subr_witness.c revision 189544
1/*-
2 * Copyright (c) 2008 Isilon Systems, Inc.
3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4 * Copyright (c) 1998 Berkeley Software Design, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Berkeley Software Design Inc's name may not be used to endorse or
16 *    promote products derived from this software without specific prior
17 *    written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33 */
34
35/*
36 * Implementation of the `witness' lock verifier.  Originally implemented for
37 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38 * classes in FreeBSD.
39 */
40
41/*
42 *	Main Entry: witness
43 *	Pronunciation: 'wit-n&s
44 *	Function: noun
45 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46 *	    testimony, witness, from 2wit
47 *	Date: before 12th century
48 *	1 : attestation of a fact or event : TESTIMONY
49 *	2 : one that gives evidence; specifically : one who testifies in
50 *	    a cause or before a judicial tribunal
51 *	3 : one asked to be present at a transaction so as to be able to
52 *	    testify to its having taken place
53 *	4 : one who has personal knowledge of something
54 *	5 a : something serving as evidence or proof : SIGN
55 *	  b : public affirmation by word or example of usually
56 *	      religious faith or conviction <the heroic witness to divine
57 *	      life -- Pilot>
58 *	6 capitalized : a member of the Jehovah's Witnesses
59 */
60
61/*
62 * Special rules concerning Giant and lock orders:
63 *
64 * 1) Giant must be acquired before any other mutexes.  Stated another way,
65 *    no other mutex may be held when Giant is acquired.
66 *
67 * 2) Giant must be released when blocking on a sleepable lock.
68 *
69 * This rule is less obvious, but is a result of Giant providing the same
70 * semantics as spl().  Basically, when a thread sleeps, it must release
71 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72 * 2).
73 *
74 * 3) Giant may be acquired before or after sleepable locks.
75 *
76 * This rule is also not quite as obvious.  Giant may be acquired after
77 * a sleepable lock because it is a non-sleepable lock and non-sleepable
78 * locks may always be acquired while holding a sleepable lock.  The second
79 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83 * execute.  Thus, acquiring Giant both before and after a sleepable lock
84 * will not result in a lock order reversal.
85 */
86
87#include <sys/cdefs.h>
88__FBSDID("$FreeBSD: head/sys/kern/subr_witness.c 189544 2009-03-08 21:48:29Z rwatson $");
89
90#include "opt_ddb.h"
91#include "opt_hwpmc_hooks.h"
92#include "opt_stack.h"
93#include "opt_witness.h"
94
95#include <sys/param.h>
96#include <sys/bus.h>
97#include <sys/kdb.h>
98#include <sys/kernel.h>
99#include <sys/ktr.h>
100#include <sys/lock.h>
101#include <sys/malloc.h>
102#include <sys/mutex.h>
103#include <sys/priv.h>
104#include <sys/proc.h>
105#include <sys/sbuf.h>
106#include <sys/sched.h>
107#include <sys/stack.h>
108#include <sys/sysctl.h>
109#include <sys/systm.h>
110
111#ifdef DDB
112#include <ddb/ddb.h>
113#endif
114
115#include <machine/stdarg.h>
116
117#if !defined(DDB) && !defined(STACK)
118#error "DDB or STACK options are required for WITNESS"
119#endif
120
121/* Note that these traces do not work with KTR_ALQ. */
122#if 0
123#define	KTR_WITNESS	KTR_SUBSYS
124#else
125#define	KTR_WITNESS	0
126#endif
127
128#define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
129#define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
130#define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
131
132/* Define this to check for blessed mutexes */
133#undef BLESSING
134
135#define	WITNESS_COUNT 		1024
136#define	WITNESS_CHILDCOUNT 	(WITNESS_COUNT * 4)
137#define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
138#define	WITNESS_PENDLIST	512
139
140/* Allocate 256 KB of stack data space */
141#define	WITNESS_LO_DATA_COUNT	2048
142
143/* Prime, gives load factor of ~2 at full load */
144#define	WITNESS_LO_HASH_SIZE	1021
145
146/*
147 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148 * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149 * probably be safe for the most part, but it's still a SWAG.
150 */
151#define	LOCK_NCHILDREN	5
152#define	LOCK_CHILDCOUNT	2048
153
154#define	MAX_W_NAME	64
155
156#define	BADSTACK_SBUF_SIZE	(256 * WITNESS_COUNT)
157#define	CYCLEGRAPH_SBUF_SIZE	8192
158#define	FULLGRAPH_SBUF_SIZE	32768
159
160/*
161 * These flags go in the witness relationship matrix and describe the
162 * relationship between any two struct witness objects.
163 */
164#define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
165#define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166#define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167#define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168#define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169#define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170#define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171#define	WITNESS_RELATED_MASK						\
172	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173#define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174					  * observed. */
175#define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176#define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177#define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179/* Descendant to ancestor flags */
180#define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
181
182/* Ancestor to descendant flags */
183#define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
184
185#define	WITNESS_INDEX_ASSERT(i)						\
186	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
187
188MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190/*
191 * Lock instances.  A lock instance is the data associated with a lock while
192 * it is held by witness.  For example, a lock instance will hold the
193 * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194 * are held in a per-cpu list while sleep locks are held in per-thread list.
195 */
196struct lock_instance {
197	struct lock_object	*li_lock;
198	const char		*li_file;
199	int			li_line;
200	u_int			li_flags;
201};
202
203/*
204 * A simple list type used to build the list of locks held by a thread
205 * or CPU.  We can't simply embed the list in struct lock_object since a
206 * lock may be held by more than one thread if it is a shared lock.  Locks
207 * are added to the head of the list, so we fill up each list entry from
208 * "the back" logically.  To ease some of the arithmetic, we actually fill
209 * in each list entry the normal way (children[0] then children[1], etc.) but
210 * when we traverse the list we read children[count-1] as the first entry
211 * down to children[0] as the final entry.
212 */
213struct lock_list_entry {
214	struct lock_list_entry	*ll_next;
215	struct lock_instance	ll_children[LOCK_NCHILDREN];
216	u_int			ll_count;
217};
218
219/*
220 * The main witness structure. One of these per named lock type in the system
221 * (for example, "vnode interlock").
222 */
223struct witness {
224	char  			w_name[MAX_W_NAME];
225	uint32_t 		w_index;  /* Index in the relationship matrix */
226	struct lock_class	*w_class;
227	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
228	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
229	struct witness		*w_hash_next; /* Linked list in hash buckets. */
230	const char		*w_file; /* File where last acquired */
231	uint32_t 		w_line; /* Line where last acquired */
232	uint32_t 		w_refcount;
233	uint16_t 		w_num_ancestors; /* direct/indirect
234						  * ancestor count */
235	uint16_t 		w_num_descendants; /* direct/indirect
236						    * descendant count */
237	int16_t 		w_ddb_level;
238	unsigned		w_displayed:1;
239	unsigned		w_reversed:1;
240};
241
242STAILQ_HEAD(witness_list, witness);
243
244/*
245 * The witness hash table. Keys are witness names (const char *), elements are
246 * witness objects (struct witness *).
247 */
248struct witness_hash {
249	struct witness	*wh_array[WITNESS_HASH_SIZE];
250	uint32_t	wh_size;
251	uint32_t	wh_count;
252};
253
254/*
255 * Key type for the lock order data hash table.
256 */
257struct witness_lock_order_key {
258	uint16_t	from;
259	uint16_t	to;
260};
261
262struct witness_lock_order_data {
263	struct stack			wlod_stack;
264	struct witness_lock_order_key	wlod_key;
265	struct witness_lock_order_data	*wlod_next;
266};
267
268/*
269 * The witness lock order data hash table. Keys are witness index tuples
270 * (struct witness_lock_order_key), elements are lock order data objects
271 * (struct witness_lock_order_data).
272 */
273struct witness_lock_order_hash {
274	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
275	u_int	wloh_size;
276	u_int	wloh_count;
277};
278
279#ifdef BLESSING
280struct witness_blessed {
281	const char	*b_lock1;
282	const char	*b_lock2;
283};
284#endif
285
286struct witness_pendhelp {
287	const char		*wh_type;
288	struct lock_object	*wh_lock;
289};
290
291struct witness_order_list_entry {
292	const char		*w_name;
293	struct lock_class	*w_class;
294};
295
296/*
297 * Returns 0 if one of the locks is a spin lock and the other is not.
298 * Returns 1 otherwise.
299 */
300static __inline int
301witness_lock_type_equal(struct witness *w1, struct witness *w2)
302{
303
304	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306}
307
308static __inline int
309witness_lock_order_key_empty(const struct witness_lock_order_key *key)
310{
311
312	return (key->from == 0 && key->to == 0);
313}
314
315static __inline int
316witness_lock_order_key_equal(const struct witness_lock_order_key *a,
317    const struct witness_lock_order_key *b)
318{
319
320	return (a->from == b->from && a->to == b->to);
321}
322
323static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
324		    const char *fname);
325#ifdef KDB
326static void	_witness_debugger(int cond, const char *msg);
327#endif
328static void	adopt(struct witness *parent, struct witness *child);
329#ifdef BLESSING
330static int	blessed(struct witness *, struct witness *);
331#endif
332static void	depart(struct witness *w);
333static struct witness	*enroll(const char *description,
334			    struct lock_class *lock_class);
335static struct lock_instance	*find_instance(struct lock_list_entry *list,
336				    struct lock_object *lock);
337static int	isitmychild(struct witness *parent, struct witness *child);
338static int	isitmydescendant(struct witness *parent, struct witness *child);
339static void	itismychild(struct witness *parent, struct witness *child);
340static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
341static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
342static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
343static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
344#ifdef DDB
345static void	witness_ddb_compute_levels(void);
346static void	witness_ddb_display(void(*)(const char *fmt, ...));
347static void	witness_ddb_display_descendants(void(*)(const char *fmt, ...),
348		    struct witness *, int indent);
349static void	witness_ddb_display_list(void(*prnt)(const char *fmt, ...),
350		    struct witness_list *list);
351static void	witness_ddb_level_descendants(struct witness *parent, int l);
352static void	witness_ddb_list(struct thread *td);
353#endif
354static void	witness_free(struct witness *m);
355static struct witness	*witness_get(void);
356static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
357static struct witness	*witness_hash_get(const char *key);
358static void	witness_hash_put(struct witness *w);
359static void	witness_init_hash_tables(void);
360static void	witness_increment_graph_generation(void);
361static void	witness_lock_list_free(struct lock_list_entry *lle);
362static struct lock_list_entry	*witness_lock_list_get(void);
363static int	witness_lock_order_add(struct witness *parent,
364		    struct witness *child);
365static int	witness_lock_order_check(struct witness *parent,
366		    struct witness *child);
367static struct witness_lock_order_data	*witness_lock_order_get(
368					    struct witness *parent,
369					    struct witness *child);
370static void	witness_list_lock(struct lock_instance *instance);
371static void	witness_setflag(struct lock_object *lock, int flag, int set);
372
373#ifdef KDB
374#define	witness_debugger(c)	_witness_debugger(c, __func__)
375#else
376#define	witness_debugger(c)
377#endif
378
379SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, "Witness Locking");
380
381/*
382 * If set to 0, lock order checking is disabled.  If set to -1,
383 * witness is completely disabled.  Otherwise witness performs full
384 * lock order checking for all locks.  At runtime, lock order checking
385 * may be toggled.  However, witness cannot be reenabled once it is
386 * completely disabled.
387 */
388static int witness_watch = 1;
389TUNABLE_INT("debug.witness.watch", &witness_watch);
390SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
391    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
392
393#ifdef KDB
394/*
395 * When KDB is enabled and witness_kdb is 1, it will cause the system
396 * to drop into kdebug() when:
397 *	- a lock hierarchy violation occurs
398 *	- locks are held when going to sleep.
399 */
400#ifdef WITNESS_KDB
401int	witness_kdb = 1;
402#else
403int	witness_kdb = 0;
404#endif
405TUNABLE_INT("debug.witness.kdb", &witness_kdb);
406SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
407
408/*
409 * When KDB is enabled and witness_trace is 1, it will cause the system
410 * to print a stack trace:
411 *	- a lock hierarchy violation occurs
412 *	- locks are held when going to sleep.
413 */
414int	witness_trace = 1;
415TUNABLE_INT("debug.witness.trace", &witness_trace);
416SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
417#endif /* KDB */
418
419#ifdef WITNESS_SKIPSPIN
420int	witness_skipspin = 1;
421#else
422int	witness_skipspin = 0;
423#endif
424TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
425SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
426    0, "");
427
428/*
429 * Call this to print out the relations between locks.
430 */
431SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
432    NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
433
434/*
435 * Call this to print out the witness faulty stacks.
436 */
437SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
438    NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
439
440static struct mtx w_mtx;
441
442/* w_list */
443static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
444static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
445
446/* w_typelist */
447static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
448static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
449
450/* lock list */
451static struct lock_list_entry *w_lock_list_free = NULL;
452static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
453static u_int pending_cnt;
454
455static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
456SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
457SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
458SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
459    "");
460
461static struct witness *w_data;
462static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
463static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
464static struct witness_hash w_hash;	/* The witness hash table. */
465
466/* The lock order data hash */
467static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
468static struct witness_lock_order_data *w_lofree = NULL;
469static struct witness_lock_order_hash w_lohash;
470static int w_max_used_index = 0;
471static unsigned int w_generation = 0;
472static const char *w_notrunning = "Witness not running\n";
473static const char *w_stillcold = "Witness is still cold\n";
474
475
476static struct witness_order_list_entry order_lists[] = {
477	/*
478	 * sx locks
479	 */
480	{ "proctree", &lock_class_sx },
481	{ "allproc", &lock_class_sx },
482	{ "allprison", &lock_class_sx },
483	{ NULL, NULL },
484	/*
485	 * Various mutexes
486	 */
487	{ "Giant", &lock_class_mtx_sleep },
488	{ "pipe mutex", &lock_class_mtx_sleep },
489	{ "sigio lock", &lock_class_mtx_sleep },
490	{ "process group", &lock_class_mtx_sleep },
491	{ "process lock", &lock_class_mtx_sleep },
492	{ "session", &lock_class_mtx_sleep },
493	{ "uidinfo hash", &lock_class_rw },
494#ifdef	HWPMC_HOOKS
495	{ "pmc-sleep", &lock_class_mtx_sleep },
496#endif
497	{ NULL, NULL },
498	/*
499	 * Sockets
500	 */
501	{ "accept", &lock_class_mtx_sleep },
502	{ "so_snd", &lock_class_mtx_sleep },
503	{ "so_rcv", &lock_class_mtx_sleep },
504	{ "sellck", &lock_class_mtx_sleep },
505	{ NULL, NULL },
506	/*
507	 * Routing
508	 */
509	{ "so_rcv", &lock_class_mtx_sleep },
510	{ "radix node head", &lock_class_rw },
511	{ "rtentry", &lock_class_mtx_sleep },
512	{ "ifaddr", &lock_class_mtx_sleep },
513	{ NULL, NULL },
514	/*
515	 * Multicast - protocol locks before interface locks, after UDP locks.
516	 */
517	{ "udpinp", &lock_class_rw },
518	{ "in_multi_mtx", &lock_class_mtx_sleep },
519	{ "igmp_mtx", &lock_class_mtx_sleep },
520	{ "if_addr_mtx", &lock_class_mtx_sleep },
521	{ NULL, NULL },
522	/*
523	 * UNIX Domain Sockets
524	 */
525	{ "unp_global_rwlock", &lock_class_rw },
526	{ "unp_list_lock", &lock_class_mtx_sleep },
527	{ "unp", &lock_class_mtx_sleep },
528	{ "so_snd", &lock_class_mtx_sleep },
529	{ NULL, NULL },
530	/*
531	 * UDP/IP
532	 */
533	{ "udp", &lock_class_rw },
534	{ "udpinp", &lock_class_rw },
535	{ "so_snd", &lock_class_mtx_sleep },
536	{ NULL, NULL },
537	/*
538	 * TCP/IP
539	 */
540	{ "tcp", &lock_class_rw },
541	{ "tcpinp", &lock_class_rw },
542	{ "so_snd", &lock_class_mtx_sleep },
543	{ NULL, NULL },
544	/*
545	 * SLIP
546	 */
547	{ "slip_mtx", &lock_class_mtx_sleep },
548	{ "slip sc_mtx", &lock_class_mtx_sleep },
549	{ NULL, NULL },
550	/*
551	 * netatalk
552	 */
553	{ "ddp_list_mtx", &lock_class_mtx_sleep },
554	{ "ddp_mtx", &lock_class_mtx_sleep },
555	{ NULL, NULL },
556	/*
557	 * BPF
558	 */
559	{ "bpf global lock", &lock_class_mtx_sleep },
560	{ "bpf interface lock", &lock_class_mtx_sleep },
561	{ "bpf cdev lock", &lock_class_mtx_sleep },
562	{ NULL, NULL },
563	/*
564	 * NFS server
565	 */
566	{ "nfsd_mtx", &lock_class_mtx_sleep },
567	{ "so_snd", &lock_class_mtx_sleep },
568	{ NULL, NULL },
569
570	/*
571	 * IEEE 802.11
572	 */
573	{ "802.11 com lock", &lock_class_mtx_sleep},
574	{ NULL, NULL },
575	/*
576	 * Network drivers
577	 */
578	{ "network driver", &lock_class_mtx_sleep},
579	{ NULL, NULL },
580
581	/*
582	 * Netgraph
583	 */
584	{ "ng_node", &lock_class_mtx_sleep },
585	{ "ng_worklist", &lock_class_mtx_sleep },
586	{ NULL, NULL },
587	/*
588	 * CDEV
589	 */
590	{ "system map", &lock_class_mtx_sleep },
591	{ "vm page queue mutex", &lock_class_mtx_sleep },
592	{ "vnode interlock", &lock_class_mtx_sleep },
593	{ "cdev", &lock_class_mtx_sleep },
594	{ NULL, NULL },
595	/*
596	 * kqueue/VFS interaction
597	 */
598	{ "kqueue", &lock_class_mtx_sleep },
599	{ "struct mount mtx", &lock_class_mtx_sleep },
600	{ "vnode interlock", &lock_class_mtx_sleep },
601	{ NULL, NULL },
602	/*
603	 * spin locks
604	 */
605#ifdef SMP
606	{ "ap boot", &lock_class_mtx_spin },
607#endif
608	{ "rm.mutex_mtx", &lock_class_mtx_spin },
609	{ "sio", &lock_class_mtx_spin },
610	{ "scrlock", &lock_class_mtx_spin },
611#ifdef __i386__
612	{ "cy", &lock_class_mtx_spin },
613#endif
614#ifdef __sparc64__
615	{ "pcib_mtx", &lock_class_mtx_spin },
616	{ "rtc_mtx", &lock_class_mtx_spin },
617#endif
618	{ "scc_hwmtx", &lock_class_mtx_spin },
619	{ "uart_hwmtx", &lock_class_mtx_spin },
620	{ "fast_taskqueue", &lock_class_mtx_spin },
621	{ "intr table", &lock_class_mtx_spin },
622#ifdef	HWPMC_HOOKS
623	{ "pmc-per-proc", &lock_class_mtx_spin },
624#endif
625	{ "process slock", &lock_class_mtx_spin },
626	{ "sleepq chain", &lock_class_mtx_spin },
627	{ "umtx lock", &lock_class_mtx_spin },
628	{ "rm_spinlock", &lock_class_mtx_spin },
629	{ "turnstile chain", &lock_class_mtx_spin },
630	{ "turnstile lock", &lock_class_mtx_spin },
631	{ "sched lock", &lock_class_mtx_spin },
632	{ "td_contested", &lock_class_mtx_spin },
633	{ "callout", &lock_class_mtx_spin },
634	{ "entropy harvest mutex", &lock_class_mtx_spin },
635	{ "syscons video lock", &lock_class_mtx_spin },
636	{ "time lock", &lock_class_mtx_spin },
637#ifdef SMP
638	{ "smp rendezvous", &lock_class_mtx_spin },
639#endif
640#ifdef __powerpc__
641	{ "tlb0", &lock_class_mtx_spin },
642#endif
643	/*
644	 * leaf locks
645	 */
646	{ "intrcnt", &lock_class_mtx_spin },
647	{ "icu", &lock_class_mtx_spin },
648#if defined(SMP) && defined(__sparc64__)
649	{ "ipi", &lock_class_mtx_spin },
650#endif
651#ifdef __i386__
652	{ "allpmaps", &lock_class_mtx_spin },
653	{ "descriptor tables", &lock_class_mtx_spin },
654#endif
655	{ "clk", &lock_class_mtx_spin },
656	{ "cpuset", &lock_class_mtx_spin },
657	{ "mprof lock", &lock_class_mtx_spin },
658	{ "zombie lock", &lock_class_mtx_spin },
659	{ "ALD Queue", &lock_class_mtx_spin },
660#ifdef __ia64__
661	{ "MCA spin lock", &lock_class_mtx_spin },
662#endif
663#if defined(__i386__) || defined(__amd64__)
664	{ "pcicfg", &lock_class_mtx_spin },
665	{ "NDIS thread lock", &lock_class_mtx_spin },
666#endif
667	{ "tw_osl_io_lock", &lock_class_mtx_spin },
668	{ "tw_osl_q_lock", &lock_class_mtx_spin },
669	{ "tw_cl_io_lock", &lock_class_mtx_spin },
670	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
671	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
672#ifdef	HWPMC_HOOKS
673	{ "pmc-leaf", &lock_class_mtx_spin },
674#endif
675	{ "blocked lock", &lock_class_mtx_spin },
676	{ NULL, NULL },
677	{ NULL, NULL }
678};
679
680#ifdef BLESSING
681/*
682 * Pairs of locks which have been blessed
683 * Don't complain about order problems with blessed locks
684 */
685static struct witness_blessed blessed_list[] = {
686};
687static int blessed_count =
688	sizeof(blessed_list) / sizeof(struct witness_blessed);
689#endif
690
691/*
692 * This global is set to 0 once it becomes safe to use the witness code.
693 */
694static int witness_cold = 1;
695
696/*
697 * This global is set to 1 once the static lock orders have been enrolled
698 * so that a warning can be issued for any spin locks enrolled later.
699 */
700static int witness_spin_warn = 0;
701
702/*
703 * The WITNESS-enabled diagnostic code.  Note that the witness code does
704 * assume that the early boot is single-threaded at least until after this
705 * routine is completed.
706 */
707static void
708witness_initialize(void *dummy __unused)
709{
710	struct lock_object *lock;
711	struct witness_order_list_entry *order;
712	struct witness *w, *w1;
713	int i;
714
715	w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
716	    M_NOWAIT | M_ZERO);
717
718	/*
719	 * We have to release Giant before initializing its witness
720	 * structure so that WITNESS doesn't get confused.
721	 */
722	mtx_unlock(&Giant);
723	mtx_assert(&Giant, MA_NOTOWNED);
724
725	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
726	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
727	    MTX_NOWITNESS | MTX_NOPROFILE);
728	for (i = WITNESS_COUNT - 1; i >= 0; i--) {
729		w = &w_data[i];
730		memset(w, 0, sizeof(*w));
731		w_data[i].w_index = i;	/* Witness index never changes. */
732		witness_free(w);
733	}
734	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
735	    ("%s: Invalid list of free witness objects", __func__));
736
737	/* Witness with index 0 is not used to aid in debugging. */
738	STAILQ_REMOVE_HEAD(&w_free, w_list);
739	w_free_cnt--;
740
741	memset(w_rmatrix, 0,
742	    (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
743
744	for (i = 0; i < LOCK_CHILDCOUNT; i++)
745		witness_lock_list_free(&w_locklistdata[i]);
746	witness_init_hash_tables();
747
748	/* First add in all the specified order lists. */
749	for (order = order_lists; order->w_name != NULL; order++) {
750		w = enroll(order->w_name, order->w_class);
751		if (w == NULL)
752			continue;
753		w->w_file = "order list";
754		for (order++; order->w_name != NULL; order++) {
755			w1 = enroll(order->w_name, order->w_class);
756			if (w1 == NULL)
757				continue;
758			w1->w_file = "order list";
759			itismychild(w, w1);
760			w = w1;
761		}
762	}
763	witness_spin_warn = 1;
764
765	/* Iterate through all locks and add them to witness. */
766	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
767		lock = pending_locks[i].wh_lock;
768		KASSERT(lock->lo_flags & LO_WITNESS,
769		    ("%s: lock %s is on pending list but not LO_WITNESS",
770		    __func__, lock->lo_name));
771		lock->lo_witness = enroll(pending_locks[i].wh_type,
772		    LOCK_CLASS(lock));
773	}
774
775	/* Mark the witness code as being ready for use. */
776	witness_cold = 0;
777
778	mtx_lock(&Giant);
779}
780SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
781    NULL);
782
783void
784witness_init(struct lock_object *lock, const char *type)
785{
786	struct lock_class *class;
787
788	/* Various sanity checks. */
789	class = LOCK_CLASS(lock);
790	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
791	    (class->lc_flags & LC_RECURSABLE) == 0)
792		panic("%s: lock (%s) %s can not be recursable", __func__,
793		    class->lc_name, lock->lo_name);
794	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
795	    (class->lc_flags & LC_SLEEPABLE) == 0)
796		panic("%s: lock (%s) %s can not be sleepable", __func__,
797		    class->lc_name, lock->lo_name);
798	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
799	    (class->lc_flags & LC_UPGRADABLE) == 0)
800		panic("%s: lock (%s) %s can not be upgradable", __func__,
801		    class->lc_name, lock->lo_name);
802
803	/*
804	 * If we shouldn't watch this lock, then just clear lo_witness.
805	 * Otherwise, if witness_cold is set, then it is too early to
806	 * enroll this lock, so defer it to witness_initialize() by adding
807	 * it to the pending_locks list.  If it is not too early, then enroll
808	 * the lock now.
809	 */
810	if (witness_watch < 1 || panicstr != NULL ||
811	    (lock->lo_flags & LO_WITNESS) == 0)
812		lock->lo_witness = NULL;
813	else if (witness_cold) {
814		pending_locks[pending_cnt].wh_lock = lock;
815		pending_locks[pending_cnt++].wh_type = type;
816		if (pending_cnt > WITNESS_PENDLIST)
817			panic("%s: pending locks list is too small, bump it\n",
818			    __func__);
819	} else
820		lock->lo_witness = enroll(type, class);
821}
822
823void
824witness_destroy(struct lock_object *lock)
825{
826	struct lock_class *class;
827	struct witness *w;
828
829	class = LOCK_CLASS(lock);
830
831	if (witness_cold)
832		panic("lock (%s) %s destroyed while witness_cold",
833		    class->lc_name, lock->lo_name);
834
835	/* XXX: need to verify that no one holds the lock */
836	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
837		return;
838	w = lock->lo_witness;
839
840	mtx_lock_spin(&w_mtx);
841	MPASS(w->w_refcount > 0);
842	w->w_refcount--;
843
844	if (w->w_refcount == 0)
845		depart(w);
846	mtx_unlock_spin(&w_mtx);
847}
848
849#ifdef DDB
850static void
851witness_ddb_compute_levels(void)
852{
853	struct witness *w;
854
855	/*
856	 * First clear all levels.
857	 */
858	STAILQ_FOREACH(w, &w_all, w_list)
859		w->w_ddb_level = -1;
860
861	/*
862	 * Look for locks with no parents and level all their descendants.
863	 */
864	STAILQ_FOREACH(w, &w_all, w_list) {
865
866		/* If the witness has ancestors (is not a root), skip it. */
867		if (w->w_num_ancestors > 0)
868			continue;
869		witness_ddb_level_descendants(w, 0);
870	}
871}
872
873static void
874witness_ddb_level_descendants(struct witness *w, int l)
875{
876	int i;
877
878	if (w->w_ddb_level >= l)
879		return;
880
881	w->w_ddb_level = l;
882	l++;
883
884	for (i = 1; i <= w_max_used_index; i++) {
885		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
886			witness_ddb_level_descendants(&w_data[i], l);
887	}
888}
889
890static void
891witness_ddb_display_descendants(void(*prnt)(const char *fmt, ...),
892    struct witness *w, int indent)
893{
894	int i;
895
896 	for (i = 0; i < indent; i++)
897 		prnt(" ");
898	prnt("%s (type: %s, depth: %d, active refs: %d)",
899	     w->w_name, w->w_class->lc_name,
900	     w->w_ddb_level, w->w_refcount);
901 	if (w->w_displayed) {
902 		prnt(" -- (already displayed)\n");
903 		return;
904 	}
905 	w->w_displayed = 1;
906	if (w->w_file != NULL && w->w_line != 0)
907		prnt(" -- last acquired @ %s:%d\n", w->w_file,
908		    w->w_line);
909	else
910		prnt(" -- never acquired\n");
911	indent++;
912	WITNESS_INDEX_ASSERT(w->w_index);
913	for (i = 1; i <= w_max_used_index; i++) {
914		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
915			witness_ddb_display_descendants(prnt, &w_data[i],
916			    indent);
917	}
918}
919
920static void
921witness_ddb_display_list(void(*prnt)(const char *fmt, ...),
922    struct witness_list *list)
923{
924	struct witness *w;
925
926	STAILQ_FOREACH(w, list, w_typelist) {
927		if (w->w_file == NULL || w->w_ddb_level > 0)
928			continue;
929
930		/* This lock has no anscestors - display its descendants. */
931		witness_ddb_display_descendants(prnt, w, 0);
932	}
933}
934
935static void
936witness_ddb_display(void(*prnt)(const char *fmt, ...))
937{
938	struct witness *w;
939
940	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
941	witness_ddb_compute_levels();
942
943	/* Clear all the displayed flags. */
944	STAILQ_FOREACH(w, &w_all, w_list)
945		w->w_displayed = 0;
946
947	/*
948	 * First, handle sleep locks which have been acquired at least
949	 * once.
950	 */
951	prnt("Sleep locks:\n");
952	witness_ddb_display_list(prnt, &w_sleep);
953
954	/*
955	 * Now do spin locks which have been acquired at least once.
956	 */
957	prnt("\nSpin locks:\n");
958	witness_ddb_display_list(prnt, &w_spin);
959
960	/*
961	 * Finally, any locks which have not been acquired yet.
962	 */
963	prnt("\nLocks which were never acquired:\n");
964	STAILQ_FOREACH(w, &w_all, w_list) {
965		if (w->w_file != NULL || w->w_refcount == 0)
966			continue;
967		prnt("%s (type: %s, depth: %d)\n", w->w_name,
968		    w->w_class->lc_name, w->w_ddb_level);
969	}
970}
971#endif /* DDB */
972
973/* Trim useless garbage from filenames. */
974static const char *
975fixup_filename(const char *file)
976{
977
978	if (file == NULL)
979		return (NULL);
980	while (strncmp(file, "../", 3) == 0)
981		file += 3;
982	return (file);
983}
984
985int
986witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
987{
988
989	if (witness_watch == -1 || panicstr != NULL)
990		return (0);
991
992	/* Require locks that witness knows about. */
993	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
994	    lock2->lo_witness == NULL)
995		return (EINVAL);
996
997	mtx_assert(&w_mtx, MA_NOTOWNED);
998	mtx_lock_spin(&w_mtx);
999
1000	/*
1001	 * If we already have either an explicit or implied lock order that
1002	 * is the other way around, then return an error.
1003	 */
1004	if (witness_watch &&
1005	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1006		mtx_unlock_spin(&w_mtx);
1007		return (EDOOFUS);
1008	}
1009
1010	/* Try to add the new order. */
1011	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1012	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1013	itismychild(lock1->lo_witness, lock2->lo_witness);
1014	mtx_unlock_spin(&w_mtx);
1015	return (0);
1016}
1017
1018void
1019witness_checkorder(struct lock_object *lock, int flags, const char *file,
1020    int line, struct lock_object *interlock)
1021{
1022	struct lock_list_entry *lock_list, *lle;
1023	struct lock_instance *lock1, *lock2, *plock;
1024	struct lock_class *class;
1025	struct witness *w, *w1;
1026	struct thread *td;
1027	int i, j;
1028
1029	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1030	    panicstr != NULL)
1031		return;
1032
1033	w = lock->lo_witness;
1034	class = LOCK_CLASS(lock);
1035	td = curthread;
1036	file = fixup_filename(file);
1037
1038	if (class->lc_flags & LC_SLEEPLOCK) {
1039
1040		/*
1041		 * Since spin locks include a critical section, this check
1042		 * implicitly enforces a lock order of all sleep locks before
1043		 * all spin locks.
1044		 */
1045		if (td->td_critnest != 0 && !kdb_active)
1046			panic("blockable sleep lock (%s) %s @ %s:%d",
1047			    class->lc_name, lock->lo_name, file, line);
1048
1049		/*
1050		 * If this is the first lock acquired then just return as
1051		 * no order checking is needed.
1052		 */
1053		lock_list = td->td_sleeplocks;
1054		if (lock_list == NULL || lock_list->ll_count == 0)
1055			return;
1056	} else {
1057
1058		/*
1059		 * If this is the first lock, just return as no order
1060		 * checking is needed.  Avoid problems with thread
1061		 * migration pinning the thread while checking if
1062		 * spinlocks are held.  If at least one spinlock is held
1063		 * the thread is in a safe path and it is allowed to
1064		 * unpin it.
1065		 */
1066		sched_pin();
1067		lock_list = PCPU_GET(spinlocks);
1068		if (lock_list == NULL || lock_list->ll_count == 0) {
1069			sched_unpin();
1070			return;
1071		}
1072		sched_unpin();
1073	}
1074
1075	/*
1076	 * Check to see if we are recursing on a lock we already own.  If
1077	 * so, make sure that we don't mismatch exclusive and shared lock
1078	 * acquires.
1079	 */
1080	lock1 = find_instance(lock_list, lock);
1081	if (lock1 != NULL) {
1082		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1083		    (flags & LOP_EXCLUSIVE) == 0) {
1084			printf("shared lock of (%s) %s @ %s:%d\n",
1085			    class->lc_name, lock->lo_name, file, line);
1086			printf("while exclusively locked from %s:%d\n",
1087			    lock1->li_file, lock1->li_line);
1088			panic("share->excl");
1089		}
1090		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1091		    (flags & LOP_EXCLUSIVE) != 0) {
1092			printf("exclusive lock of (%s) %s @ %s:%d\n",
1093			    class->lc_name, lock->lo_name, file, line);
1094			printf("while share locked from %s:%d\n",
1095			    lock1->li_file, lock1->li_line);
1096			panic("excl->share");
1097		}
1098		return;
1099	}
1100
1101	/*
1102	 * Find the previously acquired lock, but ignore interlocks.
1103	 */
1104	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1105	if (interlock != NULL && plock->li_lock == interlock) {
1106		if (lock_list->ll_count > 1)
1107			plock =
1108			    &lock_list->ll_children[lock_list->ll_count - 2];
1109		else {
1110			lle = lock_list->ll_next;
1111
1112			/*
1113			 * The interlock is the only lock we hold, so
1114			 * simply return.
1115			 */
1116			if (lle == NULL)
1117				return;
1118			plock = &lle->ll_children[lle->ll_count - 1];
1119		}
1120	}
1121
1122	/*
1123	 * Try to perform most checks without a lock.  If this succeeds we
1124	 * can skip acquiring the lock and return success.
1125	 */
1126	w1 = plock->li_lock->lo_witness;
1127	if (witness_lock_order_check(w1, w))
1128		return;
1129
1130	/*
1131	 * Check for duplicate locks of the same type.  Note that we only
1132	 * have to check for this on the last lock we just acquired.  Any
1133	 * other cases will be caught as lock order violations.
1134	 */
1135	mtx_lock_spin(&w_mtx);
1136	witness_lock_order_add(w1, w);
1137	if (w1 == w) {
1138		i = w->w_index;
1139		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1140		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1141		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1142			w->w_reversed = 1;
1143			mtx_unlock_spin(&w_mtx);
1144			printf(
1145			    "acquiring duplicate lock of same type: \"%s\"\n",
1146			    w->w_name);
1147			printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1148			       plock->li_file, plock->li_line);
1149			printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
1150			witness_debugger(1);
1151		    } else
1152			    mtx_unlock_spin(&w_mtx);
1153		return;
1154	}
1155	mtx_assert(&w_mtx, MA_OWNED);
1156
1157	/*
1158	 * If we know that the the lock we are acquiring comes after
1159	 * the lock we most recently acquired in the lock order tree,
1160	 * then there is no need for any further checks.
1161	 */
1162	if (isitmychild(w1, w))
1163		goto out;
1164
1165	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1166		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1167
1168			MPASS(j < WITNESS_COUNT);
1169			lock1 = &lle->ll_children[i];
1170
1171			/*
1172			 * Ignore the interlock the first time we see it.
1173			 */
1174			if (interlock != NULL && interlock == lock1->li_lock) {
1175				interlock = NULL;
1176				continue;
1177			}
1178
1179			/*
1180			 * If this lock doesn't undergo witness checking,
1181			 * then skip it.
1182			 */
1183			w1 = lock1->li_lock->lo_witness;
1184			if (w1 == NULL) {
1185				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1186				    ("lock missing witness structure"));
1187				continue;
1188			}
1189
1190			/*
1191			 * If we are locking Giant and this is a sleepable
1192			 * lock, then skip it.
1193			 */
1194			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1195			    lock == &Giant.lock_object)
1196				continue;
1197
1198			/*
1199			 * If we are locking a sleepable lock and this lock
1200			 * is Giant, then skip it.
1201			 */
1202			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1203			    lock1->li_lock == &Giant.lock_object)
1204				continue;
1205
1206			/*
1207			 * If we are locking a sleepable lock and this lock
1208			 * isn't sleepable, we want to treat it as a lock
1209			 * order violation to enfore a general lock order of
1210			 * sleepable locks before non-sleepable locks.
1211			 */
1212			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1213			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1214				goto reversal;
1215
1216			/*
1217			 * If we are locking Giant and this is a non-sleepable
1218			 * lock, then treat it as a reversal.
1219			 */
1220			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1221			    lock == &Giant.lock_object)
1222				goto reversal;
1223
1224			/*
1225			 * Check the lock order hierarchy for a reveresal.
1226			 */
1227			if (!isitmydescendant(w, w1))
1228				continue;
1229		reversal:
1230
1231			/*
1232			 * We have a lock order violation, check to see if it
1233			 * is allowed or has already been yelled about.
1234			 */
1235#ifdef BLESSING
1236
1237			/*
1238			 * If the lock order is blessed, just bail.  We don't
1239			 * look for other lock order violations though, which
1240			 * may be a bug.
1241			 */
1242			if (blessed(w, w1))
1243				goto out;
1244#endif
1245
1246			/* Bail if this violation is known */
1247			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1248				goto out;
1249
1250			/* Record this as a violation */
1251			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1252			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1253			w->w_reversed = w1->w_reversed = 1;
1254			witness_increment_graph_generation();
1255			mtx_unlock_spin(&w_mtx);
1256
1257			/*
1258			 * Ok, yell about it.
1259			 */
1260			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1261			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1262				printf(
1263		"lock order reversal: (sleepable after non-sleepable)\n");
1264			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1265			    && lock == &Giant.lock_object)
1266				printf(
1267		"lock order reversal: (Giant after non-sleepable)\n");
1268			else
1269				printf("lock order reversal:\n");
1270
1271			/*
1272			 * Try to locate an earlier lock with
1273			 * witness w in our list.
1274			 */
1275			do {
1276				lock2 = &lle->ll_children[i];
1277				MPASS(lock2->li_lock != NULL);
1278				if (lock2->li_lock->lo_witness == w)
1279					break;
1280				if (i == 0 && lle->ll_next != NULL) {
1281					lle = lle->ll_next;
1282					i = lle->ll_count - 1;
1283					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1284				} else
1285					i--;
1286			} while (i >= 0);
1287			if (i < 0) {
1288				printf(" 1st %p %s (%s) @ %s:%d\n",
1289				    lock1->li_lock, lock1->li_lock->lo_name,
1290				    w1->w_name, lock1->li_file, lock1->li_line);
1291				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1292				    lock->lo_name, w->w_name, file, line);
1293			} else {
1294				printf(" 1st %p %s (%s) @ %s:%d\n",
1295				    lock2->li_lock, lock2->li_lock->lo_name,
1296				    lock2->li_lock->lo_witness->w_name,
1297				    lock2->li_file, lock2->li_line);
1298				printf(" 2nd %p %s (%s) @ %s:%d\n",
1299				    lock1->li_lock, lock1->li_lock->lo_name,
1300				    w1->w_name, lock1->li_file, lock1->li_line);
1301				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1302				    lock->lo_name, w->w_name, file, line);
1303			}
1304			witness_debugger(1);
1305			return;
1306		}
1307	}
1308
1309	/*
1310	 * If requested, build a new lock order.  However, don't build a new
1311	 * relationship between a sleepable lock and Giant if it is in the
1312	 * wrong direction.  The correct lock order is that sleepable locks
1313	 * always come before Giant.
1314	 */
1315	if (flags & LOP_NEWORDER &&
1316	    !(plock->li_lock == &Giant.lock_object &&
1317	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1318		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1319		    w->w_name, plock->li_lock->lo_witness->w_name);
1320		itismychild(plock->li_lock->lo_witness, w);
1321	}
1322out:
1323	mtx_unlock_spin(&w_mtx);
1324}
1325
1326void
1327witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1328{
1329	struct lock_list_entry **lock_list, *lle;
1330	struct lock_instance *instance;
1331	struct witness *w;
1332	struct thread *td;
1333
1334	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1335	    panicstr != NULL)
1336		return;
1337	w = lock->lo_witness;
1338	td = curthread;
1339	file = fixup_filename(file);
1340
1341	/* Determine lock list for this lock. */
1342	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1343		lock_list = &td->td_sleeplocks;
1344	else
1345		lock_list = PCPU_PTR(spinlocks);
1346
1347	/* Check to see if we are recursing on a lock we already own. */
1348	instance = find_instance(*lock_list, lock);
1349	if (instance != NULL) {
1350		instance->li_flags++;
1351		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1352		    td->td_proc->p_pid, lock->lo_name,
1353		    instance->li_flags & LI_RECURSEMASK);
1354		instance->li_file = file;
1355		instance->li_line = line;
1356		return;
1357	}
1358
1359	/* Update per-witness last file and line acquire. */
1360	w->w_file = file;
1361	w->w_line = line;
1362
1363	/* Find the next open lock instance in the list and fill it. */
1364	lle = *lock_list;
1365	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1366		lle = witness_lock_list_get();
1367		if (lle == NULL)
1368			return;
1369		lle->ll_next = *lock_list;
1370		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1371		    td->td_proc->p_pid, lle);
1372		*lock_list = lle;
1373	}
1374	instance = &lle->ll_children[lle->ll_count++];
1375	instance->li_lock = lock;
1376	instance->li_line = line;
1377	instance->li_file = file;
1378	if ((flags & LOP_EXCLUSIVE) != 0)
1379		instance->li_flags = LI_EXCLUSIVE;
1380	else
1381		instance->li_flags = 0;
1382	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1383	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1384}
1385
1386void
1387witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1388{
1389	struct lock_instance *instance;
1390	struct lock_class *class;
1391
1392	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1393	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1394		return;
1395	class = LOCK_CLASS(lock);
1396	file = fixup_filename(file);
1397	if (witness_watch) {
1398		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1399			panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1400			    class->lc_name, lock->lo_name, file, line);
1401		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1402			panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1403			    class->lc_name, lock->lo_name, file, line);
1404	}
1405	instance = find_instance(curthread->td_sleeplocks, lock);
1406	if (instance == NULL)
1407		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1408		    class->lc_name, lock->lo_name, file, line);
1409	if (witness_watch) {
1410		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1411			panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1412			    class->lc_name, lock->lo_name, file, line);
1413		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1414			panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1415			    class->lc_name, lock->lo_name,
1416			    instance->li_flags & LI_RECURSEMASK, file, line);
1417	}
1418	instance->li_flags |= LI_EXCLUSIVE;
1419}
1420
1421void
1422witness_downgrade(struct lock_object *lock, int flags, const char *file,
1423    int line)
1424{
1425	struct lock_instance *instance;
1426	struct lock_class *class;
1427
1428	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1429	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1430		return;
1431	class = LOCK_CLASS(lock);
1432	file = fixup_filename(file);
1433	if (witness_watch) {
1434		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1435		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1436			    class->lc_name, lock->lo_name, file, line);
1437		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1438			panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1439			    class->lc_name, lock->lo_name, file, line);
1440	}
1441	instance = find_instance(curthread->td_sleeplocks, lock);
1442	if (instance == NULL)
1443		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1444		    class->lc_name, lock->lo_name, file, line);
1445	if (witness_watch) {
1446		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1447			panic("downgrade of shared lock (%s) %s @ %s:%d",
1448			    class->lc_name, lock->lo_name, file, line);
1449		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1450			panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1451			    class->lc_name, lock->lo_name,
1452			    instance->li_flags & LI_RECURSEMASK, file, line);
1453	}
1454	instance->li_flags &= ~LI_EXCLUSIVE;
1455}
1456
1457void
1458witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1459{
1460	struct lock_list_entry **lock_list, *lle;
1461	struct lock_instance *instance;
1462	struct lock_class *class;
1463	struct thread *td;
1464	register_t s;
1465	int i, j;
1466
1467	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1468		return;
1469	td = curthread;
1470	class = LOCK_CLASS(lock);
1471	file = fixup_filename(file);
1472
1473	/* Find lock instance associated with this lock. */
1474	if (class->lc_flags & LC_SLEEPLOCK)
1475		lock_list = &td->td_sleeplocks;
1476	else
1477		lock_list = PCPU_PTR(spinlocks);
1478	lle = *lock_list;
1479	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1480		for (i = 0; i < (*lock_list)->ll_count; i++) {
1481			instance = &(*lock_list)->ll_children[i];
1482			if (instance->li_lock == lock)
1483				goto found;
1484		}
1485
1486	/*
1487	 * When disabling WITNESS through witness_watch we could end up in
1488	 * having registered locks in the td_sleeplocks queue.
1489	 * We have to make sure we flush these queues, so just search for
1490	 * eventual register locks and remove them.
1491	 */
1492	if (witness_watch > 0)
1493		panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1494		    lock->lo_name, file, line);
1495	else
1496		return;
1497found:
1498
1499	/* First, check for shared/exclusive mismatches. */
1500	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1501	    (flags & LOP_EXCLUSIVE) == 0) {
1502		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1503		    lock->lo_name, file, line);
1504		printf("while exclusively locked from %s:%d\n",
1505		    instance->li_file, instance->li_line);
1506		panic("excl->ushare");
1507	}
1508	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1509	    (flags & LOP_EXCLUSIVE) != 0) {
1510		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1511		    lock->lo_name, file, line);
1512		printf("while share locked from %s:%d\n", instance->li_file,
1513		    instance->li_line);
1514		panic("share->uexcl");
1515	}
1516	/* If we are recursed, unrecurse. */
1517	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1518		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1519		    td->td_proc->p_pid, instance->li_lock->lo_name,
1520		    instance->li_flags);
1521		instance->li_flags--;
1522		return;
1523	}
1524	/* The lock is now being dropped, check for NORELEASE flag */
1525	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1526		printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1527		    lock->lo_name, file, line);
1528		panic("lock marked norelease");
1529	}
1530
1531	/* Otherwise, remove this item from the list. */
1532	s = intr_disable();
1533	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1534	    td->td_proc->p_pid, instance->li_lock->lo_name,
1535	    (*lock_list)->ll_count - 1);
1536	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1537		(*lock_list)->ll_children[j] =
1538		    (*lock_list)->ll_children[j + 1];
1539	(*lock_list)->ll_count--;
1540	intr_restore(s);
1541
1542	/*
1543	 * In order to reduce contention on w_mtx, we want to keep always an
1544	 * head object into lists so that frequent allocation from the
1545	 * free witness pool (and subsequent locking) is avoided.
1546	 * In order to maintain the current code simple, when the head
1547	 * object is totally unloaded it means also that we do not have
1548	 * further objects in the list, so the list ownership needs to be
1549	 * hand over to another object if the current head needs to be freed.
1550	 */
1551	if ((*lock_list)->ll_count == 0) {
1552		if (*lock_list == lle) {
1553			if (lle->ll_next == NULL)
1554				return;
1555		} else
1556			lle = *lock_list;
1557		*lock_list = lle->ll_next;
1558		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1559		    td->td_proc->p_pid, lle);
1560		witness_lock_list_free(lle);
1561	}
1562}
1563
1564void
1565witness_thread_exit(struct thread *td)
1566{
1567	struct lock_list_entry *lle;
1568	int i, n;
1569
1570	lle = td->td_sleeplocks;
1571	if (lle == NULL || panicstr != NULL)
1572		return;
1573	if (lle->ll_count != 0) {
1574		for (n = 0; lle != NULL; lle = lle->ll_next)
1575			for (i = lle->ll_count - 1; i >= 0; i--) {
1576				if (n == 0)
1577		printf("Thread %p exiting with the following locks held:\n",
1578					    td);
1579				n++;
1580				witness_list_lock(&lle->ll_children[i]);
1581
1582			}
1583		panic("Thread %p cannot exit while holding sleeplocks\n", td);
1584	}
1585	witness_lock_list_free(lle);
1586}
1587
1588/*
1589 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1590 * exempt Giant and sleepable locks from the checks as well.  If any
1591 * non-exempt locks are held, then a supplied message is printed to the
1592 * console along with a list of the offending locks.  If indicated in the
1593 * flags then a failure results in a panic as well.
1594 */
1595int
1596witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1597{
1598	struct lock_list_entry *lock_list, *lle;
1599	struct lock_instance *lock1;
1600	struct thread *td;
1601	va_list ap;
1602	int i, n;
1603
1604	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1605		return (0);
1606	n = 0;
1607	td = curthread;
1608	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1609		for (i = lle->ll_count - 1; i >= 0; i--) {
1610			lock1 = &lle->ll_children[i];
1611			if (lock1->li_lock == lock)
1612				continue;
1613			if (flags & WARN_GIANTOK &&
1614			    lock1->li_lock == &Giant.lock_object)
1615				continue;
1616			if (flags & WARN_SLEEPOK &&
1617			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1618				continue;
1619			if (n == 0) {
1620				va_start(ap, fmt);
1621				vprintf(fmt, ap);
1622				va_end(ap);
1623				printf(" with the following");
1624				if (flags & WARN_SLEEPOK)
1625					printf(" non-sleepable");
1626				printf(" locks held:\n");
1627			}
1628			n++;
1629			witness_list_lock(lock1);
1630		}
1631
1632	/*
1633	 * Pin the thread in order to avoid problems with thread migration.
1634	 * Once that all verifies are passed about spinlocks ownership,
1635	 * the thread is in a safe path and it can be unpinned.
1636	 */
1637	sched_pin();
1638	lock_list = PCPU_GET(spinlocks);
1639	if (lock_list != NULL && lock_list->ll_count != 0) {
1640		sched_unpin();
1641
1642		/*
1643		 * We should only have one spinlock and as long as
1644		 * the flags cannot match for this locks class,
1645		 * check if the first spinlock is the one curthread
1646		 * should hold.
1647		 */
1648		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1649		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1650		    lock1->li_lock == lock && n == 0)
1651			return (0);
1652
1653		va_start(ap, fmt);
1654		vprintf(fmt, ap);
1655		va_end(ap);
1656		printf(" with the following");
1657		if (flags & WARN_SLEEPOK)
1658			printf(" non-sleepable");
1659		printf(" locks held:\n");
1660		n += witness_list_locks(&lock_list);
1661	} else
1662		sched_unpin();
1663	if (flags & WARN_PANIC && n)
1664		panic("%s", __func__);
1665	else
1666		witness_debugger(n);
1667	return (n);
1668}
1669
1670const char *
1671witness_file(struct lock_object *lock)
1672{
1673	struct witness *w;
1674
1675	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1676		return ("?");
1677	w = lock->lo_witness;
1678	return (w->w_file);
1679}
1680
1681int
1682witness_line(struct lock_object *lock)
1683{
1684	struct witness *w;
1685
1686	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1687		return (0);
1688	w = lock->lo_witness;
1689	return (w->w_line);
1690}
1691
1692static struct witness *
1693enroll(const char *description, struct lock_class *lock_class)
1694{
1695	struct witness *w;
1696	struct witness_list *typelist;
1697
1698	MPASS(description != NULL);
1699
1700	if (witness_watch == -1 || panicstr != NULL)
1701		return (NULL);
1702	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1703		if (witness_skipspin)
1704			return (NULL);
1705		else
1706			typelist = &w_spin;
1707	} else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1708		typelist = &w_sleep;
1709	else
1710		panic("lock class %s is not sleep or spin",
1711		    lock_class->lc_name);
1712
1713	mtx_lock_spin(&w_mtx);
1714	w = witness_hash_get(description);
1715	if (w)
1716		goto found;
1717	if ((w = witness_get()) == NULL)
1718		return (NULL);
1719	MPASS(strlen(description) < MAX_W_NAME);
1720	strcpy(w->w_name, description);
1721	w->w_class = lock_class;
1722	w->w_refcount = 1;
1723	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1724	if (lock_class->lc_flags & LC_SPINLOCK) {
1725		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1726		w_spin_cnt++;
1727	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1728		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1729		w_sleep_cnt++;
1730	}
1731
1732	/* Insert new witness into the hash */
1733	witness_hash_put(w);
1734	witness_increment_graph_generation();
1735	mtx_unlock_spin(&w_mtx);
1736	return (w);
1737found:
1738	w->w_refcount++;
1739	mtx_unlock_spin(&w_mtx);
1740	if (lock_class != w->w_class)
1741		panic(
1742			"lock (%s) %s does not match earlier (%s) lock",
1743			description, lock_class->lc_name,
1744			w->w_class->lc_name);
1745	return (w);
1746}
1747
1748static void
1749depart(struct witness *w)
1750{
1751	struct witness_list *list;
1752
1753	MPASS(w->w_refcount == 0);
1754	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1755		list = &w_sleep;
1756		w_sleep_cnt--;
1757	} else {
1758		list = &w_spin;
1759		w_spin_cnt--;
1760	}
1761	/*
1762	 * Set file to NULL as it may point into a loadable module.
1763	 */
1764	w->w_file = NULL;
1765	w->w_line = 0;
1766	witness_increment_graph_generation();
1767}
1768
1769
1770static void
1771adopt(struct witness *parent, struct witness *child)
1772{
1773	int pi, ci, i, j;
1774
1775	if (witness_cold == 0)
1776		mtx_assert(&w_mtx, MA_OWNED);
1777
1778	/* If the relationship is already known, there's no work to be done. */
1779	if (isitmychild(parent, child))
1780		return;
1781
1782	/* When the structure of the graph changes, bump up the generation. */
1783	witness_increment_graph_generation();
1784
1785	/*
1786	 * The hard part ... create the direct relationship, then propagate all
1787	 * indirect relationships.
1788	 */
1789	pi = parent->w_index;
1790	ci = child->w_index;
1791	WITNESS_INDEX_ASSERT(pi);
1792	WITNESS_INDEX_ASSERT(ci);
1793	MPASS(pi != ci);
1794	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1795	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1796
1797	/*
1798	 * If parent was not already an ancestor of child,
1799	 * then we increment the descendant and ancestor counters.
1800	 */
1801	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1802		parent->w_num_descendants++;
1803		child->w_num_ancestors++;
1804	}
1805
1806	/*
1807	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1808	 * an ancestor of 'pi' during this loop.
1809	 */
1810	for (i = 1; i <= w_max_used_index; i++) {
1811		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1812		    (i != pi))
1813			continue;
1814
1815		/* Find each descendant of 'i' and mark it as a descendant. */
1816		for (j = 1; j <= w_max_used_index; j++) {
1817
1818			/*
1819			 * Skip children that are already marked as
1820			 * descendants of 'i'.
1821			 */
1822			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1823				continue;
1824
1825			/*
1826			 * We are only interested in descendants of 'ci'. Note
1827			 * that 'ci' itself is counted as a descendant of 'ci'.
1828			 */
1829			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1830			    (j != ci))
1831				continue;
1832			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1833			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1834			w_data[i].w_num_descendants++;
1835			w_data[j].w_num_ancestors++;
1836
1837			/*
1838			 * Make sure we aren't marking a node as both an
1839			 * ancestor and descendant. We should have caught
1840			 * this as a lock order reversal earlier.
1841			 */
1842			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1843			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1844				printf("witness rmatrix paradox! [%d][%d]=%d "
1845				    "both ancestor and descendant\n",
1846				    i, j, w_rmatrix[i][j]);
1847				kdb_backtrace();
1848				printf("Witness disabled.\n");
1849				witness_watch = -1;
1850			}
1851			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1852			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1853				printf("witness rmatrix paradox! [%d][%d]=%d "
1854				    "both ancestor and descendant\n",
1855				    j, i, w_rmatrix[j][i]);
1856				kdb_backtrace();
1857				printf("Witness disabled.\n");
1858				witness_watch = -1;
1859			}
1860		}
1861	}
1862}
1863
1864static void
1865itismychild(struct witness *parent, struct witness *child)
1866{
1867
1868	MPASS(child != NULL && parent != NULL);
1869	if (witness_cold == 0)
1870		mtx_assert(&w_mtx, MA_OWNED);
1871
1872	if (!witness_lock_type_equal(parent, child)) {
1873		if (witness_cold == 0)
1874			mtx_unlock_spin(&w_mtx);
1875		panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1876		    "the same lock type", __func__, parent->w_name,
1877		    parent->w_class->lc_name, child->w_name,
1878		    child->w_class->lc_name);
1879	}
1880	adopt(parent, child);
1881}
1882
1883/*
1884 * Generic code for the isitmy*() functions. The rmask parameter is the
1885 * expected relationship of w1 to w2.
1886 */
1887static int
1888_isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1889{
1890	unsigned char r1, r2;
1891	int i1, i2;
1892
1893	i1 = w1->w_index;
1894	i2 = w2->w_index;
1895	WITNESS_INDEX_ASSERT(i1);
1896	WITNESS_INDEX_ASSERT(i2);
1897	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1898	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1899
1900	/* The flags on one better be the inverse of the flags on the other */
1901	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1902		(WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1903		printf("%s: rmatrix mismatch between %s (index %d) and %s "
1904		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
1905		    "w_rmatrix[%d][%d] == %hhx\n",
1906		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1907		    i2, i1, r2);
1908		kdb_backtrace();
1909		printf("Witness disabled.\n");
1910		witness_watch = -1;
1911	}
1912	return (r1 & rmask);
1913}
1914
1915/*
1916 * Checks if @child is a direct child of @parent.
1917 */
1918static int
1919isitmychild(struct witness *parent, struct witness *child)
1920{
1921
1922	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1923}
1924
1925/*
1926 * Checks if @descendant is a direct or inderect descendant of @ancestor.
1927 */
1928static int
1929isitmydescendant(struct witness *ancestor, struct witness *descendant)
1930{
1931
1932	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1933	    __func__));
1934}
1935
1936#ifdef BLESSING
1937static int
1938blessed(struct witness *w1, struct witness *w2)
1939{
1940	int i;
1941	struct witness_blessed *b;
1942
1943	for (i = 0; i < blessed_count; i++) {
1944		b = &blessed_list[i];
1945		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1946			if (strcmp(w2->w_name, b->b_lock2) == 0)
1947				return (1);
1948			continue;
1949		}
1950		if (strcmp(w1->w_name, b->b_lock2) == 0)
1951			if (strcmp(w2->w_name, b->b_lock1) == 0)
1952				return (1);
1953	}
1954	return (0);
1955}
1956#endif
1957
1958static struct witness *
1959witness_get(void)
1960{
1961	struct witness *w;
1962	int index;
1963
1964	if (witness_cold == 0)
1965		mtx_assert(&w_mtx, MA_OWNED);
1966
1967	if (witness_watch == -1) {
1968		mtx_unlock_spin(&w_mtx);
1969		return (NULL);
1970	}
1971	if (STAILQ_EMPTY(&w_free)) {
1972		witness_watch = -1;
1973		mtx_unlock_spin(&w_mtx);
1974		printf("WITNESS: unable to allocate a new witness object\n");
1975		return (NULL);
1976	}
1977	w = STAILQ_FIRST(&w_free);
1978	STAILQ_REMOVE_HEAD(&w_free, w_list);
1979	w_free_cnt--;
1980	index = w->w_index;
1981	MPASS(index > 0 && index == w_max_used_index+1 &&
1982	    index < WITNESS_COUNT);
1983	bzero(w, sizeof(*w));
1984	w->w_index = index;
1985	if (index > w_max_used_index)
1986		w_max_used_index = index;
1987	return (w);
1988}
1989
1990static void
1991witness_free(struct witness *w)
1992{
1993
1994	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1995	w_free_cnt++;
1996}
1997
1998static struct lock_list_entry *
1999witness_lock_list_get(void)
2000{
2001	struct lock_list_entry *lle;
2002
2003	if (witness_watch == -1)
2004		return (NULL);
2005	mtx_lock_spin(&w_mtx);
2006	lle = w_lock_list_free;
2007	if (lle == NULL) {
2008		witness_watch = -1;
2009		mtx_unlock_spin(&w_mtx);
2010		printf("%s: witness exhausted\n", __func__);
2011		return (NULL);
2012	}
2013	w_lock_list_free = lle->ll_next;
2014	mtx_unlock_spin(&w_mtx);
2015	bzero(lle, sizeof(*lle));
2016	return (lle);
2017}
2018
2019static void
2020witness_lock_list_free(struct lock_list_entry *lle)
2021{
2022
2023	mtx_lock_spin(&w_mtx);
2024	lle->ll_next = w_lock_list_free;
2025	w_lock_list_free = lle;
2026	mtx_unlock_spin(&w_mtx);
2027}
2028
2029static struct lock_instance *
2030find_instance(struct lock_list_entry *list, struct lock_object *lock)
2031{
2032	struct lock_list_entry *lle;
2033	struct lock_instance *instance;
2034	int i;
2035
2036	for (lle = list; lle != NULL; lle = lle->ll_next)
2037		for (i = lle->ll_count - 1; i >= 0; i--) {
2038			instance = &lle->ll_children[i];
2039			if (instance->li_lock == lock)
2040				return (instance);
2041		}
2042	return (NULL);
2043}
2044
2045static void
2046witness_list_lock(struct lock_instance *instance)
2047{
2048	struct lock_object *lock;
2049
2050	lock = instance->li_lock;
2051	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2052	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2053	if (lock->lo_witness->w_name != lock->lo_name)
2054		printf(" (%s)", lock->lo_witness->w_name);
2055	printf(" r = %d (%p) locked @ %s:%d\n",
2056	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
2057	    instance->li_line);
2058}
2059
2060#ifdef DDB
2061static int
2062witness_thread_has_locks(struct thread *td)
2063{
2064
2065	if (td->td_sleeplocks == NULL)
2066		return (0);
2067	return (td->td_sleeplocks->ll_count != 0);
2068}
2069
2070static int
2071witness_proc_has_locks(struct proc *p)
2072{
2073	struct thread *td;
2074
2075	FOREACH_THREAD_IN_PROC(p, td) {
2076		if (witness_thread_has_locks(td))
2077			return (1);
2078	}
2079	return (0);
2080}
2081#endif
2082
2083int
2084witness_list_locks(struct lock_list_entry **lock_list)
2085{
2086	struct lock_list_entry *lle;
2087	int i, nheld;
2088
2089	nheld = 0;
2090	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2091		for (i = lle->ll_count - 1; i >= 0; i--) {
2092			witness_list_lock(&lle->ll_children[i]);
2093			nheld++;
2094		}
2095	return (nheld);
2096}
2097
2098/*
2099 * This is a bit risky at best.  We call this function when we have timed
2100 * out acquiring a spin lock, and we assume that the other CPU is stuck
2101 * with this lock held.  So, we go groveling around in the other CPU's
2102 * per-cpu data to try to find the lock instance for this spin lock to
2103 * see when it was last acquired.
2104 */
2105void
2106witness_display_spinlock(struct lock_object *lock, struct thread *owner)
2107{
2108	struct lock_instance *instance;
2109	struct pcpu *pc;
2110
2111	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2112		return;
2113	pc = pcpu_find(owner->td_oncpu);
2114	instance = find_instance(pc->pc_spinlocks, lock);
2115	if (instance != NULL)
2116		witness_list_lock(instance);
2117}
2118
2119void
2120witness_save(struct lock_object *lock, const char **filep, int *linep)
2121{
2122	struct lock_list_entry *lock_list;
2123	struct lock_instance *instance;
2124	struct lock_class *class;
2125
2126	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2127	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2128		return;
2129	class = LOCK_CLASS(lock);
2130	if (class->lc_flags & LC_SLEEPLOCK)
2131		lock_list = curthread->td_sleeplocks;
2132	else {
2133		if (witness_skipspin)
2134			return;
2135		lock_list = PCPU_GET(spinlocks);
2136	}
2137	instance = find_instance(lock_list, lock);
2138	if (instance == NULL)
2139		panic("%s: lock (%s) %s not locked", __func__,
2140		    class->lc_name, lock->lo_name);
2141	*filep = instance->li_file;
2142	*linep = instance->li_line;
2143}
2144
2145void
2146witness_restore(struct lock_object *lock, const char *file, int line)
2147{
2148	struct lock_list_entry *lock_list;
2149	struct lock_instance *instance;
2150	struct lock_class *class;
2151
2152	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2153	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2154		return;
2155	class = LOCK_CLASS(lock);
2156	if (class->lc_flags & LC_SLEEPLOCK)
2157		lock_list = curthread->td_sleeplocks;
2158	else {
2159		if (witness_skipspin)
2160			return;
2161		lock_list = PCPU_GET(spinlocks);
2162	}
2163	instance = find_instance(lock_list, lock);
2164	if (instance == NULL)
2165		panic("%s: lock (%s) %s not locked", __func__,
2166		    class->lc_name, lock->lo_name);
2167	lock->lo_witness->w_file = file;
2168	lock->lo_witness->w_line = line;
2169	instance->li_file = file;
2170	instance->li_line = line;
2171}
2172
2173void
2174witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2175{
2176#ifdef INVARIANT_SUPPORT
2177	struct lock_instance *instance;
2178	struct lock_class *class;
2179
2180	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2181		return;
2182	class = LOCK_CLASS(lock);
2183	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2184		instance = find_instance(curthread->td_sleeplocks, lock);
2185	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2186		instance = find_instance(PCPU_GET(spinlocks), lock);
2187	else {
2188		panic("Lock (%s) %s is not sleep or spin!",
2189		    class->lc_name, lock->lo_name);
2190	}
2191	file = fixup_filename(file);
2192	switch (flags) {
2193	case LA_UNLOCKED:
2194		if (instance != NULL)
2195			panic("Lock (%s) %s locked @ %s:%d.",
2196			    class->lc_name, lock->lo_name, file, line);
2197		break;
2198	case LA_LOCKED:
2199	case LA_LOCKED | LA_RECURSED:
2200	case LA_LOCKED | LA_NOTRECURSED:
2201	case LA_SLOCKED:
2202	case LA_SLOCKED | LA_RECURSED:
2203	case LA_SLOCKED | LA_NOTRECURSED:
2204	case LA_XLOCKED:
2205	case LA_XLOCKED | LA_RECURSED:
2206	case LA_XLOCKED | LA_NOTRECURSED:
2207		if (instance == NULL) {
2208			panic("Lock (%s) %s not locked @ %s:%d.",
2209			    class->lc_name, lock->lo_name, file, line);
2210			break;
2211		}
2212		if ((flags & LA_XLOCKED) != 0 &&
2213		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2214			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2215			    class->lc_name, lock->lo_name, file, line);
2216		if ((flags & LA_SLOCKED) != 0 &&
2217		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2218			panic("Lock (%s) %s exclusively locked @ %s:%d.",
2219			    class->lc_name, lock->lo_name, file, line);
2220		if ((flags & LA_RECURSED) != 0 &&
2221		    (instance->li_flags & LI_RECURSEMASK) == 0)
2222			panic("Lock (%s) %s not recursed @ %s:%d.",
2223			    class->lc_name, lock->lo_name, file, line);
2224		if ((flags & LA_NOTRECURSED) != 0 &&
2225		    (instance->li_flags & LI_RECURSEMASK) != 0)
2226			panic("Lock (%s) %s recursed @ %s:%d.",
2227			    class->lc_name, lock->lo_name, file, line);
2228		break;
2229	default:
2230		panic("Invalid lock assertion at %s:%d.", file, line);
2231
2232	}
2233#endif	/* INVARIANT_SUPPORT */
2234}
2235
2236static void
2237witness_setflag(struct lock_object *lock, int flag, int set)
2238{
2239	struct lock_list_entry *lock_list;
2240	struct lock_instance *instance;
2241	struct lock_class *class;
2242
2243	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2244		return;
2245	class = LOCK_CLASS(lock);
2246	if (class->lc_flags & LC_SLEEPLOCK)
2247		lock_list = curthread->td_sleeplocks;
2248	else {
2249		if (witness_skipspin)
2250			return;
2251		lock_list = PCPU_GET(spinlocks);
2252	}
2253	instance = find_instance(lock_list, lock);
2254	if (instance == NULL)
2255		panic("%s: lock (%s) %s not locked", __func__,
2256		    class->lc_name, lock->lo_name);
2257
2258	if (set)
2259		instance->li_flags |= flag;
2260	else
2261		instance->li_flags &= ~flag;
2262}
2263
2264void
2265witness_norelease(struct lock_object *lock)
2266{
2267
2268	witness_setflag(lock, LI_NORELEASE, 1);
2269}
2270
2271void
2272witness_releaseok(struct lock_object *lock)
2273{
2274
2275	witness_setflag(lock, LI_NORELEASE, 0);
2276}
2277
2278#ifdef DDB
2279static void
2280witness_ddb_list(struct thread *td)
2281{
2282
2283	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2284	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2285
2286	if (witness_watch < 1)
2287		return;
2288
2289	witness_list_locks(&td->td_sleeplocks);
2290
2291	/*
2292	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2293	 * if td is currently executing on some other CPU and holds spin locks
2294	 * as we won't display those locks.  If we had a MI way of getting
2295	 * the per-cpu data for a given cpu then we could use
2296	 * td->td_oncpu to get the list of spinlocks for this thread
2297	 * and "fix" this.
2298	 *
2299	 * That still wouldn't really fix this unless we locked the scheduler
2300	 * lock or stopped the other CPU to make sure it wasn't changing the
2301	 * list out from under us.  It is probably best to just not try to
2302	 * handle threads on other CPU's for now.
2303	 */
2304	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2305		witness_list_locks(PCPU_PTR(spinlocks));
2306}
2307
2308DB_SHOW_COMMAND(locks, db_witness_list)
2309{
2310	struct thread *td;
2311
2312	if (have_addr)
2313		td = db_lookup_thread(addr, TRUE);
2314	else
2315		td = kdb_thread;
2316	witness_ddb_list(td);
2317}
2318
2319DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2320{
2321	struct thread *td;
2322	struct proc *p;
2323
2324	/*
2325	 * It would be nice to list only threads and processes that actually
2326	 * held sleep locks, but that information is currently not exported
2327	 * by WITNESS.
2328	 */
2329	FOREACH_PROC_IN_SYSTEM(p) {
2330		if (!witness_proc_has_locks(p))
2331			continue;
2332		FOREACH_THREAD_IN_PROC(p, td) {
2333			if (!witness_thread_has_locks(td))
2334				continue;
2335			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2336			    p->p_comm, td, td->td_tid);
2337			witness_ddb_list(td);
2338		}
2339	}
2340}
2341DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2342
2343DB_SHOW_COMMAND(witness, db_witness_display)
2344{
2345
2346	witness_ddb_display(db_printf);
2347}
2348#endif
2349
2350static int
2351sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2352{
2353	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2354	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2355	struct sbuf *sb;
2356	u_int w_rmatrix1, w_rmatrix2;
2357	int error, generation, i, j;
2358
2359	tmp_data1 = NULL;
2360	tmp_data2 = NULL;
2361	tmp_w1 = NULL;
2362	tmp_w2 = NULL;
2363	if (witness_watch < 1) {
2364		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2365		return (error);
2366	}
2367	if (witness_cold) {
2368		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2369		return (error);
2370	}
2371	error = 0;
2372	sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2373	if (sb == NULL)
2374		return (ENOMEM);
2375
2376	/* Allocate and init temporary storage space. */
2377	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2378	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2379	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2380	    M_WAITOK | M_ZERO);
2381	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2382	    M_WAITOK | M_ZERO);
2383	stack_zero(&tmp_data1->wlod_stack);
2384	stack_zero(&tmp_data2->wlod_stack);
2385
2386restart:
2387	mtx_lock_spin(&w_mtx);
2388	generation = w_generation;
2389	mtx_unlock_spin(&w_mtx);
2390	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2391	    w_lohash.wloh_count);
2392	for (i = 1; i < w_max_used_index; i++) {
2393		mtx_lock_spin(&w_mtx);
2394		if (generation != w_generation) {
2395			mtx_unlock_spin(&w_mtx);
2396
2397			/* The graph has changed, try again. */
2398			req->oldidx = 0;
2399			sbuf_clear(sb);
2400			goto restart;
2401		}
2402
2403		w1 = &w_data[i];
2404		if (w1->w_reversed == 0) {
2405			mtx_unlock_spin(&w_mtx);
2406			continue;
2407		}
2408
2409		/* Copy w1 locally so we can release the spin lock. */
2410		*tmp_w1 = *w1;
2411		mtx_unlock_spin(&w_mtx);
2412
2413		if (tmp_w1->w_reversed == 0)
2414			continue;
2415		for (j = 1; j < w_max_used_index; j++) {
2416			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2417				continue;
2418
2419			mtx_lock_spin(&w_mtx);
2420			if (generation != w_generation) {
2421				mtx_unlock_spin(&w_mtx);
2422
2423				/* The graph has changed, try again. */
2424				req->oldidx = 0;
2425				sbuf_clear(sb);
2426				goto restart;
2427			}
2428
2429			w2 = &w_data[j];
2430			data1 = witness_lock_order_get(w1, w2);
2431			data2 = witness_lock_order_get(w2, w1);
2432
2433			/*
2434			 * Copy information locally so we can release the
2435			 * spin lock.
2436			 */
2437			*tmp_w2 = *w2;
2438			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2439			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2440
2441			if (data1) {
2442				stack_zero(&tmp_data1->wlod_stack);
2443				stack_copy(&data1->wlod_stack,
2444				    &tmp_data1->wlod_stack);
2445			}
2446			if (data2 && data2 != data1) {
2447				stack_zero(&tmp_data2->wlod_stack);
2448				stack_copy(&data2->wlod_stack,
2449				    &tmp_data2->wlod_stack);
2450			}
2451			mtx_unlock_spin(&w_mtx);
2452
2453			sbuf_printf(sb,
2454	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2455			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2456			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2457#if 0
2458 			sbuf_printf(sb,
2459			"w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2460 			    tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2461 			    tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2462#endif
2463			if (data1) {
2464				sbuf_printf(sb,
2465			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2466				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2467				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2468				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2469				sbuf_printf(sb, "\n");
2470			}
2471			if (data2 && data2 != data1) {
2472				sbuf_printf(sb,
2473			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2474				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2475				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2476				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2477				sbuf_printf(sb, "\n");
2478			}
2479		}
2480	}
2481	mtx_lock_spin(&w_mtx);
2482	if (generation != w_generation) {
2483		mtx_unlock_spin(&w_mtx);
2484
2485		/*
2486		 * The graph changed while we were printing stack data,
2487		 * try again.
2488		 */
2489		req->oldidx = 0;
2490		sbuf_clear(sb);
2491		goto restart;
2492	}
2493	mtx_unlock_spin(&w_mtx);
2494
2495	/* Free temporary storage space. */
2496	free(tmp_data1, M_TEMP);
2497	free(tmp_data2, M_TEMP);
2498	free(tmp_w1, M_TEMP);
2499	free(tmp_w2, M_TEMP);
2500
2501	sbuf_finish(sb);
2502	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2503	sbuf_delete(sb);
2504
2505	return (error);
2506}
2507
2508static int
2509sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2510{
2511	struct witness *w;
2512	struct sbuf *sb;
2513	int error;
2514
2515	if (witness_watch < 1) {
2516		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2517		return (error);
2518	}
2519	if (witness_cold) {
2520		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2521		return (error);
2522	}
2523	error = 0;
2524	sb = sbuf_new(NULL, NULL, FULLGRAPH_SBUF_SIZE, SBUF_FIXEDLEN);
2525	if (sb == NULL)
2526		return (ENOMEM);
2527	sbuf_printf(sb, "\n");
2528
2529	mtx_lock_spin(&w_mtx);
2530	STAILQ_FOREACH(w, &w_all, w_list)
2531		w->w_displayed = 0;
2532	STAILQ_FOREACH(w, &w_all, w_list)
2533		witness_add_fullgraph(sb, w);
2534	mtx_unlock_spin(&w_mtx);
2535
2536	/*
2537	 * While using SBUF_FIXEDLEN, check if the sbuf overflowed.
2538	 */
2539	if (sbuf_overflowed(sb)) {
2540		sbuf_delete(sb);
2541		panic("%s: sbuf overflowed, bump FULLGRAPH_SBUF_SIZE value\n",
2542		    __func__);
2543	}
2544
2545	/*
2546	 * Close the sbuf and return to userland.
2547	 */
2548	sbuf_finish(sb);
2549	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2550	sbuf_delete(sb);
2551
2552	return (error);
2553}
2554
2555static int
2556sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2557{
2558	int error, value;
2559
2560	value = witness_watch;
2561	error = sysctl_handle_int(oidp, &value, 0, req);
2562	if (error != 0 || req->newptr == NULL)
2563		return (error);
2564	if (value > 1 || value < -1 ||
2565	    (witness_watch == -1 && value != witness_watch))
2566		return (EINVAL);
2567	witness_watch = value;
2568	return (0);
2569}
2570
2571static void
2572witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2573{
2574	int i;
2575
2576	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2577		return;
2578	w->w_displayed = 1;
2579
2580	WITNESS_INDEX_ASSERT(w->w_index);
2581	for (i = 1; i <= w_max_used_index; i++) {
2582		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2583			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2584			    w_data[i].w_name);
2585			witness_add_fullgraph(sb, &w_data[i]);
2586		}
2587	}
2588}
2589
2590/*
2591 * A simple hash function. Takes a key pointer and a key size. If size == 0,
2592 * interprets the key as a string and reads until the null
2593 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2594 * hash value computed from the key.
2595 */
2596static uint32_t
2597witness_hash_djb2(const uint8_t *key, uint32_t size)
2598{
2599	unsigned int hash = 5381;
2600	int i;
2601
2602	/* hash = hash * 33 + key[i] */
2603	if (size)
2604		for (i = 0; i < size; i++)
2605			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2606	else
2607		for (i = 0; key[i] != 0; i++)
2608			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2609
2610	return (hash);
2611}
2612
2613
2614/*
2615 * Initializes the two witness hash tables. Called exactly once from
2616 * witness_initialize().
2617 */
2618static void
2619witness_init_hash_tables(void)
2620{
2621	int i;
2622
2623	MPASS(witness_cold);
2624
2625	/* Initialize the hash tables. */
2626	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2627		w_hash.wh_array[i] = NULL;
2628
2629	w_hash.wh_size = WITNESS_HASH_SIZE;
2630	w_hash.wh_count = 0;
2631
2632	/* Initialize the lock order data hash. */
2633	w_lofree = NULL;
2634	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2635		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2636		w_lodata[i].wlod_next = w_lofree;
2637		w_lofree = &w_lodata[i];
2638	}
2639	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2640	w_lohash.wloh_count = 0;
2641	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2642		w_lohash.wloh_array[i] = NULL;
2643}
2644
2645static struct witness *
2646witness_hash_get(const char *key)
2647{
2648	struct witness *w;
2649	uint32_t hash;
2650
2651	MPASS(key != NULL);
2652	if (witness_cold == 0)
2653		mtx_assert(&w_mtx, MA_OWNED);
2654	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2655	w = w_hash.wh_array[hash];
2656	while (w != NULL) {
2657		if (strcmp(w->w_name, key) == 0)
2658			goto out;
2659		w = w->w_hash_next;
2660	}
2661
2662out:
2663	return (w);
2664}
2665
2666static void
2667witness_hash_put(struct witness *w)
2668{
2669	uint32_t hash;
2670
2671	MPASS(w != NULL);
2672	MPASS(w->w_name != NULL);
2673	if (witness_cold == 0)
2674		mtx_assert(&w_mtx, MA_OWNED);
2675	KASSERT(witness_hash_get(w->w_name) == NULL,
2676	    ("%s: trying to add a hash entry that already exists!", __func__));
2677	KASSERT(w->w_hash_next == NULL,
2678	    ("%s: w->w_hash_next != NULL", __func__));
2679
2680	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2681	w->w_hash_next = w_hash.wh_array[hash];
2682	w_hash.wh_array[hash] = w;
2683	w_hash.wh_count++;
2684}
2685
2686
2687static struct witness_lock_order_data *
2688witness_lock_order_get(struct witness *parent, struct witness *child)
2689{
2690	struct witness_lock_order_data *data = NULL;
2691	struct witness_lock_order_key key;
2692	unsigned int hash;
2693
2694	MPASS(parent != NULL && child != NULL);
2695	key.from = parent->w_index;
2696	key.to = child->w_index;
2697	WITNESS_INDEX_ASSERT(key.from);
2698	WITNESS_INDEX_ASSERT(key.to);
2699	if ((w_rmatrix[parent->w_index][child->w_index]
2700	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2701		goto out;
2702
2703	hash = witness_hash_djb2((const char*)&key,
2704	    sizeof(key)) % w_lohash.wloh_size;
2705	data = w_lohash.wloh_array[hash];
2706	while (data != NULL) {
2707		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2708			break;
2709		data = data->wlod_next;
2710	}
2711
2712out:
2713	return (data);
2714}
2715
2716/*
2717 * Verify that parent and child have a known relationship, are not the same,
2718 * and child is actually a child of parent.  This is done without w_mtx
2719 * to avoid contention in the common case.
2720 */
2721static int
2722witness_lock_order_check(struct witness *parent, struct witness *child)
2723{
2724
2725	if (parent != child &&
2726	    w_rmatrix[parent->w_index][child->w_index]
2727	    & WITNESS_LOCK_ORDER_KNOWN &&
2728	    isitmychild(parent, child))
2729		return (1);
2730
2731	return (0);
2732}
2733
2734static int
2735witness_lock_order_add(struct witness *parent, struct witness *child)
2736{
2737	struct witness_lock_order_data *data = NULL;
2738	struct witness_lock_order_key key;
2739	unsigned int hash;
2740
2741	MPASS(parent != NULL && child != NULL);
2742	key.from = parent->w_index;
2743	key.to = child->w_index;
2744	WITNESS_INDEX_ASSERT(key.from);
2745	WITNESS_INDEX_ASSERT(key.to);
2746	if (w_rmatrix[parent->w_index][child->w_index]
2747	    & WITNESS_LOCK_ORDER_KNOWN)
2748		return (1);
2749
2750	hash = witness_hash_djb2((const char*)&key,
2751	    sizeof(key)) % w_lohash.wloh_size;
2752	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2753	data = w_lofree;
2754	if (data == NULL)
2755		return (0);
2756	w_lofree = data->wlod_next;
2757	data->wlod_next = w_lohash.wloh_array[hash];
2758	data->wlod_key = key;
2759	w_lohash.wloh_array[hash] = data;
2760	w_lohash.wloh_count++;
2761	stack_zero(&data->wlod_stack);
2762	stack_save(&data->wlod_stack);
2763	return (1);
2764}
2765
2766/* Call this whenver the structure of the witness graph changes. */
2767static void
2768witness_increment_graph_generation(void)
2769{
2770
2771	if (witness_cold == 0)
2772		mtx_assert(&w_mtx, MA_OWNED);
2773	w_generation++;
2774}
2775
2776#ifdef KDB
2777static void
2778_witness_debugger(int cond, const char *msg)
2779{
2780
2781	if (witness_trace && cond)
2782		kdb_backtrace();
2783	if (witness_kdb && cond)
2784		kdb_enter(KDB_WHY_WITNESS, msg);
2785}
2786#endif
2787