uipc_mbuf.c revision 178700
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/uipc_mbuf.c 178700 2008-04-30 20:00:30Z julian $");
34
35#include "opt_mac.h"
36#include "opt_param.h"
37#include "opt_mbuf_stress_test.h"
38#include "opt_mbuf_profiling.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/limits.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/sysctl.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/uio.h>
51
52#include <security/mac/mac_framework.h>
53
54int	max_linkhdr;
55int	max_protohdr;
56int	max_hdr;
57int	max_datalen;
58#ifdef MBUF_STRESS_TEST
59int	m_defragpackets;
60int	m_defragbytes;
61int	m_defraguseless;
62int	m_defragfailure;
63int	m_defragrandomfailures;
64#endif
65
66/*
67 * sysctl(8) exported objects
68 */
69SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
70	   &max_linkhdr, 0, "Size of largest link layer header");
71SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
72	   &max_protohdr, 0, "Size of largest protocol layer header");
73SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
74	   &max_hdr, 0, "Size of largest link plus protocol header");
75SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
76	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
77#ifdef MBUF_STRESS_TEST
78SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
79	   &m_defragpackets, 0, "");
80SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
81	   &m_defragbytes, 0, "");
82SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
83	   &m_defraguseless, 0, "");
84SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
85	   &m_defragfailure, 0, "");
86SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
87	   &m_defragrandomfailures, 0, "");
88#endif
89
90/*
91 * Allocate a given length worth of mbufs and/or clusters (whatever fits
92 * best) and return a pointer to the top of the allocated chain.  If an
93 * existing mbuf chain is provided, then we will append the new chain
94 * to the existing one but still return the top of the newly allocated
95 * chain.
96 */
97struct mbuf *
98m_getm2(struct mbuf *m, int len, int how, short type, int flags)
99{
100	struct mbuf *mb, *nm = NULL, *mtail = NULL;
101
102	KASSERT(len >= 0, ("%s: len is < 0", __func__));
103
104	/* Validate flags. */
105	flags &= (M_PKTHDR | M_EOR);
106
107	/* Packet header mbuf must be first in chain. */
108	if ((flags & M_PKTHDR) && m != NULL)
109		flags &= ~M_PKTHDR;
110
111	/* Loop and append maximum sized mbufs to the chain tail. */
112	while (len > 0) {
113		if (len > MCLBYTES)
114			mb = m_getjcl(how, type, (flags & M_PKTHDR),
115			    MJUMPAGESIZE);
116		else if (len >= MINCLSIZE)
117			mb = m_getcl(how, type, (flags & M_PKTHDR));
118		else if (flags & M_PKTHDR)
119			mb = m_gethdr(how, type);
120		else
121			mb = m_get(how, type);
122
123		/* Fail the whole operation if one mbuf can't be allocated. */
124		if (mb == NULL) {
125			if (nm != NULL)
126				m_freem(nm);
127			return (NULL);
128		}
129
130		/* Book keeping. */
131		len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
132			((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
133		if (mtail != NULL)
134			mtail->m_next = mb;
135		else
136			nm = mb;
137		mtail = mb;
138		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
139	}
140	if (flags & M_EOR)
141		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
142
143	/* If mbuf was supplied, append new chain to the end of it. */
144	if (m != NULL) {
145		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
146			;
147		mtail->m_next = nm;
148		mtail->m_flags &= ~M_EOR;
149	} else
150		m = nm;
151
152	return (m);
153}
154
155/*
156 * Free an entire chain of mbufs and associated external buffers, if
157 * applicable.
158 */
159void
160m_freem(struct mbuf *mb)
161{
162
163	while (mb != NULL)
164		mb = m_free(mb);
165}
166
167/*-
168 * Configure a provided mbuf to refer to the provided external storage
169 * buffer and setup a reference count for said buffer.  If the setting
170 * up of the reference count fails, the M_EXT bit will not be set.  If
171 * successfull, the M_EXT bit is set in the mbuf's flags.
172 *
173 * Arguments:
174 *    mb     The existing mbuf to which to attach the provided buffer.
175 *    buf    The address of the provided external storage buffer.
176 *    size   The size of the provided buffer.
177 *    freef  A pointer to a routine that is responsible for freeing the
178 *           provided external storage buffer.
179 *    args   A pointer to an argument structure (of any type) to be passed
180 *           to the provided freef routine (may be NULL).
181 *    flags  Any other flags to be passed to the provided mbuf.
182 *    type   The type that the external storage buffer should be
183 *           labeled with.
184 *
185 * Returns:
186 *    Nothing.
187 */
188void
189m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
190    void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type)
191{
192	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
193
194	if (type != EXT_EXTREF)
195		mb->m_ext.ref_cnt = (u_int *)uma_zalloc(zone_ext_refcnt, M_NOWAIT);
196	if (mb->m_ext.ref_cnt != NULL) {
197		*(mb->m_ext.ref_cnt) = 1;
198		mb->m_flags |= (M_EXT | flags);
199		mb->m_ext.ext_buf = buf;
200		mb->m_data = mb->m_ext.ext_buf;
201		mb->m_ext.ext_size = size;
202		mb->m_ext.ext_free = freef;
203		mb->m_ext.ext_arg1 = arg1;
204		mb->m_ext.ext_arg2 = arg2;
205		mb->m_ext.ext_type = type;
206        }
207}
208
209/*
210 * Non-directly-exported function to clean up after mbufs with M_EXT
211 * storage attached to them if the reference count hits 1.
212 */
213void
214mb_free_ext(struct mbuf *m)
215{
216	int skipmbuf;
217
218	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
219	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
220
221
222	/*
223	 * check if the header is embedded in the cluster
224	 */
225	skipmbuf = (m->m_flags & M_NOFREE);
226
227	/* Free attached storage if this mbuf is the only reference to it. */
228	if (*(m->m_ext.ref_cnt) == 1 ||
229	    atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
230		switch (m->m_ext.ext_type) {
231		case EXT_PACKET:	/* The packet zone is special. */
232			if (*(m->m_ext.ref_cnt) == 0)
233				*(m->m_ext.ref_cnt) = 1;
234			uma_zfree(zone_pack, m);
235			return;		/* Job done. */
236		case EXT_CLUSTER:
237			uma_zfree(zone_clust, m->m_ext.ext_buf);
238			break;
239		case EXT_JUMBOP:
240			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
241			break;
242		case EXT_JUMBO9:
243			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
244			break;
245		case EXT_JUMBO16:
246			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
247			break;
248		case EXT_SFBUF:
249		case EXT_NET_DRV:
250		case EXT_MOD_TYPE:
251		case EXT_DISPOSABLE:
252			*(m->m_ext.ref_cnt) = 0;
253			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
254				m->m_ext.ref_cnt));
255			/* FALLTHROUGH */
256		case EXT_EXTREF:
257			KASSERT(m->m_ext.ext_free != NULL,
258				("%s: ext_free not set", __func__));
259			(*(m->m_ext.ext_free))(m->m_ext.ext_arg1,
260			    m->m_ext.ext_arg2);
261			break;
262		default:
263			KASSERT(m->m_ext.ext_type == 0,
264				("%s: unknown ext_type", __func__));
265		}
266	}
267	if (skipmbuf)
268		return;
269
270	/*
271	 * Free this mbuf back to the mbuf zone with all m_ext
272	 * information purged.
273	 */
274	m->m_ext.ext_buf = NULL;
275	m->m_ext.ext_free = NULL;
276	m->m_ext.ext_arg1 = NULL;
277	m->m_ext.ext_arg2 = NULL;
278	m->m_ext.ref_cnt = NULL;
279	m->m_ext.ext_size = 0;
280	m->m_ext.ext_type = 0;
281	m->m_flags &= ~M_EXT;
282	uma_zfree(zone_mbuf, m);
283}
284
285/*
286 * Attach the the cluster from *m to *n, set up m_ext in *n
287 * and bump the refcount of the cluster.
288 */
289static void
290mb_dupcl(struct mbuf *n, struct mbuf *m)
291{
292	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
293	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
294	KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
295
296	if (*(m->m_ext.ref_cnt) == 1)
297		*(m->m_ext.ref_cnt) += 1;
298	else
299		atomic_add_int(m->m_ext.ref_cnt, 1);
300	n->m_ext.ext_buf = m->m_ext.ext_buf;
301	n->m_ext.ext_free = m->m_ext.ext_free;
302	n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
303	n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
304	n->m_ext.ext_size = m->m_ext.ext_size;
305	n->m_ext.ref_cnt = m->m_ext.ref_cnt;
306	n->m_ext.ext_type = m->m_ext.ext_type;
307	n->m_flags |= M_EXT;
308}
309
310/*
311 * Clean up mbuf (chain) from any tags and packet headers.
312 * If "all" is set then the first mbuf in the chain will be
313 * cleaned too.
314 */
315void
316m_demote(struct mbuf *m0, int all)
317{
318	struct mbuf *m;
319
320	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
321		if (m->m_flags & M_PKTHDR) {
322			m_tag_delete_chain(m, NULL);
323			m->m_flags &= ~M_PKTHDR;
324			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
325		}
326		if (m->m_type == MT_HEADER)
327			m->m_type = MT_DATA;
328		if (m != m0 && m->m_nextpkt != NULL)
329			m->m_nextpkt = NULL;
330		m->m_flags = m->m_flags & (M_EXT|M_EOR|M_RDONLY|M_FREELIST);
331	}
332}
333
334/*
335 * Sanity checks on mbuf (chain) for use in KASSERT() and general
336 * debugging.
337 * Returns 0 or panics when bad and 1 on all tests passed.
338 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
339 * blow up later.
340 */
341int
342m_sanity(struct mbuf *m0, int sanitize)
343{
344	struct mbuf *m;
345	caddr_t a, b;
346	int pktlen = 0;
347
348#ifdef INVARIANTS
349#define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
350#else
351#define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
352#endif
353
354	for (m = m0; m != NULL; m = m->m_next) {
355		/*
356		 * Basic pointer checks.  If any of these fails then some
357		 * unrelated kernel memory before or after us is trashed.
358		 * No way to recover from that.
359		 */
360		a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
361			((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
362			 (caddr_t)(&m->m_dat)) );
363		b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
364			((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
365		if ((caddr_t)m->m_data < a)
366			M_SANITY_ACTION("m_data outside mbuf data range left");
367		if ((caddr_t)m->m_data > b)
368			M_SANITY_ACTION("m_data outside mbuf data range right");
369		if ((caddr_t)m->m_data + m->m_len > b)
370			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
371		if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) {
372			if ((caddr_t)m->m_pkthdr.header < a ||
373			    (caddr_t)m->m_pkthdr.header > b)
374				M_SANITY_ACTION("m_pkthdr.header outside mbuf data range");
375		}
376
377		/* m->m_nextpkt may only be set on first mbuf in chain. */
378		if (m != m0 && m->m_nextpkt != NULL) {
379			if (sanitize) {
380				m_freem(m->m_nextpkt);
381				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
382			} else
383				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
384		}
385
386		/* packet length (not mbuf length!) calculation */
387		if (m0->m_flags & M_PKTHDR)
388			pktlen += m->m_len;
389
390		/* m_tags may only be attached to first mbuf in chain. */
391		if (m != m0 && m->m_flags & M_PKTHDR &&
392		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
393			if (sanitize) {
394				m_tag_delete_chain(m, NULL);
395				/* put in 0xDEADC0DE perhaps? */
396			} else
397				M_SANITY_ACTION("m_tags on in-chain mbuf");
398		}
399
400		/* M_PKTHDR may only be set on first mbuf in chain */
401		if (m != m0 && m->m_flags & M_PKTHDR) {
402			if (sanitize) {
403				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
404				m->m_flags &= ~M_PKTHDR;
405				/* put in 0xDEADCODE and leave hdr flag in */
406			} else
407				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
408		}
409	}
410	m = m0;
411	if (pktlen && pktlen != m->m_pkthdr.len) {
412		if (sanitize)
413			m->m_pkthdr.len = 0;
414		else
415			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
416	}
417	return 1;
418
419#undef	M_SANITY_ACTION
420}
421
422
423/*
424 * "Move" mbuf pkthdr from "from" to "to".
425 * "from" must have M_PKTHDR set, and "to" must be empty.
426 */
427void
428m_move_pkthdr(struct mbuf *to, struct mbuf *from)
429{
430
431#if 0
432	/* see below for why these are not enabled */
433	M_ASSERTPKTHDR(to);
434	/* Note: with MAC, this may not be a good assertion. */
435	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
436	    ("m_move_pkthdr: to has tags"));
437#endif
438#ifdef MAC
439	/*
440	 * XXXMAC: It could be this should also occur for non-MAC?
441	 */
442	if (to->m_flags & M_PKTHDR)
443		m_tag_delete_chain(to, NULL);
444#endif
445	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
446	if ((to->m_flags & M_EXT) == 0)
447		to->m_data = to->m_pktdat;
448	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
449	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
450	from->m_flags &= ~M_PKTHDR;
451}
452
453/*
454 * Duplicate "from"'s mbuf pkthdr in "to".
455 * "from" must have M_PKTHDR set, and "to" must be empty.
456 * In particular, this does a deep copy of the packet tags.
457 */
458int
459m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
460{
461
462#if 0
463	/*
464	 * The mbuf allocator only initializes the pkthdr
465	 * when the mbuf is allocated with MGETHDR. Many users
466	 * (e.g. m_copy*, m_prepend) use MGET and then
467	 * smash the pkthdr as needed causing these
468	 * assertions to trip.  For now just disable them.
469	 */
470	M_ASSERTPKTHDR(to);
471	/* Note: with MAC, this may not be a good assertion. */
472	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
473#endif
474	MBUF_CHECKSLEEP(how);
475#ifdef MAC
476	if (to->m_flags & M_PKTHDR)
477		m_tag_delete_chain(to, NULL);
478#endif
479	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
480	if ((to->m_flags & M_EXT) == 0)
481		to->m_data = to->m_pktdat;
482	to->m_pkthdr = from->m_pkthdr;
483	SLIST_INIT(&to->m_pkthdr.tags);
484	return (m_tag_copy_chain(to, from, MBTOM(how)));
485}
486
487/*
488 * Lesser-used path for M_PREPEND:
489 * allocate new mbuf to prepend to chain,
490 * copy junk along.
491 */
492struct mbuf *
493m_prepend(struct mbuf *m, int len, int how)
494{
495	struct mbuf *mn;
496
497	if (m->m_flags & M_PKTHDR)
498		MGETHDR(mn, how, m->m_type);
499	else
500		MGET(mn, how, m->m_type);
501	if (mn == NULL) {
502		m_freem(m);
503		return (NULL);
504	}
505	if (m->m_flags & M_PKTHDR)
506		M_MOVE_PKTHDR(mn, m);
507	mn->m_next = m;
508	m = mn;
509	if(m->m_flags & M_PKTHDR) {
510		if (len < MHLEN)
511			MH_ALIGN(m, len);
512	} else {
513		if (len < MLEN)
514			M_ALIGN(m, len);
515	}
516	m->m_len = len;
517	return (m);
518}
519
520/*
521 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
522 * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
523 * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
524 * Note that the copy is read-only, because clusters are not copied,
525 * only their reference counts are incremented.
526 */
527struct mbuf *
528m_copym(struct mbuf *m, int off0, int len, int wait)
529{
530	struct mbuf *n, **np;
531	int off = off0;
532	struct mbuf *top;
533	int copyhdr = 0;
534
535	KASSERT(off >= 0, ("m_copym, negative off %d", off));
536	KASSERT(len >= 0, ("m_copym, negative len %d", len));
537	MBUF_CHECKSLEEP(wait);
538	if (off == 0 && m->m_flags & M_PKTHDR)
539		copyhdr = 1;
540	while (off > 0) {
541		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
542		if (off < m->m_len)
543			break;
544		off -= m->m_len;
545		m = m->m_next;
546	}
547	np = &top;
548	top = 0;
549	while (len > 0) {
550		if (m == NULL) {
551			KASSERT(len == M_COPYALL,
552			    ("m_copym, length > size of mbuf chain"));
553			break;
554		}
555		if (copyhdr)
556			MGETHDR(n, wait, m->m_type);
557		else
558			MGET(n, wait, m->m_type);
559		*np = n;
560		if (n == NULL)
561			goto nospace;
562		if (copyhdr) {
563			if (!m_dup_pkthdr(n, m, wait))
564				goto nospace;
565			if (len == M_COPYALL)
566				n->m_pkthdr.len -= off0;
567			else
568				n->m_pkthdr.len = len;
569			copyhdr = 0;
570		}
571		n->m_len = min(len, m->m_len - off);
572		if (m->m_flags & M_EXT) {
573			n->m_data = m->m_data + off;
574			mb_dupcl(n, m);
575		} else
576			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
577			    (u_int)n->m_len);
578		if (len != M_COPYALL)
579			len -= n->m_len;
580		off = 0;
581		m = m->m_next;
582		np = &n->m_next;
583	}
584	if (top == NULL)
585		mbstat.m_mcfail++;	/* XXX: No consistency. */
586
587	return (top);
588nospace:
589	m_freem(top);
590	mbstat.m_mcfail++;	/* XXX: No consistency. */
591	return (NULL);
592}
593
594/*
595 * Returns mbuf chain with new head for the prepending case.
596 * Copies from mbuf (chain) n from off for len to mbuf (chain) m
597 * either prepending or appending the data.
598 * The resulting mbuf (chain) m is fully writeable.
599 * m is destination (is made writeable)
600 * n is source, off is offset in source, len is len from offset
601 * dir, 0 append, 1 prepend
602 * how, wait or nowait
603 */
604
605static int
606m_bcopyxxx(void *s, void *t, u_int len)
607{
608	bcopy(s, t, (size_t)len);
609	return 0;
610}
611
612struct mbuf *
613m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
614    int prep, int how)
615{
616	struct mbuf *mm, *x, *z, *prev = NULL;
617	caddr_t p;
618	int i, nlen = 0;
619	caddr_t buf[MLEN];
620
621	KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
622	KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
623	KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
624	KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
625
626	mm = m;
627	if (!prep) {
628		while(mm->m_next) {
629			prev = mm;
630			mm = mm->m_next;
631		}
632	}
633	for (z = n; z != NULL; z = z->m_next)
634		nlen += z->m_len;
635	if (len == M_COPYALL)
636		len = nlen - off;
637	if (off + len > nlen || len < 1)
638		return NULL;
639
640	if (!M_WRITABLE(mm)) {
641		/* XXX: Use proper m_xxx function instead. */
642		x = m_getcl(how, MT_DATA, mm->m_flags);
643		if (x == NULL)
644			return NULL;
645		bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
646		p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
647		x->m_data = p;
648		mm->m_next = NULL;
649		if (mm != m)
650			prev->m_next = x;
651		m_free(mm);
652		mm = x;
653	}
654
655	/*
656	 * Append/prepend the data.  Allocating mbufs as necessary.
657	 */
658	/* Shortcut if enough free space in first/last mbuf. */
659	if (!prep && M_TRAILINGSPACE(mm) >= len) {
660		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
661			 mm->m_len);
662		mm->m_len += len;
663		mm->m_pkthdr.len += len;
664		return m;
665	}
666	if (prep && M_LEADINGSPACE(mm) >= len) {
667		mm->m_data = mtod(mm, caddr_t) - len;
668		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
669		mm->m_len += len;
670		mm->m_pkthdr.len += len;
671		return mm;
672	}
673
674	/* Expand first/last mbuf to cluster if possible. */
675	if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
676		bcopy(mm->m_data, &buf, mm->m_len);
677		m_clget(mm, how);
678		if (!(mm->m_flags & M_EXT))
679			return NULL;
680		bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
681		mm->m_data = mm->m_ext.ext_buf;
682		mm->m_pkthdr.header = NULL;
683	}
684	if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
685		bcopy(mm->m_data, &buf, mm->m_len);
686		m_clget(mm, how);
687		if (!(mm->m_flags & M_EXT))
688			return NULL;
689		bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
690		       mm->m_ext.ext_size - mm->m_len, mm->m_len);
691		mm->m_data = (caddr_t)mm->m_ext.ext_buf +
692			      mm->m_ext.ext_size - mm->m_len;
693		mm->m_pkthdr.header = NULL;
694	}
695
696	/* Append/prepend as many mbuf (clusters) as necessary to fit len. */
697	if (!prep && len > M_TRAILINGSPACE(mm)) {
698		if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
699			return NULL;
700	}
701	if (prep && len > M_LEADINGSPACE(mm)) {
702		if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
703			return NULL;
704		i = 0;
705		for (x = z; x != NULL; x = x->m_next) {
706			i += x->m_flags & M_EXT ? x->m_ext.ext_size :
707			      (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
708			if (!x->m_next)
709				break;
710		}
711		z->m_data += i - len;
712		m_move_pkthdr(mm, z);
713		x->m_next = mm;
714		mm = z;
715	}
716
717	/* Seek to start position in source mbuf. Optimization for long chains. */
718	while (off > 0) {
719		if (off < n->m_len)
720			break;
721		off -= n->m_len;
722		n = n->m_next;
723	}
724
725	/* Copy data into target mbuf. */
726	z = mm;
727	while (len > 0) {
728		KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
729		i = M_TRAILINGSPACE(z);
730		m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
731		z->m_len += i;
732		/* fixup pkthdr.len if necessary */
733		if ((prep ? mm : m)->m_flags & M_PKTHDR)
734			(prep ? mm : m)->m_pkthdr.len += i;
735		off += i;
736		len -= i;
737		z = z->m_next;
738	}
739	return (prep ? mm : m);
740}
741
742/*
743 * Copy an entire packet, including header (which must be present).
744 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
745 * Note that the copy is read-only, because clusters are not copied,
746 * only their reference counts are incremented.
747 * Preserve alignment of the first mbuf so if the creator has left
748 * some room at the beginning (e.g. for inserting protocol headers)
749 * the copies still have the room available.
750 */
751struct mbuf *
752m_copypacket(struct mbuf *m, int how)
753{
754	struct mbuf *top, *n, *o;
755
756	MBUF_CHECKSLEEP(how);
757	MGET(n, how, m->m_type);
758	top = n;
759	if (n == NULL)
760		goto nospace;
761
762	if (!m_dup_pkthdr(n, m, how))
763		goto nospace;
764	n->m_len = m->m_len;
765	if (m->m_flags & M_EXT) {
766		n->m_data = m->m_data;
767		mb_dupcl(n, m);
768	} else {
769		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
770		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
771	}
772
773	m = m->m_next;
774	while (m) {
775		MGET(o, how, m->m_type);
776		if (o == NULL)
777			goto nospace;
778
779		n->m_next = o;
780		n = n->m_next;
781
782		n->m_len = m->m_len;
783		if (m->m_flags & M_EXT) {
784			n->m_data = m->m_data;
785			mb_dupcl(n, m);
786		} else {
787			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
788		}
789
790		m = m->m_next;
791	}
792	return top;
793nospace:
794	m_freem(top);
795	mbstat.m_mcfail++;	/* XXX: No consistency. */
796	return (NULL);
797}
798
799/*
800 * Copy data from an mbuf chain starting "off" bytes from the beginning,
801 * continuing for "len" bytes, into the indicated buffer.
802 */
803void
804m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
805{
806	u_int count;
807
808	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
809	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
810	while (off > 0) {
811		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
812		if (off < m->m_len)
813			break;
814		off -= m->m_len;
815		m = m->m_next;
816	}
817	while (len > 0) {
818		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
819		count = min(m->m_len - off, len);
820		bcopy(mtod(m, caddr_t) + off, cp, count);
821		len -= count;
822		cp += count;
823		off = 0;
824		m = m->m_next;
825	}
826}
827
828/*
829 * Copy a packet header mbuf chain into a completely new chain, including
830 * copying any mbuf clusters.  Use this instead of m_copypacket() when
831 * you need a writable copy of an mbuf chain.
832 */
833struct mbuf *
834m_dup(struct mbuf *m, int how)
835{
836	struct mbuf **p, *top = NULL;
837	int remain, moff, nsize;
838
839	MBUF_CHECKSLEEP(how);
840	/* Sanity check */
841	if (m == NULL)
842		return (NULL);
843	M_ASSERTPKTHDR(m);
844
845	/* While there's more data, get a new mbuf, tack it on, and fill it */
846	remain = m->m_pkthdr.len;
847	moff = 0;
848	p = &top;
849	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
850		struct mbuf *n;
851
852		/* Get the next new mbuf */
853		if (remain >= MINCLSIZE) {
854			n = m_getcl(how, m->m_type, 0);
855			nsize = MCLBYTES;
856		} else {
857			n = m_get(how, m->m_type);
858			nsize = MLEN;
859		}
860		if (n == NULL)
861			goto nospace;
862
863		if (top == NULL) {		/* First one, must be PKTHDR */
864			if (!m_dup_pkthdr(n, m, how)) {
865				m_free(n);
866				goto nospace;
867			}
868			if ((n->m_flags & M_EXT) == 0)
869				nsize = MHLEN;
870		}
871		n->m_len = 0;
872
873		/* Link it into the new chain */
874		*p = n;
875		p = &n->m_next;
876
877		/* Copy data from original mbuf(s) into new mbuf */
878		while (n->m_len < nsize && m != NULL) {
879			int chunk = min(nsize - n->m_len, m->m_len - moff);
880
881			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
882			moff += chunk;
883			n->m_len += chunk;
884			remain -= chunk;
885			if (moff == m->m_len) {
886				m = m->m_next;
887				moff = 0;
888			}
889		}
890
891		/* Check correct total mbuf length */
892		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
893		    	("%s: bogus m_pkthdr.len", __func__));
894	}
895	return (top);
896
897nospace:
898	m_freem(top);
899	mbstat.m_mcfail++;	/* XXX: No consistency. */
900	return (NULL);
901}
902
903/*
904 * Concatenate mbuf chain n to m.
905 * Both chains must be of the same type (e.g. MT_DATA).
906 * Any m_pkthdr is not updated.
907 */
908void
909m_cat(struct mbuf *m, struct mbuf *n)
910{
911	while (m->m_next)
912		m = m->m_next;
913	while (n) {
914		if (m->m_flags & M_EXT ||
915		    m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
916			/* just join the two chains */
917			m->m_next = n;
918			return;
919		}
920		/* splat the data from one into the other */
921		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
922		    (u_int)n->m_len);
923		m->m_len += n->m_len;
924		n = m_free(n);
925	}
926}
927
928void
929m_adj(struct mbuf *mp, int req_len)
930{
931	int len = req_len;
932	struct mbuf *m;
933	int count;
934
935	if ((m = mp) == NULL)
936		return;
937	if (len >= 0) {
938		/*
939		 * Trim from head.
940		 */
941		while (m != NULL && len > 0) {
942			if (m->m_len <= len) {
943				len -= m->m_len;
944				m->m_len = 0;
945				m = m->m_next;
946			} else {
947				m->m_len -= len;
948				m->m_data += len;
949				len = 0;
950			}
951		}
952		m = mp;
953		if (mp->m_flags & M_PKTHDR)
954			m->m_pkthdr.len -= (req_len - len);
955	} else {
956		/*
957		 * Trim from tail.  Scan the mbuf chain,
958		 * calculating its length and finding the last mbuf.
959		 * If the adjustment only affects this mbuf, then just
960		 * adjust and return.  Otherwise, rescan and truncate
961		 * after the remaining size.
962		 */
963		len = -len;
964		count = 0;
965		for (;;) {
966			count += m->m_len;
967			if (m->m_next == (struct mbuf *)0)
968				break;
969			m = m->m_next;
970		}
971		if (m->m_len >= len) {
972			m->m_len -= len;
973			if (mp->m_flags & M_PKTHDR)
974				mp->m_pkthdr.len -= len;
975			return;
976		}
977		count -= len;
978		if (count < 0)
979			count = 0;
980		/*
981		 * Correct length for chain is "count".
982		 * Find the mbuf with last data, adjust its length,
983		 * and toss data from remaining mbufs on chain.
984		 */
985		m = mp;
986		if (m->m_flags & M_PKTHDR)
987			m->m_pkthdr.len = count;
988		for (; m; m = m->m_next) {
989			if (m->m_len >= count) {
990				m->m_len = count;
991				if (m->m_next != NULL) {
992					m_freem(m->m_next);
993					m->m_next = NULL;
994				}
995				break;
996			}
997			count -= m->m_len;
998		}
999	}
1000}
1001
1002/*
1003 * Rearange an mbuf chain so that len bytes are contiguous
1004 * and in the data area of an mbuf (so that mtod and dtom
1005 * will work for a structure of size len).  Returns the resulting
1006 * mbuf chain on success, frees it and returns null on failure.
1007 * If there is room, it will add up to max_protohdr-len extra bytes to the
1008 * contiguous region in an attempt to avoid being called next time.
1009 */
1010struct mbuf *
1011m_pullup(struct mbuf *n, int len)
1012{
1013	struct mbuf *m;
1014	int count;
1015	int space;
1016
1017	/*
1018	 * If first mbuf has no cluster, and has room for len bytes
1019	 * without shifting current data, pullup into it,
1020	 * otherwise allocate a new mbuf to prepend to the chain.
1021	 */
1022	if ((n->m_flags & M_EXT) == 0 &&
1023	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1024		if (n->m_len >= len)
1025			return (n);
1026		m = n;
1027		n = n->m_next;
1028		len -= m->m_len;
1029	} else {
1030		if (len > MHLEN)
1031			goto bad;
1032		MGET(m, M_DONTWAIT, n->m_type);
1033		if (m == NULL)
1034			goto bad;
1035		m->m_len = 0;
1036		if (n->m_flags & M_PKTHDR)
1037			M_MOVE_PKTHDR(m, n);
1038	}
1039	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1040	do {
1041		count = min(min(max(len, max_protohdr), space), n->m_len);
1042		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1043		  (u_int)count);
1044		len -= count;
1045		m->m_len += count;
1046		n->m_len -= count;
1047		space -= count;
1048		if (n->m_len)
1049			n->m_data += count;
1050		else
1051			n = m_free(n);
1052	} while (len > 0 && n);
1053	if (len > 0) {
1054		(void) m_free(m);
1055		goto bad;
1056	}
1057	m->m_next = n;
1058	return (m);
1059bad:
1060	m_freem(n);
1061	mbstat.m_mpfail++;	/* XXX: No consistency. */
1062	return (NULL);
1063}
1064
1065/*
1066 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1067 * the amount of empty space before the data in the new mbuf to be specified
1068 * (in the event that the caller expects to prepend later).
1069 */
1070int MSFail;
1071
1072struct mbuf *
1073m_copyup(struct mbuf *n, int len, int dstoff)
1074{
1075	struct mbuf *m;
1076	int count, space;
1077
1078	if (len > (MHLEN - dstoff))
1079		goto bad;
1080	MGET(m, M_DONTWAIT, n->m_type);
1081	if (m == NULL)
1082		goto bad;
1083	m->m_len = 0;
1084	if (n->m_flags & M_PKTHDR)
1085		M_MOVE_PKTHDR(m, n);
1086	m->m_data += dstoff;
1087	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1088	do {
1089		count = min(min(max(len, max_protohdr), space), n->m_len);
1090		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1091		    (unsigned)count);
1092		len -= count;
1093		m->m_len += count;
1094		n->m_len -= count;
1095		space -= count;
1096		if (n->m_len)
1097			n->m_data += count;
1098		else
1099			n = m_free(n);
1100	} while (len > 0 && n);
1101	if (len > 0) {
1102		(void) m_free(m);
1103		goto bad;
1104	}
1105	m->m_next = n;
1106	return (m);
1107 bad:
1108	m_freem(n);
1109	MSFail++;
1110	return (NULL);
1111}
1112
1113/*
1114 * Partition an mbuf chain in two pieces, returning the tail --
1115 * all but the first len0 bytes.  In case of failure, it returns NULL and
1116 * attempts to restore the chain to its original state.
1117 *
1118 * Note that the resulting mbufs might be read-only, because the new
1119 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1120 * the "breaking point" happens to lie within a cluster mbuf. Use the
1121 * M_WRITABLE() macro to check for this case.
1122 */
1123struct mbuf *
1124m_split(struct mbuf *m0, int len0, int wait)
1125{
1126	struct mbuf *m, *n;
1127	u_int len = len0, remain;
1128
1129	MBUF_CHECKSLEEP(wait);
1130	for (m = m0; m && len > m->m_len; m = m->m_next)
1131		len -= m->m_len;
1132	if (m == NULL)
1133		return (NULL);
1134	remain = m->m_len - len;
1135	if (m0->m_flags & M_PKTHDR) {
1136		MGETHDR(n, wait, m0->m_type);
1137		if (n == NULL)
1138			return (NULL);
1139		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1140		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1141		m0->m_pkthdr.len = len0;
1142		if (m->m_flags & M_EXT)
1143			goto extpacket;
1144		if (remain > MHLEN) {
1145			/* m can't be the lead packet */
1146			MH_ALIGN(n, 0);
1147			n->m_next = m_split(m, len, wait);
1148			if (n->m_next == NULL) {
1149				(void) m_free(n);
1150				return (NULL);
1151			} else {
1152				n->m_len = 0;
1153				return (n);
1154			}
1155		} else
1156			MH_ALIGN(n, remain);
1157	} else if (remain == 0) {
1158		n = m->m_next;
1159		m->m_next = NULL;
1160		return (n);
1161	} else {
1162		MGET(n, wait, m->m_type);
1163		if (n == NULL)
1164			return (NULL);
1165		M_ALIGN(n, remain);
1166	}
1167extpacket:
1168	if (m->m_flags & M_EXT) {
1169		n->m_data = m->m_data + len;
1170		mb_dupcl(n, m);
1171	} else {
1172		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1173	}
1174	n->m_len = remain;
1175	m->m_len = len;
1176	n->m_next = m->m_next;
1177	m->m_next = NULL;
1178	return (n);
1179}
1180/*
1181 * Routine to copy from device local memory into mbufs.
1182 * Note that `off' argument is offset into first mbuf of target chain from
1183 * which to begin copying the data to.
1184 */
1185struct mbuf *
1186m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1187    void (*copy)(char *from, caddr_t to, u_int len))
1188{
1189	struct mbuf *m;
1190	struct mbuf *top = NULL, **mp = &top;
1191	int len;
1192
1193	if (off < 0 || off > MHLEN)
1194		return (NULL);
1195
1196	while (totlen > 0) {
1197		if (top == NULL) {	/* First one, must be PKTHDR */
1198			if (totlen + off >= MINCLSIZE) {
1199				m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1200				len = MCLBYTES;
1201			} else {
1202				m = m_gethdr(M_DONTWAIT, MT_DATA);
1203				len = MHLEN;
1204
1205				/* Place initial small packet/header at end of mbuf */
1206				if (m && totlen + off + max_linkhdr <= MLEN) {
1207					m->m_data += max_linkhdr;
1208					len -= max_linkhdr;
1209				}
1210			}
1211			if (m == NULL)
1212				return NULL;
1213			m->m_pkthdr.rcvif = ifp;
1214			m->m_pkthdr.len = totlen;
1215		} else {
1216			if (totlen + off >= MINCLSIZE) {
1217				m = m_getcl(M_DONTWAIT, MT_DATA, 0);
1218				len = MCLBYTES;
1219			} else {
1220				m = m_get(M_DONTWAIT, MT_DATA);
1221				len = MLEN;
1222			}
1223			if (m == NULL) {
1224				m_freem(top);
1225				return NULL;
1226			}
1227		}
1228		if (off) {
1229			m->m_data += off;
1230			len -= off;
1231			off = 0;
1232		}
1233		m->m_len = len = min(totlen, len);
1234		if (copy)
1235			copy(buf, mtod(m, caddr_t), (u_int)len);
1236		else
1237			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1238		buf += len;
1239		*mp = m;
1240		mp = &m->m_next;
1241		totlen -= len;
1242	}
1243	return (top);
1244}
1245
1246/*
1247 * Copy data from a buffer back into the indicated mbuf chain,
1248 * starting "off" bytes from the beginning, extending the mbuf
1249 * chain if necessary.
1250 */
1251void
1252m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1253{
1254	int mlen;
1255	struct mbuf *m = m0, *n;
1256	int totlen = 0;
1257
1258	if (m0 == NULL)
1259		return;
1260	while (off > (mlen = m->m_len)) {
1261		off -= mlen;
1262		totlen += mlen;
1263		if (m->m_next == NULL) {
1264			n = m_get(M_DONTWAIT, m->m_type);
1265			if (n == NULL)
1266				goto out;
1267			bzero(mtod(n, caddr_t), MLEN);
1268			n->m_len = min(MLEN, len + off);
1269			m->m_next = n;
1270		}
1271		m = m->m_next;
1272	}
1273	while (len > 0) {
1274		mlen = min (m->m_len - off, len);
1275		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1276		cp += mlen;
1277		len -= mlen;
1278		mlen += off;
1279		off = 0;
1280		totlen += mlen;
1281		if (len == 0)
1282			break;
1283		if (m->m_next == NULL) {
1284			n = m_get(M_DONTWAIT, m->m_type);
1285			if (n == NULL)
1286				break;
1287			n->m_len = min(MLEN, len);
1288			m->m_next = n;
1289		}
1290		m = m->m_next;
1291	}
1292out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1293		m->m_pkthdr.len = totlen;
1294}
1295
1296/*
1297 * Append the specified data to the indicated mbuf chain,
1298 * Extend the mbuf chain if the new data does not fit in
1299 * existing space.
1300 *
1301 * Return 1 if able to complete the job; otherwise 0.
1302 */
1303int
1304m_append(struct mbuf *m0, int len, c_caddr_t cp)
1305{
1306	struct mbuf *m, *n;
1307	int remainder, space;
1308
1309	for (m = m0; m->m_next != NULL; m = m->m_next)
1310		;
1311	remainder = len;
1312	space = M_TRAILINGSPACE(m);
1313	if (space > 0) {
1314		/*
1315		 * Copy into available space.
1316		 */
1317		if (space > remainder)
1318			space = remainder;
1319		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1320		m->m_len += space;
1321		cp += space, remainder -= space;
1322	}
1323	while (remainder > 0) {
1324		/*
1325		 * Allocate a new mbuf; could check space
1326		 * and allocate a cluster instead.
1327		 */
1328		n = m_get(M_DONTWAIT, m->m_type);
1329		if (n == NULL)
1330			break;
1331		n->m_len = min(MLEN, remainder);
1332		bcopy(cp, mtod(n, caddr_t), n->m_len);
1333		cp += n->m_len, remainder -= n->m_len;
1334		m->m_next = n;
1335		m = n;
1336	}
1337	if (m0->m_flags & M_PKTHDR)
1338		m0->m_pkthdr.len += len - remainder;
1339	return (remainder == 0);
1340}
1341
1342/*
1343 * Apply function f to the data in an mbuf chain starting "off" bytes from
1344 * the beginning, continuing for "len" bytes.
1345 */
1346int
1347m_apply(struct mbuf *m, int off, int len,
1348    int (*f)(void *, void *, u_int), void *arg)
1349{
1350	u_int count;
1351	int rval;
1352
1353	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1354	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1355	while (off > 0) {
1356		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1357		if (off < m->m_len)
1358			break;
1359		off -= m->m_len;
1360		m = m->m_next;
1361	}
1362	while (len > 0) {
1363		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1364		count = min(m->m_len - off, len);
1365		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1366		if (rval)
1367			return (rval);
1368		len -= count;
1369		off = 0;
1370		m = m->m_next;
1371	}
1372	return (0);
1373}
1374
1375/*
1376 * Return a pointer to mbuf/offset of location in mbuf chain.
1377 */
1378struct mbuf *
1379m_getptr(struct mbuf *m, int loc, int *off)
1380{
1381
1382	while (loc >= 0) {
1383		/* Normal end of search. */
1384		if (m->m_len > loc) {
1385			*off = loc;
1386			return (m);
1387		} else {
1388			loc -= m->m_len;
1389			if (m->m_next == NULL) {
1390				if (loc == 0) {
1391					/* Point at the end of valid data. */
1392					*off = m->m_len;
1393					return (m);
1394				}
1395				return (NULL);
1396			}
1397			m = m->m_next;
1398		}
1399	}
1400	return (NULL);
1401}
1402
1403void
1404m_print(const struct mbuf *m, int maxlen)
1405{
1406	int len;
1407	int pdata;
1408	const struct mbuf *m2;
1409
1410	if (m->m_flags & M_PKTHDR)
1411		len = m->m_pkthdr.len;
1412	else
1413		len = -1;
1414	m2 = m;
1415	while (m2 != NULL && (len == -1 || len)) {
1416		pdata = m2->m_len;
1417		if (maxlen != -1 && pdata > maxlen)
1418			pdata = maxlen;
1419		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1420		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1421		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1422		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1423		if (pdata)
1424			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1425		if (len != -1)
1426			len -= m2->m_len;
1427		m2 = m2->m_next;
1428	}
1429	if (len > 0)
1430		printf("%d bytes unaccounted for.\n", len);
1431	return;
1432}
1433
1434u_int
1435m_fixhdr(struct mbuf *m0)
1436{
1437	u_int len;
1438
1439	len = m_length(m0, NULL);
1440	m0->m_pkthdr.len = len;
1441	return (len);
1442}
1443
1444u_int
1445m_length(struct mbuf *m0, struct mbuf **last)
1446{
1447	struct mbuf *m;
1448	u_int len;
1449
1450	len = 0;
1451	for (m = m0; m != NULL; m = m->m_next) {
1452		len += m->m_len;
1453		if (m->m_next == NULL)
1454			break;
1455	}
1456	if (last != NULL)
1457		*last = m;
1458	return (len);
1459}
1460
1461/*
1462 * Defragment a mbuf chain, returning the shortest possible
1463 * chain of mbufs and clusters.  If allocation fails and
1464 * this cannot be completed, NULL will be returned, but
1465 * the passed in chain will be unchanged.  Upon success,
1466 * the original chain will be freed, and the new chain
1467 * will be returned.
1468 *
1469 * If a non-packet header is passed in, the original
1470 * mbuf (chain?) will be returned unharmed.
1471 */
1472struct mbuf *
1473m_defrag(struct mbuf *m0, int how)
1474{
1475	struct mbuf *m_new = NULL, *m_final = NULL;
1476	int progress = 0, length;
1477
1478	MBUF_CHECKSLEEP(how);
1479	if (!(m0->m_flags & M_PKTHDR))
1480		return (m0);
1481
1482	m_fixhdr(m0); /* Needed sanity check */
1483
1484#ifdef MBUF_STRESS_TEST
1485	if (m_defragrandomfailures) {
1486		int temp = arc4random() & 0xff;
1487		if (temp == 0xba)
1488			goto nospace;
1489	}
1490#endif
1491
1492	if (m0->m_pkthdr.len > MHLEN)
1493		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1494	else
1495		m_final = m_gethdr(how, MT_DATA);
1496
1497	if (m_final == NULL)
1498		goto nospace;
1499
1500	if (m_dup_pkthdr(m_final, m0, how) == 0)
1501		goto nospace;
1502
1503	m_new = m_final;
1504
1505	while (progress < m0->m_pkthdr.len) {
1506		length = m0->m_pkthdr.len - progress;
1507		if (length > MCLBYTES)
1508			length = MCLBYTES;
1509
1510		if (m_new == NULL) {
1511			if (length > MLEN)
1512				m_new = m_getcl(how, MT_DATA, 0);
1513			else
1514				m_new = m_get(how, MT_DATA);
1515			if (m_new == NULL)
1516				goto nospace;
1517		}
1518
1519		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1520		progress += length;
1521		m_new->m_len = length;
1522		if (m_new != m_final)
1523			m_cat(m_final, m_new);
1524		m_new = NULL;
1525	}
1526#ifdef MBUF_STRESS_TEST
1527	if (m0->m_next == NULL)
1528		m_defraguseless++;
1529#endif
1530	m_freem(m0);
1531	m0 = m_final;
1532#ifdef MBUF_STRESS_TEST
1533	m_defragpackets++;
1534	m_defragbytes += m0->m_pkthdr.len;
1535#endif
1536	return (m0);
1537nospace:
1538#ifdef MBUF_STRESS_TEST
1539	m_defragfailure++;
1540#endif
1541	if (m_final)
1542		m_freem(m_final);
1543	return (NULL);
1544}
1545
1546/*
1547 * Defragment an mbuf chain, returning at most maxfrags separate
1548 * mbufs+clusters.  If this is not possible NULL is returned and
1549 * the original mbuf chain is left in it's present (potentially
1550 * modified) state.  We use two techniques: collapsing consecutive
1551 * mbufs and replacing consecutive mbufs by a cluster.
1552 *
1553 * NB: this should really be named m_defrag but that name is taken
1554 */
1555struct mbuf *
1556m_collapse(struct mbuf *m0, int how, int maxfrags)
1557{
1558	struct mbuf *m, *n, *n2, **prev;
1559	u_int curfrags;
1560
1561	/*
1562	 * Calculate the current number of frags.
1563	 */
1564	curfrags = 0;
1565	for (m = m0; m != NULL; m = m->m_next)
1566		curfrags++;
1567	/*
1568	 * First, try to collapse mbufs.  Note that we always collapse
1569	 * towards the front so we don't need to deal with moving the
1570	 * pkthdr.  This may be suboptimal if the first mbuf has much
1571	 * less data than the following.
1572	 */
1573	m = m0;
1574again:
1575	for (;;) {
1576		n = m->m_next;
1577		if (n == NULL)
1578			break;
1579		if ((m->m_flags & M_RDONLY) == 0 &&
1580		    n->m_len < M_TRAILINGSPACE(m)) {
1581			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1582				n->m_len);
1583			m->m_len += n->m_len;
1584			m->m_next = n->m_next;
1585			m_free(n);
1586			if (--curfrags <= maxfrags)
1587				return m0;
1588		} else
1589			m = n;
1590	}
1591	KASSERT(maxfrags > 1,
1592		("maxfrags %u, but normal collapse failed", maxfrags));
1593	/*
1594	 * Collapse consecutive mbufs to a cluster.
1595	 */
1596	prev = &m0->m_next;		/* NB: not the first mbuf */
1597	while ((n = *prev) != NULL) {
1598		if ((n2 = n->m_next) != NULL &&
1599		    n->m_len + n2->m_len < MCLBYTES) {
1600			m = m_getcl(how, MT_DATA, 0);
1601			if (m == NULL)
1602				goto bad;
1603			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1604			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1605				n2->m_len);
1606			m->m_len = n->m_len + n2->m_len;
1607			m->m_next = n2->m_next;
1608			*prev = m;
1609			m_free(n);
1610			m_free(n2);
1611			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1612				return m0;
1613			/*
1614			 * Still not there, try the normal collapse
1615			 * again before we allocate another cluster.
1616			 */
1617			goto again;
1618		}
1619		prev = &n->m_next;
1620	}
1621	/*
1622	 * No place where we can collapse to a cluster; punt.
1623	 * This can occur if, for example, you request 2 frags
1624	 * but the packet requires that both be clusters (we
1625	 * never reallocate the first mbuf to avoid moving the
1626	 * packet header).
1627	 */
1628bad:
1629	return NULL;
1630}
1631
1632#ifdef MBUF_STRESS_TEST
1633
1634/*
1635 * Fragment an mbuf chain.  There's no reason you'd ever want to do
1636 * this in normal usage, but it's great for stress testing various
1637 * mbuf consumers.
1638 *
1639 * If fragmentation is not possible, the original chain will be
1640 * returned.
1641 *
1642 * Possible length values:
1643 * 0	 no fragmentation will occur
1644 * > 0	each fragment will be of the specified length
1645 * -1	each fragment will be the same random value in length
1646 * -2	each fragment's length will be entirely random
1647 * (Random values range from 1 to 256)
1648 */
1649struct mbuf *
1650m_fragment(struct mbuf *m0, int how, int length)
1651{
1652	struct mbuf *m_new = NULL, *m_final = NULL;
1653	int progress = 0;
1654
1655	if (!(m0->m_flags & M_PKTHDR))
1656		return (m0);
1657
1658	if ((length == 0) || (length < -2))
1659		return (m0);
1660
1661	m_fixhdr(m0); /* Needed sanity check */
1662
1663	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1664
1665	if (m_final == NULL)
1666		goto nospace;
1667
1668	if (m_dup_pkthdr(m_final, m0, how) == 0)
1669		goto nospace;
1670
1671	m_new = m_final;
1672
1673	if (length == -1)
1674		length = 1 + (arc4random() & 255);
1675
1676	while (progress < m0->m_pkthdr.len) {
1677		int fraglen;
1678
1679		if (length > 0)
1680			fraglen = length;
1681		else
1682			fraglen = 1 + (arc4random() & 255);
1683		if (fraglen > m0->m_pkthdr.len - progress)
1684			fraglen = m0->m_pkthdr.len - progress;
1685
1686		if (fraglen > MCLBYTES)
1687			fraglen = MCLBYTES;
1688
1689		if (m_new == NULL) {
1690			m_new = m_getcl(how, MT_DATA, 0);
1691			if (m_new == NULL)
1692				goto nospace;
1693		}
1694
1695		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1696		progress += fraglen;
1697		m_new->m_len = fraglen;
1698		if (m_new != m_final)
1699			m_cat(m_final, m_new);
1700		m_new = NULL;
1701	}
1702	m_freem(m0);
1703	m0 = m_final;
1704	return (m0);
1705nospace:
1706	if (m_final)
1707		m_freem(m_final);
1708	/* Return the original chain on failure */
1709	return (m0);
1710}
1711
1712#endif
1713
1714/*
1715 * Copy the contents of uio into a properly sized mbuf chain.
1716 */
1717struct mbuf *
1718m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1719{
1720	struct mbuf *m, *mb;
1721	int error, length, total;
1722	int progress = 0;
1723
1724	/*
1725	 * len can be zero or an arbitrary large value bound by
1726	 * the total data supplied by the uio.
1727	 */
1728	if (len > 0)
1729		total = min(uio->uio_resid, len);
1730	else
1731		total = uio->uio_resid;
1732
1733	/*
1734	 * The smallest unit returned by m_getm2() is a single mbuf
1735	 * with pkthdr.  We can't align past it.  Align align itself.
1736	 */
1737	if (align)
1738		align &= ~(sizeof(long) - 1);
1739	if (align >= MHLEN)
1740		return (NULL);
1741
1742	/*
1743	 * Give us the full allocation or nothing.
1744	 * If len is zero return the smallest empty mbuf.
1745	 */
1746	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1747	if (m == NULL)
1748		return (NULL);
1749	m->m_data += align;
1750
1751	/* Fill all mbufs with uio data and update header information. */
1752	for (mb = m; mb != NULL; mb = mb->m_next) {
1753		length = min(M_TRAILINGSPACE(mb), total - progress);
1754
1755		error = uiomove(mtod(mb, void *), length, uio);
1756		if (error) {
1757			m_freem(m);
1758			return (NULL);
1759		}
1760
1761		mb->m_len = length;
1762		progress += length;
1763		if (flags & M_PKTHDR)
1764			m->m_pkthdr.len += length;
1765	}
1766	KASSERT(progress == total, ("%s: progress != total", __func__));
1767
1768	return (m);
1769}
1770
1771/*
1772 * Set the m_data pointer of a newly-allocated mbuf
1773 * to place an object of the specified size at the
1774 * end of the mbuf, longword aligned.
1775 */
1776void
1777m_align(struct mbuf *m, int len)
1778{
1779	int adjust;
1780
1781	if (m->m_flags & M_EXT)
1782		adjust = m->m_ext.ext_size - len;
1783	else if (m->m_flags & M_PKTHDR)
1784		adjust = MHLEN - len;
1785	else
1786		adjust = MLEN - len;
1787	m->m_data += adjust &~ (sizeof(long)-1);
1788}
1789
1790/*
1791 * Create a writable copy of the mbuf chain.  While doing this
1792 * we compact the chain with a goal of producing a chain with
1793 * at most two mbufs.  The second mbuf in this chain is likely
1794 * to be a cluster.  The primary purpose of this work is to create
1795 * a writable packet for encryption, compression, etc.  The
1796 * secondary goal is to linearize the data so the data can be
1797 * passed to crypto hardware in the most efficient manner possible.
1798 */
1799struct mbuf *
1800m_unshare(struct mbuf *m0, int how)
1801{
1802	struct mbuf *m, *mprev;
1803	struct mbuf *n, *mfirst, *mlast;
1804	int len, off;
1805
1806	mprev = NULL;
1807	for (m = m0; m != NULL; m = mprev->m_next) {
1808		/*
1809		 * Regular mbufs are ignored unless there's a cluster
1810		 * in front of it that we can use to coalesce.  We do
1811		 * the latter mainly so later clusters can be coalesced
1812		 * also w/o having to handle them specially (i.e. convert
1813		 * mbuf+cluster -> cluster).  This optimization is heavily
1814		 * influenced by the assumption that we're running over
1815		 * Ethernet where MCLBYTES is large enough that the max
1816		 * packet size will permit lots of coalescing into a
1817		 * single cluster.  This in turn permits efficient
1818		 * crypto operations, especially when using hardware.
1819		 */
1820		if ((m->m_flags & M_EXT) == 0) {
1821			if (mprev && (mprev->m_flags & M_EXT) &&
1822			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1823				/* XXX: this ignores mbuf types */
1824				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1825				       mtod(m, caddr_t), m->m_len);
1826				mprev->m_len += m->m_len;
1827				mprev->m_next = m->m_next;	/* unlink from chain */
1828				m_free(m);			/* reclaim mbuf */
1829#if 0
1830				newipsecstat.ips_mbcoalesced++;
1831#endif
1832			} else {
1833				mprev = m;
1834			}
1835			continue;
1836		}
1837		/*
1838		 * Writable mbufs are left alone (for now).
1839		 */
1840		if (M_WRITABLE(m)) {
1841			mprev = m;
1842			continue;
1843		}
1844
1845		/*
1846		 * Not writable, replace with a copy or coalesce with
1847		 * the previous mbuf if possible (since we have to copy
1848		 * it anyway, we try to reduce the number of mbufs and
1849		 * clusters so that future work is easier).
1850		 */
1851		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1852		/* NB: we only coalesce into a cluster or larger */
1853		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1854		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1855			/* XXX: this ignores mbuf types */
1856			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1857			       mtod(m, caddr_t), m->m_len);
1858			mprev->m_len += m->m_len;
1859			mprev->m_next = m->m_next;	/* unlink from chain */
1860			m_free(m);			/* reclaim mbuf */
1861#if 0
1862			newipsecstat.ips_clcoalesced++;
1863#endif
1864			continue;
1865		}
1866
1867		/*
1868		 * Allocate new space to hold the copy...
1869		 */
1870		/* XXX why can M_PKTHDR be set past the first mbuf? */
1871		if (mprev == NULL && (m->m_flags & M_PKTHDR)) {
1872			/*
1873			 * NB: if a packet header is present we must
1874			 * allocate the mbuf separately from any cluster
1875			 * because M_MOVE_PKTHDR will smash the data
1876			 * pointer and drop the M_EXT marker.
1877			 */
1878			MGETHDR(n, how, m->m_type);
1879			if (n == NULL) {
1880				m_freem(m0);
1881				return (NULL);
1882			}
1883			M_MOVE_PKTHDR(n, m);
1884			MCLGET(n, how);
1885			if ((n->m_flags & M_EXT) == 0) {
1886				m_free(n);
1887				m_freem(m0);
1888				return (NULL);
1889			}
1890		} else {
1891			n = m_getcl(how, m->m_type, m->m_flags);
1892			if (n == NULL) {
1893				m_freem(m0);
1894				return (NULL);
1895			}
1896		}
1897		/*
1898		 * ... and copy the data.  We deal with jumbo mbufs
1899		 * (i.e. m_len > MCLBYTES) by splitting them into
1900		 * clusters.  We could just malloc a buffer and make
1901		 * it external but too many device drivers don't know
1902		 * how to break up the non-contiguous memory when
1903		 * doing DMA.
1904		 */
1905		len = m->m_len;
1906		off = 0;
1907		mfirst = n;
1908		mlast = NULL;
1909		for (;;) {
1910			int cc = min(len, MCLBYTES);
1911			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1912			n->m_len = cc;
1913			if (mlast != NULL)
1914				mlast->m_next = n;
1915			mlast = n;
1916#if 0
1917			newipsecstat.ips_clcopied++;
1918#endif
1919
1920			len -= cc;
1921			if (len <= 0)
1922				break;
1923			off += cc;
1924
1925			n = m_getcl(how, m->m_type, m->m_flags);
1926			if (n == NULL) {
1927				m_freem(mfirst);
1928				m_freem(m0);
1929				return (NULL);
1930			}
1931		}
1932		n->m_next = m->m_next;
1933		if (mprev == NULL)
1934			m0 = mfirst;		/* new head of chain */
1935		else
1936			mprev->m_next = mfirst;	/* replace old mbuf */
1937		m_free(m);			/* release old mbuf */
1938		mprev = mfirst;
1939	}
1940	return (m0);
1941}
1942
1943#ifdef MBUF_PROFILING
1944
1945#define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
1946struct mbufprofile {
1947	uintmax_t wasted[MP_BUCKETS];
1948	uintmax_t used[MP_BUCKETS];
1949	uintmax_t segments[MP_BUCKETS];
1950} mbprof;
1951
1952#define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
1953#define MP_NUMLINES 6
1954#define MP_NUMSPERLINE 16
1955#define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
1956/* work out max space needed and add a bit of spare space too */
1957#define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
1958#define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
1959
1960char mbprofbuf[MP_BUFSIZE];
1961
1962void
1963m_profile(struct mbuf *m)
1964{
1965	int segments = 0;
1966	int used = 0;
1967	int wasted = 0;
1968
1969	while (m) {
1970		segments++;
1971		used += m->m_len;
1972		if (m->m_flags & M_EXT) {
1973			wasted += MHLEN - sizeof(m->m_ext) +
1974			    m->m_ext.ext_size - m->m_len;
1975		} else {
1976			if (m->m_flags & M_PKTHDR)
1977				wasted += MHLEN - m->m_len;
1978			else
1979				wasted += MLEN - m->m_len;
1980		}
1981		m = m->m_next;
1982	}
1983	/* be paranoid.. it helps */
1984	if (segments > MP_BUCKETS - 1)
1985		segments = MP_BUCKETS - 1;
1986	if (used > 100000)
1987		used = 100000;
1988	if (wasted > 100000)
1989		wasted = 100000;
1990	/* store in the appropriate bucket */
1991	/* don't bother locking. if it's slightly off, so what? */
1992	mbprof.segments[segments]++;
1993	mbprof.used[fls(used)]++;
1994	mbprof.wasted[fls(wasted)]++;
1995}
1996
1997static void
1998mbprof_textify(void)
1999{
2000	int offset;
2001	char *c;
2002	u_int64_t *p;
2003
2004
2005	p = &mbprof.wasted[0];
2006	c = mbprofbuf;
2007	offset = snprintf(c, MP_MAXLINE + 10,
2008	    "wasted:\n"
2009	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2010	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2011	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2012	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2013#ifdef BIG_ARRAY
2014	p = &mbprof.wasted[16];
2015	c += offset;
2016	offset = snprintf(c, MP_MAXLINE,
2017	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2018	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2019	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2020	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2021#endif
2022	p = &mbprof.used[0];
2023	c += offset;
2024	offset = snprintf(c, MP_MAXLINE + 10,
2025	    "used:\n"
2026	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2027	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2028	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2029	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2030#ifdef BIG_ARRAY
2031	p = &mbprof.used[16];
2032	c += offset;
2033	offset = snprintf(c, MP_MAXLINE,
2034	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2035	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2036	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2037	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2038#endif
2039	p = &mbprof.segments[0];
2040	c += offset;
2041	offset = snprintf(c, MP_MAXLINE + 10,
2042	    "segments:\n"
2043	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2044	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2045	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2046	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2047#ifdef BIG_ARRAY
2048	p = &mbprof.segments[16];
2049	c += offset;
2050	offset = snprintf(c, MP_MAXLINE,
2051	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2052	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2053	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2054	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2055#endif
2056}
2057
2058static int
2059mbprof_handler(SYSCTL_HANDLER_ARGS)
2060{
2061	int error;
2062
2063	mbprof_textify();
2064	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2065	return (error);
2066}
2067
2068static int
2069mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2070{
2071	int clear, error;
2072
2073	clear = 0;
2074	error = sysctl_handle_int(oidp, &clear, 0, req);
2075	if (error || !req->newptr)
2076		return (error);
2077
2078	if (clear) {
2079		bzero(&mbprof, sizeof(mbprof));
2080	}
2081
2082	return (error);
2083}
2084
2085
2086SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2087	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2088
2089SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2090	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2091#endif
2092
2093