uipc_mbuf.c revision 209390
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/uipc_mbuf.c 209390 2010-06-21 09:55:56Z ed $");
34
35#include "opt_param.h"
36#include "opt_mbuf_stress_test.h"
37#include "opt_mbuf_profiling.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/limits.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/sysctl.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/uio.h>
50
51int	max_linkhdr;
52int	max_protohdr;
53int	max_hdr;
54int	max_datalen;
55#ifdef MBUF_STRESS_TEST
56int	m_defragpackets;
57int	m_defragbytes;
58int	m_defraguseless;
59int	m_defragfailure;
60int	m_defragrandomfailures;
61#endif
62
63/*
64 * sysctl(8) exported objects
65 */
66SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67	   &max_linkhdr, 0, "Size of largest link layer header");
68SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69	   &max_protohdr, 0, "Size of largest protocol layer header");
70SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71	   &max_hdr, 0, "Size of largest link plus protocol header");
72SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74#ifdef MBUF_STRESS_TEST
75SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76	   &m_defragpackets, 0, "");
77SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78	   &m_defragbytes, 0, "");
79SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80	   &m_defraguseless, 0, "");
81SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82	   &m_defragfailure, 0, "");
83SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84	   &m_defragrandomfailures, 0, "");
85#endif
86
87/*
88 * Allocate a given length worth of mbufs and/or clusters (whatever fits
89 * best) and return a pointer to the top of the allocated chain.  If an
90 * existing mbuf chain is provided, then we will append the new chain
91 * to the existing one but still return the top of the newly allocated
92 * chain.
93 */
94struct mbuf *
95m_getm2(struct mbuf *m, int len, int how, short type, int flags)
96{
97	struct mbuf *mb, *nm = NULL, *mtail = NULL;
98
99	KASSERT(len >= 0, ("%s: len is < 0", __func__));
100
101	/* Validate flags. */
102	flags &= (M_PKTHDR | M_EOR);
103
104	/* Packet header mbuf must be first in chain. */
105	if ((flags & M_PKTHDR) && m != NULL)
106		flags &= ~M_PKTHDR;
107
108	/* Loop and append maximum sized mbufs to the chain tail. */
109	while (len > 0) {
110		if (len > MCLBYTES)
111			mb = m_getjcl(how, type, (flags & M_PKTHDR),
112			    MJUMPAGESIZE);
113		else if (len >= MINCLSIZE)
114			mb = m_getcl(how, type, (flags & M_PKTHDR));
115		else if (flags & M_PKTHDR)
116			mb = m_gethdr(how, type);
117		else
118			mb = m_get(how, type);
119
120		/* Fail the whole operation if one mbuf can't be allocated. */
121		if (mb == NULL) {
122			if (nm != NULL)
123				m_freem(nm);
124			return (NULL);
125		}
126
127		/* Book keeping. */
128		len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
129			((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
130		if (mtail != NULL)
131			mtail->m_next = mb;
132		else
133			nm = mb;
134		mtail = mb;
135		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
136	}
137	if (flags & M_EOR)
138		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
139
140	/* If mbuf was supplied, append new chain to the end of it. */
141	if (m != NULL) {
142		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
143			;
144		mtail->m_next = nm;
145		mtail->m_flags &= ~M_EOR;
146	} else
147		m = nm;
148
149	return (m);
150}
151
152/*
153 * Free an entire chain of mbufs and associated external buffers, if
154 * applicable.
155 */
156void
157m_freem(struct mbuf *mb)
158{
159
160	while (mb != NULL)
161		mb = m_free(mb);
162}
163
164/*-
165 * Configure a provided mbuf to refer to the provided external storage
166 * buffer and setup a reference count for said buffer.  If the setting
167 * up of the reference count fails, the M_EXT bit will not be set.  If
168 * successfull, the M_EXT bit is set in the mbuf's flags.
169 *
170 * Arguments:
171 *    mb     The existing mbuf to which to attach the provided buffer.
172 *    buf    The address of the provided external storage buffer.
173 *    size   The size of the provided buffer.
174 *    freef  A pointer to a routine that is responsible for freeing the
175 *           provided external storage buffer.
176 *    args   A pointer to an argument structure (of any type) to be passed
177 *           to the provided freef routine (may be NULL).
178 *    flags  Any other flags to be passed to the provided mbuf.
179 *    type   The type that the external storage buffer should be
180 *           labeled with.
181 *
182 * Returns:
183 *    Nothing.
184 */
185void
186m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
187    void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type)
188{
189	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
190
191	if (type != EXT_EXTREF)
192		mb->m_ext.ref_cnt = (u_int *)uma_zalloc(zone_ext_refcnt, M_NOWAIT);
193	if (mb->m_ext.ref_cnt != NULL) {
194		*(mb->m_ext.ref_cnt) = 1;
195		mb->m_flags |= (M_EXT | flags);
196		mb->m_ext.ext_buf = buf;
197		mb->m_data = mb->m_ext.ext_buf;
198		mb->m_ext.ext_size = size;
199		mb->m_ext.ext_free = freef;
200		mb->m_ext.ext_arg1 = arg1;
201		mb->m_ext.ext_arg2 = arg2;
202		mb->m_ext.ext_type = type;
203        }
204}
205
206/*
207 * Non-directly-exported function to clean up after mbufs with M_EXT
208 * storage attached to them if the reference count hits 1.
209 */
210void
211mb_free_ext(struct mbuf *m)
212{
213	int skipmbuf;
214
215	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
216	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
217
218
219	/*
220	 * check if the header is embedded in the cluster
221	 */
222	skipmbuf = (m->m_flags & M_NOFREE);
223
224	/* Free attached storage if this mbuf is the only reference to it. */
225	if (*(m->m_ext.ref_cnt) == 1 ||
226	    atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
227		switch (m->m_ext.ext_type) {
228		case EXT_PACKET:	/* The packet zone is special. */
229			if (*(m->m_ext.ref_cnt) == 0)
230				*(m->m_ext.ref_cnt) = 1;
231			uma_zfree(zone_pack, m);
232			return;		/* Job done. */
233		case EXT_CLUSTER:
234			uma_zfree(zone_clust, m->m_ext.ext_buf);
235			break;
236		case EXT_JUMBOP:
237			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
238			break;
239		case EXT_JUMBO9:
240			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
241			break;
242		case EXT_JUMBO16:
243			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
244			break;
245		case EXT_SFBUF:
246		case EXT_NET_DRV:
247		case EXT_MOD_TYPE:
248		case EXT_DISPOSABLE:
249			*(m->m_ext.ref_cnt) = 0;
250			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
251				m->m_ext.ref_cnt));
252			/* FALLTHROUGH */
253		case EXT_EXTREF:
254			KASSERT(m->m_ext.ext_free != NULL,
255				("%s: ext_free not set", __func__));
256			(*(m->m_ext.ext_free))(m->m_ext.ext_arg1,
257			    m->m_ext.ext_arg2);
258			break;
259		default:
260			KASSERT(m->m_ext.ext_type == 0,
261				("%s: unknown ext_type", __func__));
262		}
263	}
264	if (skipmbuf)
265		return;
266
267	/*
268	 * Free this mbuf back to the mbuf zone with all m_ext
269	 * information purged.
270	 */
271	m->m_ext.ext_buf = NULL;
272	m->m_ext.ext_free = NULL;
273	m->m_ext.ext_arg1 = NULL;
274	m->m_ext.ext_arg2 = NULL;
275	m->m_ext.ref_cnt = NULL;
276	m->m_ext.ext_size = 0;
277	m->m_ext.ext_type = 0;
278	m->m_flags &= ~M_EXT;
279	uma_zfree(zone_mbuf, m);
280}
281
282/*
283 * Attach the the cluster from *m to *n, set up m_ext in *n
284 * and bump the refcount of the cluster.
285 */
286static void
287mb_dupcl(struct mbuf *n, struct mbuf *m)
288{
289	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
290	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
291	KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
292
293	if (*(m->m_ext.ref_cnt) == 1)
294		*(m->m_ext.ref_cnt) += 1;
295	else
296		atomic_add_int(m->m_ext.ref_cnt, 1);
297	n->m_ext.ext_buf = m->m_ext.ext_buf;
298	n->m_ext.ext_free = m->m_ext.ext_free;
299	n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
300	n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
301	n->m_ext.ext_size = m->m_ext.ext_size;
302	n->m_ext.ref_cnt = m->m_ext.ref_cnt;
303	n->m_ext.ext_type = m->m_ext.ext_type;
304	n->m_flags |= M_EXT;
305}
306
307/*
308 * Clean up mbuf (chain) from any tags and packet headers.
309 * If "all" is set then the first mbuf in the chain will be
310 * cleaned too.
311 */
312void
313m_demote(struct mbuf *m0, int all)
314{
315	struct mbuf *m;
316
317	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
318		if (m->m_flags & M_PKTHDR) {
319			m_tag_delete_chain(m, NULL);
320			m->m_flags &= ~M_PKTHDR;
321			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
322		}
323		if (m != m0 && m->m_nextpkt != NULL) {
324			KASSERT(m->m_nextpkt == NULL,
325			    ("%s: m_nextpkt not NULL", __func__));
326			m_freem(m->m_nextpkt);
327			m->m_nextpkt = NULL;
328		}
329		m->m_flags = m->m_flags & (M_EXT|M_RDONLY|M_FREELIST|M_NOFREE);
330	}
331}
332
333/*
334 * Sanity checks on mbuf (chain) for use in KASSERT() and general
335 * debugging.
336 * Returns 0 or panics when bad and 1 on all tests passed.
337 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
338 * blow up later.
339 */
340int
341m_sanity(struct mbuf *m0, int sanitize)
342{
343	struct mbuf *m;
344	caddr_t a, b;
345	int pktlen = 0;
346
347#ifdef INVARIANTS
348#define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
349#else
350#define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
351#endif
352
353	for (m = m0; m != NULL; m = m->m_next) {
354		/*
355		 * Basic pointer checks.  If any of these fails then some
356		 * unrelated kernel memory before or after us is trashed.
357		 * No way to recover from that.
358		 */
359		a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
360			((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
361			 (caddr_t)(&m->m_dat)) );
362		b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
363			((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
364		if ((caddr_t)m->m_data < a)
365			M_SANITY_ACTION("m_data outside mbuf data range left");
366		if ((caddr_t)m->m_data > b)
367			M_SANITY_ACTION("m_data outside mbuf data range right");
368		if ((caddr_t)m->m_data + m->m_len > b)
369			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
370		if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) {
371			if ((caddr_t)m->m_pkthdr.header < a ||
372			    (caddr_t)m->m_pkthdr.header > b)
373				M_SANITY_ACTION("m_pkthdr.header outside mbuf data range");
374		}
375
376		/* m->m_nextpkt may only be set on first mbuf in chain. */
377		if (m != m0 && m->m_nextpkt != NULL) {
378			if (sanitize) {
379				m_freem(m->m_nextpkt);
380				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
381			} else
382				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
383		}
384
385		/* packet length (not mbuf length!) calculation */
386		if (m0->m_flags & M_PKTHDR)
387			pktlen += m->m_len;
388
389		/* m_tags may only be attached to first mbuf in chain. */
390		if (m != m0 && m->m_flags & M_PKTHDR &&
391		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
392			if (sanitize) {
393				m_tag_delete_chain(m, NULL);
394				/* put in 0xDEADC0DE perhaps? */
395			} else
396				M_SANITY_ACTION("m_tags on in-chain mbuf");
397		}
398
399		/* M_PKTHDR may only be set on first mbuf in chain */
400		if (m != m0 && m->m_flags & M_PKTHDR) {
401			if (sanitize) {
402				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
403				m->m_flags &= ~M_PKTHDR;
404				/* put in 0xDEADCODE and leave hdr flag in */
405			} else
406				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
407		}
408	}
409	m = m0;
410	if (pktlen && pktlen != m->m_pkthdr.len) {
411		if (sanitize)
412			m->m_pkthdr.len = 0;
413		else
414			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
415	}
416	return 1;
417
418#undef	M_SANITY_ACTION
419}
420
421
422/*
423 * "Move" mbuf pkthdr from "from" to "to".
424 * "from" must have M_PKTHDR set, and "to" must be empty.
425 */
426void
427m_move_pkthdr(struct mbuf *to, struct mbuf *from)
428{
429
430#if 0
431	/* see below for why these are not enabled */
432	M_ASSERTPKTHDR(to);
433	/* Note: with MAC, this may not be a good assertion. */
434	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
435	    ("m_move_pkthdr: to has tags"));
436#endif
437#ifdef MAC
438	/*
439	 * XXXMAC: It could be this should also occur for non-MAC?
440	 */
441	if (to->m_flags & M_PKTHDR)
442		m_tag_delete_chain(to, NULL);
443#endif
444	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
445	if ((to->m_flags & M_EXT) == 0)
446		to->m_data = to->m_pktdat;
447	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
448	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
449	from->m_flags &= ~M_PKTHDR;
450}
451
452/*
453 * Duplicate "from"'s mbuf pkthdr in "to".
454 * "from" must have M_PKTHDR set, and "to" must be empty.
455 * In particular, this does a deep copy of the packet tags.
456 */
457int
458m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
459{
460
461#if 0
462	/*
463	 * The mbuf allocator only initializes the pkthdr
464	 * when the mbuf is allocated with MGETHDR. Many users
465	 * (e.g. m_copy*, m_prepend) use MGET and then
466	 * smash the pkthdr as needed causing these
467	 * assertions to trip.  For now just disable them.
468	 */
469	M_ASSERTPKTHDR(to);
470	/* Note: with MAC, this may not be a good assertion. */
471	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
472#endif
473	MBUF_CHECKSLEEP(how);
474#ifdef MAC
475	if (to->m_flags & M_PKTHDR)
476		m_tag_delete_chain(to, NULL);
477#endif
478	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
479	if ((to->m_flags & M_EXT) == 0)
480		to->m_data = to->m_pktdat;
481	to->m_pkthdr = from->m_pkthdr;
482	SLIST_INIT(&to->m_pkthdr.tags);
483	return (m_tag_copy_chain(to, from, MBTOM(how)));
484}
485
486/*
487 * Lesser-used path for M_PREPEND:
488 * allocate new mbuf to prepend to chain,
489 * copy junk along.
490 */
491struct mbuf *
492m_prepend(struct mbuf *m, int len, int how)
493{
494	struct mbuf *mn;
495
496	if (m->m_flags & M_PKTHDR)
497		MGETHDR(mn, how, m->m_type);
498	else
499		MGET(mn, how, m->m_type);
500	if (mn == NULL) {
501		m_freem(m);
502		return (NULL);
503	}
504	if (m->m_flags & M_PKTHDR)
505		M_MOVE_PKTHDR(mn, m);
506	mn->m_next = m;
507	m = mn;
508	if(m->m_flags & M_PKTHDR) {
509		if (len < MHLEN)
510			MH_ALIGN(m, len);
511	} else {
512		if (len < MLEN)
513			M_ALIGN(m, len);
514	}
515	m->m_len = len;
516	return (m);
517}
518
519/*
520 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
521 * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
522 * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
523 * Note that the copy is read-only, because clusters are not copied,
524 * only their reference counts are incremented.
525 */
526struct mbuf *
527m_copym(struct mbuf *m, int off0, int len, int wait)
528{
529	struct mbuf *n, **np;
530	int off = off0;
531	struct mbuf *top;
532	int copyhdr = 0;
533
534	KASSERT(off >= 0, ("m_copym, negative off %d", off));
535	KASSERT(len >= 0, ("m_copym, negative len %d", len));
536	MBUF_CHECKSLEEP(wait);
537	if (off == 0 && m->m_flags & M_PKTHDR)
538		copyhdr = 1;
539	while (off > 0) {
540		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
541		if (off < m->m_len)
542			break;
543		off -= m->m_len;
544		m = m->m_next;
545	}
546	np = &top;
547	top = 0;
548	while (len > 0) {
549		if (m == NULL) {
550			KASSERT(len == M_COPYALL,
551			    ("m_copym, length > size of mbuf chain"));
552			break;
553		}
554		if (copyhdr)
555			MGETHDR(n, wait, m->m_type);
556		else
557			MGET(n, wait, m->m_type);
558		*np = n;
559		if (n == NULL)
560			goto nospace;
561		if (copyhdr) {
562			if (!m_dup_pkthdr(n, m, wait))
563				goto nospace;
564			if (len == M_COPYALL)
565				n->m_pkthdr.len -= off0;
566			else
567				n->m_pkthdr.len = len;
568			copyhdr = 0;
569		}
570		n->m_len = min(len, m->m_len - off);
571		if (m->m_flags & M_EXT) {
572			n->m_data = m->m_data + off;
573			mb_dupcl(n, m);
574		} else
575			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
576			    (u_int)n->m_len);
577		if (len != M_COPYALL)
578			len -= n->m_len;
579		off = 0;
580		m = m->m_next;
581		np = &n->m_next;
582	}
583	if (top == NULL)
584		mbstat.m_mcfail++;	/* XXX: No consistency. */
585
586	return (top);
587nospace:
588	m_freem(top);
589	mbstat.m_mcfail++;	/* XXX: No consistency. */
590	return (NULL);
591}
592
593/*
594 * Returns mbuf chain with new head for the prepending case.
595 * Copies from mbuf (chain) n from off for len to mbuf (chain) m
596 * either prepending or appending the data.
597 * The resulting mbuf (chain) m is fully writeable.
598 * m is destination (is made writeable)
599 * n is source, off is offset in source, len is len from offset
600 * dir, 0 append, 1 prepend
601 * how, wait or nowait
602 */
603
604static int
605m_bcopyxxx(void *s, void *t, u_int len)
606{
607	bcopy(s, t, (size_t)len);
608	return 0;
609}
610
611struct mbuf *
612m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
613    int prep, int how)
614{
615	struct mbuf *mm, *x, *z, *prev = NULL;
616	caddr_t p;
617	int i, nlen = 0;
618	caddr_t buf[MLEN];
619
620	KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
621	KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
622	KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
623	KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
624
625	mm = m;
626	if (!prep) {
627		while(mm->m_next) {
628			prev = mm;
629			mm = mm->m_next;
630		}
631	}
632	for (z = n; z != NULL; z = z->m_next)
633		nlen += z->m_len;
634	if (len == M_COPYALL)
635		len = nlen - off;
636	if (off + len > nlen || len < 1)
637		return NULL;
638
639	if (!M_WRITABLE(mm)) {
640		/* XXX: Use proper m_xxx function instead. */
641		x = m_getcl(how, MT_DATA, mm->m_flags);
642		if (x == NULL)
643			return NULL;
644		bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
645		p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
646		x->m_data = p;
647		mm->m_next = NULL;
648		if (mm != m)
649			prev->m_next = x;
650		m_free(mm);
651		mm = x;
652	}
653
654	/*
655	 * Append/prepend the data.  Allocating mbufs as necessary.
656	 */
657	/* Shortcut if enough free space in first/last mbuf. */
658	if (!prep && M_TRAILINGSPACE(mm) >= len) {
659		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
660			 mm->m_len);
661		mm->m_len += len;
662		mm->m_pkthdr.len += len;
663		return m;
664	}
665	if (prep && M_LEADINGSPACE(mm) >= len) {
666		mm->m_data = mtod(mm, caddr_t) - len;
667		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
668		mm->m_len += len;
669		mm->m_pkthdr.len += len;
670		return mm;
671	}
672
673	/* Expand first/last mbuf to cluster if possible. */
674	if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
675		bcopy(mm->m_data, &buf, mm->m_len);
676		m_clget(mm, how);
677		if (!(mm->m_flags & M_EXT))
678			return NULL;
679		bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
680		mm->m_data = mm->m_ext.ext_buf;
681		mm->m_pkthdr.header = NULL;
682	}
683	if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
684		bcopy(mm->m_data, &buf, mm->m_len);
685		m_clget(mm, how);
686		if (!(mm->m_flags & M_EXT))
687			return NULL;
688		bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
689		       mm->m_ext.ext_size - mm->m_len, mm->m_len);
690		mm->m_data = (caddr_t)mm->m_ext.ext_buf +
691			      mm->m_ext.ext_size - mm->m_len;
692		mm->m_pkthdr.header = NULL;
693	}
694
695	/* Append/prepend as many mbuf (clusters) as necessary to fit len. */
696	if (!prep && len > M_TRAILINGSPACE(mm)) {
697		if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
698			return NULL;
699	}
700	if (prep && len > M_LEADINGSPACE(mm)) {
701		if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
702			return NULL;
703		i = 0;
704		for (x = z; x != NULL; x = x->m_next) {
705			i += x->m_flags & M_EXT ? x->m_ext.ext_size :
706			      (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
707			if (!x->m_next)
708				break;
709		}
710		z->m_data += i - len;
711		m_move_pkthdr(mm, z);
712		x->m_next = mm;
713		mm = z;
714	}
715
716	/* Seek to start position in source mbuf. Optimization for long chains. */
717	while (off > 0) {
718		if (off < n->m_len)
719			break;
720		off -= n->m_len;
721		n = n->m_next;
722	}
723
724	/* Copy data into target mbuf. */
725	z = mm;
726	while (len > 0) {
727		KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
728		i = M_TRAILINGSPACE(z);
729		m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
730		z->m_len += i;
731		/* fixup pkthdr.len if necessary */
732		if ((prep ? mm : m)->m_flags & M_PKTHDR)
733			(prep ? mm : m)->m_pkthdr.len += i;
734		off += i;
735		len -= i;
736		z = z->m_next;
737	}
738	return (prep ? mm : m);
739}
740
741/*
742 * Copy an entire packet, including header (which must be present).
743 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
744 * Note that the copy is read-only, because clusters are not copied,
745 * only their reference counts are incremented.
746 * Preserve alignment of the first mbuf so if the creator has left
747 * some room at the beginning (e.g. for inserting protocol headers)
748 * the copies still have the room available.
749 */
750struct mbuf *
751m_copypacket(struct mbuf *m, int how)
752{
753	struct mbuf *top, *n, *o;
754
755	MBUF_CHECKSLEEP(how);
756	MGET(n, how, m->m_type);
757	top = n;
758	if (n == NULL)
759		goto nospace;
760
761	if (!m_dup_pkthdr(n, m, how))
762		goto nospace;
763	n->m_len = m->m_len;
764	if (m->m_flags & M_EXT) {
765		n->m_data = m->m_data;
766		mb_dupcl(n, m);
767	} else {
768		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
769		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
770	}
771
772	m = m->m_next;
773	while (m) {
774		MGET(o, how, m->m_type);
775		if (o == NULL)
776			goto nospace;
777
778		n->m_next = o;
779		n = n->m_next;
780
781		n->m_len = m->m_len;
782		if (m->m_flags & M_EXT) {
783			n->m_data = m->m_data;
784			mb_dupcl(n, m);
785		} else {
786			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
787		}
788
789		m = m->m_next;
790	}
791	return top;
792nospace:
793	m_freem(top);
794	mbstat.m_mcfail++;	/* XXX: No consistency. */
795	return (NULL);
796}
797
798/*
799 * Copy data from an mbuf chain starting "off" bytes from the beginning,
800 * continuing for "len" bytes, into the indicated buffer.
801 */
802void
803m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
804{
805	u_int count;
806
807	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
808	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
809	while (off > 0) {
810		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
811		if (off < m->m_len)
812			break;
813		off -= m->m_len;
814		m = m->m_next;
815	}
816	while (len > 0) {
817		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
818		count = min(m->m_len - off, len);
819		bcopy(mtod(m, caddr_t) + off, cp, count);
820		len -= count;
821		cp += count;
822		off = 0;
823		m = m->m_next;
824	}
825}
826
827/*
828 * Copy a packet header mbuf chain into a completely new chain, including
829 * copying any mbuf clusters.  Use this instead of m_copypacket() when
830 * you need a writable copy of an mbuf chain.
831 */
832struct mbuf *
833m_dup(struct mbuf *m, int how)
834{
835	struct mbuf **p, *top = NULL;
836	int remain, moff, nsize;
837
838	MBUF_CHECKSLEEP(how);
839	/* Sanity check */
840	if (m == NULL)
841		return (NULL);
842	M_ASSERTPKTHDR(m);
843
844	/* While there's more data, get a new mbuf, tack it on, and fill it */
845	remain = m->m_pkthdr.len;
846	moff = 0;
847	p = &top;
848	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
849		struct mbuf *n;
850
851		/* Get the next new mbuf */
852		if (remain >= MINCLSIZE) {
853			n = m_getcl(how, m->m_type, 0);
854			nsize = MCLBYTES;
855		} else {
856			n = m_get(how, m->m_type);
857			nsize = MLEN;
858		}
859		if (n == NULL)
860			goto nospace;
861
862		if (top == NULL) {		/* First one, must be PKTHDR */
863			if (!m_dup_pkthdr(n, m, how)) {
864				m_free(n);
865				goto nospace;
866			}
867			if ((n->m_flags & M_EXT) == 0)
868				nsize = MHLEN;
869		}
870		n->m_len = 0;
871
872		/* Link it into the new chain */
873		*p = n;
874		p = &n->m_next;
875
876		/* Copy data from original mbuf(s) into new mbuf */
877		while (n->m_len < nsize && m != NULL) {
878			int chunk = min(nsize - n->m_len, m->m_len - moff);
879
880			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
881			moff += chunk;
882			n->m_len += chunk;
883			remain -= chunk;
884			if (moff == m->m_len) {
885				m = m->m_next;
886				moff = 0;
887			}
888		}
889
890		/* Check correct total mbuf length */
891		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
892		    	("%s: bogus m_pkthdr.len", __func__));
893	}
894	return (top);
895
896nospace:
897	m_freem(top);
898	mbstat.m_mcfail++;	/* XXX: No consistency. */
899	return (NULL);
900}
901
902/*
903 * Concatenate mbuf chain n to m.
904 * Both chains must be of the same type (e.g. MT_DATA).
905 * Any m_pkthdr is not updated.
906 */
907void
908m_cat(struct mbuf *m, struct mbuf *n)
909{
910	while (m->m_next)
911		m = m->m_next;
912	while (n) {
913		if (m->m_flags & M_EXT ||
914		    m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
915			/* just join the two chains */
916			m->m_next = n;
917			return;
918		}
919		/* splat the data from one into the other */
920		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
921		    (u_int)n->m_len);
922		m->m_len += n->m_len;
923		n = m_free(n);
924	}
925}
926
927void
928m_adj(struct mbuf *mp, int req_len)
929{
930	int len = req_len;
931	struct mbuf *m;
932	int count;
933
934	if ((m = mp) == NULL)
935		return;
936	if (len >= 0) {
937		/*
938		 * Trim from head.
939		 */
940		while (m != NULL && len > 0) {
941			if (m->m_len <= len) {
942				len -= m->m_len;
943				m->m_len = 0;
944				m = m->m_next;
945			} else {
946				m->m_len -= len;
947				m->m_data += len;
948				len = 0;
949			}
950		}
951		if (mp->m_flags & M_PKTHDR)
952			mp->m_pkthdr.len -= (req_len - len);
953	} else {
954		/*
955		 * Trim from tail.  Scan the mbuf chain,
956		 * calculating its length and finding the last mbuf.
957		 * If the adjustment only affects this mbuf, then just
958		 * adjust and return.  Otherwise, rescan and truncate
959		 * after the remaining size.
960		 */
961		len = -len;
962		count = 0;
963		for (;;) {
964			count += m->m_len;
965			if (m->m_next == (struct mbuf *)0)
966				break;
967			m = m->m_next;
968		}
969		if (m->m_len >= len) {
970			m->m_len -= len;
971			if (mp->m_flags & M_PKTHDR)
972				mp->m_pkthdr.len -= len;
973			return;
974		}
975		count -= len;
976		if (count < 0)
977			count = 0;
978		/*
979		 * Correct length for chain is "count".
980		 * Find the mbuf with last data, adjust its length,
981		 * and toss data from remaining mbufs on chain.
982		 */
983		m = mp;
984		if (m->m_flags & M_PKTHDR)
985			m->m_pkthdr.len = count;
986		for (; m; m = m->m_next) {
987			if (m->m_len >= count) {
988				m->m_len = count;
989				if (m->m_next != NULL) {
990					m_freem(m->m_next);
991					m->m_next = NULL;
992				}
993				break;
994			}
995			count -= m->m_len;
996		}
997	}
998}
999
1000/*
1001 * Rearange an mbuf chain so that len bytes are contiguous
1002 * and in the data area of an mbuf (so that mtod and dtom
1003 * will work for a structure of size len).  Returns the resulting
1004 * mbuf chain on success, frees it and returns null on failure.
1005 * If there is room, it will add up to max_protohdr-len extra bytes to the
1006 * contiguous region in an attempt to avoid being called next time.
1007 */
1008struct mbuf *
1009m_pullup(struct mbuf *n, int len)
1010{
1011	struct mbuf *m;
1012	int count;
1013	int space;
1014
1015	/*
1016	 * If first mbuf has no cluster, and has room for len bytes
1017	 * without shifting current data, pullup into it,
1018	 * otherwise allocate a new mbuf to prepend to the chain.
1019	 */
1020	if ((n->m_flags & M_EXT) == 0 &&
1021	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1022		if (n->m_len >= len)
1023			return (n);
1024		m = n;
1025		n = n->m_next;
1026		len -= m->m_len;
1027	} else {
1028		if (len > MHLEN)
1029			goto bad;
1030		MGET(m, M_DONTWAIT, n->m_type);
1031		if (m == NULL)
1032			goto bad;
1033		m->m_len = 0;
1034		if (n->m_flags & M_PKTHDR)
1035			M_MOVE_PKTHDR(m, n);
1036	}
1037	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1038	do {
1039		count = min(min(max(len, max_protohdr), space), n->m_len);
1040		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1041		  (u_int)count);
1042		len -= count;
1043		m->m_len += count;
1044		n->m_len -= count;
1045		space -= count;
1046		if (n->m_len)
1047			n->m_data += count;
1048		else
1049			n = m_free(n);
1050	} while (len > 0 && n);
1051	if (len > 0) {
1052		(void) m_free(m);
1053		goto bad;
1054	}
1055	m->m_next = n;
1056	return (m);
1057bad:
1058	m_freem(n);
1059	mbstat.m_mpfail++;	/* XXX: No consistency. */
1060	return (NULL);
1061}
1062
1063/*
1064 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1065 * the amount of empty space before the data in the new mbuf to be specified
1066 * (in the event that the caller expects to prepend later).
1067 */
1068int MSFail;
1069
1070struct mbuf *
1071m_copyup(struct mbuf *n, int len, int dstoff)
1072{
1073	struct mbuf *m;
1074	int count, space;
1075
1076	if (len > (MHLEN - dstoff))
1077		goto bad;
1078	MGET(m, M_DONTWAIT, n->m_type);
1079	if (m == NULL)
1080		goto bad;
1081	m->m_len = 0;
1082	if (n->m_flags & M_PKTHDR)
1083		M_MOVE_PKTHDR(m, n);
1084	m->m_data += dstoff;
1085	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1086	do {
1087		count = min(min(max(len, max_protohdr), space), n->m_len);
1088		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1089		    (unsigned)count);
1090		len -= count;
1091		m->m_len += count;
1092		n->m_len -= count;
1093		space -= count;
1094		if (n->m_len)
1095			n->m_data += count;
1096		else
1097			n = m_free(n);
1098	} while (len > 0 && n);
1099	if (len > 0) {
1100		(void) m_free(m);
1101		goto bad;
1102	}
1103	m->m_next = n;
1104	return (m);
1105 bad:
1106	m_freem(n);
1107	MSFail++;
1108	return (NULL);
1109}
1110
1111/*
1112 * Partition an mbuf chain in two pieces, returning the tail --
1113 * all but the first len0 bytes.  In case of failure, it returns NULL and
1114 * attempts to restore the chain to its original state.
1115 *
1116 * Note that the resulting mbufs might be read-only, because the new
1117 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1118 * the "breaking point" happens to lie within a cluster mbuf. Use the
1119 * M_WRITABLE() macro to check for this case.
1120 */
1121struct mbuf *
1122m_split(struct mbuf *m0, int len0, int wait)
1123{
1124	struct mbuf *m, *n;
1125	u_int len = len0, remain;
1126
1127	MBUF_CHECKSLEEP(wait);
1128	for (m = m0; m && len > m->m_len; m = m->m_next)
1129		len -= m->m_len;
1130	if (m == NULL)
1131		return (NULL);
1132	remain = m->m_len - len;
1133	if (m0->m_flags & M_PKTHDR) {
1134		MGETHDR(n, wait, m0->m_type);
1135		if (n == NULL)
1136			return (NULL);
1137		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1138		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1139		m0->m_pkthdr.len = len0;
1140		if (m->m_flags & M_EXT)
1141			goto extpacket;
1142		if (remain > MHLEN) {
1143			/* m can't be the lead packet */
1144			MH_ALIGN(n, 0);
1145			n->m_next = m_split(m, len, wait);
1146			if (n->m_next == NULL) {
1147				(void) m_free(n);
1148				return (NULL);
1149			} else {
1150				n->m_len = 0;
1151				return (n);
1152			}
1153		} else
1154			MH_ALIGN(n, remain);
1155	} else if (remain == 0) {
1156		n = m->m_next;
1157		m->m_next = NULL;
1158		return (n);
1159	} else {
1160		MGET(n, wait, m->m_type);
1161		if (n == NULL)
1162			return (NULL);
1163		M_ALIGN(n, remain);
1164	}
1165extpacket:
1166	if (m->m_flags & M_EXT) {
1167		n->m_data = m->m_data + len;
1168		mb_dupcl(n, m);
1169	} else {
1170		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1171	}
1172	n->m_len = remain;
1173	m->m_len = len;
1174	n->m_next = m->m_next;
1175	m->m_next = NULL;
1176	return (n);
1177}
1178/*
1179 * Routine to copy from device local memory into mbufs.
1180 * Note that `off' argument is offset into first mbuf of target chain from
1181 * which to begin copying the data to.
1182 */
1183struct mbuf *
1184m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1185    void (*copy)(char *from, caddr_t to, u_int len))
1186{
1187	struct mbuf *m;
1188	struct mbuf *top = NULL, **mp = &top;
1189	int len;
1190
1191	if (off < 0 || off > MHLEN)
1192		return (NULL);
1193
1194	while (totlen > 0) {
1195		if (top == NULL) {	/* First one, must be PKTHDR */
1196			if (totlen + off >= MINCLSIZE) {
1197				m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1198				len = MCLBYTES;
1199			} else {
1200				m = m_gethdr(M_DONTWAIT, MT_DATA);
1201				len = MHLEN;
1202
1203				/* Place initial small packet/header at end of mbuf */
1204				if (m && totlen + off + max_linkhdr <= MLEN) {
1205					m->m_data += max_linkhdr;
1206					len -= max_linkhdr;
1207				}
1208			}
1209			if (m == NULL)
1210				return NULL;
1211			m->m_pkthdr.rcvif = ifp;
1212			m->m_pkthdr.len = totlen;
1213		} else {
1214			if (totlen + off >= MINCLSIZE) {
1215				m = m_getcl(M_DONTWAIT, MT_DATA, 0);
1216				len = MCLBYTES;
1217			} else {
1218				m = m_get(M_DONTWAIT, MT_DATA);
1219				len = MLEN;
1220			}
1221			if (m == NULL) {
1222				m_freem(top);
1223				return NULL;
1224			}
1225		}
1226		if (off) {
1227			m->m_data += off;
1228			len -= off;
1229			off = 0;
1230		}
1231		m->m_len = len = min(totlen, len);
1232		if (copy)
1233			copy(buf, mtod(m, caddr_t), (u_int)len);
1234		else
1235			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1236		buf += len;
1237		*mp = m;
1238		mp = &m->m_next;
1239		totlen -= len;
1240	}
1241	return (top);
1242}
1243
1244/*
1245 * Copy data from a buffer back into the indicated mbuf chain,
1246 * starting "off" bytes from the beginning, extending the mbuf
1247 * chain if necessary.
1248 */
1249void
1250m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1251{
1252	int mlen;
1253	struct mbuf *m = m0, *n;
1254	int totlen = 0;
1255
1256	if (m0 == NULL)
1257		return;
1258	while (off > (mlen = m->m_len)) {
1259		off -= mlen;
1260		totlen += mlen;
1261		if (m->m_next == NULL) {
1262			n = m_get(M_DONTWAIT, m->m_type);
1263			if (n == NULL)
1264				goto out;
1265			bzero(mtod(n, caddr_t), MLEN);
1266			n->m_len = min(MLEN, len + off);
1267			m->m_next = n;
1268		}
1269		m = m->m_next;
1270	}
1271	while (len > 0) {
1272		if (m->m_next == NULL && (len > m->m_len - off)) {
1273			m->m_len += min(len - (m->m_len - off),
1274			    M_TRAILINGSPACE(m));
1275		}
1276		mlen = min (m->m_len - off, len);
1277		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1278		cp += mlen;
1279		len -= mlen;
1280		mlen += off;
1281		off = 0;
1282		totlen += mlen;
1283		if (len == 0)
1284			break;
1285		if (m->m_next == NULL) {
1286			n = m_get(M_DONTWAIT, m->m_type);
1287			if (n == NULL)
1288				break;
1289			n->m_len = min(MLEN, len);
1290			m->m_next = n;
1291		}
1292		m = m->m_next;
1293	}
1294out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1295		m->m_pkthdr.len = totlen;
1296}
1297
1298/*
1299 * Append the specified data to the indicated mbuf chain,
1300 * Extend the mbuf chain if the new data does not fit in
1301 * existing space.
1302 *
1303 * Return 1 if able to complete the job; otherwise 0.
1304 */
1305int
1306m_append(struct mbuf *m0, int len, c_caddr_t cp)
1307{
1308	struct mbuf *m, *n;
1309	int remainder, space;
1310
1311	for (m = m0; m->m_next != NULL; m = m->m_next)
1312		;
1313	remainder = len;
1314	space = M_TRAILINGSPACE(m);
1315	if (space > 0) {
1316		/*
1317		 * Copy into available space.
1318		 */
1319		if (space > remainder)
1320			space = remainder;
1321		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1322		m->m_len += space;
1323		cp += space, remainder -= space;
1324	}
1325	while (remainder > 0) {
1326		/*
1327		 * Allocate a new mbuf; could check space
1328		 * and allocate a cluster instead.
1329		 */
1330		n = m_get(M_DONTWAIT, m->m_type);
1331		if (n == NULL)
1332			break;
1333		n->m_len = min(MLEN, remainder);
1334		bcopy(cp, mtod(n, caddr_t), n->m_len);
1335		cp += n->m_len, remainder -= n->m_len;
1336		m->m_next = n;
1337		m = n;
1338	}
1339	if (m0->m_flags & M_PKTHDR)
1340		m0->m_pkthdr.len += len - remainder;
1341	return (remainder == 0);
1342}
1343
1344/*
1345 * Apply function f to the data in an mbuf chain starting "off" bytes from
1346 * the beginning, continuing for "len" bytes.
1347 */
1348int
1349m_apply(struct mbuf *m, int off, int len,
1350    int (*f)(void *, void *, u_int), void *arg)
1351{
1352	u_int count;
1353	int rval;
1354
1355	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1356	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1357	while (off > 0) {
1358		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1359		if (off < m->m_len)
1360			break;
1361		off -= m->m_len;
1362		m = m->m_next;
1363	}
1364	while (len > 0) {
1365		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1366		count = min(m->m_len - off, len);
1367		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1368		if (rval)
1369			return (rval);
1370		len -= count;
1371		off = 0;
1372		m = m->m_next;
1373	}
1374	return (0);
1375}
1376
1377/*
1378 * Return a pointer to mbuf/offset of location in mbuf chain.
1379 */
1380struct mbuf *
1381m_getptr(struct mbuf *m, int loc, int *off)
1382{
1383
1384	while (loc >= 0) {
1385		/* Normal end of search. */
1386		if (m->m_len > loc) {
1387			*off = loc;
1388			return (m);
1389		} else {
1390			loc -= m->m_len;
1391			if (m->m_next == NULL) {
1392				if (loc == 0) {
1393					/* Point at the end of valid data. */
1394					*off = m->m_len;
1395					return (m);
1396				}
1397				return (NULL);
1398			}
1399			m = m->m_next;
1400		}
1401	}
1402	return (NULL);
1403}
1404
1405void
1406m_print(const struct mbuf *m, int maxlen)
1407{
1408	int len;
1409	int pdata;
1410	const struct mbuf *m2;
1411
1412	if (m->m_flags & M_PKTHDR)
1413		len = m->m_pkthdr.len;
1414	else
1415		len = -1;
1416	m2 = m;
1417	while (m2 != NULL && (len == -1 || len)) {
1418		pdata = m2->m_len;
1419		if (maxlen != -1 && pdata > maxlen)
1420			pdata = maxlen;
1421		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1422		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1423		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1424		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1425		if (pdata)
1426			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1427		if (len != -1)
1428			len -= m2->m_len;
1429		m2 = m2->m_next;
1430	}
1431	if (len > 0)
1432		printf("%d bytes unaccounted for.\n", len);
1433	return;
1434}
1435
1436u_int
1437m_fixhdr(struct mbuf *m0)
1438{
1439	u_int len;
1440
1441	len = m_length(m0, NULL);
1442	m0->m_pkthdr.len = len;
1443	return (len);
1444}
1445
1446u_int
1447m_length(struct mbuf *m0, struct mbuf **last)
1448{
1449	struct mbuf *m;
1450	u_int len;
1451
1452	len = 0;
1453	for (m = m0; m != NULL; m = m->m_next) {
1454		len += m->m_len;
1455		if (m->m_next == NULL)
1456			break;
1457	}
1458	if (last != NULL)
1459		*last = m;
1460	return (len);
1461}
1462
1463/*
1464 * Defragment a mbuf chain, returning the shortest possible
1465 * chain of mbufs and clusters.  If allocation fails and
1466 * this cannot be completed, NULL will be returned, but
1467 * the passed in chain will be unchanged.  Upon success,
1468 * the original chain will be freed, and the new chain
1469 * will be returned.
1470 *
1471 * If a non-packet header is passed in, the original
1472 * mbuf (chain?) will be returned unharmed.
1473 */
1474struct mbuf *
1475m_defrag(struct mbuf *m0, int how)
1476{
1477	struct mbuf *m_new = NULL, *m_final = NULL;
1478	int progress = 0, length;
1479
1480	MBUF_CHECKSLEEP(how);
1481	if (!(m0->m_flags & M_PKTHDR))
1482		return (m0);
1483
1484	m_fixhdr(m0); /* Needed sanity check */
1485
1486#ifdef MBUF_STRESS_TEST
1487	if (m_defragrandomfailures) {
1488		int temp = arc4random() & 0xff;
1489		if (temp == 0xba)
1490			goto nospace;
1491	}
1492#endif
1493
1494	if (m0->m_pkthdr.len > MHLEN)
1495		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1496	else
1497		m_final = m_gethdr(how, MT_DATA);
1498
1499	if (m_final == NULL)
1500		goto nospace;
1501
1502	if (m_dup_pkthdr(m_final, m0, how) == 0)
1503		goto nospace;
1504
1505	m_new = m_final;
1506
1507	while (progress < m0->m_pkthdr.len) {
1508		length = m0->m_pkthdr.len - progress;
1509		if (length > MCLBYTES)
1510			length = MCLBYTES;
1511
1512		if (m_new == NULL) {
1513			if (length > MLEN)
1514				m_new = m_getcl(how, MT_DATA, 0);
1515			else
1516				m_new = m_get(how, MT_DATA);
1517			if (m_new == NULL)
1518				goto nospace;
1519		}
1520
1521		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1522		progress += length;
1523		m_new->m_len = length;
1524		if (m_new != m_final)
1525			m_cat(m_final, m_new);
1526		m_new = NULL;
1527	}
1528#ifdef MBUF_STRESS_TEST
1529	if (m0->m_next == NULL)
1530		m_defraguseless++;
1531#endif
1532	m_freem(m0);
1533	m0 = m_final;
1534#ifdef MBUF_STRESS_TEST
1535	m_defragpackets++;
1536	m_defragbytes += m0->m_pkthdr.len;
1537#endif
1538	return (m0);
1539nospace:
1540#ifdef MBUF_STRESS_TEST
1541	m_defragfailure++;
1542#endif
1543	if (m_final)
1544		m_freem(m_final);
1545	return (NULL);
1546}
1547
1548/*
1549 * Defragment an mbuf chain, returning at most maxfrags separate
1550 * mbufs+clusters.  If this is not possible NULL is returned and
1551 * the original mbuf chain is left in it's present (potentially
1552 * modified) state.  We use two techniques: collapsing consecutive
1553 * mbufs and replacing consecutive mbufs by a cluster.
1554 *
1555 * NB: this should really be named m_defrag but that name is taken
1556 */
1557struct mbuf *
1558m_collapse(struct mbuf *m0, int how, int maxfrags)
1559{
1560	struct mbuf *m, *n, *n2, **prev;
1561	u_int curfrags;
1562
1563	/*
1564	 * Calculate the current number of frags.
1565	 */
1566	curfrags = 0;
1567	for (m = m0; m != NULL; m = m->m_next)
1568		curfrags++;
1569	/*
1570	 * First, try to collapse mbufs.  Note that we always collapse
1571	 * towards the front so we don't need to deal with moving the
1572	 * pkthdr.  This may be suboptimal if the first mbuf has much
1573	 * less data than the following.
1574	 */
1575	m = m0;
1576again:
1577	for (;;) {
1578		n = m->m_next;
1579		if (n == NULL)
1580			break;
1581		if ((m->m_flags & M_RDONLY) == 0 &&
1582		    n->m_len < M_TRAILINGSPACE(m)) {
1583			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1584				n->m_len);
1585			m->m_len += n->m_len;
1586			m->m_next = n->m_next;
1587			m_free(n);
1588			if (--curfrags <= maxfrags)
1589				return m0;
1590		} else
1591			m = n;
1592	}
1593	KASSERT(maxfrags > 1,
1594		("maxfrags %u, but normal collapse failed", maxfrags));
1595	/*
1596	 * Collapse consecutive mbufs to a cluster.
1597	 */
1598	prev = &m0->m_next;		/* NB: not the first mbuf */
1599	while ((n = *prev) != NULL) {
1600		if ((n2 = n->m_next) != NULL &&
1601		    n->m_len + n2->m_len < MCLBYTES) {
1602			m = m_getcl(how, MT_DATA, 0);
1603			if (m == NULL)
1604				goto bad;
1605			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1606			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1607				n2->m_len);
1608			m->m_len = n->m_len + n2->m_len;
1609			m->m_next = n2->m_next;
1610			*prev = m;
1611			m_free(n);
1612			m_free(n2);
1613			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1614				return m0;
1615			/*
1616			 * Still not there, try the normal collapse
1617			 * again before we allocate another cluster.
1618			 */
1619			goto again;
1620		}
1621		prev = &n->m_next;
1622	}
1623	/*
1624	 * No place where we can collapse to a cluster; punt.
1625	 * This can occur if, for example, you request 2 frags
1626	 * but the packet requires that both be clusters (we
1627	 * never reallocate the first mbuf to avoid moving the
1628	 * packet header).
1629	 */
1630bad:
1631	return NULL;
1632}
1633
1634#ifdef MBUF_STRESS_TEST
1635
1636/*
1637 * Fragment an mbuf chain.  There's no reason you'd ever want to do
1638 * this in normal usage, but it's great for stress testing various
1639 * mbuf consumers.
1640 *
1641 * If fragmentation is not possible, the original chain will be
1642 * returned.
1643 *
1644 * Possible length values:
1645 * 0	 no fragmentation will occur
1646 * > 0	each fragment will be of the specified length
1647 * -1	each fragment will be the same random value in length
1648 * -2	each fragment's length will be entirely random
1649 * (Random values range from 1 to 256)
1650 */
1651struct mbuf *
1652m_fragment(struct mbuf *m0, int how, int length)
1653{
1654	struct mbuf *m_new = NULL, *m_final = NULL;
1655	int progress = 0;
1656
1657	if (!(m0->m_flags & M_PKTHDR))
1658		return (m0);
1659
1660	if ((length == 0) || (length < -2))
1661		return (m0);
1662
1663	m_fixhdr(m0); /* Needed sanity check */
1664
1665	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1666
1667	if (m_final == NULL)
1668		goto nospace;
1669
1670	if (m_dup_pkthdr(m_final, m0, how) == 0)
1671		goto nospace;
1672
1673	m_new = m_final;
1674
1675	if (length == -1)
1676		length = 1 + (arc4random() & 255);
1677
1678	while (progress < m0->m_pkthdr.len) {
1679		int fraglen;
1680
1681		if (length > 0)
1682			fraglen = length;
1683		else
1684			fraglen = 1 + (arc4random() & 255);
1685		if (fraglen > m0->m_pkthdr.len - progress)
1686			fraglen = m0->m_pkthdr.len - progress;
1687
1688		if (fraglen > MCLBYTES)
1689			fraglen = MCLBYTES;
1690
1691		if (m_new == NULL) {
1692			m_new = m_getcl(how, MT_DATA, 0);
1693			if (m_new == NULL)
1694				goto nospace;
1695		}
1696
1697		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1698		progress += fraglen;
1699		m_new->m_len = fraglen;
1700		if (m_new != m_final)
1701			m_cat(m_final, m_new);
1702		m_new = NULL;
1703	}
1704	m_freem(m0);
1705	m0 = m_final;
1706	return (m0);
1707nospace:
1708	if (m_final)
1709		m_freem(m_final);
1710	/* Return the original chain on failure */
1711	return (m0);
1712}
1713
1714#endif
1715
1716/*
1717 * Copy the contents of uio into a properly sized mbuf chain.
1718 */
1719struct mbuf *
1720m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1721{
1722	struct mbuf *m, *mb;
1723	int error, length, total;
1724	int progress = 0;
1725
1726	/*
1727	 * len can be zero or an arbitrary large value bound by
1728	 * the total data supplied by the uio.
1729	 */
1730	if (len > 0)
1731		total = min(uio->uio_resid, len);
1732	else
1733		total = uio->uio_resid;
1734
1735	/*
1736	 * The smallest unit returned by m_getm2() is a single mbuf
1737	 * with pkthdr.  We can't align past it.
1738	 */
1739	if (align >= MHLEN)
1740		return (NULL);
1741
1742	/*
1743	 * Give us the full allocation or nothing.
1744	 * If len is zero return the smallest empty mbuf.
1745	 */
1746	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1747	if (m == NULL)
1748		return (NULL);
1749	m->m_data += align;
1750
1751	/* Fill all mbufs with uio data and update header information. */
1752	for (mb = m; mb != NULL; mb = mb->m_next) {
1753		length = min(M_TRAILINGSPACE(mb), total - progress);
1754
1755		error = uiomove(mtod(mb, void *), length, uio);
1756		if (error) {
1757			m_freem(m);
1758			return (NULL);
1759		}
1760
1761		mb->m_len = length;
1762		progress += length;
1763		if (flags & M_PKTHDR)
1764			m->m_pkthdr.len += length;
1765	}
1766	KASSERT(progress == total, ("%s: progress != total", __func__));
1767
1768	return (m);
1769}
1770
1771/*
1772 * Copy an mbuf chain into a uio limited by len if set.
1773 */
1774int
1775m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1776{
1777	int error, length, total;
1778	int progress = 0;
1779
1780	if (len > 0)
1781		total = min(uio->uio_resid, len);
1782	else
1783		total = uio->uio_resid;
1784
1785	/* Fill the uio with data from the mbufs. */
1786	for (; m != NULL; m = m->m_next) {
1787		length = min(m->m_len, total - progress);
1788
1789		error = uiomove(mtod(m, void *), length, uio);
1790		if (error)
1791			return (error);
1792
1793		progress += length;
1794	}
1795
1796	return (0);
1797}
1798
1799/*
1800 * Set the m_data pointer of a newly-allocated mbuf
1801 * to place an object of the specified size at the
1802 * end of the mbuf, longword aligned.
1803 */
1804void
1805m_align(struct mbuf *m, int len)
1806{
1807	int adjust;
1808
1809	if (m->m_flags & M_EXT)
1810		adjust = m->m_ext.ext_size - len;
1811	else if (m->m_flags & M_PKTHDR)
1812		adjust = MHLEN - len;
1813	else
1814		adjust = MLEN - len;
1815	m->m_data += adjust &~ (sizeof(long)-1);
1816}
1817
1818/*
1819 * Create a writable copy of the mbuf chain.  While doing this
1820 * we compact the chain with a goal of producing a chain with
1821 * at most two mbufs.  The second mbuf in this chain is likely
1822 * to be a cluster.  The primary purpose of this work is to create
1823 * a writable packet for encryption, compression, etc.  The
1824 * secondary goal is to linearize the data so the data can be
1825 * passed to crypto hardware in the most efficient manner possible.
1826 */
1827struct mbuf *
1828m_unshare(struct mbuf *m0, int how)
1829{
1830	struct mbuf *m, *mprev;
1831	struct mbuf *n, *mfirst, *mlast;
1832	int len, off;
1833
1834	mprev = NULL;
1835	for (m = m0; m != NULL; m = mprev->m_next) {
1836		/*
1837		 * Regular mbufs are ignored unless there's a cluster
1838		 * in front of it that we can use to coalesce.  We do
1839		 * the latter mainly so later clusters can be coalesced
1840		 * also w/o having to handle them specially (i.e. convert
1841		 * mbuf+cluster -> cluster).  This optimization is heavily
1842		 * influenced by the assumption that we're running over
1843		 * Ethernet where MCLBYTES is large enough that the max
1844		 * packet size will permit lots of coalescing into a
1845		 * single cluster.  This in turn permits efficient
1846		 * crypto operations, especially when using hardware.
1847		 */
1848		if ((m->m_flags & M_EXT) == 0) {
1849			if (mprev && (mprev->m_flags & M_EXT) &&
1850			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1851				/* XXX: this ignores mbuf types */
1852				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1853				       mtod(m, caddr_t), m->m_len);
1854				mprev->m_len += m->m_len;
1855				mprev->m_next = m->m_next;	/* unlink from chain */
1856				m_free(m);			/* reclaim mbuf */
1857#if 0
1858				newipsecstat.ips_mbcoalesced++;
1859#endif
1860			} else {
1861				mprev = m;
1862			}
1863			continue;
1864		}
1865		/*
1866		 * Writable mbufs are left alone (for now).
1867		 */
1868		if (M_WRITABLE(m)) {
1869			mprev = m;
1870			continue;
1871		}
1872
1873		/*
1874		 * Not writable, replace with a copy or coalesce with
1875		 * the previous mbuf if possible (since we have to copy
1876		 * it anyway, we try to reduce the number of mbufs and
1877		 * clusters so that future work is easier).
1878		 */
1879		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1880		/* NB: we only coalesce into a cluster or larger */
1881		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1882		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1883			/* XXX: this ignores mbuf types */
1884			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1885			       mtod(m, caddr_t), m->m_len);
1886			mprev->m_len += m->m_len;
1887			mprev->m_next = m->m_next;	/* unlink from chain */
1888			m_free(m);			/* reclaim mbuf */
1889#if 0
1890			newipsecstat.ips_clcoalesced++;
1891#endif
1892			continue;
1893		}
1894
1895		/*
1896		 * Allocate new space to hold the copy...
1897		 */
1898		/* XXX why can M_PKTHDR be set past the first mbuf? */
1899		if (mprev == NULL && (m->m_flags & M_PKTHDR)) {
1900			/*
1901			 * NB: if a packet header is present we must
1902			 * allocate the mbuf separately from any cluster
1903			 * because M_MOVE_PKTHDR will smash the data
1904			 * pointer and drop the M_EXT marker.
1905			 */
1906			MGETHDR(n, how, m->m_type);
1907			if (n == NULL) {
1908				m_freem(m0);
1909				return (NULL);
1910			}
1911			M_MOVE_PKTHDR(n, m);
1912			MCLGET(n, how);
1913			if ((n->m_flags & M_EXT) == 0) {
1914				m_free(n);
1915				m_freem(m0);
1916				return (NULL);
1917			}
1918		} else {
1919			n = m_getcl(how, m->m_type, m->m_flags);
1920			if (n == NULL) {
1921				m_freem(m0);
1922				return (NULL);
1923			}
1924		}
1925		/*
1926		 * ... and copy the data.  We deal with jumbo mbufs
1927		 * (i.e. m_len > MCLBYTES) by splitting them into
1928		 * clusters.  We could just malloc a buffer and make
1929		 * it external but too many device drivers don't know
1930		 * how to break up the non-contiguous memory when
1931		 * doing DMA.
1932		 */
1933		len = m->m_len;
1934		off = 0;
1935		mfirst = n;
1936		mlast = NULL;
1937		for (;;) {
1938			int cc = min(len, MCLBYTES);
1939			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1940			n->m_len = cc;
1941			if (mlast != NULL)
1942				mlast->m_next = n;
1943			mlast = n;
1944#if 0
1945			newipsecstat.ips_clcopied++;
1946#endif
1947
1948			len -= cc;
1949			if (len <= 0)
1950				break;
1951			off += cc;
1952
1953			n = m_getcl(how, m->m_type, m->m_flags);
1954			if (n == NULL) {
1955				m_freem(mfirst);
1956				m_freem(m0);
1957				return (NULL);
1958			}
1959		}
1960		n->m_next = m->m_next;
1961		if (mprev == NULL)
1962			m0 = mfirst;		/* new head of chain */
1963		else
1964			mprev->m_next = mfirst;	/* replace old mbuf */
1965		m_free(m);			/* release old mbuf */
1966		mprev = mfirst;
1967	}
1968	return (m0);
1969}
1970
1971#ifdef MBUF_PROFILING
1972
1973#define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
1974struct mbufprofile {
1975	uintmax_t wasted[MP_BUCKETS];
1976	uintmax_t used[MP_BUCKETS];
1977	uintmax_t segments[MP_BUCKETS];
1978} mbprof;
1979
1980#define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
1981#define MP_NUMLINES 6
1982#define MP_NUMSPERLINE 16
1983#define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
1984/* work out max space needed and add a bit of spare space too */
1985#define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
1986#define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
1987
1988char mbprofbuf[MP_BUFSIZE];
1989
1990void
1991m_profile(struct mbuf *m)
1992{
1993	int segments = 0;
1994	int used = 0;
1995	int wasted = 0;
1996
1997	while (m) {
1998		segments++;
1999		used += m->m_len;
2000		if (m->m_flags & M_EXT) {
2001			wasted += MHLEN - sizeof(m->m_ext) +
2002			    m->m_ext.ext_size - m->m_len;
2003		} else {
2004			if (m->m_flags & M_PKTHDR)
2005				wasted += MHLEN - m->m_len;
2006			else
2007				wasted += MLEN - m->m_len;
2008		}
2009		m = m->m_next;
2010	}
2011	/* be paranoid.. it helps */
2012	if (segments > MP_BUCKETS - 1)
2013		segments = MP_BUCKETS - 1;
2014	if (used > 100000)
2015		used = 100000;
2016	if (wasted > 100000)
2017		wasted = 100000;
2018	/* store in the appropriate bucket */
2019	/* don't bother locking. if it's slightly off, so what? */
2020	mbprof.segments[segments]++;
2021	mbprof.used[fls(used)]++;
2022	mbprof.wasted[fls(wasted)]++;
2023}
2024
2025static void
2026mbprof_textify(void)
2027{
2028	int offset;
2029	char *c;
2030	uint64_t *p;
2031
2032
2033	p = &mbprof.wasted[0];
2034	c = mbprofbuf;
2035	offset = snprintf(c, MP_MAXLINE + 10,
2036	    "wasted:\n"
2037	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2038	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2039	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2040	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2041#ifdef BIG_ARRAY
2042	p = &mbprof.wasted[16];
2043	c += offset;
2044	offset = snprintf(c, MP_MAXLINE,
2045	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2046	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2047	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2048	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2049#endif
2050	p = &mbprof.used[0];
2051	c += offset;
2052	offset = snprintf(c, MP_MAXLINE + 10,
2053	    "used:\n"
2054	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2055	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2056	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2057	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2058#ifdef BIG_ARRAY
2059	p = &mbprof.used[16];
2060	c += offset;
2061	offset = snprintf(c, MP_MAXLINE,
2062	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2063	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2064	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2065	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2066#endif
2067	p = &mbprof.segments[0];
2068	c += offset;
2069	offset = snprintf(c, MP_MAXLINE + 10,
2070	    "segments:\n"
2071	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2072	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2073	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2074	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2075#ifdef BIG_ARRAY
2076	p = &mbprof.segments[16];
2077	c += offset;
2078	offset = snprintf(c, MP_MAXLINE,
2079	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2080	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2081	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2082	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2083#endif
2084}
2085
2086static int
2087mbprof_handler(SYSCTL_HANDLER_ARGS)
2088{
2089	int error;
2090
2091	mbprof_textify();
2092	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2093	return (error);
2094}
2095
2096static int
2097mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2098{
2099	int clear, error;
2100
2101	clear = 0;
2102	error = sysctl_handle_int(oidp, &clear, 0, req);
2103	if (error || !req->newptr)
2104		return (error);
2105
2106	if (clear) {
2107		bzero(&mbprof, sizeof(mbprof));
2108	}
2109
2110	return (error);
2111}
2112
2113
2114SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2115	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2116
2117SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2118	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2119#endif
2120
2121