, MT_DATA, 0);
1767			if (m_new == NULL)
1768				goto nospace;
1769		}
1770
1771		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1772		progress += fraglen;
1773		m_new->m_len = fraglen;
1774		if (m_new != m_final)
1775			m_cat(m_final, m_new);
1776		m_new = NULL;
1777	}
1778	m_freem(m0);
1779	m0 = m_final;
1780	return (m0);
1781nospace:
1782	if (m_final)
1783		m_freem(m_final);
1784	/* Return the original chain on failure */
1785	return (m0);
1786}
1787
1788#endif
1789
1790/*
1791 * Copy the contents of uio into a properly sized mbuf chain.
1792 */
1793struct mbuf *
1794m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1795{
1796	struct mbuf *m, *mb;
1797	int error, length;
1798	ssize_t total;
1799	int progress = 0;
1800
1801	/*
1802	 * len can be zero or an arbitrary large value bound by
1803	 * the total data supplied by the uio.
1804	 */
1805	if (len > 0)
1806		total = min(uio->uio_resid, len);
1807	else
1808		total = uio->uio_resid;
1809
1810	/*
1811	 * The smallest unit returned by m_getm2() is a single mbuf
1812	 * with pkthdr.  We can't align past it.
1813	 */
1814	if (align >= MHLEN)
1815		return (NULL);
1816
1817	/*
1818	 * Give us the full allocation or nothing.
1819	 * If len is zero return the smallest empty mbuf.
1820	 */
1821	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1822	if (m == NULL)
1823		return (NULL);
1824	m->m_data += align;
1825
1826	/* Fill all mbufs with uio data and update header information. */
1827	for (mb = m; mb != NULL; mb = mb->m_next) {
1828		length = min(M_TRAILINGSPACE(mb), total - progress);
1829
1830		error = uiomove(mtod(mb, void *), length, uio);
1831		if (error) {
1832			m_freem(m);
1833			return (NULL);
1834		}
1835
1836		mb->m_len = length;
1837		progress += length;
1838		if (flags & M_PKTHDR)
1839			m->m_pkthdr.len += length;
1840	}
1841	KASSERT(progress == total, ("%s: progress != total", __func__));
1842
1843	return (m);
1844}
1845
1846/*
1847 * Copy an mbuf chain into a uio limited by len if set.
1848 */
1849int
1850m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1851{
1852	int error, length, total;
1853	int progress = 0;
1854
1855	if (len > 0)
1856		total = min(uio->uio_resid, len);
1857	else
1858		total = uio->uio_resid;
1859
1860	/* Fill the uio with data from the mbufs. */
1861	for (; m != NULL; m = m->m_next) {
1862		length = min(m->m_len, total - progress);
1863
1864		error = uiomove(mtod(m, void *), length, uio);
1865		if (error)
1866			return (error);
1867
1868		progress += length;
1869	}
1870
1871	return (0);
1872}
1873
1874/*
1875 * Set the m_data pointer of a newly-allocated mbuf
1876 * to place an object of the specified size at the
1877 * end of the mbuf, longword aligned.
1878 */
1879void
1880m_align(struct mbuf *m, int len)
1881{
1882	int adjust;
1883
1884	if (m->m_flags & M_EXT)
1885		adjust = m->m_ext.ext_size - len;
1886	else if (m->m_flags & M_PKTHDR)
1887		adjust = MHLEN - len;
1888	else
1889		adjust = MLEN - len;
1890	m->m_data += adjust &~ (sizeof(long)-1);
1891}
1892
1893/*
1894 * Create a writable copy of the mbuf chain.  While doing this
1895 * we compact the chain with a goal of producing a chain with
1896 * at most two mbufs.  The second mbuf in this chain is likely
1897 * to be a cluster.  The primary purpose of this work is to create
1898 * a writable packet for encryption, compression, etc.  The
1899 * secondary goal is to linearize the data so the data can be
1900 * passed to crypto hardware in the most efficient manner possible.
1901 */
1902struct mbuf *
1903m_unshare(struct mbuf *m0, int how)
1904{
1905	struct mbuf *m, *mprev;
1906	struct mbuf *n, *mfirst, *mlast;
1907	int len, off;
1908
1909	mprev = NULL;
1910	for (m = m0; m != NULL; m = mprev->m_next) {
1911		/*
1912		 * Regular mbufs are ignored unless there's a cluster
1913		 * in front of it that we can use to coalesce.  We do
1914		 * the latter mainly so later clusters can be coalesced
1915		 * also w/o having to handle them specially (i.e. convert
1916		 * mbuf+cluster -> cluster).  This optimization is heavily
1917		 * influenced by the assumption that we're running over
1918		 * Ethernet where MCLBYTES is large enough that the max
1919		 * packet size will permit lots of coalescing into a
1920		 * single cluster.  This in turn permits efficient
1921		 * crypto operations, especially when using hardware.
1922		 */
1923		if ((m->m_flags & M_EXT) == 0) {
1924			if (mprev && (mprev->m_flags & M_EXT) &&
1925			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1926				/* XXX: this ignores mbuf types */
1927				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1928				       mtod(m, caddr_t), m->m_len);
1929				mprev->m_len += m->m_len;
1930				mprev->m_next = m->m_next;	/* unlink from chain */
1931				m_free(m);			/* reclaim mbuf */
1932#if 0
1933				newipsecstat.ips_mbcoalesced++;
1934#endif
1935			} else {
1936				mprev = m;
1937			}
1938			continue;
1939		}
1940		/*
1941		 * Writable mbufs are left alone (for now).
1942		 */
1943		if (M_WRITABLE(m)) {
1944			mprev = m;
1945			continue;
1946		}
1947
1948		/*
1949		 * Not writable, replace with a copy or coalesce with
1950		 * the previous mbuf if possible (since we have to copy
1951		 * it anyway, we try to reduce the number of mbufs and
1952		 * clusters so that future work is easier).
1953		 */
1954		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1955		/* NB: we only coalesce into a cluster or larger */
1956		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1957		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1958			/* XXX: this ignores mbuf types */
1959			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1960			       mtod(m, caddr_t), m->m_len);
1961			mprev->m_len += m->m_len;
1962			mprev->m_next = m->m_next;	/* unlink from chain */
1963			m_free(m);			/* reclaim mbuf */
1964#if 0
1965			newipsecstat.ips_clcoalesced++;
1966#endif
1967			continue;
1968		}
1969
1970		/*
1971		 * Allocate new space to hold the copy...
1972		 */
1973		/* XXX why can M_PKTHDR be set past the first mbuf? */
1974		if (mprev == NULL && (m->m_flags & M_PKTHDR)) {
1975			/*
1976			 * NB: if a packet header is present we must
1977			 * allocate the mbuf separately from any cluster
1978			 * because M_MOVE_PKTHDR will smash the data
1979			 * pointer and drop the M_EXT marker.
1980			 */
1981			MGETHDR(n, how, m->m_type);
1982			if (n == NULL) {
1983				m_freem(m0);
1984				return (NULL);
1985			}
1986			M_MOVE_PKTHDR(n, m);
1987			MCLGET(n, how);
1988			if ((n->m_flags & M_EXT) == 0) {
1989				m_free(n);
1990				m_freem(m0);
1991				return (NULL);
1992			}
1993		} else {
1994			n = m_getcl(how, m->m_type, m->m_flags);
1995			if (n == NULL) {
1996				m_freem(m0);
1997				return (NULL);
1998			}
1999		}
2000		/*
2001		 * ... and copy the data.  We deal with jumbo mbufs
2002		 * (i.e. m_len > MCLBYTES) by splitting them into
2003		 * clusters.  We could just malloc a buffer and make
2004		 * it external but too many device drivers don't know
2005		 * how to break up the non-contiguous memory when
2006		 * doing DMA.
2007		 */
2008		len = m->m_len;
2009		off = 0;
2010		mfirst = n;
2011		mlast = NULL;
2012		for (;;) {
2013			int cc = min(len, MCLBYTES);
2014			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2015			n->m_len = cc;
2016			if (mlast != NULL)
2017				mlast->m_next = n;
2018			mlast = n;
2019#if 0
2020			newipsecstat.ips_clcopied++;
2021#endif
2022
2023			len -= cc;
2024			if (len <= 0)
2025				break;
2026			off += cc;
2027
2028			n = m_getcl(how, m->m_type, m->m_flags);
2029			if (n == NULL) {
2030				m_freem(mfirst);
2031				m_freem(m0);
2032				return (NULL);
2033			}
2034		}
2035		n->m_next = m->m_next;
2036		if (mprev == NULL)
2037			m0 = mfirst;		/* new head of chain */
2038		else
2039			mprev->m_next = mfirst;	/* replace old mbuf */
2040		m_free(m);			/* release old mbuf */
2041		mprev = mfirst;
2042	}
2043	return (m0);
2044}
2045
2046#ifdef MBUF_PROFILING
2047
2048#define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2049struct mbufprofile {
2050	uintmax_t wasted[MP_BUCKETS];
2051	uintmax_t used[MP_BUCKETS];
2052	uintmax_t segments[MP_BUCKETS];
2053} mbprof;
2054
2055#define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
2056#define MP_NUMLINES 6
2057#define MP_NUMSPERLINE 16
2058#define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
2059/* work out max space needed and add a bit of spare space too */
2060#define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2061#define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2062
2063char mbprofbuf[MP_BUFSIZE];
2064
2065void
2066m_profile(struct mbuf *m)
2067{
2068	int segments = 0;
2069	int used = 0;
2070	int wasted = 0;
2071
2072	while (m) {
2073		segments++;
2074		used += m->m_len;
2075		if (m->m_flags & M_EXT) {
2076			wasted += MHLEN - sizeof(m->m_ext) +
2077			    m->m_ext.ext_size - m->m_len;
2078		} else {
2079			if (m->m_flags & M_PKTHDR)
2080				wasted += MHLEN - m->m_len;
2081			else
2082				wasted += MLEN - m->m_len;
2083		}
2084		m = m->m_next;
2085	}
2086	/* be paranoid.. it helps */
2087	if (segments > MP_BUCKETS - 1)
2088		segments = MP_BUCKETS - 1;
2089	if (used > 100000)
2090		used = 100000;
2091	if (wasted > 100000)
2092		wasted = 100000;
2093	/* store in the appropriate bucket */
2094	/* don't bother locking. if it's slightly off, so what? */
2095	mbprof.segments[segments]++;
2096	mbprof.used[fls(used)]++;
2097	mbprof.wasted[fls(wasted)]++;
2098}
2099
2100static void
2101mbprof_textify(void)
2102{
2103	int offset;
2104	char *c;
2105	uint64_t *p;
2106
2107
2108	p = &mbprof.wasted[0];
2109	c = mbprofbuf;
2110	offset = snprintf(c, MP_MAXLINE + 10,
2111	    "wasted:\n"
2112	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2113	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2114	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2115	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2116#ifdef BIG_ARRAY
2117	p = &mbprof.wasted[16];
2118	c += offset;
2119	offset = snprintf(c, MP_MAXLINE,
2120	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2121	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2122	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2123	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2124#endif
2125	p = &mbprof.used[0];
2126	c += offset;
2127	offset = snprintf(c, MP_MAXLINE + 10,
2128	    "used:\n"
2129	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2130	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2131	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2132	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2133#ifdef BIG_ARRAY
2134	p = &mbprof.used[16];
2135	c += offset;
2136	offset = snprintf(c, MP_MAXLINE,
2137	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2138	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2139	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2140	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2141#endif
2142	p = &mbprof.segments[0];
2143	c += offset;
2144	offset = snprintf(c, MP_MAXLINE + 10,
2145	    "segments:\n"
2146	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2147	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2148	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2149	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2150#ifdef BIG_ARRAY
2151	p = &mbprof.segments[16];
2152	c += offset;
2153	offset = snprintf(c, MP_MAXLINE,
2154	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2155	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2156	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2157	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2158#endif
2159}
2160
2161static int
2162mbprof_handler(SYSCTL_HANDLER_ARGS)
2163{
2164	int error;
2165
2166	mbprof_textify();
2167	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2168	return (error);
2169}
2170
2171static int
2172mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2173{
2174	int clear, error;
2175
2176	clear = 0;
2177	error = sysctl_handle_int(oidp, &clear, 0, req);
2178	if (error || !req->newptr)
2179		return (error);
2180
2181	if (clear) {
2182		bzero(&mbprof, sizeof(mbprof));
2183	}
2184
2185	return (error);
2186}
2187
2188
2189SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2190	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2191
2192SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2193	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2194#endif
2195
2196