uipc_mbuf.c revision 177599
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/uipc_mbuf.c 177599 2008-03-25 09:39:02Z ru $");
34
35#include "opt_mac.h"
36#include "opt_param.h"
37#include "opt_mbuf_stress_test.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/limits.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/sysctl.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/uio.h>
50
51#include <security/mac/mac_framework.h>
52
53int	max_linkhdr;
54int	max_protohdr;
55int	max_hdr;
56int	max_datalen;
57#ifdef MBUF_STRESS_TEST
58int	m_defragpackets;
59int	m_defragbytes;
60int	m_defraguseless;
61int	m_defragfailure;
62int	m_defragrandomfailures;
63#endif
64
65/*
66 * sysctl(8) exported objects
67 */
68SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
69	   &max_linkhdr, 0, "Size of largest link layer header");
70SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
71	   &max_protohdr, 0, "Size of largest protocol layer header");
72SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
73	   &max_hdr, 0, "Size of largest link plus protocol header");
74SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
75	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
76#ifdef MBUF_STRESS_TEST
77SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
78	   &m_defragpackets, 0, "");
79SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
80	   &m_defragbytes, 0, "");
81SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
82	   &m_defraguseless, 0, "");
83SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
84	   &m_defragfailure, 0, "");
85SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
86	   &m_defragrandomfailures, 0, "");
87#endif
88
89/*
90 * Allocate a given length worth of mbufs and/or clusters (whatever fits
91 * best) and return a pointer to the top of the allocated chain.  If an
92 * existing mbuf chain is provided, then we will append the new chain
93 * to the existing one but still return the top of the newly allocated
94 * chain.
95 */
96struct mbuf *
97m_getm2(struct mbuf *m, int len, int how, short type, int flags)
98{
99	struct mbuf *mb, *nm = NULL, *mtail = NULL;
100
101	KASSERT(len >= 0, ("%s: len is < 0", __func__));
102
103	/* Validate flags. */
104	flags &= (M_PKTHDR | M_EOR);
105
106	/* Packet header mbuf must be first in chain. */
107	if ((flags & M_PKTHDR) && m != NULL)
108		flags &= ~M_PKTHDR;
109
110	/* Loop and append maximum sized mbufs to the chain tail. */
111	while (len > 0) {
112		if (len > MCLBYTES)
113			mb = m_getjcl(how, type, (flags & M_PKTHDR),
114			    MJUMPAGESIZE);
115		else if (len >= MINCLSIZE)
116			mb = m_getcl(how, type, (flags & M_PKTHDR));
117		else if (flags & M_PKTHDR)
118			mb = m_gethdr(how, type);
119		else
120			mb = m_get(how, type);
121
122		/* Fail the whole operation if one mbuf can't be allocated. */
123		if (mb == NULL) {
124			if (nm != NULL)
125				m_freem(nm);
126			return (NULL);
127		}
128
129		/* Book keeping. */
130		len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
131			((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
132		if (mtail != NULL)
133			mtail->m_next = mb;
134		else
135			nm = mb;
136		mtail = mb;
137		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
138	}
139	if (flags & M_EOR)
140		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
141
142	/* If mbuf was supplied, append new chain to the end of it. */
143	if (m != NULL) {
144		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
145			;
146		mtail->m_next = nm;
147		mtail->m_flags &= ~M_EOR;
148	} else
149		m = nm;
150
151	return (m);
152}
153
154/*
155 * Free an entire chain of mbufs and associated external buffers, if
156 * applicable.
157 */
158void
159m_freem(struct mbuf *mb)
160{
161
162	while (mb != NULL)
163		mb = m_free(mb);
164}
165
166/*-
167 * Configure a provided mbuf to refer to the provided external storage
168 * buffer and setup a reference count for said buffer.  If the setting
169 * up of the reference count fails, the M_EXT bit will not be set.  If
170 * successfull, the M_EXT bit is set in the mbuf's flags.
171 *
172 * Arguments:
173 *    mb     The existing mbuf to which to attach the provided buffer.
174 *    buf    The address of the provided external storage buffer.
175 *    size   The size of the provided buffer.
176 *    freef  A pointer to a routine that is responsible for freeing the
177 *           provided external storage buffer.
178 *    args   A pointer to an argument structure (of any type) to be passed
179 *           to the provided freef routine (may be NULL).
180 *    flags  Any other flags to be passed to the provided mbuf.
181 *    type   The type that the external storage buffer should be
182 *           labeled with.
183 *
184 * Returns:
185 *    Nothing.
186 */
187void
188m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
189    void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type)
190{
191	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
192
193	if (type != EXT_EXTREF)
194		mb->m_ext.ref_cnt = (u_int *)uma_zalloc(zone_ext_refcnt, M_NOWAIT);
195	if (mb->m_ext.ref_cnt != NULL) {
196		*(mb->m_ext.ref_cnt) = 1;
197		mb->m_flags |= (M_EXT | flags);
198		mb->m_ext.ext_buf = buf;
199		mb->m_data = mb->m_ext.ext_buf;
200		mb->m_ext.ext_size = size;
201		mb->m_ext.ext_free = freef;
202		mb->m_ext.ext_arg1 = arg1;
203		mb->m_ext.ext_arg2 = arg2;
204		mb->m_ext.ext_type = type;
205        }
206}
207
208/*
209 * Non-directly-exported function to clean up after mbufs with M_EXT
210 * storage attached to them if the reference count hits 1.
211 */
212void
213mb_free_ext(struct mbuf *m)
214{
215	int skipmbuf;
216
217	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
218	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
219
220
221	/*
222	 * check if the header is embedded in the cluster
223	 */
224	skipmbuf = (m->m_flags & M_NOFREE);
225
226	/* Free attached storage if this mbuf is the only reference to it. */
227	if (*(m->m_ext.ref_cnt) == 1 ||
228	    atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
229		switch (m->m_ext.ext_type) {
230		case EXT_PACKET:	/* The packet zone is special. */
231			if (*(m->m_ext.ref_cnt) == 0)
232				*(m->m_ext.ref_cnt) = 1;
233			uma_zfree(zone_pack, m);
234			return;		/* Job done. */
235		case EXT_CLUSTER:
236			uma_zfree(zone_clust, m->m_ext.ext_buf);
237			break;
238		case EXT_JUMBOP:
239			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
240			break;
241		case EXT_JUMBO9:
242			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
243			break;
244		case EXT_JUMBO16:
245			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
246			break;
247		case EXT_SFBUF:
248		case EXT_NET_DRV:
249		case EXT_MOD_TYPE:
250		case EXT_DISPOSABLE:
251			*(m->m_ext.ref_cnt) = 0;
252			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
253				m->m_ext.ref_cnt));
254			/* FALLTHROUGH */
255		case EXT_EXTREF:
256			KASSERT(m->m_ext.ext_free != NULL,
257				("%s: ext_free not set", __func__));
258			(*(m->m_ext.ext_free))(m->m_ext.ext_arg1,
259			    m->m_ext.ext_arg2);
260			break;
261		default:
262			KASSERT(m->m_ext.ext_type == 0,
263				("%s: unknown ext_type", __func__));
264		}
265	}
266	if (skipmbuf)
267		return;
268
269	/*
270	 * Free this mbuf back to the mbuf zone with all m_ext
271	 * information purged.
272	 */
273	m->m_ext.ext_buf = NULL;
274	m->m_ext.ext_free = NULL;
275	m->m_ext.ext_arg1 = NULL;
276	m->m_ext.ext_arg2 = NULL;
277	m->m_ext.ref_cnt = NULL;
278	m->m_ext.ext_size = 0;
279	m->m_ext.ext_type = 0;
280	m->m_flags &= ~M_EXT;
281	uma_zfree(zone_mbuf, m);
282}
283
284/*
285 * Attach the the cluster from *m to *n, set up m_ext in *n
286 * and bump the refcount of the cluster.
287 */
288static void
289mb_dupcl(struct mbuf *n, struct mbuf *m)
290{
291	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
292	KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
293	KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
294
295	if (*(m->m_ext.ref_cnt) == 1)
296		*(m->m_ext.ref_cnt) += 1;
297	else
298		atomic_add_int(m->m_ext.ref_cnt, 1);
299	n->m_ext.ext_buf = m->m_ext.ext_buf;
300	n->m_ext.ext_free = m->m_ext.ext_free;
301	n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
302	n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
303	n->m_ext.ext_size = m->m_ext.ext_size;
304	n->m_ext.ref_cnt = m->m_ext.ref_cnt;
305	n->m_ext.ext_type = m->m_ext.ext_type;
306	n->m_flags |= M_EXT;
307}
308
309/*
310 * Clean up mbuf (chain) from any tags and packet headers.
311 * If "all" is set then the first mbuf in the chain will be
312 * cleaned too.
313 */
314void
315m_demote(struct mbuf *m0, int all)
316{
317	struct mbuf *m;
318
319	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
320		if (m->m_flags & M_PKTHDR) {
321			m_tag_delete_chain(m, NULL);
322			m->m_flags &= ~M_PKTHDR;
323			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
324		}
325		if (m->m_type == MT_HEADER)
326			m->m_type = MT_DATA;
327		if (m != m0 && m->m_nextpkt != NULL)
328			m->m_nextpkt = NULL;
329		m->m_flags = m->m_flags & (M_EXT|M_EOR|M_RDONLY|M_FREELIST);
330	}
331}
332
333/*
334 * Sanity checks on mbuf (chain) for use in KASSERT() and general
335 * debugging.
336 * Returns 0 or panics when bad and 1 on all tests passed.
337 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
338 * blow up later.
339 */
340int
341m_sanity(struct mbuf *m0, int sanitize)
342{
343	struct mbuf *m;
344	caddr_t a, b;
345	int pktlen = 0;
346
347#ifdef INVARIANTS
348#define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
349#else
350#define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
351#endif
352
353	for (m = m0; m != NULL; m = m->m_next) {
354		/*
355		 * Basic pointer checks.  If any of these fails then some
356		 * unrelated kernel memory before or after us is trashed.
357		 * No way to recover from that.
358		 */
359		a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
360			((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
361			 (caddr_t)(&m->m_dat)) );
362		b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
363			((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
364		if ((caddr_t)m->m_data < a)
365			M_SANITY_ACTION("m_data outside mbuf data range left");
366		if ((caddr_t)m->m_data > b)
367			M_SANITY_ACTION("m_data outside mbuf data range right");
368		if ((caddr_t)m->m_data + m->m_len > b)
369			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
370		if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) {
371			if ((caddr_t)m->m_pkthdr.header < a ||
372			    (caddr_t)m->m_pkthdr.header > b)
373				M_SANITY_ACTION("m_pkthdr.header outside mbuf data range");
374		}
375
376		/* m->m_nextpkt may only be set on first mbuf in chain. */
377		if (m != m0 && m->m_nextpkt != NULL) {
378			if (sanitize) {
379				m_freem(m->m_nextpkt);
380				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
381			} else
382				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
383		}
384
385		/* packet length (not mbuf length!) calculation */
386		if (m0->m_flags & M_PKTHDR)
387			pktlen += m->m_len;
388
389		/* m_tags may only be attached to first mbuf in chain. */
390		if (m != m0 && m->m_flags & M_PKTHDR &&
391		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
392			if (sanitize) {
393				m_tag_delete_chain(m, NULL);
394				/* put in 0xDEADC0DE perhaps? */
395			} else
396				M_SANITY_ACTION("m_tags on in-chain mbuf");
397		}
398
399		/* M_PKTHDR may only be set on first mbuf in chain */
400		if (m != m0 && m->m_flags & M_PKTHDR) {
401			if (sanitize) {
402				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
403				m->m_flags &= ~M_PKTHDR;
404				/* put in 0xDEADCODE and leave hdr flag in */
405			} else
406				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
407		}
408	}
409	m = m0;
410	if (pktlen && pktlen != m->m_pkthdr.len) {
411		if (sanitize)
412			m->m_pkthdr.len = 0;
413		else
414			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
415	}
416	return 1;
417
418#undef	M_SANITY_ACTION
419}
420
421
422/*
423 * "Move" mbuf pkthdr from "from" to "to".
424 * "from" must have M_PKTHDR set, and "to" must be empty.
425 */
426void
427m_move_pkthdr(struct mbuf *to, struct mbuf *from)
428{
429
430#if 0
431	/* see below for why these are not enabled */
432	M_ASSERTPKTHDR(to);
433	/* Note: with MAC, this may not be a good assertion. */
434	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
435	    ("m_move_pkthdr: to has tags"));
436#endif
437#ifdef MAC
438	/*
439	 * XXXMAC: It could be this should also occur for non-MAC?
440	 */
441	if (to->m_flags & M_PKTHDR)
442		m_tag_delete_chain(to, NULL);
443#endif
444	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
445	if ((to->m_flags & M_EXT) == 0)
446		to->m_data = to->m_pktdat;
447	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
448	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
449	from->m_flags &= ~M_PKTHDR;
450}
451
452/*
453 * Duplicate "from"'s mbuf pkthdr in "to".
454 * "from" must have M_PKTHDR set, and "to" must be empty.
455 * In particular, this does a deep copy of the packet tags.
456 */
457int
458m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
459{
460
461#if 0
462	/*
463	 * The mbuf allocator only initializes the pkthdr
464	 * when the mbuf is allocated with MGETHDR. Many users
465	 * (e.g. m_copy*, m_prepend) use MGET and then
466	 * smash the pkthdr as needed causing these
467	 * assertions to trip.  For now just disable them.
468	 */
469	M_ASSERTPKTHDR(to);
470	/* Note: with MAC, this may not be a good assertion. */
471	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
472#endif
473	MBUF_CHECKSLEEP(how);
474#ifdef MAC
475	if (to->m_flags & M_PKTHDR)
476		m_tag_delete_chain(to, NULL);
477#endif
478	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
479	if ((to->m_flags & M_EXT) == 0)
480		to->m_data = to->m_pktdat;
481	to->m_pkthdr = from->m_pkthdr;
482	SLIST_INIT(&to->m_pkthdr.tags);
483	return (m_tag_copy_chain(to, from, MBTOM(how)));
484}
485
486/*
487 * Lesser-used path for M_PREPEND:
488 * allocate new mbuf to prepend to chain,
489 * copy junk along.
490 */
491struct mbuf *
492m_prepend(struct mbuf *m, int len, int how)
493{
494	struct mbuf *mn;
495
496	if (m->m_flags & M_PKTHDR)
497		MGETHDR(mn, how, m->m_type);
498	else
499		MGET(mn, how, m->m_type);
500	if (mn == NULL) {
501		m_freem(m);
502		return (NULL);
503	}
504	if (m->m_flags & M_PKTHDR)
505		M_MOVE_PKTHDR(mn, m);
506	mn->m_next = m;
507	m = mn;
508	if(m->m_flags & M_PKTHDR) {
509		if (len < MHLEN)
510			MH_ALIGN(m, len);
511	} else {
512		if (len < MLEN)
513			M_ALIGN(m, len);
514	}
515	m->m_len = len;
516	return (m);
517}
518
519/*
520 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
521 * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
522 * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
523 * Note that the copy is read-only, because clusters are not copied,
524 * only their reference counts are incremented.
525 */
526struct mbuf *
527m_copym(struct mbuf *m, int off0, int len, int wait)
528{
529	struct mbuf *n, **np;
530	int off = off0;
531	struct mbuf *top;
532	int copyhdr = 0;
533
534	KASSERT(off >= 0, ("m_copym, negative off %d", off));
535	KASSERT(len >= 0, ("m_copym, negative len %d", len));
536	MBUF_CHECKSLEEP(wait);
537	if (off == 0 && m->m_flags & M_PKTHDR)
538		copyhdr = 1;
539	while (off > 0) {
540		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
541		if (off < m->m_len)
542			break;
543		off -= m->m_len;
544		m = m->m_next;
545	}
546	np = &top;
547	top = 0;
548	while (len > 0) {
549		if (m == NULL) {
550			KASSERT(len == M_COPYALL,
551			    ("m_copym, length > size of mbuf chain"));
552			break;
553		}
554		if (copyhdr)
555			MGETHDR(n, wait, m->m_type);
556		else
557			MGET(n, wait, m->m_type);
558		*np = n;
559		if (n == NULL)
560			goto nospace;
561		if (copyhdr) {
562			if (!m_dup_pkthdr(n, m, wait))
563				goto nospace;
564			if (len == M_COPYALL)
565				n->m_pkthdr.len -= off0;
566			else
567				n->m_pkthdr.len = len;
568			copyhdr = 0;
569		}
570		n->m_len = min(len, m->m_len - off);
571		if (m->m_flags & M_EXT) {
572			n->m_data = m->m_data + off;
573			mb_dupcl(n, m);
574		} else
575			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
576			    (u_int)n->m_len);
577		if (len != M_COPYALL)
578			len -= n->m_len;
579		off = 0;
580		m = m->m_next;
581		np = &n->m_next;
582	}
583	if (top == NULL)
584		mbstat.m_mcfail++;	/* XXX: No consistency. */
585
586	return (top);
587nospace:
588	m_freem(top);
589	mbstat.m_mcfail++;	/* XXX: No consistency. */
590	return (NULL);
591}
592
593/*
594 * Returns mbuf chain with new head for the prepending case.
595 * Copies from mbuf (chain) n from off for len to mbuf (chain) m
596 * either prepending or appending the data.
597 * The resulting mbuf (chain) m is fully writeable.
598 * m is destination (is made writeable)
599 * n is source, off is offset in source, len is len from offset
600 * dir, 0 append, 1 prepend
601 * how, wait or nowait
602 */
603
604static int
605m_bcopyxxx(void *s, void *t, u_int len)
606{
607	bcopy(s, t, (size_t)len);
608	return 0;
609}
610
611struct mbuf *
612m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
613    int prep, int how)
614{
615	struct mbuf *mm, *x, *z, *prev = NULL;
616	caddr_t p;
617	int i, nlen = 0;
618	caddr_t buf[MLEN];
619
620	KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
621	KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
622	KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
623	KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
624
625	mm = m;
626	if (!prep) {
627		while(mm->m_next) {
628			prev = mm;
629			mm = mm->m_next;
630		}
631	}
632	for (z = n; z != NULL; z = z->m_next)
633		nlen += z->m_len;
634	if (len == M_COPYALL)
635		len = nlen - off;
636	if (off + len > nlen || len < 1)
637		return NULL;
638
639	if (!M_WRITABLE(mm)) {
640		/* XXX: Use proper m_xxx function instead. */
641		x = m_getcl(how, MT_DATA, mm->m_flags);
642		if (x == NULL)
643			return NULL;
644		bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
645		p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
646		x->m_data = p;
647		mm->m_next = NULL;
648		if (mm != m)
649			prev->m_next = x;
650		m_free(mm);
651		mm = x;
652	}
653
654	/*
655	 * Append/prepend the data.  Allocating mbufs as necessary.
656	 */
657	/* Shortcut if enough free space in first/last mbuf. */
658	if (!prep && M_TRAILINGSPACE(mm) >= len) {
659		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
660			 mm->m_len);
661		mm->m_len += len;
662		mm->m_pkthdr.len += len;
663		return m;
664	}
665	if (prep && M_LEADINGSPACE(mm) >= len) {
666		mm->m_data = mtod(mm, caddr_t) - len;
667		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
668		mm->m_len += len;
669		mm->m_pkthdr.len += len;
670		return mm;
671	}
672
673	/* Expand first/last mbuf to cluster if possible. */
674	if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
675		bcopy(mm->m_data, &buf, mm->m_len);
676		m_clget(mm, how);
677		if (!(mm->m_flags & M_EXT))
678			return NULL;
679		bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
680		mm->m_data = mm->m_ext.ext_buf;
681		mm->m_pkthdr.header = NULL;
682	}
683	if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
684		bcopy(mm->m_data, &buf, mm->m_len);
685		m_clget(mm, how);
686		if (!(mm->m_flags & M_EXT))
687			return NULL;
688		bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
689		       mm->m_ext.ext_size - mm->m_len, mm->m_len);
690		mm->m_data = (caddr_t)mm->m_ext.ext_buf +
691			      mm->m_ext.ext_size - mm->m_len;
692		mm->m_pkthdr.header = NULL;
693	}
694
695	/* Append/prepend as many mbuf (clusters) as necessary to fit len. */
696	if (!prep && len > M_TRAILINGSPACE(mm)) {
697		if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
698			return NULL;
699	}
700	if (prep && len > M_LEADINGSPACE(mm)) {
701		if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
702			return NULL;
703		i = 0;
704		for (x = z; x != NULL; x = x->m_next) {
705			i += x->m_flags & M_EXT ? x->m_ext.ext_size :
706			      (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
707			if (!x->m_next)
708				break;
709		}
710		z->m_data += i - len;
711		m_move_pkthdr(mm, z);
712		x->m_next = mm;
713		mm = z;
714	}
715
716	/* Seek to start position in source mbuf. Optimization for long chains. */
717	while (off > 0) {
718		if (off < n->m_len)
719			break;
720		off -= n->m_len;
721		n = n->m_next;
722	}
723
724	/* Copy data into target mbuf. */
725	z = mm;
726	while (len > 0) {
727		KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
728		i = M_TRAILINGSPACE(z);
729		m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
730		z->m_len += i;
731		/* fixup pkthdr.len if necessary */
732		if ((prep ? mm : m)->m_flags & M_PKTHDR)
733			(prep ? mm : m)->m_pkthdr.len += i;
734		off += i;
735		len -= i;
736		z = z->m_next;
737	}
738	return (prep ? mm : m);
739}
740
741/*
742 * Copy an entire packet, including header (which must be present).
743 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
744 * Note that the copy is read-only, because clusters are not copied,
745 * only their reference counts are incremented.
746 * Preserve alignment of the first mbuf so if the creator has left
747 * some room at the beginning (e.g. for inserting protocol headers)
748 * the copies still have the room available.
749 */
750struct mbuf *
751m_copypacket(struct mbuf *m, int how)
752{
753	struct mbuf *top, *n, *o;
754
755	MBUF_CHECKSLEEP(how);
756	MGET(n, how, m->m_type);
757	top = n;
758	if (n == NULL)
759		goto nospace;
760
761	if (!m_dup_pkthdr(n, m, how))
762		goto nospace;
763	n->m_len = m->m_len;
764	if (m->m_flags & M_EXT) {
765		n->m_data = m->m_data;
766		mb_dupcl(n, m);
767	} else {
768		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
769		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
770	}
771
772	m = m->m_next;
773	while (m) {
774		MGET(o, how, m->m_type);
775		if (o == NULL)
776			goto nospace;
777
778		n->m_next = o;
779		n = n->m_next;
780
781		n->m_len = m->m_len;
782		if (m->m_flags & M_EXT) {
783			n->m_data = m->m_data;
784			mb_dupcl(n, m);
785		} else {
786			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
787		}
788
789		m = m->m_next;
790	}
791	return top;
792nospace:
793	m_freem(top);
794	mbstat.m_mcfail++;	/* XXX: No consistency. */
795	return (NULL);
796}
797
798/*
799 * Copy data from an mbuf chain starting "off" bytes from the beginning,
800 * continuing for "len" bytes, into the indicated buffer.
801 */
802void
803m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
804{
805	u_int count;
806
807	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
808	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
809	while (off > 0) {
810		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
811		if (off < m->m_len)
812			break;
813		off -= m->m_len;
814		m = m->m_next;
815	}
816	while (len > 0) {
817		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
818		count = min(m->m_len - off, len);
819		bcopy(mtod(m, caddr_t) + off, cp, count);
820		len -= count;
821		cp += count;
822		off = 0;
823		m = m->m_next;
824	}
825}
826
827/*
828 * Copy a packet header mbuf chain into a completely new chain, including
829 * copying any mbuf clusters.  Use this instead of m_copypacket() when
830 * you need a writable copy of an mbuf chain.
831 */
832struct mbuf *
833m_dup(struct mbuf *m, int how)
834{
835	struct mbuf **p, *top = NULL;
836	int remain, moff, nsize;
837
838	MBUF_CHECKSLEEP(how);
839	/* Sanity check */
840	if (m == NULL)
841		return (NULL);
842	M_ASSERTPKTHDR(m);
843
844	/* While there's more data, get a new mbuf, tack it on, and fill it */
845	remain = m->m_pkthdr.len;
846	moff = 0;
847	p = &top;
848	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
849		struct mbuf *n;
850
851		/* Get the next new mbuf */
852		if (remain >= MINCLSIZE) {
853			n = m_getcl(how, m->m_type, 0);
854			nsize = MCLBYTES;
855		} else {
856			n = m_get(how, m->m_type);
857			nsize = MLEN;
858		}
859		if (n == NULL)
860			goto nospace;
861
862		if (top == NULL) {		/* First one, must be PKTHDR */
863			if (!m_dup_pkthdr(n, m, how)) {
864				m_free(n);
865				goto nospace;
866			}
867			if ((n->m_flags & M_EXT) == 0)
868				nsize = MHLEN;
869		}
870		n->m_len = 0;
871
872		/* Link it into the new chain */
873		*p = n;
874		p = &n->m_next;
875
876		/* Copy data from original mbuf(s) into new mbuf */
877		while (n->m_len < nsize && m != NULL) {
878			int chunk = min(nsize - n->m_len, m->m_len - moff);
879
880			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
881			moff += chunk;
882			n->m_len += chunk;
883			remain -= chunk;
884			if (moff == m->m_len) {
885				m = m->m_next;
886				moff = 0;
887			}
888		}
889
890		/* Check correct total mbuf length */
891		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
892		    	("%s: bogus m_pkthdr.len", __func__));
893	}
894	return (top);
895
896nospace:
897	m_freem(top);
898	mbstat.m_mcfail++;	/* XXX: No consistency. */
899	return (NULL);
900}
901
902/*
903 * Concatenate mbuf chain n to m.
904 * Both chains must be of the same type (e.g. MT_DATA).
905 * Any m_pkthdr is not updated.
906 */
907void
908m_cat(struct mbuf *m, struct mbuf *n)
909{
910	while (m->m_next)
911		m = m->m_next;
912	while (n) {
913		if (m->m_flags & M_EXT ||
914		    m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
915			/* just join the two chains */
916			m->m_next = n;
917			return;
918		}
919		/* splat the data from one into the other */
920		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
921		    (u_int)n->m_len);
922		m->m_len += n->m_len;
923		n = m_free(n);
924	}
925}
926
927void
928m_adj(struct mbuf *mp, int req_len)
929{
930	int len = req_len;
931	struct mbuf *m;
932	int count;
933
934	if ((m = mp) == NULL)
935		return;
936	if (len >= 0) {
937		/*
938		 * Trim from head.
939		 */
940		while (m != NULL && len > 0) {
941			if (m->m_len <= len) {
942				len -= m->m_len;
943				m->m_len = 0;
944				m = m->m_next;
945			} else {
946				m->m_len -= len;
947				m->m_data += len;
948				len = 0;
949			}
950		}
951		m = mp;
952		if (mp->m_flags & M_PKTHDR)
953			m->m_pkthdr.len -= (req_len - len);
954	} else {
955		/*
956		 * Trim from tail.  Scan the mbuf chain,
957		 * calculating its length and finding the last mbuf.
958		 * If the adjustment only affects this mbuf, then just
959		 * adjust and return.  Otherwise, rescan and truncate
960		 * after the remaining size.
961		 */
962		len = -len;
963		count = 0;
964		for (;;) {
965			count += m->m_len;
966			if (m->m_next == (struct mbuf *)0)
967				break;
968			m = m->m_next;
969		}
970		if (m->m_len >= len) {
971			m->m_len -= len;
972			if (mp->m_flags & M_PKTHDR)
973				mp->m_pkthdr.len -= len;
974			return;
975		}
976		count -= len;
977		if (count < 0)
978			count = 0;
979		/*
980		 * Correct length for chain is "count".
981		 * Find the mbuf with last data, adjust its length,
982		 * and toss data from remaining mbufs on chain.
983		 */
984		m = mp;
985		if (m->m_flags & M_PKTHDR)
986			m->m_pkthdr.len = count;
987		for (; m; m = m->m_next) {
988			if (m->m_len >= count) {
989				m->m_len = count;
990				if (m->m_next != NULL) {
991					m_freem(m->m_next);
992					m->m_next = NULL;
993				}
994				break;
995			}
996			count -= m->m_len;
997		}
998	}
999}
1000
1001/*
1002 * Rearange an mbuf chain so that len bytes are contiguous
1003 * and in the data area of an mbuf (so that mtod and dtom
1004 * will work for a structure of size len).  Returns the resulting
1005 * mbuf chain on success, frees it and returns null on failure.
1006 * If there is room, it will add up to max_protohdr-len extra bytes to the
1007 * contiguous region in an attempt to avoid being called next time.
1008 */
1009struct mbuf *
1010m_pullup(struct mbuf *n, int len)
1011{
1012	struct mbuf *m;
1013	int count;
1014	int space;
1015
1016	/*
1017	 * If first mbuf has no cluster, and has room for len bytes
1018	 * without shifting current data, pullup into it,
1019	 * otherwise allocate a new mbuf to prepend to the chain.
1020	 */
1021	if ((n->m_flags & M_EXT) == 0 &&
1022	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1023		if (n->m_len >= len)
1024			return (n);
1025		m = n;
1026		n = n->m_next;
1027		len -= m->m_len;
1028	} else {
1029		if (len > MHLEN)
1030			goto bad;
1031		MGET(m, M_DONTWAIT, n->m_type);
1032		if (m == NULL)
1033			goto bad;
1034		m->m_len = 0;
1035		if (n->m_flags & M_PKTHDR)
1036			M_MOVE_PKTHDR(m, n);
1037	}
1038	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1039	do {
1040		count = min(min(max(len, max_protohdr), space), n->m_len);
1041		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1042		  (u_int)count);
1043		len -= count;
1044		m->m_len += count;
1045		n->m_len -= count;
1046		space -= count;
1047		if (n->m_len)
1048			n->m_data += count;
1049		else
1050			n = m_free(n);
1051	} while (len > 0 && n);
1052	if (len > 0) {
1053		(void) m_free(m);
1054		goto bad;
1055	}
1056	m->m_next = n;
1057	return (m);
1058bad:
1059	m_freem(n);
1060	mbstat.m_mpfail++;	/* XXX: No consistency. */
1061	return (NULL);
1062}
1063
1064/*
1065 * Like m_pullup(), except a new mbuf is always allocated, and we allow
1066 * the amount of empty space before the data in the new mbuf to be specified
1067 * (in the event that the caller expects to prepend later).
1068 */
1069int MSFail;
1070
1071struct mbuf *
1072m_copyup(struct mbuf *n, int len, int dstoff)
1073{
1074	struct mbuf *m;
1075	int count, space;
1076
1077	if (len > (MHLEN - dstoff))
1078		goto bad;
1079	MGET(m, M_DONTWAIT, n->m_type);
1080	if (m == NULL)
1081		goto bad;
1082	m->m_len = 0;
1083	if (n->m_flags & M_PKTHDR)
1084		M_MOVE_PKTHDR(m, n);
1085	m->m_data += dstoff;
1086	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1087	do {
1088		count = min(min(max(len, max_protohdr), space), n->m_len);
1089		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1090		    (unsigned)count);
1091		len -= count;
1092		m->m_len += count;
1093		n->m_len -= count;
1094		space -= count;
1095		if (n->m_len)
1096			n->m_data += count;
1097		else
1098			n = m_free(n);
1099	} while (len > 0 && n);
1100	if (len > 0) {
1101		(void) m_free(m);
1102		goto bad;
1103	}
1104	m->m_next = n;
1105	return (m);
1106 bad:
1107	m_freem(n);
1108	MSFail++;
1109	return (NULL);
1110}
1111
1112/*
1113 * Partition an mbuf chain in two pieces, returning the tail --
1114 * all but the first len0 bytes.  In case of failure, it returns NULL and
1115 * attempts to restore the chain to its original state.
1116 *
1117 * Note that the resulting mbufs might be read-only, because the new
1118 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1119 * the "breaking point" happens to lie within a cluster mbuf. Use the
1120 * M_WRITABLE() macro to check for this case.
1121 */
1122struct mbuf *
1123m_split(struct mbuf *m0, int len0, int wait)
1124{
1125	struct mbuf *m, *n;
1126	u_int len = len0, remain;
1127
1128	MBUF_CHECKSLEEP(wait);
1129	for (m = m0; m && len > m->m_len; m = m->m_next)
1130		len -= m->m_len;
1131	if (m == NULL)
1132		return (NULL);
1133	remain = m->m_len - len;
1134	if (m0->m_flags & M_PKTHDR) {
1135		MGETHDR(n, wait, m0->m_type);
1136		if (n == NULL)
1137			return (NULL);
1138		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1139		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1140		m0->m_pkthdr.len = len0;
1141		if (m->m_flags & M_EXT)
1142			goto extpacket;
1143		if (remain > MHLEN) {
1144			/* m can't be the lead packet */
1145			MH_ALIGN(n, 0);
1146			n->m_next = m_split(m, len, wait);
1147			if (n->m_next == NULL) {
1148				(void) m_free(n);
1149				return (NULL);
1150			} else {
1151				n->m_len = 0;
1152				return (n);
1153			}
1154		} else
1155			MH_ALIGN(n, remain);
1156	} else if (remain == 0) {
1157		n = m->m_next;
1158		m->m_next = NULL;
1159		return (n);
1160	} else {
1161		MGET(n, wait, m->m_type);
1162		if (n == NULL)
1163			return (NULL);
1164		M_ALIGN(n, remain);
1165	}
1166extpacket:
1167	if (m->m_flags & M_EXT) {
1168		n->m_data = m->m_data + len;
1169		mb_dupcl(n, m);
1170	} else {
1171		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1172	}
1173	n->m_len = remain;
1174	m->m_len = len;
1175	n->m_next = m->m_next;
1176	m->m_next = NULL;
1177	return (n);
1178}
1179/*
1180 * Routine to copy from device local memory into mbufs.
1181 * Note that `off' argument is offset into first mbuf of target chain from
1182 * which to begin copying the data to.
1183 */
1184struct mbuf *
1185m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1186    void (*copy)(char *from, caddr_t to, u_int len))
1187{
1188	struct mbuf *m;
1189	struct mbuf *top = NULL, **mp = &top;
1190	int len;
1191
1192	if (off < 0 || off > MHLEN)
1193		return (NULL);
1194
1195	while (totlen > 0) {
1196		if (top == NULL) {	/* First one, must be PKTHDR */
1197			if (totlen + off >= MINCLSIZE) {
1198				m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1199				len = MCLBYTES;
1200			} else {
1201				m = m_gethdr(M_DONTWAIT, MT_DATA);
1202				len = MHLEN;
1203
1204				/* Place initial small packet/header at end of mbuf */
1205				if (m && totlen + off + max_linkhdr <= MLEN) {
1206					m->m_data += max_linkhdr;
1207					len -= max_linkhdr;
1208				}
1209			}
1210			if (m == NULL)
1211				return NULL;
1212			m->m_pkthdr.rcvif = ifp;
1213			m->m_pkthdr.len = totlen;
1214		} else {
1215			if (totlen + off >= MINCLSIZE) {
1216				m = m_getcl(M_DONTWAIT, MT_DATA, 0);
1217				len = MCLBYTES;
1218			} else {
1219				m = m_get(M_DONTWAIT, MT_DATA);
1220				len = MLEN;
1221			}
1222			if (m == NULL) {
1223				m_freem(top);
1224				return NULL;
1225			}
1226		}
1227		if (off) {
1228			m->m_data += off;
1229			len -= off;
1230			off = 0;
1231		}
1232		m->m_len = len = min(totlen, len);
1233		if (copy)
1234			copy(buf, mtod(m, caddr_t), (u_int)len);
1235		else
1236			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1237		buf += len;
1238		*mp = m;
1239		mp = &m->m_next;
1240		totlen -= len;
1241	}
1242	return (top);
1243}
1244
1245/*
1246 * Copy data from a buffer back into the indicated mbuf chain,
1247 * starting "off" bytes from the beginning, extending the mbuf
1248 * chain if necessary.
1249 */
1250void
1251m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1252{
1253	int mlen;
1254	struct mbuf *m = m0, *n;
1255	int totlen = 0;
1256
1257	if (m0 == NULL)
1258		return;
1259	while (off > (mlen = m->m_len)) {
1260		off -= mlen;
1261		totlen += mlen;
1262		if (m->m_next == NULL) {
1263			n = m_get(M_DONTWAIT, m->m_type);
1264			if (n == NULL)
1265				goto out;
1266			bzero(mtod(n, caddr_t), MLEN);
1267			n->m_len = min(MLEN, len + off);
1268			m->m_next = n;
1269		}
1270		m = m->m_next;
1271	}
1272	while (len > 0) {
1273		mlen = min (m->m_len - off, len);
1274		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1275		cp += mlen;
1276		len -= mlen;
1277		mlen += off;
1278		off = 0;
1279		totlen += mlen;
1280		if (len == 0)
1281			break;
1282		if (m->m_next == NULL) {
1283			n = m_get(M_DONTWAIT, m->m_type);
1284			if (n == NULL)
1285				break;
1286			n->m_len = min(MLEN, len);
1287			m->m_next = n;
1288		}
1289		m = m->m_next;
1290	}
1291out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1292		m->m_pkthdr.len = totlen;
1293}
1294
1295/*
1296 * Append the specified data to the indicated mbuf chain,
1297 * Extend the mbuf chain if the new data does not fit in
1298 * existing space.
1299 *
1300 * Return 1 if able to complete the job; otherwise 0.
1301 */
1302int
1303m_append(struct mbuf *m0, int len, c_caddr_t cp)
1304{
1305	struct mbuf *m, *n;
1306	int remainder, space;
1307
1308	for (m = m0; m->m_next != NULL; m = m->m_next)
1309		;
1310	remainder = len;
1311	space = M_TRAILINGSPACE(m);
1312	if (space > 0) {
1313		/*
1314		 * Copy into available space.
1315		 */
1316		if (space > remainder)
1317			space = remainder;
1318		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1319		m->m_len += space;
1320		cp += space, remainder -= space;
1321	}
1322	while (remainder > 0) {
1323		/*
1324		 * Allocate a new mbuf; could check space
1325		 * and allocate a cluster instead.
1326		 */
1327		n = m_get(M_DONTWAIT, m->m_type);
1328		if (n == NULL)
1329			break;
1330		n->m_len = min(MLEN, remainder);
1331		bcopy(cp, mtod(n, caddr_t), n->m_len);
1332		cp += n->m_len, remainder -= n->m_len;
1333		m->m_next = n;
1334		m = n;
1335	}
1336	if (m0->m_flags & M_PKTHDR)
1337		m0->m_pkthdr.len += len - remainder;
1338	return (remainder == 0);
1339}
1340
1341/*
1342 * Apply function f to the data in an mbuf chain starting "off" bytes from
1343 * the beginning, continuing for "len" bytes.
1344 */
1345int
1346m_apply(struct mbuf *m, int off, int len,
1347    int (*f)(void *, void *, u_int), void *arg)
1348{
1349	u_int count;
1350	int rval;
1351
1352	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1353	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1354	while (off > 0) {
1355		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1356		if (off < m->m_len)
1357			break;
1358		off -= m->m_len;
1359		m = m->m_next;
1360	}
1361	while (len > 0) {
1362		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1363		count = min(m->m_len - off, len);
1364		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1365		if (rval)
1366			return (rval);
1367		len -= count;
1368		off = 0;
1369		m = m->m_next;
1370	}
1371	return (0);
1372}
1373
1374/*
1375 * Return a pointer to mbuf/offset of location in mbuf chain.
1376 */
1377struct mbuf *
1378m_getptr(struct mbuf *m, int loc, int *off)
1379{
1380
1381	while (loc >= 0) {
1382		/* Normal end of search. */
1383		if (m->m_len > loc) {
1384			*off = loc;
1385			return (m);
1386		} else {
1387			loc -= m->m_len;
1388			if (m->m_next == NULL) {
1389				if (loc == 0) {
1390					/* Point at the end of valid data. */
1391					*off = m->m_len;
1392					return (m);
1393				}
1394				return (NULL);
1395			}
1396			m = m->m_next;
1397		}
1398	}
1399	return (NULL);
1400}
1401
1402void
1403m_print(const struct mbuf *m, int maxlen)
1404{
1405	int len;
1406	int pdata;
1407	const struct mbuf *m2;
1408
1409	if (m->m_flags & M_PKTHDR)
1410		len = m->m_pkthdr.len;
1411	else
1412		len = -1;
1413	m2 = m;
1414	while (m2 != NULL && (len == -1 || len)) {
1415		pdata = m2->m_len;
1416		if (maxlen != -1 && pdata > maxlen)
1417			pdata = maxlen;
1418		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1419		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1420		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1421		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1422		if (pdata)
1423			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1424		if (len != -1)
1425			len -= m2->m_len;
1426		m2 = m2->m_next;
1427	}
1428	if (len > 0)
1429		printf("%d bytes unaccounted for.\n", len);
1430	return;
1431}
1432
1433u_int
1434m_fixhdr(struct mbuf *m0)
1435{
1436	u_int len;
1437
1438	len = m_length(m0, NULL);
1439	m0->m_pkthdr.len = len;
1440	return (len);
1441}
1442
1443u_int
1444m_length(struct mbuf *m0, struct mbuf **last)
1445{
1446	struct mbuf *m;
1447	u_int len;
1448
1449	len = 0;
1450	for (m = m0; m != NULL; m = m->m_next) {
1451		len += m->m_len;
1452		if (m->m_next == NULL)
1453			break;
1454	}
1455	if (last != NULL)
1456		*last = m;
1457	return (len);
1458}
1459
1460/*
1461 * Defragment a mbuf chain, returning the shortest possible
1462 * chain of mbufs and clusters.  If allocation fails and
1463 * this cannot be completed, NULL will be returned, but
1464 * the passed in chain will be unchanged.  Upon success,
1465 * the original chain will be freed, and the new chain
1466 * will be returned.
1467 *
1468 * If a non-packet header is passed in, the original
1469 * mbuf (chain?) will be returned unharmed.
1470 */
1471struct mbuf *
1472m_defrag(struct mbuf *m0, int how)
1473{
1474	struct mbuf *m_new = NULL, *m_final = NULL;
1475	int progress = 0, length;
1476
1477	MBUF_CHECKSLEEP(how);
1478	if (!(m0->m_flags & M_PKTHDR))
1479		return (m0);
1480
1481	m_fixhdr(m0); /* Needed sanity check */
1482
1483#ifdef MBUF_STRESS_TEST
1484	if (m_defragrandomfailures) {
1485		int temp = arc4random() & 0xff;
1486		if (temp == 0xba)
1487			goto nospace;
1488	}
1489#endif
1490
1491	if (m0->m_pkthdr.len > MHLEN)
1492		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1493	else
1494		m_final = m_gethdr(how, MT_DATA);
1495
1496	if (m_final == NULL)
1497		goto nospace;
1498
1499	if (m_dup_pkthdr(m_final, m0, how) == 0)
1500		goto nospace;
1501
1502	m_new = m_final;
1503
1504	while (progress < m0->m_pkthdr.len) {
1505		length = m0->m_pkthdr.len - progress;
1506		if (length > MCLBYTES)
1507			length = MCLBYTES;
1508
1509		if (m_new == NULL) {
1510			if (length > MLEN)
1511				m_new = m_getcl(how, MT_DATA, 0);
1512			else
1513				m_new = m_get(how, MT_DATA);
1514			if (m_new == NULL)
1515				goto nospace;
1516		}
1517
1518		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1519		progress += length;
1520		m_new->m_len = length;
1521		if (m_new != m_final)
1522			m_cat(m_final, m_new);
1523		m_new = NULL;
1524	}
1525#ifdef MBUF_STRESS_TEST
1526	if (m0->m_next == NULL)
1527		m_defraguseless++;
1528#endif
1529	m_freem(m0);
1530	m0 = m_final;
1531#ifdef MBUF_STRESS_TEST
1532	m_defragpackets++;
1533	m_defragbytes += m0->m_pkthdr.len;
1534#endif
1535	return (m0);
1536nospace:
1537#ifdef MBUF_STRESS_TEST
1538	m_defragfailure++;
1539#endif
1540	if (m_final)
1541		m_freem(m_final);
1542	return (NULL);
1543}
1544
1545/*
1546 * Defragment an mbuf chain, returning at most maxfrags separate
1547 * mbufs+clusters.  If this is not possible NULL is returned and
1548 * the original mbuf chain is left in it's present (potentially
1549 * modified) state.  We use two techniques: collapsing consecutive
1550 * mbufs and replacing consecutive mbufs by a cluster.
1551 *
1552 * NB: this should really be named m_defrag but that name is taken
1553 */
1554struct mbuf *
1555m_collapse(struct mbuf *m0, int how, int maxfrags)
1556{
1557	struct mbuf *m, *n, *n2, **prev;
1558	u_int curfrags;
1559
1560	/*
1561	 * Calculate the current number of frags.
1562	 */
1563	curfrags = 0;
1564	for (m = m0; m != NULL; m = m->m_next)
1565		curfrags++;
1566	/*
1567	 * First, try to collapse mbufs.  Note that we always collapse
1568	 * towards the front so we don't need to deal with moving the
1569	 * pkthdr.  This may be suboptimal if the first mbuf has much
1570	 * less data than the following.
1571	 */
1572	m = m0;
1573again:
1574	for (;;) {
1575		n = m->m_next;
1576		if (n == NULL)
1577			break;
1578		if ((m->m_flags & M_RDONLY) == 0 &&
1579		    n->m_len < M_TRAILINGSPACE(m)) {
1580			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1581				n->m_len);
1582			m->m_len += n->m_len;
1583			m->m_next = n->m_next;
1584			m_free(n);
1585			if (--curfrags <= maxfrags)
1586				return m0;
1587		} else
1588			m = n;
1589	}
1590	KASSERT(maxfrags > 1,
1591		("maxfrags %u, but normal collapse failed", maxfrags));
1592	/*
1593	 * Collapse consecutive mbufs to a cluster.
1594	 */
1595	prev = &m0->m_next;		/* NB: not the first mbuf */
1596	while ((n = *prev) != NULL) {
1597		if ((n2 = n->m_next) != NULL &&
1598		    n->m_len + n2->m_len < MCLBYTES) {
1599			m = m_getcl(how, MT_DATA, 0);
1600			if (m == NULL)
1601				goto bad;
1602			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1603			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1604				n2->m_len);
1605			m->m_len = n->m_len + n2->m_len;
1606			m->m_next = n2->m_next;
1607			*prev = m;
1608			m_free(n);
1609			m_free(n2);
1610			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1611				return m0;
1612			/*
1613			 * Still not there, try the normal collapse
1614			 * again before we allocate another cluster.
1615			 */
1616			goto again;
1617		}
1618		prev = &n->m_next;
1619	}
1620	/*
1621	 * No place where we can collapse to a cluster; punt.
1622	 * This can occur if, for example, you request 2 frags
1623	 * but the packet requires that both be clusters (we
1624	 * never reallocate the first mbuf to avoid moving the
1625	 * packet header).
1626	 */
1627bad:
1628	return NULL;
1629}
1630
1631#ifdef MBUF_STRESS_TEST
1632
1633/*
1634 * Fragment an mbuf chain.  There's no reason you'd ever want to do
1635 * this in normal usage, but it's great for stress testing various
1636 * mbuf consumers.
1637 *
1638 * If fragmentation is not possible, the original chain will be
1639 * returned.
1640 *
1641 * Possible length values:
1642 * 0	 no fragmentation will occur
1643 * > 0	each fragment will be of the specified length
1644 * -1	each fragment will be the same random value in length
1645 * -2	each fragment's length will be entirely random
1646 * (Random values range from 1 to 256)
1647 */
1648struct mbuf *
1649m_fragment(struct mbuf *m0, int how, int length)
1650{
1651	struct mbuf *m_new = NULL, *m_final = NULL;
1652	int progress = 0;
1653
1654	if (!(m0->m_flags & M_PKTHDR))
1655		return (m0);
1656
1657	if ((length == 0) || (length < -2))
1658		return (m0);
1659
1660	m_fixhdr(m0); /* Needed sanity check */
1661
1662	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1663
1664	if (m_final == NULL)
1665		goto nospace;
1666
1667	if (m_dup_pkthdr(m_final, m0, how) == 0)
1668		goto nospace;
1669
1670	m_new = m_final;
1671
1672	if (length == -1)
1673		length = 1 + (arc4random() & 255);
1674
1675	while (progress < m0->m_pkthdr.len) {
1676		int fraglen;
1677
1678		if (length > 0)
1679			fraglen = length;
1680		else
1681			fraglen = 1 + (arc4random() & 255);
1682		if (fraglen > m0->m_pkthdr.len - progress)
1683			fraglen = m0->m_pkthdr.len - progress;
1684
1685		if (fraglen > MCLBYTES)
1686			fraglen = MCLBYTES;
1687
1688		if (m_new == NULL) {
1689			m_new = m_getcl(how, MT_DATA, 0);
1690			if (m_new == NULL)
1691				goto nospace;
1692		}
1693
1694		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1695		progress += fraglen;
1696		m_new->m_len = fraglen;
1697		if (m_new != m_final)
1698			m_cat(m_final, m_new);
1699		m_new = NULL;
1700	}
1701	m_freem(m0);
1702	m0 = m_final;
1703	return (m0);
1704nospace:
1705	if (m_final)
1706		m_freem(m_final);
1707	/* Return the original chain on failure */
1708	return (m0);
1709}
1710
1711#endif
1712
1713/*
1714 * Copy the contents of uio into a properly sized mbuf chain.
1715 */
1716struct mbuf *
1717m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1718{
1719	struct mbuf *m, *mb;
1720	int error, length, total;
1721	int progress = 0;
1722
1723	/*
1724	 * len can be zero or an arbitrary large value bound by
1725	 * the total data supplied by the uio.
1726	 */
1727	if (len > 0)
1728		total = min(uio->uio_resid, len);
1729	else
1730		total = uio->uio_resid;
1731
1732	/*
1733	 * The smallest unit returned by m_getm2() is a single mbuf
1734	 * with pkthdr.  We can't align past it.  Align align itself.
1735	 */
1736	if (align)
1737		align &= ~(sizeof(long) - 1);
1738	if (align >= MHLEN)
1739		return (NULL);
1740
1741	/*
1742	 * Give us the full allocation or nothing.
1743	 * If len is zero return the smallest empty mbuf.
1744	 */
1745	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1746	if (m == NULL)
1747		return (NULL);
1748	m->m_data += align;
1749
1750	/* Fill all mbufs with uio data and update header information. */
1751	for (mb = m; mb != NULL; mb = mb->m_next) {
1752		length = min(M_TRAILINGSPACE(mb), total - progress);
1753
1754		error = uiomove(mtod(mb, void *), length, uio);
1755		if (error) {
1756			m_freem(m);
1757			return (NULL);
1758		}
1759
1760		mb->m_len = length;
1761		progress += length;
1762		if (flags & M_PKTHDR)
1763			m->m_pkthdr.len += length;
1764	}
1765	KASSERT(progress == total, ("%s: progress != total", __func__));
1766
1767	return (m);
1768}
1769
1770/*
1771 * Set the m_data pointer of a newly-allocated mbuf
1772 * to place an object of the specified size at the
1773 * end of the mbuf, longword aligned.
1774 */
1775void
1776m_align(struct mbuf *m, int len)
1777{
1778	int adjust;
1779
1780	if (m->m_flags & M_EXT)
1781		adjust = m->m_ext.ext_size - len;
1782	else if (m->m_flags & M_PKTHDR)
1783		adjust = MHLEN - len;
1784	else
1785		adjust = MLEN - len;
1786	m->m_data += adjust &~ (sizeof(long)-1);
1787}
1788
1789/*
1790 * Create a writable copy of the mbuf chain.  While doing this
1791 * we compact the chain with a goal of producing a chain with
1792 * at most two mbufs.  The second mbuf in this chain is likely
1793 * to be a cluster.  The primary purpose of this work is to create
1794 * a writable packet for encryption, compression, etc.  The
1795 * secondary goal is to linearize the data so the data can be
1796 * passed to crypto hardware in the most efficient manner possible.
1797 */
1798struct mbuf *
1799m_unshare(struct mbuf *m0, int how)
1800{
1801	struct mbuf *m, *mprev;
1802	struct mbuf *n, *mfirst, *mlast;
1803	int len, off;
1804
1805	mprev = NULL;
1806	for (m = m0; m != NULL; m = mprev->m_next) {
1807		/*
1808		 * Regular mbufs are ignored unless there's a cluster
1809		 * in front of it that we can use to coalesce.  We do
1810		 * the latter mainly so later clusters can be coalesced
1811		 * also w/o having to handle them specially (i.e. convert
1812		 * mbuf+cluster -> cluster).  This optimization is heavily
1813		 * influenced by the assumption that we're running over
1814		 * Ethernet where MCLBYTES is large enough that the max
1815		 * packet size will permit lots of coalescing into a
1816		 * single cluster.  This in turn permits efficient
1817		 * crypto operations, especially when using hardware.
1818		 */
1819		if ((m->m_flags & M_EXT) == 0) {
1820			if (mprev && (mprev->m_flags & M_EXT) &&
1821			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1822				/* XXX: this ignores mbuf types */
1823				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1824				       mtod(m, caddr_t), m->m_len);
1825				mprev->m_len += m->m_len;
1826				mprev->m_next = m->m_next;	/* unlink from chain */
1827				m_free(m);			/* reclaim mbuf */
1828#if 0
1829				newipsecstat.ips_mbcoalesced++;
1830#endif
1831			} else {
1832				mprev = m;
1833			}
1834			continue;
1835		}
1836		/*
1837		 * Writable mbufs are left alone (for now).
1838		 */
1839		if (M_WRITABLE(m)) {
1840			mprev = m;
1841			continue;
1842		}
1843
1844		/*
1845		 * Not writable, replace with a copy or coalesce with
1846		 * the previous mbuf if possible (since we have to copy
1847		 * it anyway, we try to reduce the number of mbufs and
1848		 * clusters so that future work is easier).
1849		 */
1850		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1851		/* NB: we only coalesce into a cluster or larger */
1852		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1853		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1854			/* XXX: this ignores mbuf types */
1855			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1856			       mtod(m, caddr_t), m->m_len);
1857			mprev->m_len += m->m_len;
1858			mprev->m_next = m->m_next;	/* unlink from chain */
1859			m_free(m);			/* reclaim mbuf */
1860#if 0
1861			newipsecstat.ips_clcoalesced++;
1862#endif
1863			continue;
1864		}
1865
1866		/*
1867		 * Allocate new space to hold the copy...
1868		 */
1869		/* XXX why can M_PKTHDR be set past the first mbuf? */
1870		if (mprev == NULL && (m->m_flags & M_PKTHDR)) {
1871			/*
1872			 * NB: if a packet header is present we must
1873			 * allocate the mbuf separately from any cluster
1874			 * because M_MOVE_PKTHDR will smash the data
1875			 * pointer and drop the M_EXT marker.
1876			 */
1877			MGETHDR(n, how, m->m_type);
1878			if (n == NULL) {
1879				m_freem(m0);
1880				return (NULL);
1881			}
1882			M_MOVE_PKTHDR(n, m);
1883			MCLGET(n, how);
1884			if ((n->m_flags & M_EXT) == 0) {
1885				m_free(n);
1886				m_freem(m0);
1887				return (NULL);
1888			}
1889		} else {
1890			n = m_getcl(how, m->m_type, m->m_flags);
1891			if (n == NULL) {
1892				m_freem(m0);
1893				return (NULL);
1894			}
1895		}
1896		/*
1897		 * ... and copy the data.  We deal with jumbo mbufs
1898		 * (i.e. m_len > MCLBYTES) by splitting them into
1899		 * clusters.  We could just malloc a buffer and make
1900		 * it external but too many device drivers don't know
1901		 * how to break up the non-contiguous memory when
1902		 * doing DMA.
1903		 */
1904		len = m->m_len;
1905		off = 0;
1906		mfirst = n;
1907		mlast = NULL;
1908		for (;;) {
1909			int cc = min(len, MCLBYTES);
1910			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1911			n->m_len = cc;
1912			if (mlast != NULL)
1913				mlast->m_next = n;
1914			mlast = n;
1915#if 0
1916			newipsecstat.ips_clcopied++;
1917#endif
1918
1919			len -= cc;
1920			if (len <= 0)
1921				break;
1922			off += cc;
1923
1924			n = m_getcl(how, m->m_type, m->m_flags);
1925			if (n == NULL) {
1926				m_freem(mfirst);
1927				m_freem(m0);
1928				return (NULL);
1929			}
1930		}
1931		n->m_next = m->m_next;
1932		if (mprev == NULL)
1933			m0 = mfirst;		/* new head of chain */
1934		else
1935			mprev->m_next = mfirst;	/* replace old mbuf */
1936		m_free(m);			/* release old mbuf */
1937		mprev = mfirst;
1938	}
1939	return (m0);
1940}
1941