uipc_mbuf.c revision 245873
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/uipc_mbuf.c 245873 2013-01-24 09:29:41Z glebius $");
34
35#include "opt_param.h"
36#include "opt_mbuf_stress_test.h"
37#include "opt_mbuf_profiling.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/limits.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/sysctl.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/uio.h>
50
51int	max_linkhdr;
52int	max_protohdr;
53int	max_hdr;
54int	max_datalen;
55#ifdef MBUF_STRESS_TEST
56int	m_defragpackets;
57int	m_defragbytes;
58int	m_defraguseless;
59int	m_defragfailure;
60int	m_defragrandomfailures;
61#endif
62
63/*
64 * sysctl(8) exported objects
65 */
66SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67	   &max_linkhdr, 0, "Size of largest link layer header");
68SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69	   &max_protohdr, 0, "Size of largest protocol layer header");
70SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71	   &max_hdr, 0, "Size of largest link plus protocol header");
72SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74#ifdef MBUF_STRESS_TEST
75SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76	   &m_defragpackets, 0, "");
77SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78	   &m_defragbytes, 0, "");
79SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80	   &m_defraguseless, 0, "");
81SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82	   &m_defragfailure, 0, "");
83SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84	   &m_defragrandomfailures, 0, "");
85#endif
86
87/*
88 * m_get2() allocates minimum mbuf that would fit "size" argument.
89 */
90struct mbuf *
91m_get2(int how, short type, int flags, int size)
92{
93	struct mb_args args;
94	struct mbuf *m, *n;
95	uma_zone_t zone;
96
97	args.flags = flags;
98	args.type = type;
99
100	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
101		return (uma_zalloc_arg(zone_mbuf, &args, how));
102	if (size <= MCLBYTES)
103		return (uma_zalloc_arg(zone_pack, &args, how));
104	if (size > MJUM16BYTES)
105		return (NULL);
106
107	m = uma_zalloc_arg(zone_mbuf, &args, how);
108	if (m == NULL)
109		return (NULL);
110
111#if MJUMPAGESIZE != MCLBYTES
112	if (size <= MJUMPAGESIZE)
113		zone = zone_jumbop;
114	else
115#endif
116	if (size <= MJUM9BYTES)
117		zone = zone_jumbo9;
118	else
119		zone = zone_jumbo16;
120
121	n = uma_zalloc_arg(zone, m, how);
122	if (n == NULL) {
123		uma_zfree(zone_mbuf, m);
124		return (NULL);
125	}
126
127	return (m);
128}
129
130/*
131 * m_getjcl() returns an mbuf with a cluster of the specified size attached.
132 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
133 */
134struct mbuf *
135m_getjcl(int how, short type, int flags, int size)
136{
137	struct mb_args args;
138	struct mbuf *m, *n;
139	uma_zone_t zone;
140
141	if (size == MCLBYTES)
142		return m_getcl(how, type, flags);
143
144	args.flags = flags;
145	args.type = type;
146
147	m = uma_zalloc_arg(zone_mbuf, &args, how);
148	if (m == NULL)
149		return (NULL);
150
151	zone = m_getzone(size);
152	n = uma_zalloc_arg(zone, m, how);
153	if (n == NULL) {
154		uma_zfree(zone_mbuf, m);
155		return (NULL);
156	}
157	return (m);
158}
159
160/*
161 * Allocate a given length worth of mbufs and/or clusters (whatever fits
162 * best) and return a pointer to the top of the allocated chain.  If an
163 * existing mbuf chain is provided, then we will append the new chain
164 * to the existing one but still return the top of the newly allocated
165 * chain.
166 */
167struct mbuf *
168m_getm2(struct mbuf *m, int len, int how, short type, int flags)
169{
170	struct mbuf *mb, *nm = NULL, *mtail = NULL;
171
172	KASSERT(len >= 0, ("%s: len is < 0", __func__));
173
174	/* Validate flags. */
175	flags &= (M_PKTHDR | M_EOR);
176
177	/* Packet header mbuf must be first in chain. */
178	if ((flags & M_PKTHDR) && m != NULL)
179		flags &= ~M_PKTHDR;
180
181	/* Loop and append maximum sized mbufs to the chain tail. */
182	while (len > 0) {
183		if (len > MCLBYTES)
184			mb = m_getjcl(how, type, (flags & M_PKTHDR),
185			    MJUMPAGESIZE);
186		else if (len >= MINCLSIZE)
187			mb = m_getcl(how, type, (flags & M_PKTHDR));
188		else if (flags & M_PKTHDR)
189			mb = m_gethdr(how, type);
190		else
191			mb = m_get(how, type);
192
193		/* Fail the whole operation if one mbuf can't be allocated. */
194		if (mb == NULL) {
195			if (nm != NULL)
196				m_freem(nm);
197			return (NULL);
198		}
199
200		/* Book keeping. */
201		len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
202			((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
203		if (mtail != NULL)
204			mtail->m_next = mb;
205		else
206			nm = mb;
207		mtail = mb;
208		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
209	}
210	if (flags & M_EOR)
211		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
212
213	/* If mbuf was supplied, append new chain to the end of it. */
214	if (m != NULL) {
215		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
216			;
217		mtail->m_next = nm;
218		mtail->m_flags &= ~M_EOR;
219	} else
220		m = nm;
221
222	return (m);
223}
224
225/*
226 * Free an entire chain of mbufs and associated external buffers, if
227 * applicable.
228 */
229void
230m_freem(struct mbuf *mb)
231{
232
233	while (mb != NULL)
234		mb = m_free(mb);
235}
236
237/*-
238 * Configure a provided mbuf to refer to the provided external storage
239 * buffer and setup a reference count for said buffer.  If the setting
240 * up of the reference count fails, the M_EXT bit will not be set.  If
241 * successfull, the M_EXT bit is set in the mbuf's flags.
242 *
243 * Arguments:
244 *    mb     The existing mbuf to which to attach the provided buffer.
245 *    buf    The address of the provided external storage buffer.
246 *    size   The size of the provided buffer.
247 *    freef  A pointer to a routine that is responsible for freeing the
248 *           provided external storage buffer.
249 *    args   A pointer to an argument structure (of any type) to be passed
250 *           to the provided freef routine (may be NULL).
251 *    flags  Any other flags to be passed to the provided mbuf.
252 *    type   The type that the external storage buffer should be
253 *           labeled with.
254 *
255 * Returns:
256 *    Nothing.
257 */
258void
259m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
260    void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type)
261{
262	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
263
264	if (type != EXT_EXTREF)
265		mb->m_ext.ref_cnt = (u_int *)uma_zalloc(zone_ext_refcnt, M_NOWAIT);
266	if (mb->m_ext.ref_cnt != NULL) {
267		*(mb->m_ext.ref_cnt) = 1;
268		mb->m_flags |= (M_EXT | flags);
269		mb->m_ext.ext_buf = buf;
270		mb->m_data = mb->m_ext.ext_buf;
271		mb->m_ext.ext_size = size;
272		mb->m_ext.ext_free = freef;
273		mb->m_ext.ext_arg1 = arg1;
274		mb->m_ext.ext_arg2 = arg2;
275		mb->m_ext.ext_type = type;
276        }
277}
278
279/*
280 * Non-directly-exported function to clean up after mbufs with M_EXT
281 * storage attached to them if the reference count hits 1.
282 */
283void
284mb_free_ext(struct mbuf *m)
285{
286	int skipmbuf;
287
288	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
289	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
290
291
292	/*
293	 * check if the header is embedded in the cluster
294	 */
295	skipmbuf = (m->m_flags & M_NOFREE);
296
297	/* Free attached storage if this mbuf is the only reference to it. */
298	if (*(m->m_ext.ref_cnt) == 1 ||
299	    atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
300		switch (m->m_ext.ext_type) {
301		case EXT_PACKET:	/* The packet zone is special. */
302			if (*(m->m_ext.ref_cnt) == 0)
303				*(m->m_ext.ref_cnt) = 1;
304			uma_zfree(zone_pack, m);
305			return;		/* Job done. */
306		case EXT_CLUSTER:
307			uma_zfree(zone_clust, m->m_ext.ext_buf);
308			break;
309		case EXT_JUMBOP:
310			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
311			break;
312		case EXT_JUMBO9:
313			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
314			break;
315		case EXT_JUMBO16:
316			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
317			break;
318		case EXT_SFBUF:
319		case EXT_NET_DRV:
320		case EXT_MOD_TYPE:
321		case EXT_DISPOSABLE:
322			*(m->m_ext.ref_cnt) = 0;
323			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
324				m->m_ext.ref_cnt));
325			/* FALLTHROUGH */
326		case EXT_EXTREF:
327			KASSERT(m->m_ext.ext_free != NULL,
328				("%s: ext_free not set", __func__));
329			(*(m->m_ext.ext_free))(m->m_ext.ext_arg1,
330			    m->m_ext.ext_arg2);
331			break;
332		default:
333			KASSERT(m->m_ext.ext_type == 0,
334				("%s: unknown ext_type", __func__));
335		}
336	}
337	if (skipmbuf)
338		return;
339
340	/*
341	 * Free this mbuf back to the mbuf zone with all m_ext
342	 * information purged.
343	 */
344	m->m_ext.ext_buf = NULL;
345	m->m_ext.ext_free = NULL;
346	m->m_ext.ext_arg1 = NULL;
347	m->m_ext.ext_arg2 = NULL;
348	m->m_ext.ref_cnt = NULL;
349	m->m_ext.ext_size = 0;
350	m->m_ext.ext_type = 0;
351	m->m_flags &= ~M_EXT;
352	uma_zfree(zone_mbuf, m);
353}
354
355/*
356 * Attach the cluster from *m to *n, set up m_ext in *n
357 * and bump the refcount of the cluster.
358 */
359static void
360mb_dupcl(struct mbuf *n, struct mbuf *m)
361{
362	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
363	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
364	KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
365
366	if (*(m->m_ext.ref_cnt) == 1)
367		*(m->m_ext.ref_cnt) += 1;
368	else
369		atomic_add_int(m->m_ext.ref_cnt, 1);
370	n->m_ext.ext_buf = m->m_ext.ext_buf;
371	n->m_ext.ext_free = m->m_ext.ext_free;
372	n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
373	n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
374	n->m_ext.ext_size = m->m_ext.ext_size;
375	n->m_ext.ref_cnt = m->m_ext.ref_cnt;
376	n->m_ext.ext_type = m->m_ext.ext_type;
377	n->m_flags |= M_EXT;
378	n->m_flags |= m->m_flags & M_RDONLY;
379}
380
381/*
382 * Clean up mbuf (chain) from any tags and packet headers.
383 * If "all" is set then the first mbuf in the chain will be
384 * cleaned too.
385 */
386void
387m_demote(struct mbuf *m0, int all)
388{
389	struct mbuf *m;
390
391	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
392		if (m->m_flags & M_PKTHDR) {
393			m_tag_delete_chain(m, NULL);
394			m->m_flags &= ~M_PKTHDR;
395			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
396		}
397		if (m != m0 && m->m_nextpkt != NULL) {
398			KASSERT(m->m_nextpkt == NULL,
399			    ("%s: m_nextpkt not NULL", __func__));
400			m_freem(m->m_nextpkt);
401			m->m_nextpkt = NULL;
402		}
403		m->m_flags = m->m_flags & (M_EXT|M_RDONLY|M_FREELIST|M_NOFREE);
404	}
405}
406
407/*
408 * Sanity checks on mbuf (chain) for use in KASSERT() and general
409 * debugging.
410 * Returns 0 or panics when bad and 1 on all tests passed.
411 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
412 * blow up later.
413 */
414int
415m_sanity(struct mbuf *m0, int sanitize)
416{
417	struct mbuf *m;
418	caddr_t a, b;
419	int pktlen = 0;
420
421#ifdef INVARIANTS
422#define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
423#else
424#define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
425#endif
426
427	for (m = m0; m != NULL; m = m->m_next) {
428		/*
429		 * Basic pointer checks.  If any of these fails then some
430		 * unrelated kernel memory before or after us is trashed.
431		 * No way to recover from that.
432		 */
433		a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
434			((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
435			 (caddr_t)(&m->m_dat)) );
436		b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
437			((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
438		if ((caddr_t)m->m_data < a)
439			M_SANITY_ACTION("m_data outside mbuf data range left");
440		if ((caddr_t)m->m_data > b)
441			M_SANITY_ACTION("m_data outside mbuf data range right");
442		if ((caddr_t)m->m_data + m->m_len > b)
443			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
444		if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) {
445			if ((caddr_t)m->m_pkthdr.header < a ||
446			    (caddr_t)m->m_pkthdr.header > b)
447				M_SANITY_ACTION("m_pkthdr.header outside mbuf data range");
448		}
449
450		/* m->m_nextpkt may only be set on first mbuf in chain. */
451		if (m != m0 && m->m_nextpkt != NULL) {
452			if (sanitize) {
453				m_freem(m->m_nextpkt);
454				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
455			} else
456				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
457		}
458
459		/* packet length (not mbuf length!) calculation */
460		if (m0->m_flags & M_PKTHDR)
461			pktlen += m->m_len;
462
463		/* m_tags may only be attached to first mbuf in chain. */
464		if (m != m0 && m->m_flags & M_PKTHDR &&
465		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
466			if (sanitize) {
467				m_tag_delete_chain(m, NULL);
468				/* put in 0xDEADC0DE perhaps? */
469			} else
470				M_SANITY_ACTION("m_tags on in-chain mbuf");
471		}
472
473		/* M_PKTHDR may only be set on first mbuf in chain */
474		if (m != m0 && m->m_flags & M_PKTHDR) {
475			if (sanitize) {
476				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
477				m->m_flags &= ~M_PKTHDR;
478				/* put in 0xDEADCODE and leave hdr flag in */
479			} else
480				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
481		}
482	}
483	m = m0;
484	if (pktlen && pktlen != m->m_pkthdr.len) {
485		if (sanitize)
486			m->m_pkthdr.len = 0;
487		else
488			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
489	}
490	return 1;
491
492#undef	M_SANITY_ACTION
493}
494
495
496/*
497 * "Move" mbuf pkthdr from "from" to "to".
498 * "from" must have M_PKTHDR set, and "to" must be empty.
499 */
500void
501m_move_pkthdr(struct mbuf *to, struct mbuf *from)
502{
503
504#if 0
505	/* see below for why these are not enabled */
506	M_ASSERTPKTHDR(to);
507	/* Note: with MAC, this may not be a good assertion. */
508	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
509	    ("m_move_pkthdr: to has tags"));
510#endif
511#ifdef MAC
512	/*
513	 * XXXMAC: It could be this should also occur for non-MAC?
514	 */
515	if (to->m_flags & M_PKTHDR)
516		m_tag_delete_chain(to, NULL);
517#endif
518	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
519	if ((to->m_flags & M_EXT) == 0)
520		to->m_data = to->m_pktdat;
521	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
522	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
523	from->m_flags &= ~M_PKTHDR;
524}
525
526/*
527 * Duplicate "from"'s mbuf pkthdr in "to".
528 * "from" must have M_PKTHDR set, and "to" must be empty.
529 * In particular, this does a deep copy of the packet tags.
530 */
531int
532m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
533{
534
535#if 0
536	/*
537	 * The mbuf allocator only initializes the pkthdr
538	 * when the mbuf is allocated with MGETHDR. Many users
539	 * (e.g. m_copy*, m_prepend) use MGET and then
540	 * smash the pkthdr as needed causing these
541	 * assertions to trip.  For now just disable them.
542	 */
543	M_ASSERTPKTHDR(to);
544	/* Note: with MAC, this may not be a good assertion. */
545	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
546#endif
547	MBUF_CHECKSLEEP(how);
548#ifdef MAC
549	if (to->m_flags & M_PKTHDR)
550		m_tag_delete_chain(to, NULL);
551#endif
552	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
553	if ((to->m_flags & M_EXT) == 0)
554		to->m_data = to->m_pktdat;
555	to->m_pkthdr = from->m_pkthdr;
556	SLIST_INIT(&to->m_pkthdr.tags);
557	return (m_tag_copy_chain(to, from, MBTOM(how)));
558}
559
560/*
561 * Lesser-used path for M_PREPEND:
562 * allocate new mbuf to prepend to chain,
563 * copy junk along.
564 */
565struct mbuf *
566m_prepend(struct mbuf *m, int len, int how)
567{
568	struct mbuf *mn;
569
570	if (m->m_flags & M_PKTHDR)
571		MGETHDR(mn, how, m->m_type);
572	else
573		MGET(mn, how, m->m_type);
574	if (mn == NULL) {
575		m_freem(m);
576		return (NULL);
577	}
578	if (m->m_flags & M_PKTHDR)
579		M_MOVE_PKTHDR(mn, m);
580	mn->m_next = m;
581	m = mn;
582	if(m->m_flags & M_PKTHDR) {
583		if (len < MHLEN)
584			MH_ALIGN(m, len);
585	} else {
586		if (len < MLEN)
587			M_ALIGN(m, len);
588	}
589	m->m_len = len;
590	return (m);
591}
592
593/*
594 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
595 * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
596 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
597 * Note that the copy is read-only, because clusters are not copied,
598 * only their reference counts are incremented.
599 */
600struct mbuf *
601m_copym(struct mbuf *m, int off0, int len, int wait)
602{
603	struct mbuf *n, **np;
604	int off = off0;
605	struct mbuf *top;
606	int copyhdr = 0;
607
608	KASSERT(off >= 0, ("m_copym, negative off %d", off));
609	KASSERT(len >= 0, ("m_copym, negative len %d", len));
610	MBUF_CHECKSLEEP(wait);
611	if (off == 0 && m->m_flags & M_PKTHDR)
612		copyhdr = 1;
613	while (off > 0) {
614		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
615		if (off < m->m_len)
616			break;
617		off -= m->m_len;
618		m = m->m_next;
619	}
620	np = &top;
621	top = 0;
622	while (len > 0) {
623		if (m == NULL) {
624			KASSERT(len == M_COPYALL,
625			    ("m_copym, length > size of mbuf chain"));
626			break;
627		}
628		if (copyhdr)
629			MGETHDR(n, wait, m->m_type);
630		else
631			MGET(n, wait, m->m_type);
632		*np = n;
633		if (n == NULL)
634			goto nospace;
635		if (copyhdr) {
636			if (!m_dup_pkthdr(n, m, wait))
637				goto nospace;
638			if (len == M_COPYALL)
639				n->m_pkthdr.len -= off0;
640			else
641				n->m_pkthdr.len = len;
642			copyhdr = 0;
643		}
644		n->m_len = min(len, m->m_len - off);
645		if (m->m_flags & M_EXT) {
646			n->m_data = m->m_data + off;
647			mb_dupcl(n, m);
648		} else
649			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
650			    (u_int)n->m_len);
651		if (len != M_COPYALL)
652			len -= n->m_len;
653		off = 0;
654		m = m->m_next;
655		np = &n->m_next;
656	}
657	if (top == NULL)
658		mbstat.m_mcfail++;	/* XXX: No consistency. */
659
660	return (top);
661nospace:
662	m_freem(top);
663	mbstat.m_mcfail++;	/* XXX: No consistency. */
664	return (NULL);
665}
666
667/*
668 * Returns mbuf chain with new head for the prepending case.
669 * Copies from mbuf (chain) n from off for len to mbuf (chain) m
670 * either prepending or appending the data.
671 * The resulting mbuf (chain) m is fully writeable.
672 * m is destination (is made writeable)
673 * n is source, off is offset in source, len is len from offset
674 * dir, 0 append, 1 prepend
675 * how, wait or nowait
676 */
677
678static int
679m_bcopyxxx(void *s, void *t, u_int len)
680{
681	bcopy(s, t, (size_t)len);
682	return 0;
683}
684
685struct mbuf *
686m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
687    int prep, int how)
688{
689	struct mbuf *mm, *x, *z, *prev = NULL;
690	caddr_t p;
691	int i, nlen = 0;
692	caddr_t buf[MLEN];
693
694	KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
695	KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
696	KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
697	KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
698
699	mm = m;
700	if (!prep) {
701		while(mm->m_next) {
702			prev = mm;
703			mm = mm->m_next;
704		}
705	}
706	for (z = n; z != NULL; z = z->m_next)
707		nlen += z->m_len;
708	if (len == M_COPYALL)
709		len = nlen - off;
710	if (off + len > nlen || len < 1)
711		return NULL;
712
713	if (!M_WRITABLE(mm)) {
714		/* XXX: Use proper m_xxx function instead. */
715		x = m_getcl(how, MT_DATA, mm->m_flags);
716		if (x == NULL)
717			return NULL;
718		bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
719		p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
720		x->m_data = p;
721		mm->m_next = NULL;
722		if (mm != m)
723			prev->m_next = x;
724		m_free(mm);
725		mm = x;
726	}
727
728	/*
729	 * Append/prepend the data.  Allocating mbufs as necessary.
730	 */
731	/* Shortcut if enough free space in first/last mbuf. */
732	if (!prep && M_TRAILINGSPACE(mm) >= len) {
733		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
734			 mm->m_len);
735		mm->m_len += len;
736		mm->m_pkthdr.len += len;
737		return m;
738	}
739	if (prep && M_LEADINGSPACE(mm) >= len) {
740		mm->m_data = mtod(mm, caddr_t) - len;
741		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
742		mm->m_len += len;
743		mm->m_pkthdr.len += len;
744		return mm;
745	}
746
747	/* Expand first/last mbuf to cluster if possible. */
748	if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
749		bcopy(mm->m_data, &buf, mm->m_len);
750		m_clget(mm, how);
751		if (!(mm->m_flags & M_EXT))
752			return NULL;
753		bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
754		mm->m_data = mm->m_ext.ext_buf;
755		mm->m_pkthdr.header = NULL;
756	}
757	if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
758		bcopy(mm->m_data, &buf, mm->m_len);
759		m_clget(mm, how);
760		if (!(mm->m_flags & M_EXT))
761			return NULL;
762		bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
763		       mm->m_ext.ext_size - mm->m_len, mm->m_len);
764		mm->m_data = (caddr_t)mm->m_ext.ext_buf +
765			      mm->m_ext.ext_size - mm->m_len;
766		mm->m_pkthdr.header = NULL;
767	}
768
769	/* Append/prepend as many mbuf (clusters) as necessary to fit len. */
770	if (!prep && len > M_TRAILINGSPACE(mm)) {
771		if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
772			return NULL;
773	}
774	if (prep && len > M_LEADINGSPACE(mm)) {
775		if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
776			return NULL;
777		i = 0;
778		for (x = z; x != NULL; x = x->m_next) {
779			i += x->m_flags & M_EXT ? x->m_ext.ext_size :
780			      (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
781			if (!x->m_next)
782				break;
783		}
784		z->m_data += i - len;
785		m_move_pkthdr(mm, z);
786		x->m_next = mm;
787		mm = z;
788	}
789
790	/* Seek to start position in source mbuf. Optimization for long chains. */
791	while (off > 0) {
792		if (off < n->m_len)
793			break;
794		off -= n->m_len;
795		n = n->m_next;
796	}
797
798	/* Copy data into target mbuf. */
799	z = mm;
800	while (len > 0) {
801		KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
802		i = M_TRAILINGSPACE(z);
803		m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
804		z->m_len += i;
805		/* fixup pkthdr.len if necessary */
806		if ((prep ? mm : m)->m_flags & M_PKTHDR)
807			(prep ? mm : m)->m_pkthdr.len += i;
808		off += i;
809		len -= i;
810		z = z->m_next;
811	}
812	return (prep ? mm : m);
813}
814
815/*
816 * Copy an entire packet, including header (which must be present).
817 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
818 * Note that the copy is read-only, because clusters are not copied,
819 * only their reference counts are incremented.
820 * Preserve alignment of the first mbuf so if the creator has left
821 * some room at the beginning (e.g. for inserting protocol headers)
822 * the copies still have the room available.
823 */
824struct mbuf *
825m_copypacket(struct mbuf *m, int how)
826{
827	struct mbuf *top, *n, *o;
828
829	MBUF_CHECKSLEEP(how);
830	MGET(n, how, m->m_type);
831	top = n;
832	if (n == NULL)
833		goto nospace;
834
835	if (!m_dup_pkthdr(n, m, how))
836		goto nospace;
837	n->m_len = m->m_len;
838	if (m->m_flags & M_EXT) {
839		n->m_data = m->m_data;
840		mb_dupcl(n, m);
841	} else {
842		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
843		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
844	}
845
846	m = m->m_next;
847	while (m) {
848		MGET(o, how, m->m_type);
849		if (o == NULL)
850			goto nospace;
851
852		n->m_next = o;
853		n = n->m_next;
854
855		n->m_len = m->m_len;
856		if (m->m_flags & M_EXT) {
857			n->m_data = m->m_data;
858			mb_dupcl(n, m);
859		} else {
860			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
861		}
862
863		m = m->m_next;
864	}
865	return top;
866nospace:
867	m_freem(top);
868	mbstat.m_mcfail++;	/* XXX: No consistency. */
869	return (NULL);
870}
871
872/*
873 * Copy data from an mbuf chain starting "off" bytes from the beginning,
874 * continuing for "len" bytes, into the indicated buffer.
875 */
876void
877m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
878{
879	u_int count;
880
881	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
882	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
883	while (off > 0) {
884		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
885		if (off < m->m_len)
886			break;
887		off -= m->m_len;
888		m = m->m_next;
889	}
890	while (len > 0) {
891		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
892		count = min(m->m_len - off, len);
893		bcopy(mtod(m, caddr_t) + off, cp, count);
894		len -= count;
895		cp += count;
896		off = 0;
897		m = m->m_next;
898	}
899}
900
901/*
902 * Copy a packet header mbuf chain into a completely new chain, including
903 * copying any mbuf clusters.  Use this instead of m_copypacket() when
904 * you need a writable copy of an mbuf chain.
905 */
906struct mbuf *
907m_dup(struct mbuf *m, int how)
908{
909	struct mbuf **p, *top = NULL;
910	int remain, moff, nsize;
911
912	MBUF_CHECKSLEEP(how);
913	/* Sanity check */
914	if (m == NULL)
915		return (NULL);
916	M_ASSERTPKTHDR(m);
917
918	/* While there's more data, get a new mbuf, tack it on, and fill it */
919	remain = m->m_pkthdr.len;
920	moff = 0;
921	p = &top;
922	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
923		struct mbuf *n;
924
925		/* Get the next new mbuf */
926		if (remain >= MINCLSIZE) {
927			n = m_getcl(how, m->m_type, 0);
928			nsize = MCLBYTES;
929		} else {
930			n = m_get(how, m->m_type);
931			nsize = MLEN;
932		}
933		if (n == NULL)
934			goto nospace;
935
936		if (top == NULL) {		/* First one, must be PKTHDR */
937			if (!m_dup_pkthdr(n, m, how)) {
938				m_free(n);
939				goto nospace;
940			}
941			if ((n->m_flags & M_EXT) == 0)
942				nsize = MHLEN;
943		}
944		n->m_len = 0;
945
946		/* Link it into the new chain */
947		*p = n;
948		p = &n->m_next;
949
950		/* Copy data from original mbuf(s) into new mbuf */
951		while (n->m_len < nsize && m != NULL) {
952			int chunk = min(nsize - n->m_len, m->m_len - moff);
953
954			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
955			moff += chunk;
956			n->m_len += chunk;
957			remain -= chunk;
958			if (moff == m->m_len) {
959				m = m->m_next;
960				moff = 0;
961			}
962		}
963
964		/* Check correct total mbuf length */
965		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
966		    	("%s: bogus m_pkthdr.len", __func__));
967	}
968	return (top);
969
970nospace:
971	m_freem(top);
972	mbstat.m_mcfail++;	/* XXX: No consistency. */
973	return (NULL);
974}
975
976/*
977 * Concatenate mbuf chain n to m.
978 * Both chains must be of the same type (e.g. MT_DATA).
979 * Any m_pkthdr is not updated.
980 */
981void
982m_cat(struct mbuf *m, struct mbuf *n)
983{
984	while (m->m_next)
985		m = m->m_next;
986	while (n) {
987		if (!M_WRITABLE(m) ||
988		    M_TRAILINGSPACE(m) < n->m_len) {
989			/* just join the two chains */
990			m->m_next = n;
991			return;
992		}
993		/* splat the data from one into the other */
994		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
995		    (u_int)n->m_len);
996		m->m_len += n->m_len;
997		n = m_free(n);
998	}
999}
1000
1001void
1002m_adj(struct mbuf *mp, int req_len)
1003{
1004	int len = req_len;
1005	struct mbuf *m;
1006	int count;
1007
1008	if ((m = mp) == NULL)
1009		return;
1010	if (len >= 0) {
1011		/*
1012		 * Trim from head.
1013		 */
1014		while (m != NULL && len > 0) {
1015			if (m->m_len <= len) {
1016				len -= m->m_len;
1017				m->m_len = 0;
1018				m = m->m_next;
1019			} else {
1020				m->m_len -= len;
1021				m->m_data += len;
1022				len = 0;
1023			}
1024		}
1025		if (mp->m_flags & M_PKTHDR)
1026			mp->m_pkthdr.len -= (req_len - len);
1027	} else {
1028		/*
1029		 * Trim from tail.  Scan the mbuf chain,
1030		 * calculating its length and finding the last mbuf.
1031		 * If the adjustment only affects this mbuf, then just
1032		 * adjust and return.  Otherwise, rescan and truncate
1033		 * after the remaining size.
1034		 */
1035		len = -len;
1036		count = 0;
1037		for (;;) {
1038			count += m->m_len;
1039			if (m->m_next == (struct mbuf *)0)
1040				break;
1041			m = m->m_next;
1042		}
1043		if (m->m_len >= len) {
1044			m->m_len -= len;
1045			if (mp->m_flags & M_PKTHDR)
1046				mp->m_pkthdr.len -= len;
1047			return;
1048		}
1049		count -= len;
1050		if (count < 0)
1051			count = 0;
1052		/*
1053		 * Correct length for chain is "count".
1054		 * Find the mbuf with last data, adjust its length,
1055		 * and toss data from remaining mbufs on chain.
1056		 */
1057		m = mp;
1058		if (m->m_flags & M_PKTHDR)
1059			m->m_pkthdr.len = count;
1060		for (; m; m = m->m_next) {
1061			if (m->m_len >= count) {
1062				m->m_len = count;
1063				if (m->m_next != NULL) {
1064					m_freem(m->m_next);
1065					m->m_next = NULL;
1066				}
1067				break;
1068			}
1069			count -= m->m_len;
1070		}
1071	}
1072}
1073
1074/*
1075 * Rearange an mbuf chain so that len bytes are contiguous
1076 * and in the data area of an mbuf (so that mtod will work
1077 * for a structure of size len).  Returns the resulting
1078 * mbuf chain on success, frees it and returns null on failure.
1079 * If there is room, it will add up to max_protohdr-len extra bytes to the
1080 * contiguous region in an attempt to avoid being called next time.
1081 */
1082struct mbuf *
1083m_pullup(struct mbuf *n, int len)
1084{
1085	struct mbuf *m;
1086	int count;
1087	int space;
1088
1089	/*
1090	 * If first mbuf has no cluster, and has room for len bytes
1091	 * without shifting current data, pullup into it,
1092	 * otherwise allocate a new mbuf to prepend to the chain.
1093	 */
1094	if ((n->m_flags & M_EXT) == 0 &&
1095	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1096		if (n->m_len >= len)
1097			return (n);
1098		m = n;
1099		n = n->m_next;
1100		len -= m->m_len;
1101	} else {
1102		if (len > MHLEN)
1103			goto bad;
1104		MGET(m, M_NOWAIT, n->m_type);
1105		if (m == NULL)
1106			goto bad;
1107		m->m_len = 0;
1108		if (n->m_flags & M_PKTHDR)
1109			M_MOVE_PKTHDR(m, n);
1110	}
1111	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1112	do {
1113		count = min(min(max(len, max_protohdr), space), n->m_len);
1114		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1115		  (u_int)count);
1116		len -= count;
1117		m->m_len += count;
1118		n->m_len -= count;
1119		space -= count;
1120		if (n->m_len)
1121			n->m_data += count;
1122		else
1123			n = m_free(n);
1124	} while (len > 0 && n);
1125	if (len > 0) {
1126		(void) m_free(m);
1127		goto bad;
1128	}
1129	m->m_next = n;
1130	return (m);
1131bad:
1132	m_freem(n);
1133	mbstat.m_mpfail++;	/* XXX: No consistency. */
1134	return (NULL);
1135}
1136
1137/*
1138 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1139 * the amount of empty space before the data in the new mbuf to be specified
1140 * (in the event that the caller expects to prepend later).
1141 */
1142int MSFail;
1143
1144struct mbuf *
1145m_copyup(struct mbuf *n, int len, int dstoff)
1146{
1147	struct mbuf *m;
1148	int count, space;
1149
1150	if (len > (MHLEN - dstoff))
1151		goto bad;
1152	MGET(m, M_NOWAIT, n->m_type);
1153	if (m == NULL)
1154		goto bad;
1155	m->m_len = 0;
1156	if (n->m_flags & M_PKTHDR)
1157		M_MOVE_PKTHDR(m, n);
1158	m->m_data += dstoff;
1159	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1160	do {
1161		count = min(min(max(len, max_protohdr), space), n->m_len);
1162		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1163		    (unsigned)count);
1164		len -= count;
1165		m->m_len += count;
1166		n->m_len -= count;
1167		space -= count;
1168		if (n->m_len)
1169			n->m_data += count;
1170		else
1171			n = m_free(n);
1172	} while (len > 0 && n);
1173	if (len > 0) {
1174		(void) m_free(m);
1175		goto bad;
1176	}
1177	m->m_next = n;
1178	return (m);
1179 bad:
1180	m_freem(n);
1181	MSFail++;
1182	return (NULL);
1183}
1184
1185/*
1186 * Partition an mbuf chain in two pieces, returning the tail --
1187 * all but the first len0 bytes.  In case of failure, it returns NULL and
1188 * attempts to restore the chain to its original state.
1189 *
1190 * Note that the resulting mbufs might be read-only, because the new
1191 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1192 * the "breaking point" happens to lie within a cluster mbuf. Use the
1193 * M_WRITABLE() macro to check for this case.
1194 */
1195struct mbuf *
1196m_split(struct mbuf *m0, int len0, int wait)
1197{
1198	struct mbuf *m, *n;
1199	u_int len = len0, remain;
1200
1201	MBUF_CHECKSLEEP(wait);
1202	for (m = m0; m && len > m->m_len; m = m->m_next)
1203		len -= m->m_len;
1204	if (m == NULL)
1205		return (NULL);
1206	remain = m->m_len - len;
1207	if (m0->m_flags & M_PKTHDR) {
1208		MGETHDR(n, wait, m0->m_type);
1209		if (n == NULL)
1210			return (NULL);
1211		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1212		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1213		m0->m_pkthdr.len = len0;
1214		if (m->m_flags & M_EXT)
1215			goto extpacket;
1216		if (remain > MHLEN) {
1217			/* m can't be the lead packet */
1218			MH_ALIGN(n, 0);
1219			n->m_next = m_split(m, len, wait);
1220			if (n->m_next == NULL) {
1221				(void) m_free(n);
1222				return (NULL);
1223			} else {
1224				n->m_len = 0;
1225				return (n);
1226			}
1227		} else
1228			MH_ALIGN(n, remain);
1229	} else if (remain == 0) {
1230		n = m->m_next;
1231		m->m_next = NULL;
1232		return (n);
1233	} else {
1234		MGET(n, wait, m->m_type);
1235		if (n == NULL)
1236			return (NULL);
1237		M_ALIGN(n, remain);
1238	}
1239extpacket:
1240	if (m->m_flags & M_EXT) {
1241		n->m_data = m->m_data + len;
1242		mb_dupcl(n, m);
1243	} else {
1244		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1245	}
1246	n->m_len = remain;
1247	m->m_len = len;
1248	n->m_next = m->m_next;
1249	m->m_next = NULL;
1250	return (n);
1251}
1252/*
1253 * Routine to copy from device local memory into mbufs.
1254 * Note that `off' argument is offset into first mbuf of target chain from
1255 * which to begin copying the data to.
1256 */
1257struct mbuf *
1258m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1259    void (*copy)(char *from, caddr_t to, u_int len))
1260{
1261	struct mbuf *m;
1262	struct mbuf *top = NULL, **mp = &top;
1263	int len;
1264
1265	if (off < 0 || off > MHLEN)
1266		return (NULL);
1267
1268	while (totlen > 0) {
1269		if (top == NULL) {	/* First one, must be PKTHDR */
1270			if (totlen + off >= MINCLSIZE) {
1271				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1272				len = MCLBYTES;
1273			} else {
1274				m = m_gethdr(M_NOWAIT, MT_DATA);
1275				len = MHLEN;
1276
1277				/* Place initial small packet/header at end of mbuf */
1278				if (m && totlen + off + max_linkhdr <= MLEN) {
1279					m->m_data += max_linkhdr;
1280					len -= max_linkhdr;
1281				}
1282			}
1283			if (m == NULL)
1284				return NULL;
1285			m->m_pkthdr.rcvif = ifp;
1286			m->m_pkthdr.len = totlen;
1287		} else {
1288			if (totlen + off >= MINCLSIZE) {
1289				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1290				len = MCLBYTES;
1291			} else {
1292				m = m_get(M_NOWAIT, MT_DATA);
1293				len = MLEN;
1294			}
1295			if (m == NULL) {
1296				m_freem(top);
1297				return NULL;
1298			}
1299		}
1300		if (off) {
1301			m->m_data += off;
1302			len -= off;
1303			off = 0;
1304		}
1305		m->m_len = len = min(totlen, len);
1306		if (copy)
1307			copy(buf, mtod(m, caddr_t), (u_int)len);
1308		else
1309			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1310		buf += len;
1311		*mp = m;
1312		mp = &m->m_next;
1313		totlen -= len;
1314	}
1315	return (top);
1316}
1317
1318/*
1319 * Copy data from a buffer back into the indicated mbuf chain,
1320 * starting "off" bytes from the beginning, extending the mbuf
1321 * chain if necessary.
1322 */
1323void
1324m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1325{
1326	int mlen;
1327	struct mbuf *m = m0, *n;
1328	int totlen = 0;
1329
1330	if (m0 == NULL)
1331		return;
1332	while (off > (mlen = m->m_len)) {
1333		off -= mlen;
1334		totlen += mlen;
1335		if (m->m_next == NULL) {
1336			n = m_get(M_NOWAIT, m->m_type);
1337			if (n == NULL)
1338				goto out;
1339			bzero(mtod(n, caddr_t), MLEN);
1340			n->m_len = min(MLEN, len + off);
1341			m->m_next = n;
1342		}
1343		m = m->m_next;
1344	}
1345	while (len > 0) {
1346		if (m->m_next == NULL && (len > m->m_len - off)) {
1347			m->m_len += min(len - (m->m_len - off),
1348			    M_TRAILINGSPACE(m));
1349		}
1350		mlen = min (m->m_len - off, len);
1351		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1352		cp += mlen;
1353		len -= mlen;
1354		mlen += off;
1355		off = 0;
1356		totlen += mlen;
1357		if (len == 0)
1358			break;
1359		if (m->m_next == NULL) {
1360			n = m_get(M_NOWAIT, m->m_type);
1361			if (n == NULL)
1362				break;
1363			n->m_len = min(MLEN, len);
1364			m->m_next = n;
1365		}
1366		m = m->m_next;
1367	}
1368out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1369		m->m_pkthdr.len = totlen;
1370}
1371
1372/*
1373 * Append the specified data to the indicated mbuf chain,
1374 * Extend the mbuf chain if the new data does not fit in
1375 * existing space.
1376 *
1377 * Return 1 if able to complete the job; otherwise 0.
1378 */
1379int
1380m_append(struct mbuf *m0, int len, c_caddr_t cp)
1381{
1382	struct mbuf *m, *n;
1383	int remainder, space;
1384
1385	for (m = m0; m->m_next != NULL; m = m->m_next)
1386		;
1387	remainder = len;
1388	space = M_TRAILINGSPACE(m);
1389	if (space > 0) {
1390		/*
1391		 * Copy into available space.
1392		 */
1393		if (space > remainder)
1394			space = remainder;
1395		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1396		m->m_len += space;
1397		cp += space, remainder -= space;
1398	}
1399	while (remainder > 0) {
1400		/*
1401		 * Allocate a new mbuf; could check space
1402		 * and allocate a cluster instead.
1403		 */
1404		n = m_get(M_NOWAIT, m->m_type);
1405		if (n == NULL)
1406			break;
1407		n->m_len = min(MLEN, remainder);
1408		bcopy(cp, mtod(n, caddr_t), n->m_len);
1409		cp += n->m_len, remainder -= n->m_len;
1410		m->m_next = n;
1411		m = n;
1412	}
1413	if (m0->m_flags & M_PKTHDR)
1414		m0->m_pkthdr.len += len - remainder;
1415	return (remainder == 0);
1416}
1417
1418/*
1419 * Apply function f to the data in an mbuf chain starting "off" bytes from
1420 * the beginning, continuing for "len" bytes.
1421 */
1422int
1423m_apply(struct mbuf *m, int off, int len,
1424    int (*f)(void *, void *, u_int), void *arg)
1425{
1426	u_int count;
1427	int rval;
1428
1429	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1430	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1431	while (off > 0) {
1432		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1433		if (off < m->m_len)
1434			break;
1435		off -= m->m_len;
1436		m = m->m_next;
1437	}
1438	while (len > 0) {
1439		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1440		count = min(m->m_len - off, len);
1441		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1442		if (rval)
1443			return (rval);
1444		len -= count;
1445		off = 0;
1446		m = m->m_next;
1447	}
1448	return (0);
1449}
1450
1451/*
1452 * Return a pointer to mbuf/offset of location in mbuf chain.
1453 */
1454struct mbuf *
1455m_getptr(struct mbuf *m, int loc, int *off)
1456{
1457
1458	while (loc >= 0) {
1459		/* Normal end of search. */
1460		if (m->m_len > loc) {
1461			*off = loc;
1462			return (m);
1463		} else {
1464			loc -= m->m_len;
1465			if (m->m_next == NULL) {
1466				if (loc == 0) {
1467					/* Point at the end of valid data. */
1468					*off = m->m_len;
1469					return (m);
1470				}
1471				return (NULL);
1472			}
1473			m = m->m_next;
1474		}
1475	}
1476	return (NULL);
1477}
1478
1479void
1480m_print(const struct mbuf *m, int maxlen)
1481{
1482	int len;
1483	int pdata;
1484	const struct mbuf *m2;
1485
1486	if (m == NULL) {
1487		printf("mbuf: %p\n", m);
1488		return;
1489	}
1490
1491	if (m->m_flags & M_PKTHDR)
1492		len = m->m_pkthdr.len;
1493	else
1494		len = -1;
1495	m2 = m;
1496	while (m2 != NULL && (len == -1 || len)) {
1497		pdata = m2->m_len;
1498		if (maxlen != -1 && pdata > maxlen)
1499			pdata = maxlen;
1500		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1501		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1502		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1503		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1504		if (pdata)
1505			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1506		if (len != -1)
1507			len -= m2->m_len;
1508		m2 = m2->m_next;
1509	}
1510	if (len > 0)
1511		printf("%d bytes unaccounted for.\n", len);
1512	return;
1513}
1514
1515u_int
1516m_fixhdr(struct mbuf *m0)
1517{
1518	u_int len;
1519
1520	len = m_length(m0, NULL);
1521	m0->m_pkthdr.len = len;
1522	return (len);
1523}
1524
1525u_int
1526m_length(struct mbuf *m0, struct mbuf **last)
1527{
1528	struct mbuf *m;
1529	u_int len;
1530
1531	len = 0;
1532	for (m = m0; m != NULL; m = m->m_next) {
1533		len += m->m_len;
1534		if (m->m_next == NULL)
1535			break;
1536	}
1537	if (last != NULL)
1538		*last = m;
1539	return (len);
1540}
1541
1542/*
1543 * Defragment a mbuf chain, returning the shortest possible
1544 * chain of mbufs and clusters.  If allocation fails and
1545 * this cannot be completed, NULL will be returned, but
1546 * the passed in chain will be unchanged.  Upon success,
1547 * the original chain will be freed, and the new chain
1548 * will be returned.
1549 *
1550 * If a non-packet header is passed in, the original
1551 * mbuf (chain?) will be returned unharmed.
1552 */
1553struct mbuf *
1554m_defrag(struct mbuf *m0, int how)
1555{
1556	struct mbuf *m_new = NULL, *m_final = NULL;
1557	int progress = 0, length;
1558
1559	MBUF_CHECKSLEEP(how);
1560	if (!(m0->m_flags & M_PKTHDR))
1561		return (m0);
1562
1563	m_fixhdr(m0); /* Needed sanity check */
1564
1565#ifdef MBUF_STRESS_TEST
1566	if (m_defragrandomfailures) {
1567		int temp = arc4random() & 0xff;
1568		if (temp == 0xba)
1569			goto nospace;
1570	}
1571#endif
1572
1573	if (m0->m_pkthdr.len > MHLEN)
1574		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1575	else
1576		m_final = m_gethdr(how, MT_DATA);
1577
1578	if (m_final == NULL)
1579		goto nospace;
1580
1581	if (m_dup_pkthdr(m_final, m0, how) == 0)
1582		goto nospace;
1583
1584	m_new = m_final;
1585
1586	while (progress < m0->m_pkthdr.len) {
1587		length = m0->m_pkthdr.len - progress;
1588		if (length > MCLBYTES)
1589			length = MCLBYTES;
1590
1591		if (m_new == NULL) {
1592			if (length > MLEN)
1593				m_new = m_getcl(how, MT_DATA, 0);
1594			else
1595				m_new = m_get(how, MT_DATA);
1596			if (m_new == NULL)
1597				goto nospace;
1598		}
1599
1600		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1601		progress += length;
1602		m_new->m_len = length;
1603		if (m_new != m_final)
1604			m_cat(m_final, m_new);
1605		m_new = NULL;
1606	}
1607#ifdef MBUF_STRESS_TEST
1608	if (m0->m_next == NULL)
1609		m_defraguseless++;
1610#endif
1611	m_freem(m0);
1612	m0 = m_final;
1613#ifdef MBUF_STRESS_TEST
1614	m_defragpackets++;
1615	m_defragbytes += m0->m_pkthdr.len;
1616#endif
1617	return (m0);
1618nospace:
1619#ifdef MBUF_STRESS_TEST
1620	m_defragfailure++;
1621#endif
1622	if (m_final)
1623		m_freem(m_final);
1624	return (NULL);
1625}
1626
1627/*
1628 * Defragment an mbuf chain, returning at most maxfrags separate
1629 * mbufs+clusters.  If this is not possible NULL is returned and
1630 * the original mbuf chain is left in it's present (potentially
1631 * modified) state.  We use two techniques: collapsing consecutive
1632 * mbufs and replacing consecutive mbufs by a cluster.
1633 *
1634 * NB: this should really be named m_defrag but that name is taken
1635 */
1636struct mbuf *
1637m_collapse(struct mbuf *m0, int how, int maxfrags)
1638{
1639	struct mbuf *m, *n, *n2, **prev;
1640	u_int curfrags;
1641
1642	/*
1643	 * Calculate the current number of frags.
1644	 */
1645	curfrags = 0;
1646	for (m = m0; m != NULL; m = m->m_next)
1647		curfrags++;
1648	/*
1649	 * First, try to collapse mbufs.  Note that we always collapse
1650	 * towards the front so we don't need to deal with moving the
1651	 * pkthdr.  This may be suboptimal if the first mbuf has much
1652	 * less data than the following.
1653	 */
1654	m = m0;
1655again:
1656	for (;;) {
1657		n = m->m_next;
1658		if (n == NULL)
1659			break;
1660		if (M_WRITABLE(m) &&
1661		    n->m_len < M_TRAILINGSPACE(m)) {
1662			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1663				n->m_len);
1664			m->m_len += n->m_len;
1665			m->m_next = n->m_next;
1666			m_free(n);
1667			if (--curfrags <= maxfrags)
1668				return m0;
1669		} else
1670			m = n;
1671	}
1672	KASSERT(maxfrags > 1,
1673		("maxfrags %u, but normal collapse failed", maxfrags));
1674	/*
1675	 * Collapse consecutive mbufs to a cluster.
1676	 */
1677	prev = &m0->m_next;		/* NB: not the first mbuf */
1678	while ((n = *prev) != NULL) {
1679		if ((n2 = n->m_next) != NULL &&
1680		    n->m_len + n2->m_len < MCLBYTES) {
1681			m = m_getcl(how, MT_DATA, 0);
1682			if (m == NULL)
1683				goto bad;
1684			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1685			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1686				n2->m_len);
1687			m->m_len = n->m_len + n2->m_len;
1688			m->m_next = n2->m_next;
1689			*prev = m;
1690			m_free(n);
1691			m_free(n2);
1692			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1693				return m0;
1694			/*
1695			 * Still not there, try the normal collapse
1696			 * again before we allocate another cluster.
1697			 */
1698			goto again;
1699		}
1700		prev = &n->m_next;
1701	}
1702	/*
1703	 * No place where we can collapse to a cluster; punt.
1704	 * This can occur if, for example, you request 2 frags
1705	 * but the packet requires that both be clusters (we
1706	 * never reallocate the first mbuf to avoid moving the
1707	 * packet header).
1708	 */
1709bad:
1710	return NULL;
1711}
1712
1713#ifdef MBUF_STRESS_TEST
1714
1715/*
1716 * Fragment an mbuf chain.  There's no reason you'd ever want to do
1717 * this in normal usage, but it's great for stress testing various
1718 * mbuf consumers.
1719 *
1720 * If fragmentation is not possible, the original chain will be
1721 * returned.
1722 *
1723 * Possible length values:
1724 * 0	 no fragmentation will occur
1725 * > 0	each fragment will be of the specified length
1726 * -1	each fragment will be the same random value in length
1727 * -2	each fragment's length will be entirely random
1728 * (Random values range from 1 to 256)
1729 */
1730struct mbuf *
1731m_fragment(struct mbuf *m0, int how, int length)
1732{
1733	struct mbuf *m_new = NULL, *m_final = NULL;
1734	int progress = 0;
1735
1736	if (!(m0->m_flags & M_PKTHDR))
1737		return (m0);
1738
1739	if ((length == 0) || (length < -2))
1740		return (m0);
1741
1742	m_fixhdr(m0); /* Needed sanity check */
1743
1744	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1745
1746	if (m_final == NULL)
1747		goto nospace;
1748
1749	if (m_dup_pkthdr(m_final, m0, how) == 0)
1750		goto nospace;
1751
1752	m_new = m_final;
1753
1754	if (length == -1)
1755		length = 1 + (arc4random() & 255);
1756
1757	while (progress < m0->m_pkthdr.len) {
1758		int fraglen;
1759
1760		if (length > 0)
1761			fraglen = length;
1762		else
1763			fraglen = 1 + (arc4random() & 255);
1764		if (fraglen > m0->m_pkthdr.len - progress)
1765			fraglen = m0->m_pkthdr.len - progress;
1766
1767		if (fraglen > MCLBYTES)
1768			fraglen = MCLBYTES;
1769
1770		if (m_new == NULL) {
1771			m_new = m_getcl(how, MT_DATA, 0);
1772			if (m_new == NULL)
1773				goto nospace;
1774		}
1775
1776		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1777		progress += fraglen;
1778		m_new->m_len = fraglen;
1779		if (m_new != m_final)
1780			m_cat(m_final, m_new);
1781		m_new = NULL;
1782	}
1783	m_freem(m0);
1784	m0 = m_final;
1785	return (m0);
1786nospace:
1787	if (m_final)
1788		m_freem(m_final);
1789	/* Return the original chain on failure */
1790	return (m0);
1791}
1792
1793#endif
1794
1795/*
1796 * Copy the contents of uio into a properly sized mbuf chain.
1797 */
1798struct mbuf *
1799m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1800{
1801	struct mbuf *m, *mb;
1802	int error, length;
1803	ssize_t total;
1804	int progress = 0;
1805
1806	/*
1807	 * len can be zero or an arbitrary large value bound by
1808	 * the total data supplied by the uio.
1809	 */
1810	if (len > 0)
1811		total = min(uio->uio_resid, len);
1812	else
1813		total = uio->uio_resid;
1814
1815	/*
1816	 * The smallest unit returned by m_getm2() is a single mbuf
1817	 * with pkthdr.  We can't align past it.
1818	 */
1819	if (align >= MHLEN)
1820		return (NULL);
1821
1822	/*
1823	 * Give us the full allocation or nothing.
1824	 * If len is zero return the smallest empty mbuf.
1825	 */
1826	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1827	if (m == NULL)
1828		return (NULL);
1829	m->m_data += align;
1830
1831	/* Fill all mbufs with uio data and update header information. */
1832	for (mb = m; mb != NULL; mb = mb->m_next) {
1833		length = min(M_TRAILINGSPACE(mb), total - progress);
1834
1835		error = uiomove(mtod(mb, void *), length, uio);
1836		if (error) {
1837			m_freem(m);
1838			return (NULL);
1839		}
1840
1841		mb->m_len = length;
1842		progress += length;
1843		if (flags & M_PKTHDR)
1844			m->m_pkthdr.len += length;
1845	}
1846	KASSERT(progress == total, ("%s: progress != total", __func__));
1847
1848	return (m);
1849}
1850
1851/*
1852 * Copy an mbuf chain into a uio limited by len if set.
1853 */
1854int
1855m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1856{
1857	int error, length, total;
1858	int progress = 0;
1859
1860	if (len > 0)
1861		total = min(uio->uio_resid, len);
1862	else
1863		total = uio->uio_resid;
1864
1865	/* Fill the uio with data from the mbufs. */
1866	for (; m != NULL; m = m->m_next) {
1867		length = min(m->m_len, total - progress);
1868
1869		error = uiomove(mtod(m, void *), length, uio);
1870		if (error)
1871			return (error);
1872
1873		progress += length;
1874	}
1875
1876	return (0);
1877}
1878
1879/*
1880 * Set the m_data pointer of a newly-allocated mbuf
1881 * to place an object of the specified size at the
1882 * end of the mbuf, longword aligned.
1883 */
1884void
1885m_align(struct mbuf *m, int len)
1886{
1887	int adjust;
1888
1889	if (m->m_flags & M_EXT)
1890		adjust = m->m_ext.ext_size - len;
1891	else if (m->m_flags & M_PKTHDR)
1892		adjust = MHLEN - len;
1893	else
1894		adjust = MLEN - len;
1895	m->m_data += adjust &~ (sizeof(long)-1);
1896}
1897
1898/*
1899 * Create a writable copy of the mbuf chain.  While doing this
1900 * we compact the chain with a goal of producing a chain with
1901 * at most two mbufs.  The second mbuf in this chain is likely
1902 * to be a cluster.  The primary purpose of this work is to create
1903 * a writable packet for encryption, compression, etc.  The
1904 * secondary goal is to linearize the data so the data can be
1905 * passed to crypto hardware in the most efficient manner possible.
1906 */
1907struct mbuf *
1908m_unshare(struct mbuf *m0, int how)
1909{
1910	struct mbuf *m, *mprev;
1911	struct mbuf *n, *mfirst, *mlast;
1912	int len, off;
1913
1914	mprev = NULL;
1915	for (m = m0; m != NULL; m = mprev->m_next) {
1916		/*
1917		 * Regular mbufs are ignored unless there's a cluster
1918		 * in front of it that we can use to coalesce.  We do
1919		 * the latter mainly so later clusters can be coalesced
1920		 * also w/o having to handle them specially (i.e. convert
1921		 * mbuf+cluster -> cluster).  This optimization is heavily
1922		 * influenced by the assumption that we're running over
1923		 * Ethernet where MCLBYTES is large enough that the max
1924		 * packet size will permit lots of coalescing into a
1925		 * single cluster.  This in turn permits efficient
1926		 * crypto operations, especially when using hardware.
1927		 */
1928		if ((m->m_flags & M_EXT) == 0) {
1929			if (mprev && (mprev->m_flags & M_EXT) &&
1930			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1931				/* XXX: this ignores mbuf types */
1932				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1933				       mtod(m, caddr_t), m->m_len);
1934				mprev->m_len += m->m_len;
1935				mprev->m_next = m->m_next;	/* unlink from chain */
1936				m_free(m);			/* reclaim mbuf */
1937#if 0
1938				newipsecstat.ips_mbcoalesced++;
1939#endif
1940			} else {
1941				mprev = m;
1942			}
1943			continue;
1944		}
1945		/*
1946		 * Writable mbufs are left alone (for now).
1947		 */
1948		if (M_WRITABLE(m)) {
1949			mprev = m;
1950			continue;
1951		}
1952
1953		/*
1954		 * Not writable, replace with a copy or coalesce with
1955		 * the previous mbuf if possible (since we have to copy
1956		 * it anyway, we try to reduce the number of mbufs and
1957		 * clusters so that future work is easier).
1958		 */
1959		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1960		/* NB: we only coalesce into a cluster or larger */
1961		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1962		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1963			/* XXX: this ignores mbuf types */
1964			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1965			       mtod(m, caddr_t), m->m_len);
1966			mprev->m_len += m->m_len;
1967			mprev->m_next = m->m_next;	/* unlink from chain */
1968			m_free(m);			/* reclaim mbuf */
1969#if 0
1970			newipsecstat.ips_clcoalesced++;
1971#endif
1972			continue;
1973		}
1974
1975		/*
1976		 * Allocate new space to hold the copy...
1977		 */
1978		/* XXX why can M_PKTHDR be set past the first mbuf? */
1979		if (mprev == NULL && (m->m_flags & M_PKTHDR)) {
1980			/*
1981			 * NB: if a packet header is present we must
1982			 * allocate the mbuf separately from any cluster
1983			 * because M_MOVE_PKTHDR will smash the data
1984			 * pointer and drop the M_EXT marker.
1985			 */
1986			MGETHDR(n, how, m->m_type);
1987			if (n == NULL) {
1988				m_freem(m0);
1989				return (NULL);
1990			}
1991			M_MOVE_PKTHDR(n, m);
1992			MCLGET(n, how);
1993			if ((n->m_flags & M_EXT) == 0) {
1994				m_free(n);
1995				m_freem(m0);
1996				return (NULL);
1997			}
1998		} else {
1999			n = m_getcl(how, m->m_type, m->m_flags);
2000			if (n == NULL) {
2001				m_freem(m0);
2002				return (NULL);
2003			}
2004		}
2005		/*
2006		 * ... and copy the data.  We deal with jumbo mbufs
2007		 * (i.e. m_len > MCLBYTES) by splitting them into
2008		 * clusters.  We could just malloc a buffer and make
2009		 * it external but too many device drivers don't know
2010		 * how to break up the non-contiguous memory when
2011		 * doing DMA.
2012		 */
2013		len = m->m_len;
2014		off = 0;
2015		mfirst = n;
2016		mlast = NULL;
2017		for (;;) {
2018			int cc = min(len, MCLBYTES);
2019			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2020			n->m_len = cc;
2021			if (mlast != NULL)
2022				mlast->m_next = n;
2023			mlast = n;
2024#if 0
2025			newipsecstat.ips_clcopied++;
2026#endif
2027
2028			len -= cc;
2029			if (len <= 0)
2030				break;
2031			off += cc;
2032
2033			n = m_getcl(how, m->m_type, m->m_flags);
2034			if (n == NULL) {
2035				m_freem(mfirst);
2036				m_freem(m0);
2037				return (NULL);
2038			}
2039		}
2040		n->m_next = m->m_next;
2041		if (mprev == NULL)
2042			m0 = mfirst;		/* new head of chain */
2043		else
2044			mprev->m_next = mfirst;	/* replace old mbuf */
2045		m_free(m);			/* release old mbuf */
2046		mprev = mfirst;
2047	}
2048	return (m0);
2049}
2050
2051#ifdef MBUF_PROFILING
2052
2053#define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2054struct mbufprofile {
2055	uintmax_t wasted[MP_BUCKETS];
2056	uintmax_t used[MP_BUCKETS];
2057	uintmax_t segments[MP_BUCKETS];
2058} mbprof;
2059
2060#define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
2061#define MP_NUMLINES 6
2062#define MP_NUMSPERLINE 16
2063#define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
2064/* work out max space needed and add a bit of spare space too */
2065#define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2066#define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2067
2068char mbprofbuf[MP_BUFSIZE];
2069
2070void
2071m_profile(struct mbuf *m)
2072{
2073	int segments = 0;
2074	int used = 0;
2075	int wasted = 0;
2076
2077	while (m) {
2078		segments++;
2079		used += m->m_len;
2080		if (m->m_flags & M_EXT) {
2081			wasted += MHLEN - sizeof(m->m_ext) +
2082			    m->m_ext.ext_size - m->m_len;
2083		} else {
2084			if (m->m_flags & M_PKTHDR)
2085				wasted += MHLEN - m->m_len;
2086			else
2087				wasted += MLEN - m->m_len;
2088		}
2089		m = m->m_next;
2090	}
2091	/* be paranoid.. it helps */
2092	if (segments > MP_BUCKETS - 1)
2093		segments = MP_BUCKETS - 1;
2094	if (used > 100000)
2095		used = 100000;
2096	if (wasted > 100000)
2097		wasted = 100000;
2098	/* store in the appropriate bucket */
2099	/* don't bother locking. if it's slightly off, so what? */
2100	mbprof.segments[segments]++;
2101	mbprof.used[fls(used)]++;
2102	mbprof.wasted[fls(wasted)]++;
2103}
2104
2105static void
2106mbprof_textify(void)
2107{
2108	int offset;
2109	char *c;
2110	uint64_t *p;
2111
2112
2113	p = &mbprof.wasted[0];
2114	c = mbprofbuf;
2115	offset = snprintf(c, MP_MAXLINE + 10,
2116	    "wasted:\n"
2117	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2118	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2119	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2120	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2121#ifdef BIG_ARRAY
2122	p = &mbprof.wasted[16];
2123	c += offset;
2124	offset = snprintf(c, MP_MAXLINE,
2125	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2126	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2127	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2128	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2129#endif
2130	p = &mbprof.used[0];
2131	c += offset;
2132	offset = snprintf(c, MP_MAXLINE + 10,
2133	    "used:\n"
2134	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2135	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2136	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2137	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2138#ifdef BIG_ARRAY
2139	p = &mbprof.used[16];
2140	c += offset;
2141	offset = snprintf(c, MP_MAXLINE,
2142	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2143	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2144	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2145	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2146#endif
2147	p = &mbprof.segments[0];
2148	c += offset;
2149	offset = snprintf(c, MP_MAXLINE + 10,
2150	    "segments:\n"
2151	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2152	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2153	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2154	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2155#ifdef BIG_ARRAY
2156	p = &mbprof.segments[16];
2157	c += offset;
2158	offset = snprintf(c, MP_MAXLINE,
2159	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2160	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2161	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2162	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2163#endif
2164}
2165
2166static int
2167mbprof_handler(SYSCTL_HANDLER_ARGS)
2168{
2169	int error;
2170
2171	mbprof_textify();
2172	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2173	return (error);
2174}
2175
2176static int
2177mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2178{
2179	int clear, error;
2180
2181	clear = 0;
2182	error = sysctl_handle_int(oidp, &clear, 0, req);
2183	if (error || !req->newptr)
2184		return (error);
2185
2186	if (clear) {
2187		bzero(&mbprof, sizeof(mbprof));
2188	}
2189
2190	return (error);
2191}
2192
2193
2194SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2195	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2196
2197SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2198	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2199#endif
2200
2201