uipc_mbuf.c revision 210225
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/uipc_mbuf.c 210225 2010-07-18 20:23:10Z trasz $");
34
35#include "opt_param.h"
36#include "opt_mbuf_stress_test.h"
37#include "opt_mbuf_profiling.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/limits.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/sysctl.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/uio.h>
50
51int	max_linkhdr;
52int	max_protohdr;
53int	max_hdr;
54int	max_datalen;
55#ifdef MBUF_STRESS_TEST
56int	m_defragpackets;
57int	m_defragbytes;
58int	m_defraguseless;
59int	m_defragfailure;
60int	m_defragrandomfailures;
61#endif
62
63/*
64 * sysctl(8) exported objects
65 */
66SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67	   &max_linkhdr, 0, "Size of largest link layer header");
68SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69	   &max_protohdr, 0, "Size of largest protocol layer header");
70SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71	   &max_hdr, 0, "Size of largest link plus protocol header");
72SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74#ifdef MBUF_STRESS_TEST
75SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76	   &m_defragpackets, 0, "");
77SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78	   &m_defragbytes, 0, "");
79SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80	   &m_defraguseless, 0, "");
81SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82	   &m_defragfailure, 0, "");
83SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84	   &m_defragrandomfailures, 0, "");
85#endif
86
87/*
88 * Allocate a given length worth of mbufs and/or clusters (whatever fits
89 * best) and return a pointer to the top of the allocated chain.  If an
90 * existing mbuf chain is provided, then we will append the new chain
91 * to the existing one but still return the top of the newly allocated
92 * chain.
93 */
94struct mbuf *
95m_getm2(struct mbuf *m, int len, int how, short type, int flags)
96{
97	struct mbuf *mb, *nm = NULL, *mtail = NULL;
98
99	KASSERT(len >= 0, ("%s: len is < 0", __func__));
100
101	/* Validate flags. */
102	flags &= (M_PKTHDR | M_EOR);
103
104	/* Packet header mbuf must be first in chain. */
105	if ((flags & M_PKTHDR) && m != NULL)
106		flags &= ~M_PKTHDR;
107
108	/* Loop and append maximum sized mbufs to the chain tail. */
109	while (len > 0) {
110		if (len > MCLBYTES)
111			mb = m_getjcl(how, type, (flags & M_PKTHDR),
112			    MJUMPAGESIZE);
113		else if (len >= MINCLSIZE)
114			mb = m_getcl(how, type, (flags & M_PKTHDR));
115		else if (flags & M_PKTHDR)
116			mb = m_gethdr(how, type);
117		else
118			mb = m_get(how, type);
119
120		/* Fail the whole operation if one mbuf can't be allocated. */
121		if (mb == NULL) {
122			if (nm != NULL)
123				m_freem(nm);
124			return (NULL);
125		}
126
127		/* Book keeping. */
128		len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
129			((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
130		if (mtail != NULL)
131			mtail->m_next = mb;
132		else
133			nm = mb;
134		mtail = mb;
135		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
136	}
137	if (flags & M_EOR)
138		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
139
140	/* If mbuf was supplied, append new chain to the end of it. */
141	if (m != NULL) {
142		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
143			;
144		mtail->m_next = nm;
145		mtail->m_flags &= ~M_EOR;
146	} else
147		m = nm;
148
149	return (m);
150}
151
152/*
153 * Free an entire chain of mbufs and associated external buffers, if
154 * applicable.
155 */
156void
157m_freem(struct mbuf *mb)
158{
159
160	while (mb != NULL)
161		mb = m_free(mb);
162}
163
164/*
165 * Configure a provided mbuf to refer to the provided external storage
166 * buffer and setup a reference count for said buffer.  If the setting
167 * up of the reference count fails, the M_EXT bit will not be set.  If
168 * successfull, the M_EXT bit is set in the mbuf's flags.
169 *
170 * Arguments:
171 *    mb     The existing mbuf to which to attach the provided buffer.
172 *    buf    The address of the provided external storage buffer.
173 *    size   The size of the provided buffer.
174 *    freef  A pointer to a routine that is responsible for freeing the
175 *           provided external storage buffer.
176 *    args   A pointer to an argument structure (of any type) to be passed
177 *           to the provided freef routine (may be NULL).
178 *    flags  Any other flags to be passed to the provided mbuf.
179 *    type   The type that the external storage buffer should be
180 *           labeled with.
181 *
182 * Returns:
183 *    Nothing.
184 */
185void
186m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
187    void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type)
188{
189	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
190
191	if (type != EXT_EXTREF)
192		mb->m_ext.ref_cnt = (u_int *)uma_zalloc(zone_ext_refcnt, M_NOWAIT);
193	if (mb->m_ext.ref_cnt != NULL) {
194		*(mb->m_ext.ref_cnt) = 1;
195		mb->m_flags |= (M_EXT | flags);
196		mb->m_ext.ext_buf = buf;
197		mb->m_data = mb->m_ext.ext_buf;
198		mb->m_ext.ext_size = size;
199		mb->m_ext.ext_free = freef;
200		mb->m_ext.ext_arg1 = arg1;
201		mb->m_ext.ext_arg2 = arg2;
202		mb->m_ext.ext_type = type;
203        }
204}
205
206/*
207 * Non-directly-exported function to clean up after mbufs with M_EXT
208 * storage attached to them if the reference count hits 1.
209 */
210void
211mb_free_ext(struct mbuf *m)
212{
213	int skipmbuf;
214
215	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
216	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
217
218
219	/*
220	 * check if the header is embedded in the cluster
221	 */
222	skipmbuf = (m->m_flags & M_NOFREE);
223
224	/* Free attached storage if this mbuf is the only reference to it. */
225	if (*(m->m_ext.ref_cnt) == 1 ||
226	    atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
227		switch (m->m_ext.ext_type) {
228		case EXT_PACKET:	/* The packet zone is special. */
229			if (*(m->m_ext.ref_cnt) == 0)
230				*(m->m_ext.ref_cnt) = 1;
231			uma_zfree(zone_pack, m);
232			return;		/* Job done. */
233		case EXT_CLUSTER:
234			uma_zfree(zone_clust, m->m_ext.ext_buf);
235			break;
236		case EXT_JUMBOP:
237			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
238			break;
239		case EXT_JUMBO9:
240			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
241			break;
242		case EXT_JUMBO16:
243			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
244			break;
245		case EXT_SFBUF:
246		case EXT_NET_DRV:
247		case EXT_MOD_TYPE:
248		case EXT_DISPOSABLE:
249			*(m->m_ext.ref_cnt) = 0;
250			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
251				m->m_ext.ref_cnt));
252			/* FALLTHROUGH */
253		case EXT_EXTREF:
254			KASSERT(m->m_ext.ext_free != NULL,
255				("%s: ext_free not set", __func__));
256			(*(m->m_ext.ext_free))(m->m_ext.ext_arg1,
257			    m->m_ext.ext_arg2);
258			break;
259		default:
260			KASSERT(m->m_ext.ext_type == 0,
261				("%s: unknown ext_type", __func__));
262		}
263	}
264	if (skipmbuf)
265		return;
266
267	/*
268	 * Free this mbuf back to the mbuf zone with all m_ext
269	 * information purged.
270	 */
271	m->m_ext.ext_buf = NULL;
272	m->m_ext.ext_free = NULL;
273	m->m_ext.ext_arg1 = NULL;
274	m->m_ext.ext_arg2 = NULL;
275	m->m_ext.ref_cnt = NULL;
276	m->m_ext.ext_size = 0;
277	m->m_ext.ext_type = 0;
278	m->m_flags &= ~M_EXT;
279	uma_zfree(zone_mbuf, m);
280}
281
282/*
283 * Attach the the cluster from *m to *n, set up m_ext in *n
284 * and bump the refcount of the cluster.
285 */
286static void
287mb_dupcl(struct mbuf *n, struct mbuf *m)
288{
289	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
290	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
291	KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
292
293	if (*(m->m_ext.ref_cnt) == 1)
294		*(m->m_ext.ref_cnt) += 1;
295	else
296		atomic_add_int(m->m_ext.ref_cnt, 1);
297	n->m_ext.ext_buf = m->m_ext.ext_buf;
298	n->m_ext.ext_free = m->m_ext.ext_free;
299	n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
300	n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
301	n->m_ext.ext_size = m->m_ext.ext_size;
302	n->m_ext.ref_cnt = m->m_ext.ref_cnt;
303	n->m_ext.ext_type = m->m_ext.ext_type;
304	n->m_flags |= M_EXT;
305	n->m_flags |= m->m_flags & M_RDONLY;
306}
307
308/*
309 * Clean up mbuf (chain) from any tags and packet headers.
310 * If "all" is set then the first mbuf in the chain will be
311 * cleaned too.
312 */
313void
314m_demote(struct mbuf *m0, int all)
315{
316	struct mbuf *m;
317
318	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
319		if (m->m_flags & M_PKTHDR) {
320			m_tag_delete_chain(m, NULL);
321			m->m_flags &= ~M_PKTHDR;
322			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
323		}
324		if (m != m0 && m->m_nextpkt != NULL) {
325			KASSERT(m->m_nextpkt == NULL,
326			    ("%s: m_nextpkt not NULL", __func__));
327			m_freem(m->m_nextpkt);
328			m->m_nextpkt = NULL;
329		}
330		m->m_flags = m->m_flags & (M_EXT|M_RDONLY|M_FREELIST|M_NOFREE);
331	}
332}
333
334/*
335 * Sanity checks on mbuf (chain) for use in KASSERT() and general
336 * debugging.
337 * Returns 0 or panics when bad and 1 on all tests passed.
338 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
339 * blow up later.
340 */
341int
342m_sanity(struct mbuf *m0, int sanitize)
343{
344	struct mbuf *m;
345	caddr_t a, b;
346	int pktlen = 0;
347
348#ifdef INVARIANTS
349#define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
350#else
351#define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
352#endif
353
354	for (m = m0; m != NULL; m = m->m_next) {
355		/*
356		 * Basic pointer checks.  If any of these fails then some
357		 * unrelated kernel memory before or after us is trashed.
358		 * No way to recover from that.
359		 */
360		a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
361			((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
362			 (caddr_t)(&m->m_dat)) );
363		b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
364			((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
365		if ((caddr_t)m->m_data < a)
366			M_SANITY_ACTION("m_data outside mbuf data range left");
367		if ((caddr_t)m->m_data > b)
368			M_SANITY_ACTION("m_data outside mbuf data range right");
369		if ((caddr_t)m->m_data + m->m_len > b)
370			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
371		if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) {
372			if ((caddr_t)m->m_pkthdr.header < a ||
373			    (caddr_t)m->m_pkthdr.header > b)
374				M_SANITY_ACTION("m_pkthdr.header outside mbuf data range");
375		}
376
377		/* m->m_nextpkt may only be set on first mbuf in chain. */
378		if (m != m0 && m->m_nextpkt != NULL) {
379			if (sanitize) {
380				m_freem(m->m_nextpkt);
381				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
382			} else
383				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
384		}
385
386		/* packet length (not mbuf length!) calculation */
387		if (m0->m_flags & M_PKTHDR)
388			pktlen += m->m_len;
389
390		/* m_tags may only be attached to first mbuf in chain. */
391		if (m != m0 && m->m_flags & M_PKTHDR &&
392		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
393			if (sanitize) {
394				m_tag_delete_chain(m, NULL);
395				/* put in 0xDEADC0DE perhaps? */
396			} else
397				M_SANITY_ACTION("m_tags on in-chain mbuf");
398		}
399
400		/* M_PKTHDR may only be set on first mbuf in chain */
401		if (m != m0 && m->m_flags & M_PKTHDR) {
402			if (sanitize) {
403				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
404				m->m_flags &= ~M_PKTHDR;
405				/* put in 0xDEADCODE and leave hdr flag in */
406			} else
407				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
408		}
409	}
410	m = m0;
411	if (pktlen && pktlen != m->m_pkthdr.len) {
412		if (sanitize)
413			m->m_pkthdr.len = 0;
414		else
415			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
416	}
417	return 1;
418
419#undef	M_SANITY_ACTION
420}
421
422
423/*
424 * "Move" mbuf pkthdr from "from" to "to".
425 * "from" must have M_PKTHDR set, and "to" must be empty.
426 */
427void
428m_move_pkthdr(struct mbuf *to, struct mbuf *from)
429{
430
431#if 0
432	/* see below for why these are not enabled */
433	M_ASSERTPKTHDR(to);
434	/* Note: with MAC, this may not be a good assertion. */
435	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
436	    ("m_move_pkthdr: to has tags"));
437#endif
438#ifdef MAC
439	/*
440	 * XXXMAC: It could be this should also occur for non-MAC?
441	 */
442	if (to->m_flags & M_PKTHDR)
443		m_tag_delete_chain(to, NULL);
444#endif
445	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
446	if ((to->m_flags & M_EXT) == 0)
447		to->m_data = to->m_pktdat;
448	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
449	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
450	from->m_flags &= ~M_PKTHDR;
451}
452
453/*
454 * Duplicate "from"'s mbuf pkthdr in "to".
455 * "from" must have M_PKTHDR set, and "to" must be empty.
456 * In particular, this does a deep copy of the packet tags.
457 */
458int
459m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
460{
461
462#if 0
463	/*
464	 * The mbuf allocator only initializes the pkthdr
465	 * when the mbuf is allocated with MGETHDR. Many users
466	 * (e.g. m_copy*, m_prepend) use MGET and then
467	 * smash the pkthdr as needed causing these
468	 * assertions to trip.  For now just disable them.
469	 */
470	M_ASSERTPKTHDR(to);
471	/* Note: with MAC, this may not be a good assertion. */
472	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
473#endif
474	MBUF_CHECKSLEEP(how);
475#ifdef MAC
476	if (to->m_flags & M_PKTHDR)
477		m_tag_delete_chain(to, NULL);
478#endif
479	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
480	if ((to->m_flags & M_EXT) == 0)
481		to->m_data = to->m_pktdat;
482	to->m_pkthdr = from->m_pkthdr;
483	SLIST_INIT(&to->m_pkthdr.tags);
484	return (m_tag_copy_chain(to, from, MBTOM(how)));
485}
486
487/*
488 * Lesser-used path for M_PREPEND:
489 * allocate new mbuf to prepend to chain,
490 * copy junk along.
491 */
492struct mbuf *
493m_prepend(struct mbuf *m, int len, int how)
494{
495	struct mbuf *mn;
496
497	if (m->m_flags & M_PKTHDR)
498		MGETHDR(mn, how, m->m_type);
499	else
500		MGET(mn, how, m->m_type);
501	if (mn == NULL) {
502		m_freem(m);
503		return (NULL);
504	}
505	if (m->m_flags & M_PKTHDR)
506		M_MOVE_PKTHDR(mn, m);
507	mn->m_next = m;
508	m = mn;
509	if(m->m_flags & M_PKTHDR) {
510		if (len < MHLEN)
511			MH_ALIGN(m, len);
512	} else {
513		if (len < MLEN)
514			M_ALIGN(m, len);
515	}
516	m->m_len = len;
517	return (m);
518}
519
520/*
521 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
522 * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
523 * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
524 * Note that the copy is read-only, because clusters are not copied,
525 * only their reference counts are incremented.
526 */
527struct mbuf *
528m_copym(struct mbuf *m, int off0, int len, int wait)
529{
530	struct mbuf *n, **np;
531	int off = off0;
532	struct mbuf *top;
533	int copyhdr = 0;
534
535	KASSERT(off >= 0, ("m_copym, negative off %d", off));
536	KASSERT(len >= 0, ("m_copym, negative len %d", len));
537	MBUF_CHECKSLEEP(wait);
538	if (off == 0 && m->m_flags & M_PKTHDR)
539		copyhdr = 1;
540	while (off > 0) {
541		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
542		if (off < m->m_len)
543			break;
544		off -= m->m_len;
545		m = m->m_next;
546	}
547	np = &top;
548	top = 0;
549	while (len > 0) {
550		if (m == NULL) {
551			KASSERT(len == M_COPYALL,
552			    ("m_copym, length > size of mbuf chain"));
553			break;
554		}
555		if (copyhdr)
556			MGETHDR(n, wait, m->m_type);
557		else
558			MGET(n, wait, m->m_type);
559		*np = n;
560		if (n == NULL)
561			goto nospace;
562		if (copyhdr) {
563			if (!m_dup_pkthdr(n, m, wait))
564				goto nospace;
565			if (len == M_COPYALL)
566				n->m_pkthdr.len -= off0;
567			else
568				n->m_pkthdr.len = len;
569			copyhdr = 0;
570		}
571		n->m_len = min(len, m->m_len - off);
572		if (m->m_flags & M_EXT) {
573			n->m_data = m->m_data + off;
574			mb_dupcl(n, m);
575		} else
576			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
577			    (u_int)n->m_len);
578		if (len != M_COPYALL)
579			len -= n->m_len;
580		off = 0;
581		m = m->m_next;
582		np = &n->m_next;
583	}
584	if (top == NULL)
585		mbstat.m_mcfail++;	/* XXX: No consistency. */
586
587	return (top);
588nospace:
589	m_freem(top);
590	mbstat.m_mcfail++;	/* XXX: No consistency. */
591	return (NULL);
592}
593
594/*
595 * Returns mbuf chain with new head for the prepending case.
596 * Copies from mbuf (chain) n from off for len to mbuf (chain) m
597 * either prepending or appending the data.
598 * The resulting mbuf (chain) m is fully writeable.
599 * m is destination (is made writeable)
600 * n is source, off is offset in source, len is len from offset
601 * dir, 0 append, 1 prepend
602 * how, wait or nowait
603 */
604
605static int
606m_bcopyxxx(void *s, void *t, u_int len)
607{
608	bcopy(s, t, (size_t)len);
609	return 0;
610}
611
612struct mbuf *
613m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
614    int prep, int how)
615{
616	struct mbuf *mm, *x, *z, *prev = NULL;
617	caddr_t p;
618	int i, nlen = 0;
619	caddr_t buf[MLEN];
620
621	KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
622	KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
623	KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
624	KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
625
626	mm = m;
627	if (!prep) {
628		while(mm->m_next) {
629			prev = mm;
630			mm = mm->m_next;
631		}
632	}
633	for (z = n; z != NULL; z = z->m_next)
634		nlen += z->m_len;
635	if (len == M_COPYALL)
636		len = nlen - off;
637	if (off + len > nlen || len < 1)
638		return NULL;
639
640	if (!M_WRITABLE(mm)) {
641		/* XXX: Use proper m_xxx function instead. */
642		x = m_getcl(how, MT_DATA, mm->m_flags);
643		if (x == NULL)
644			return NULL;
645		bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
646		p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
647		x->m_data = p;
648		mm->m_next = NULL;
649		if (mm != m)
650			prev->m_next = x;
651		m_free(mm);
652		mm = x;
653	}
654
655	/*
656	 * Append/prepend the data.  Allocating mbufs as necessary.
657	 */
658	/* Shortcut if enough free space in first/last mbuf. */
659	if (!prep && M_TRAILINGSPACE(mm) >= len) {
660		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
661			 mm->m_len);
662		mm->m_len += len;
663		mm->m_pkthdr.len += len;
664		return m;
665	}
666	if (prep && M_LEADINGSPACE(mm) >= len) {
667		mm->m_data = mtod(mm, caddr_t) - len;
668		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
669		mm->m_len += len;
670		mm->m_pkthdr.len += len;
671		return mm;
672	}
673
674	/* Expand first/last mbuf to cluster if possible. */
675	if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
676		bcopy(mm->m_data, &buf, mm->m_len);
677		m_clget(mm, how);
678		if (!(mm->m_flags & M_EXT))
679			return NULL;
680		bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
681		mm->m_data = mm->m_ext.ext_buf;
682		mm->m_pkthdr.header = NULL;
683	}
684	if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
685		bcopy(mm->m_data, &buf, mm->m_len);
686		m_clget(mm, how);
687		if (!(mm->m_flags & M_EXT))
688			return NULL;
689		bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
690		       mm->m_ext.ext_size - mm->m_len, mm->m_len);
691		mm->m_data = (caddr_t)mm->m_ext.ext_buf +
692			      mm->m_ext.ext_size - mm->m_len;
693		mm->m_pkthdr.header = NULL;
694	}
695
696	/* Append/prepend as many mbuf (clusters) as necessary to fit len. */
697	if (!prep && len > M_TRAILINGSPACE(mm)) {
698		if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
699			return NULL;
700	}
701	if (prep && len > M_LEADINGSPACE(mm)) {
702		if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
703			return NULL;
704		i = 0;
705		for (x = z; x != NULL; x = x->m_next) {
706			i += x->m_flags & M_EXT ? x->m_ext.ext_size :
707			      (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
708			if (!x->m_next)
709				break;
710		}
711		z->m_data += i - len;
712		m_move_pkthdr(mm, z);
713		x->m_next = mm;
714		mm = z;
715	}
716
717	/* Seek to start position in source mbuf. Optimization for long chains. */
718	while (off > 0) {
719		if (off < n->m_len)
720			break;
721		off -= n->m_len;
722		n = n->m_next;
723	}
724
725	/* Copy data into target mbuf. */
726	z = mm;
727	while (len > 0) {
728		KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
729		i = M_TRAILINGSPACE(z);
730		m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
731		z->m_len += i;
732		/* fixup pkthdr.len if necessary */
733		if ((prep ? mm : m)->m_flags & M_PKTHDR)
734			(prep ? mm : m)->m_pkthdr.len += i;
735		off += i;
736		len -= i;
737		z = z->m_next;
738	}
739	return (prep ? mm : m);
740}
741
742/*
743 * Copy an entire packet, including header (which must be present).
744 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
745 * Note that the copy is read-only, because clusters are not copied,
746 * only their reference counts are incremented.
747 * Preserve alignment of the first mbuf so if the creator has left
748 * some room at the beginning (e.g. for inserting protocol headers)
749 * the copies still have the room available.
750 */
751struct mbuf *
752m_copypacket(struct mbuf *m, int how)
753{
754	struct mbuf *top, *n, *o;
755
756	MBUF_CHECKSLEEP(how);
757	MGET(n, how, m->m_type);
758	top = n;
759	if (n == NULL)
760		goto nospace;
761
762	if (!m_dup_pkthdr(n, m, how))
763		goto nospace;
764	n->m_len = m->m_len;
765	if (m->m_flags & M_EXT) {
766		n->m_data = m->m_data;
767		mb_dupcl(n, m);
768	} else {
769		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
770		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
771	}
772
773	m = m->m_next;
774	while (m) {
775		MGET(o, how, m->m_type);
776		if (o == NULL)
777			goto nospace;
778
779		n->m_next = o;
780		n = n->m_next;
781
782		n->m_len = m->m_len;
783		if (m->m_flags & M_EXT) {
784			n->m_data = m->m_data;
785			mb_dupcl(n, m);
786		} else {
787			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
788		}
789
790		m = m->m_next;
791	}
792	return top;
793nospace:
794	m_freem(top);
795	mbstat.m_mcfail++;	/* XXX: No consistency. */
796	return (NULL);
797}
798
799/*
800 * Copy data from an mbuf chain starting "off" bytes from the beginning,
801 * continuing for "len" bytes, into the indicated buffer.
802 */
803void
804m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
805{
806	u_int count;
807
808	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
809	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
810	while (off > 0) {
811		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
812		if (off < m->m_len)
813			break;
814		off -= m->m_len;
815		m = m->m_next;
816	}
817	while (len > 0) {
818		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
819		count = min(m->m_len - off, len);
820		bcopy(mtod(m, caddr_t) + off, cp, count);
821		len -= count;
822		cp += count;
823		off = 0;
824		m = m->m_next;
825	}
826}
827
828/*
829 * Copy a packet header mbuf chain into a completely new chain, including
830 * copying any mbuf clusters.  Use this instead of m_copypacket() when
831 * you need a writable copy of an mbuf chain.
832 */
833struct mbuf *
834m_dup(struct mbuf *m, int how)
835{
836	struct mbuf **p, *top = NULL;
837	int remain, moff, nsize;
838
839	MBUF_CHECKSLEEP(how);
840	/* Sanity check */
841	if (m == NULL)
842		return (NULL);
843	M_ASSERTPKTHDR(m);
844
845	/* While there's more data, get a new mbuf, tack it on, and fill it */
846	remain = m->m_pkthdr.len;
847	moff = 0;
848	p = &top;
849	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
850		struct mbuf *n;
851
852		/* Get the next new mbuf */
853		if (remain >= MINCLSIZE) {
854			n = m_getcl(how, m->m_type, 0);
855			nsize = MCLBYTES;
856		} else {
857			n = m_get(how, m->m_type);
858			nsize = MLEN;
859		}
860		if (n == NULL)
861			goto nospace;
862
863		if (top == NULL) {		/* First one, must be PKTHDR */
864			if (!m_dup_pkthdr(n, m, how)) {
865				m_free(n);
866				goto nospace;
867			}
868			if ((n->m_flags & M_EXT) == 0)
869				nsize = MHLEN;
870		}
871		n->m_len = 0;
872
873		/* Link it into the new chain */
874		*p = n;
875		p = &n->m_next;
876
877		/* Copy data from original mbuf(s) into new mbuf */
878		while (n->m_len < nsize && m != NULL) {
879			int chunk = min(nsize - n->m_len, m->m_len - moff);
880
881			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
882			moff += chunk;
883			n->m_len += chunk;
884			remain -= chunk;
885			if (moff == m->m_len) {
886				m = m->m_next;
887				moff = 0;
888			}
889		}
890
891		/* Check correct total mbuf length */
892		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
893		    	("%s: bogus m_pkthdr.len", __func__));
894	}
895	return (top);
896
897nospace:
898	m_freem(top);
899	mbstat.m_mcfail++;	/* XXX: No consistency. */
900	return (NULL);
901}
902
903/*
904 * Concatenate mbuf chain n to m.
905 * Both chains must be of the same type (e.g. MT_DATA).
906 * Any m_pkthdr is not updated.
907 */
908void
909m_cat(struct mbuf *m, struct mbuf *n)
910{
911	while (m->m_next)
912		m = m->m_next;
913	while (n) {
914		if (m->m_flags & M_EXT ||
915		    m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
916			/* just join the two chains */
917			m->m_next = n;
918			return;
919		}
920		/* splat the data from one into the other */
921		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
922		    (u_int)n->m_len);
923		m->m_len += n->m_len;
924		n = m_free(n);
925	}
926}
927
928void
929m_adj(struct mbuf *mp, int req_len)
930{
931	int len = req_len;
932	struct mbuf *m;
933	int count;
934
935	if ((m = mp) == NULL)
936		return;
937	if (len >= 0) {
938		/*
939		 * Trim from head.
940		 */
941		while (m != NULL && len > 0) {
942			if (m->m_len <= len) {
943				len -= m->m_len;
944				m->m_len = 0;
945				m = m->m_next;
946			} else {
947				m->m_len -= len;
948				m->m_data += len;
949				len = 0;
950			}
951		}
952		if (mp->m_flags & M_PKTHDR)
953			mp->m_pkthdr.len -= (req_len - len);
954	} else {
955		/*
956		 * Trim from tail.  Scan the mbuf chain,
957		 * calculating its length and finding the last mbuf.
958		 * If the adjustment only affects this mbuf, then just
959		 * adjust and return.  Otherwise, rescan and truncate
960		 * after the remaining size.
961		 */
962		len = -len;
963		count = 0;
964		for (;;) {
965			count += m->m_len;
966			if (m->m_next == (struct mbuf *)0)
967				break;
968			m = m->m_next;
969		}
970		if (m->m_len >= len) {
971			m->m_len -= len;
972			if (mp->m_flags & M_PKTHDR)
973				mp->m_pkthdr.len -= len;
974			return;
975		}
976		count -= len;
977		if (count < 0)
978			count = 0;
979		/*
980		 * Correct length for chain is "count".
981		 * Find the mbuf with last data, adjust its length,
982		 * and toss data from remaining mbufs on chain.
983		 */
984		m = mp;
985		if (m->m_flags & M_PKTHDR)
986			m->m_pkthdr.len = count;
987		for (; m; m = m->m_next) {
988			if (m->m_len >= count) {
989				m->m_len = count;
990				if (m->m_next != NULL) {
991					m_freem(m->m_next);
992					m->m_next = NULL;
993				}
994				break;
995			}
996			count -= m->m_len;
997		}
998	}
999}
1000
1001/*
1002 * Rearange an mbuf chain so that len bytes are contiguous
1003 * and in the data area of an mbuf (so that mtod and dtom
1004 * will work for a structure of size len).  Returns the resulting
1005 * mbuf chain on success, frees it and returns null on failure.
1006 * If there is room, it will add up to max_protohdr-len extra bytes to the
1007 * contiguous region in an attempt to avoid being called next time.
1008 */
1009struct mbuf *
1010m_pullup(struct mbuf *n, int len)
1011{
1012	struct mbuf *m;
1013	int count;
1014	int space;
1015
1016	/*
1017	 * If first mbuf has no cluster, and has room for len bytes
1018	 * without shifting current data, pullup into it,
1019	 * otherwise allocate a new mbuf to prepend to the chain.
1020	 */
1021	if ((n->m_flags & M_EXT) == 0 &&
1022	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1023		if (n->m_len >= len)
1024			return (n);
1025		m = n;
1026		n = n->m_next;
1027		len -= m->m_len;
1028	} else {
1029		if (len > MHLEN)
1030			goto bad;
1031		MGET(m, M_DONTWAIT, n->m_type);
1032		if (m == NULL)
1033			goto bad;
1034		m->m_len = 0;
1035		if (n->m_flags & M_PKTHDR)
1036			M_MOVE_PKTHDR(m, n);
1037	}
1038	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1039	do {
1040		count = min(min(max(len, max_protohdr), space), n->m_len);
1041		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1042		  (u_int)count);
1043		len -= count;
1044		m->m_len += count;
1045		n->m_len -= count;
1046		space -= count;
1047		if (n->m_len)
1048			n->m_data += count;
1049		else
1050			n = m_free(n);
1051	} while (len > 0 && n);
1052	if (len > 0) {
1053		(void) m_free(m);
1054		goto bad;
1055	}
1056	m->m_next = n;
1057	return (m);
1058bad:
1059	m_freem(n);
1060	mbstat.m_mpfail++;	/* XXX: No consistency. */
1061	return (NULL);
1062}
1063
1064/*
1065 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1066 * the amount of empty space before the data in the new mbuf to be specified
1067 * (in the event that the caller expects to prepend later).
1068 */
1069int MSFail;
1070
1071struct mbuf *
1072m_copyup(struct mbuf *n, int len, int dstoff)
1073{
1074	struct mbuf *m;
1075	int count, space;
1076
1077	if (len > (MHLEN - dstoff))
1078		goto bad;
1079	MGET(m, M_DONTWAIT, n->m_type);
1080	if (m == NULL)
1081		goto bad;
1082	m->m_len = 0;
1083	if (n->m_flags & M_PKTHDR)
1084		M_MOVE_PKTHDR(m, n);
1085	m->m_data += dstoff;
1086	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1087	do {
1088		count = min(min(max(len, max_protohdr), space), n->m_len);
1089		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1090		    (unsigned)count);
1091		len -= count;
1092		m->m_len += count;
1093		n->m_len -= count;
1094		space -= count;
1095		if (n->m_len)
1096			n->m_data += count;
1097		else
1098			n = m_free(n);
1099	} while (len > 0 && n);
1100	if (len > 0) {
1101		(void) m_free(m);
1102		goto bad;
1103	}
1104	m->m_next = n;
1105	return (m);
1106 bad:
1107	m_freem(n);
1108	MSFail++;
1109	return (NULL);
1110}
1111
1112/*
1113 * Partition an mbuf chain in two pieces, returning the tail --
1114 * all but the first len0 bytes.  In case of failure, it returns NULL and
1115 * attempts to restore the chain to its original state.
1116 *
1117 * Note that the resulting mbufs might be read-only, because the new
1118 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1119 * the "breaking point" happens to lie within a cluster mbuf. Use the
1120 * M_WRITABLE() macro to check for this case.
1121 */
1122struct mbuf *
1123m_split(struct mbuf *m0, int len0, int wait)
1124{
1125	struct mbuf *m, *n;
1126	u_int len = len0, remain;
1127
1128	MBUF_CHECKSLEEP(wait);
1129	for (m = m0; m && len > m->m_len; m = m->m_next)
1130		len -= m->m_len;
1131	if (m == NULL)
1132		return (NULL);
1133	remain = m->m_len - len;
1134	if (m0->m_flags & M_PKTHDR) {
1135		MGETHDR(n, wait, m0->m_type);
1136		if (n == NULL)
1137			return (NULL);
1138		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1139		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1140		m0->m_pkthdr.len = len0;
1141		if (m->m_flags & M_EXT)
1142			goto extpacket;
1143		if (remain > MHLEN) {
1144			/* m can't be the lead packet */
1145			MH_ALIGN(n, 0);
1146			n->m_next = m_split(m, len, wait);
1147			if (n->m_next == NULL) {
1148				(void) m_free(n);
1149				return (NULL);
1150			} else {
1151				n->m_len = 0;
1152				return (n);
1153			}
1154		} else
1155			MH_ALIGN(n, remain);
1156	} else if (remain == 0) {
1157		n = m->m_next;
1158		m->m_next = NULL;
1159		return (n);
1160	} else {
1161		MGET(n, wait, m->m_type);
1162		if (n == NULL)
1163			return (NULL);
1164		M_ALIGN(n, remain);
1165	}
1166extpacket:
1167	if (m->m_flags & M_EXT) {
1168		n->m_data = m->m_data + len;
1169		mb_dupcl(n, m);
1170	} else {
1171		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1172	}
1173	n->m_len = remain;
1174	m->m_len = len;
1175	n->m_next = m->m_next;
1176	m->m_next = NULL;
1177	return (n);
1178}
1179/*
1180 * Routine to copy from device local memory into mbufs.
1181 * Note that `off' argument is offset into first mbuf of target chain from
1182 * which to begin copying the data to.
1183 */
1184struct mbuf *
1185m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1186    void (*copy)(char *from, caddr_t to, u_int len))
1187{
1188	struct mbuf *m;
1189	struct mbuf *top = NULL, **mp = &top;
1190	int len;
1191
1192	if (off < 0 || off > MHLEN)
1193		return (NULL);
1194
1195	while (totlen > 0) {
1196		if (top == NULL) {	/* First one, must be PKTHDR */
1197			if (totlen + off >= MINCLSIZE) {
1198				m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1199				len = MCLBYTES;
1200			} else {
1201				m = m_gethdr(M_DONTWAIT, MT_DATA);
1202				len = MHLEN;
1203
1204				/* Place initial small packet/header at end of mbuf */
1205				if (m && totlen + off + max_linkhdr <= MLEN) {
1206					m->m_data += max_linkhdr;
1207					len -= max_linkhdr;
1208				}
1209			}
1210			if (m == NULL)
1211				return NULL;
1212			m->m_pkthdr.rcvif = ifp;
1213			m->m_pkthdr.len = totlen;
1214		} else {
1215			if (totlen + off >= MINCLSIZE) {
1216				m = m_getcl(M_DONTWAIT, MT_DATA, 0);
1217				len = MCLBYTES;
1218			} else {
1219				m = m_get(M_DONTWAIT, MT_DATA);
1220				len = MLEN;
1221			}
1222			if (m == NULL) {
1223				m_freem(top);
1224				return NULL;
1225			}
1226		}
1227		if (off) {
1228			m->m_data += off;
1229			len -= off;
1230			off = 0;
1231		}
1232		m->m_len = len = min(totlen, len);
1233		if (copy)
1234			copy(buf, mtod(m, caddr_t), (u_int)len);
1235		else
1236			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1237		buf += len;
1238		*mp = m;
1239		mp = &m->m_next;
1240		totlen -= len;
1241	}
1242	return (top);
1243}
1244
1245/*
1246 * Copy data from a buffer back into the indicated mbuf chain,
1247 * starting "off" bytes from the beginning, extending the mbuf
1248 * chain if necessary.
1249 */
1250void
1251m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1252{
1253	int mlen;
1254	struct mbuf *m = m0, *n;
1255	int totlen = 0;
1256
1257	if (m0 == NULL)
1258		return;
1259	while (off > (mlen = m->m_len)) {
1260		off -= mlen;
1261		totlen += mlen;
1262		if (m->m_next == NULL) {
1263			n = m_get(M_DONTWAIT, m->m_type);
1264			if (n == NULL)
1265				goto out;
1266			bzero(mtod(n, caddr_t), MLEN);
1267			n->m_len = min(MLEN, len + off);
1268			m->m_next = n;
1269		}
1270		m = m->m_next;
1271	}
1272	while (len > 0) {
1273		if (m->m_next == NULL && (len > m->m_len - off)) {
1274			m->m_len += min(len - (m->m_len - off),
1275			    M_TRAILINGSPACE(m));
1276		}
1277		mlen = min (m->m_len - off, len);
1278		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1279		cp += mlen;
1280		len -= mlen;
1281		mlen += off;
1282		off = 0;
1283		totlen += mlen;
1284		if (len == 0)
1285			break;
1286		if (m->m_next == NULL) {
1287			n = m_get(M_DONTWAIT, m->m_type);
1288			if (n == NULL)
1289				break;
1290			n->m_len = min(MLEN, len);
1291			m->m_next = n;
1292		}
1293		m = m->m_next;
1294	}
1295out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1296		m->m_pkthdr.len = totlen;
1297}
1298
1299/*
1300 * Append the specified data to the indicated mbuf chain,
1301 * Extend the mbuf chain if the new data does not fit in
1302 * existing space.
1303 *
1304 * Return 1 if able to complete the job; otherwise 0.
1305 */
1306int
1307m_append(struct mbuf *m0, int len, c_caddr_t cp)
1308{
1309	struct mbuf *m, *n;
1310	int remainder, space;
1311
1312	for (m = m0; m->m_next != NULL; m = m->m_next)
1313		;
1314	remainder = len;
1315	space = M_TRAILINGSPACE(m);
1316	if (space > 0) {
1317		/*
1318		 * Copy into available space.
1319		 */
1320		if (space > remainder)
1321			space = remainder;
1322		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1323		m->m_len += space;
1324		cp += space, remainder -= space;
1325	}
1326	while (remainder > 0) {
1327		/*
1328		 * Allocate a new mbuf; could check space
1329		 * and allocate a cluster instead.
1330		 */
1331		n = m_get(M_DONTWAIT, m->m_type);
1332		if (n == NULL)
1333			break;
1334		n->m_len = min(MLEN, remainder);
1335		bcopy(cp, mtod(n, caddr_t), n->m_len);
1336		cp += n->m_len, remainder -= n->m_len;
1337		m->m_next = n;
1338		m = n;
1339	}
1340	if (m0->m_flags & M_PKTHDR)
1341		m0->m_pkthdr.len += len - remainder;
1342	return (remainder == 0);
1343}
1344
1345/*
1346 * Apply function f to the data in an mbuf chain starting "off" bytes from
1347 * the beginning, continuing for "len" bytes.
1348 */
1349int
1350m_apply(struct mbuf *m, int off, int len,
1351    int (*f)(void *, void *, u_int), void *arg)
1352{
1353	u_int count;
1354	int rval;
1355
1356	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1357	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1358	while (off > 0) {
1359		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1360		if (off < m->m_len)
1361			break;
1362		off -= m->m_len;
1363		m = m->m_next;
1364	}
1365	while (len > 0) {
1366		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1367		count = min(m->m_len - off, len);
1368		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1369		if (rval)
1370			return (rval);
1371		len -= count;
1372		off = 0;
1373		m = m->m_next;
1374	}
1375	return (0);
1376}
1377
1378/*
1379 * Return a pointer to mbuf/offset of location in mbuf chain.
1380 */
1381struct mbuf *
1382m_getptr(struct mbuf *m, int loc, int *off)
1383{
1384
1385	while (loc >= 0) {
1386		/* Normal end of search. */
1387		if (m->m_len > loc) {
1388			*off = loc;
1389			return (m);
1390		} else {
1391			loc -= m->m_len;
1392			if (m->m_next == NULL) {
1393				if (loc == 0) {
1394					/* Point at the end of valid data. */
1395					*off = m->m_len;
1396					return (m);
1397				}
1398				return (NULL);
1399			}
1400			m = m->m_next;
1401		}
1402	}
1403	return (NULL);
1404}
1405
1406void
1407m_print(const struct mbuf *m, int maxlen)
1408{
1409	int len;
1410	int pdata;
1411	const struct mbuf *m2;
1412
1413	if (m->m_flags & M_PKTHDR)
1414		len = m->m_pkthdr.len;
1415	else
1416		len = -1;
1417	m2 = m;
1418	while (m2 != NULL && (len == -1 || len)) {
1419		pdata = m2->m_len;
1420		if (maxlen != -1 && pdata > maxlen)
1421			pdata = maxlen;
1422		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1423		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1424		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1425		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1426		if (pdata)
1427			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1428		if (len != -1)
1429			len -= m2->m_len;
1430		m2 = m2->m_next;
1431	}
1432	if (len > 0)
1433		printf("%d bytes unaccounted for.\n", len);
1434	return;
1435}
1436
1437u_int
1438m_fixhdr(struct mbuf *m0)
1439{
1440	u_int len;
1441
1442	len = m_length(m0, NULL);
1443	m0->m_pkthdr.len = len;
1444	return (len);
1445}
1446
1447u_int
1448m_length(struct mbuf *m0, struct mbuf **last)
1449{
1450	struct mbuf *m;
1451	u_int len;
1452
1453	len = 0;
1454	for (m = m0; m != NULL; m = m->m_next) {
1455		len += m->m_len;
1456		if (m->m_next == NULL)
1457			break;
1458	}
1459	if (last != NULL)
1460		*last = m;
1461	return (len);
1462}
1463
1464/*
1465 * Defragment a mbuf chain, returning the shortest possible
1466 * chain of mbufs and clusters.  If allocation fails and
1467 * this cannot be completed, NULL will be returned, but
1468 * the passed in chain will be unchanged.  Upon success,
1469 * the original chain will be freed, and the new chain
1470 * will be returned.
1471 *
1472 * If a non-packet header is passed in, the original
1473 * mbuf (chain?) will be returned unharmed.
1474 */
1475struct mbuf *
1476m_defrag(struct mbuf *m0, int how)
1477{
1478	struct mbuf *m_new = NULL, *m_final = NULL;
1479	int progress = 0, length;
1480
1481	MBUF_CHECKSLEEP(how);
1482	if (!(m0->m_flags & M_PKTHDR))
1483		return (m0);
1484
1485	m_fixhdr(m0); /* Needed sanity check */
1486
1487#ifdef MBUF_STRESS_TEST
1488	if (m_defragrandomfailures) {
1489		int temp = arc4random() & 0xff;
1490		if (temp == 0xba)
1491			goto nospace;
1492	}
1493#endif
1494
1495	if (m0->m_pkthdr.len > MHLEN)
1496		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1497	else
1498		m_final = m_gethdr(how, MT_DATA);
1499
1500	if (m_final == NULL)
1501		goto nospace;
1502
1503	if (m_dup_pkthdr(m_final, m0, how) == 0)
1504		goto nospace;
1505
1506	m_new = m_final;
1507
1508	while (progress < m0->m_pkthdr.len) {
1509		length = m0->m_pkthdr.len - progress;
1510		if (length > MCLBYTES)
1511			length = MCLBYTES;
1512
1513		if (m_new == NULL) {
1514			if (length > MLEN)
1515				m_new = m_getcl(how, MT_DATA, 0);
1516			else
1517				m_new = m_get(how, MT_DATA);
1518			if (m_new == NULL)
1519				goto nospace;
1520		}
1521
1522		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1523		progress += length;
1524		m_new->m_len = length;
1525		if (m_new != m_final)
1526			m_cat(m_final, m_new);
1527		m_new = NULL;
1528	}
1529#ifdef MBUF_STRESS_TEST
1530	if (m0->m_next == NULL)
1531		m_defraguseless++;
1532#endif
1533	m_freem(m0);
1534	m0 = m_final;
1535#ifdef MBUF_STRESS_TEST
1536	m_defragpackets++;
1537	m_defragbytes += m0->m_pkthdr.len;
1538#endif
1539	return (m0);
1540nospace:
1541#ifdef MBUF_STRESS_TEST
1542	m_defragfailure++;
1543#endif
1544	if (m_final)
1545		m_freem(m_final);
1546	return (NULL);
1547}
1548
1549/*
1550 * Defragment an mbuf chain, returning at most maxfrags separate
1551 * mbufs+clusters.  If this is not possible NULL is returned and
1552 * the original mbuf chain is left in it's present (potentially
1553 * modified) state.  We use two techniques: collapsing consecutive
1554 * mbufs and replacing consecutive mbufs by a cluster.
1555 *
1556 * NB: this should really be named m_defrag but that name is taken
1557 */
1558struct mbuf *
1559m_collapse(struct mbuf *m0, int how, int maxfrags)
1560{
1561	struct mbuf *m, *n, *n2, **prev;
1562	u_int curfrags;
1563
1564	/*
1565	 * Calculate the current number of frags.
1566	 */
1567	curfrags = 0;
1568	for (m = m0; m != NULL; m = m->m_next)
1569		curfrags++;
1570	/*
1571	 * First, try to collapse mbufs.  Note that we always collapse
1572	 * towards the front so we don't need to deal with moving the
1573	 * pkthdr.  This may be suboptimal if the first mbuf has much
1574	 * less data than the following.
1575	 */
1576	m = m0;
1577again:
1578	for (;;) {
1579		n = m->m_next;
1580		if (n == NULL)
1581			break;
1582		if ((m->m_flags & M_RDONLY) == 0 &&
1583		    n->m_len < M_TRAILINGSPACE(m)) {
1584			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1585				n->m_len);
1586			m->m_len += n->m_len;
1587			m->m_next = n->m_next;
1588			m_free(n);
1589			if (--curfrags <= maxfrags)
1590				return m0;
1591		} else
1592			m = n;
1593	}
1594	KASSERT(maxfrags > 1,
1595		("maxfrags %u, but normal collapse failed", maxfrags));
1596	/*
1597	 * Collapse consecutive mbufs to a cluster.
1598	 */
1599	prev = &m0->m_next;		/* NB: not the first mbuf */
1600	while ((n = *prev) != NULL) {
1601		if ((n2 = n->m_next) != NULL &&
1602		    n->m_len + n2->m_len < MCLBYTES) {
1603			m = m_getcl(how, MT_DATA, 0);
1604			if (m == NULL)
1605				goto bad;
1606			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1607			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1608				n2->m_len);
1609			m->m_len = n->m_len + n2->m_len;
1610			m->m_next = n2->m_next;
1611			*prev = m;
1612			m_free(n);
1613			m_free(n2);
1614			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1615				return m0;
1616			/*
1617			 * Still not there, try the normal collapse
1618			 * again before we allocate another cluster.
1619			 */
1620			goto again;
1621		}
1622		prev = &n->m_next;
1623	}
1624	/*
1625	 * No place where we can collapse to a cluster; punt.
1626	 * This can occur if, for example, you request 2 frags
1627	 * but the packet requires that both be clusters (we
1628	 * never reallocate the first mbuf to avoid moving the
1629	 * packet header).
1630	 */
1631bad:
1632	return NULL;
1633}
1634
1635#ifdef MBUF_STRESS_TEST
1636
1637/*
1638 * Fragment an mbuf chain.  There's no reason you'd ever want to do
1639 * this in normal usage, but it's great for stress testing various
1640 * mbuf consumers.
1641 *
1642 * If fragmentation is not possible, the original chain will be
1643 * returned.
1644 *
1645 * Possible length values:
1646 * 0	 no fragmentation will occur
1647 * > 0	each fragment will be of the specified length
1648 * -1	each fragment will be the same random value in length
1649 * -2	each fragment's length will be entirely random
1650 * (Random values range from 1 to 256)
1651 */
1652struct mbuf *
1653m_fragment(struct mbuf *m0, int how, int length)
1654{
1655	struct mbuf *m_new = NULL, *m_final = NULL;
1656	int progress = 0;
1657
1658	if (!(m0->m_flags & M_PKTHDR))
1659		return (m0);
1660
1661	if ((length == 0) || (length < -2))
1662		return (m0);
1663
1664	m_fixhdr(m0); /* Needed sanity check */
1665
1666	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1667
1668	if (m_final == NULL)
1669		goto nospace;
1670
1671	if (m_dup_pkthdr(m_final, m0, how) == 0)
1672		goto nospace;
1673
1674	m_new = m_final;
1675
1676	if (length == -1)
1677		length = 1 + (arc4random() & 255);
1678
1679	while (progress < m0->m_pkthdr.len) {
1680		int fraglen;
1681
1682		if (length > 0)
1683			fraglen = length;
1684		else
1685			fraglen = 1 + (arc4random() & 255);
1686		if (fraglen > m0->m_pkthdr.len - progress)
1687			fraglen = m0->m_pkthdr.len - progress;
1688
1689		if (fraglen > MCLBYTES)
1690			fraglen = MCLBYTES;
1691
1692		if (m_new == NULL) {
1693			m_new = m_getcl(how, MT_DATA, 0);
1694			if (m_new == NULL)
1695				goto nospace;
1696		}
1697
1698		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1699		progress += fraglen;
1700		m_new->m_len = fraglen;
1701		if (m_new != m_final)
1702			m_cat(m_final, m_new);
1703		m_new = NULL;
1704	}
1705	m_freem(m0);
1706	m0 = m_final;
1707	return (m0);
1708nospace:
1709	if (m_final)
1710		m_freem(m_final);
1711	/* Return the original chain on failure */
1712	return (m0);
1713}
1714
1715#endif
1716
1717/*
1718 * Copy the contents of uio into a properly sized mbuf chain.
1719 */
1720struct mbuf *
1721m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1722{
1723	struct mbuf *m, *mb;
1724	int error, length, total;
1725	int progress = 0;
1726
1727	/*
1728	 * len can be zero or an arbitrary large value bound by
1729	 * the total data supplied by the uio.
1730	 */
1731	if (len > 0)
1732		total = min(uio->uio_resid, len);
1733	else
1734		total = uio->uio_resid;
1735
1736	/*
1737	 * The smallest unit returned by m_getm2() is a single mbuf
1738	 * with pkthdr.  We can't align past it.
1739	 */
1740	if (align >= MHLEN)
1741		return (NULL);
1742
1743	/*
1744	 * Give us the full allocation or nothing.
1745	 * If len is zero return the smallest empty mbuf.
1746	 */
1747	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1748	if (m == NULL)
1749		return (NULL);
1750	m->m_data += align;
1751
1752	/* Fill all mbufs with uio data and update header information. */
1753	for (mb = m; mb != NULL; mb = mb->m_next) {
1754		length = min(M_TRAILINGSPACE(mb), total - progress);
1755
1756		error = uiomove(mtod(mb, void *), length, uio);
1757		if (error) {
1758			m_freem(m);
1759			return (NULL);
1760		}
1761
1762		mb->m_len = length;
1763		progress += length;
1764		if (flags & M_PKTHDR)
1765			m->m_pkthdr.len += length;
1766	}
1767	KASSERT(progress == total, ("%s: progress != total", __func__));
1768
1769	return (m);
1770}
1771
1772/*
1773 * Copy an mbuf chain into a uio limited by len if set.
1774 */
1775int
1776m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1777{
1778	int error, length, total;
1779	int progress = 0;
1780
1781	if (len > 0)
1782		total = min(uio->uio_resid, len);
1783	else
1784		total = uio->uio_resid;
1785
1786	/* Fill the uio with data from the mbufs. */
1787	for (; m != NULL; m = m->m_next) {
1788		length = min(m->m_len, total - progress);
1789
1790		error = uiomove(mtod(m, void *), length, uio);
1791		if (error)
1792			return (error);
1793
1794		progress += length;
1795	}
1796
1797	return (0);
1798}
1799
1800/*
1801 * Set the m_data pointer of a newly-allocated mbuf
1802 * to place an object of the specified size at the
1803 * end of the mbuf, longword aligned.
1804 */
1805void
1806m_align(struct mbuf *m, int len)
1807{
1808	int adjust;
1809
1810	if (m->m_flags & M_EXT)
1811		adjust = m->m_ext.ext_size - len;
1812	else if (m->m_flags & M_PKTHDR)
1813		adjust = MHLEN - len;
1814	else
1815		adjust = MLEN - len;
1816	m->m_data += adjust &~ (sizeof(long)-1);
1817}
1818
1819/*
1820 * Create a writable copy of the mbuf chain.  While doing this
1821 * we compact the chain with a goal of producing a chain with
1822 * at most two mbufs.  The second mbuf in this chain is likely
1823 * to be a cluster.  The primary purpose of this work is to create
1824 * a writable packet for encryption, compression, etc.  The
1825 * secondary goal is to linearize the data so the data can be
1826 * passed to crypto hardware in the most efficient manner possible.
1827 */
1828struct mbuf *
1829m_unshare(struct mbuf *m0, int how)
1830{
1831	struct mbuf *m, *mprev;
1832	struct mbuf *n, *mfirst, *mlast;
1833	int len, off;
1834
1835	mprev = NULL;
1836	for (m = m0; m != NULL; m = mprev->m_next) {
1837		/*
1838		 * Regular mbufs are ignored unless there's a cluster
1839		 * in front of it that we can use to coalesce.  We do
1840		 * the latter mainly so later clusters can be coalesced
1841		 * also w/o having to handle them specially (i.e. convert
1842		 * mbuf+cluster -> cluster).  This optimization is heavily
1843		 * influenced by the assumption that we're running over
1844		 * Ethernet where MCLBYTES is large enough that the max
1845		 * packet size will permit lots of coalescing into a
1846		 * single cluster.  This in turn permits efficient
1847		 * crypto operations, especially when using hardware.
1848		 */
1849		if ((m->m_flags & M_EXT) == 0) {
1850			if (mprev && (mprev->m_flags & M_EXT) &&
1851			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1852				/* XXX: this ignores mbuf types */
1853				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1854				       mtod(m, caddr_t), m->m_len);
1855				mprev->m_len += m->m_len;
1856				mprev->m_next = m->m_next;	/* unlink from chain */
1857				m_free(m);			/* reclaim mbuf */
1858#if 0
1859				newipsecstat.ips_mbcoalesced++;
1860#endif
1861			} else {
1862				mprev = m;
1863			}
1864			continue;
1865		}
1866		/*
1867		 * Writable mbufs are left alone (for now).
1868		 */
1869		if (M_WRITABLE(m)) {
1870			mprev = m;
1871			continue;
1872		}
1873
1874		/*
1875		 * Not writable, replace with a copy or coalesce with
1876		 * the previous mbuf if possible (since we have to copy
1877		 * it anyway, we try to reduce the number of mbufs and
1878		 * clusters so that future work is easier).
1879		 */
1880		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1881		/* NB: we only coalesce into a cluster or larger */
1882		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1883		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1884			/* XXX: this ignores mbuf types */
1885			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1886			       mtod(m, caddr_t), m->m_len);
1887			mprev->m_len += m->m_len;
1888			mprev->m_next = m->m_next;	/* unlink from chain */
1889			m_free(m);			/* reclaim mbuf */
1890#if 0
1891			newipsecstat.ips_clcoalesced++;
1892#endif
1893			continue;
1894		}
1895
1896		/*
1897		 * Allocate new space to hold the copy...
1898		 */
1899		/* XXX why can M_PKTHDR be set past the first mbuf? */
1900		if (mprev == NULL && (m->m_flags & M_PKTHDR)) {
1901			/*
1902			 * NB: if a packet header is present we must
1903			 * allocate the mbuf separately from any cluster
1904			 * because M_MOVE_PKTHDR will smash the data
1905			 * pointer and drop the M_EXT marker.
1906			 */
1907			MGETHDR(n, how, m->m_type);
1908			if (n == NULL) {
1909				m_freem(m0);
1910				return (NULL);
1911			}
1912			M_MOVE_PKTHDR(n, m);
1913			MCLGET(n, how);
1914			if ((n->m_flags & M_EXT) == 0) {
1915				m_free(n);
1916				m_freem(m0);
1917				return (NULL);
1918			}
1919		} else {
1920			n = m_getcl(how, m->m_type, m->m_flags);
1921			if (n == NULL) {
1922				m_freem(m0);
1923				return (NULL);
1924			}
1925		}
1926		/*
1927		 * ... and copy the data.  We deal with jumbo mbufs
1928		 * (i.e. m_len > MCLBYTES) by splitting them into
1929		 * clusters.  We could just malloc a buffer and make
1930		 * it external but too many device drivers don't know
1931		 * how to break up the non-contiguous memory when
1932		 * doing DMA.
1933		 */
1934		len = m->m_len;
1935		off = 0;
1936		mfirst = n;
1937		mlast = NULL;
1938		for (;;) {
1939			int cc = min(len, MCLBYTES);
1940			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1941			n->m_len = cc;
1942			if (mlast != NULL)
1943				mlast->m_next = n;
1944			mlast = n;
1945#if 0
1946			newipsecstat.ips_clcopied++;
1947#endif
1948
1949			len -= cc;
1950			if (len <= 0)
1951				break;
1952			off += cc;
1953
1954			n = m_getcl(how, m->m_type, m->m_flags);
1955			if (n == NULL) {
1956				m_freem(mfirst);
1957				m_freem(m0);
1958				return (NULL);
1959			}
1960		}
1961		n->m_next = m->m_next;
1962		if (mprev == NULL)
1963			m0 = mfirst;		/* new head of chain */
1964		else
1965			mprev->m_next = mfirst;	/* replace old mbuf */
1966		m_free(m);			/* release old mbuf */
1967		mprev = mfirst;
1968	}
1969	return (m0);
1970}
1971
1972#ifdef MBUF_PROFILING
1973
1974#define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
1975struct mbufprofile {
1976	uintmax_t wasted[MP_BUCKETS];
1977	uintmax_t used[MP_BUCKETS];
1978	uintmax_t segments[MP_BUCKETS];
1979} mbprof;
1980
1981#define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
1982#define MP_NUMLINES 6
1983#define MP_NUMSPERLINE 16
1984#define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
1985/* work out max space needed and add a bit of spare space too */
1986#define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
1987#define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
1988
1989char mbprofbuf[MP_BUFSIZE];
1990
1991void
1992m_profile(struct mbuf *m)
1993{
1994	int segments = 0;
1995	int used = 0;
1996	int wasted = 0;
1997
1998	while (m) {
1999		segments++;
2000		used += m->m_len;
2001		if (m->m_flags & M_EXT) {
2002			wasted += MHLEN - sizeof(m->m_ext) +
2003			    m->m_ext.ext_size - m->m_len;
2004		} else {
2005			if (m->m_flags & M_PKTHDR)
2006				wasted += MHLEN - m->m_len;
2007			else
2008				wasted += MLEN - m->m_len;
2009		}
2010		m = m->m_next;
2011	}
2012	/* be paranoid.. it helps */
2013	if (segments > MP_BUCKETS - 1)
2014		segments = MP_BUCKETS - 1;
2015	if (used > 100000)
2016		used = 100000;
2017	if (wasted > 100000)
2018		wasted = 100000;
2019	/* store in the appropriate bucket */
2020	/* don't bother locking. if it's slightly off, so what? */
2021	mbprof.segments[segments]++;
2022	mbprof.used[fls(used)]++;
2023	mbprof.wasted[fls(wasted)]++;
2024}
2025
2026static void
2027mbprof_textify(void)
2028{
2029	int offset;
2030	char *c;
2031	uint64_t *p;
2032
2033
2034	p = &mbprof.wasted[0];
2035	c = mbprofbuf;
2036	offset = snprintf(c, MP_MAXLINE + 10,
2037	    "wasted:\n"
2038	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2039	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2040	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2041	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2042#ifdef BIG_ARRAY
2043	p = &mbprof.wasted[16];
2044	c += offset;
2045	offset = snprintf(c, MP_MAXLINE,
2046	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2047	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2048	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2049	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2050#endif
2051	p = &mbprof.used[0];
2052	c += offset;
2053	offset = snprintf(c, MP_MAXLINE + 10,
2054	    "used:\n"
2055	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2056	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2057	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2058	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2059#ifdef BIG_ARRAY
2060	p = &mbprof.used[16];
2061	c += offset;
2062	offset = snprintf(c, MP_MAXLINE,
2063	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2064	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2065	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2066	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2067#endif
2068	p = &mbprof.segments[0];
2069	c += offset;
2070	offset = snprintf(c, MP_MAXLINE + 10,
2071	    "segments:\n"
2072	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2073	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2074	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2075	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2076#ifdef BIG_ARRAY
2077	p = &mbprof.segments[16];
2078	c += offset;
2079	offset = snprintf(c, MP_MAXLINE,
2080	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2081	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2082	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2083	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2084#endif
2085}
2086
2087static int
2088mbprof_handler(SYSCTL_HANDLER_ARGS)
2089{
2090	int error;
2091
2092	mbprof_textify();
2093	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2094	return (error);
2095}
2096
2097static int
2098mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2099{
2100	int clear, error;
2101
2102	clear = 0;
2103	error = sysctl_handle_int(oidp, &clear, 0, req);
2104	if (error || !req->newptr)
2105		return (error);
2106
2107	if (clear) {
2108		bzero(&mbprof, sizeof(mbprof));
2109	}
2110
2111	return (error);
2112}
2113
2114
2115SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2116	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2117
2118SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2119	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2120#endif
2121
2122