subr_witness.c revision 177253
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Implementation of the `witness' lock verifier.  Originally implemented for
34 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35 * classes in FreeBSD.
36 */
37
38/*
39 *	Main Entry: witness
40 *	Pronunciation: 'wit-n&s
41 *	Function: noun
42 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43 *	    testimony, witness, from 2wit
44 *	Date: before 12th century
45 *	1 : attestation of a fact or event : TESTIMONY
46 *	2 : one that gives evidence; specifically : one who testifies in
47 *	    a cause or before a judicial tribunal
48 *	3 : one asked to be present at a transaction so as to be able to
49 *	    testify to its having taken place
50 *	4 : one who has personal knowledge of something
51 *	5 a : something serving as evidence or proof : SIGN
52 *	  b : public affirmation by word or example of usually
53 *	      religious faith or conviction <the heroic witness to divine
54 *	      life -- Pilot>
55 *	6 capitalized : a member of the Jehovah's Witnesses
56 */
57
58/*
59 * Special rules concerning Giant and lock orders:
60 *
61 * 1) Giant must be acquired before any other mutexes.  Stated another way,
62 *    no other mutex may be held when Giant is acquired.
63 *
64 * 2) Giant must be released when blocking on a sleepable lock.
65 *
66 * This rule is less obvious, but is a result of Giant providing the same
67 * semantics as spl().  Basically, when a thread sleeps, it must release
68 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69 * 2).
70 *
71 * 3) Giant may be acquired before or after sleepable locks.
72 *
73 * This rule is also not quite as obvious.  Giant may be acquired after
74 * a sleepable lock because it is a non-sleepable lock and non-sleepable
75 * locks may always be acquired while holding a sleepable lock.  The second
76 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80 * execute.  Thus, acquiring Giant both before and after a sleepable lock
81 * will not result in a lock order reversal.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/kern/subr_witness.c 177253 2008-03-16 10:58:09Z rwatson $");
86
87#include "opt_ddb.h"
88#include "opt_hwpmc_hooks.h"
89#include "opt_witness.h"
90
91#include <sys/param.h>
92#include <sys/bus.h>
93#include <sys/kdb.h>
94#include <sys/kernel.h>
95#include <sys/ktr.h>
96#include <sys/lock.h>
97#include <sys/malloc.h>
98#include <sys/mutex.h>
99#include <sys/priv.h>
100#include <sys/proc.h>
101#include <sys/sysctl.h>
102#include <sys/systm.h>
103
104#include <ddb/ddb.h>
105
106#include <machine/stdarg.h>
107
108/* Note that these traces do not work with KTR_ALQ. */
109#if 0
110#define	KTR_WITNESS	KTR_SUBSYS
111#else
112#define	KTR_WITNESS	0
113#endif
114
115/* Easier to stay with the old names. */
116#define	lo_list		lo_witness_data.lod_list
117#define	lo_witness	lo_witness_data.lod_witness
118
119/* Define this to check for blessed mutexes */
120#undef BLESSING
121
122#define WITNESS_COUNT 1024
123#define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
124/*
125 * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
126 * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
127 * probably be safe for the most part, but it's still a SWAG.
128 */
129#define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
130
131#define	WITNESS_NCHILDREN 6
132
133struct witness_child_list_entry;
134
135struct witness {
136	const	char *w_name;
137	struct	lock_class *w_class;
138	STAILQ_ENTRY(witness) w_list;		/* List of all witnesses. */
139	STAILQ_ENTRY(witness) w_typelist;	/* Witnesses of a type. */
140	struct	witness_child_list_entry *w_children;	/* Great evilness... */
141	const	char *w_file;
142	int	w_line;
143	u_int	w_level;
144	u_int	w_refcount;
145	u_char	w_Giant_squawked:1;
146	u_char	w_other_squawked:1;
147	u_char	w_same_squawked:1;
148	u_char	w_displayed:1;
149};
150
151struct witness_child_list_entry {
152	struct	witness_child_list_entry *wcl_next;
153	struct	witness *wcl_children[WITNESS_NCHILDREN];
154	u_int	wcl_count;
155};
156
157STAILQ_HEAD(witness_list, witness);
158
159#ifdef BLESSING
160struct witness_blessed {
161	const	char *b_lock1;
162	const	char *b_lock2;
163};
164#endif
165
166struct witness_order_list_entry {
167	const	char *w_name;
168	struct	lock_class *w_class;
169};
170
171#ifdef BLESSING
172static int	blessed(struct witness *, struct witness *);
173#endif
174static int	depart(struct witness *w);
175static struct	witness *enroll(const char *description,
176				struct lock_class *lock_class);
177static int	insertchild(struct witness *parent, struct witness *child);
178static int	isitmychild(struct witness *parent, struct witness *child);
179static int	isitmydescendant(struct witness *parent, struct witness *child);
180static int	itismychild(struct witness *parent, struct witness *child);
181static void	removechild(struct witness *parent, struct witness *child);
182static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
183static const char *fixup_filename(const char *file);
184static struct	witness *witness_get(void);
185static void	witness_free(struct witness *m);
186static struct	witness_child_list_entry *witness_child_get(void);
187static void	witness_child_free(struct witness_child_list_entry *wcl);
188static struct	lock_list_entry *witness_lock_list_get(void);
189static void	witness_lock_list_free(struct lock_list_entry *lle);
190static struct	lock_instance *find_instance(struct lock_list_entry *lock_list,
191					     struct lock_object *lock);
192static void	witness_list_lock(struct lock_instance *instance);
193#ifdef DDB
194static void	witness_leveldescendents(struct witness *parent, int level);
195static void	witness_levelall(void);
196static void	witness_displaydescendants(void(*)(const char *fmt, ...),
197					   struct witness *, int indent);
198static void	witness_display_list(void(*prnt)(const char *fmt, ...),
199				     struct witness_list *list);
200static void	witness_display(void(*)(const char *fmt, ...));
201static void	witness_list(struct thread *td);
202#endif
203
204SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
205
206/*
207 * If set to 0, witness is disabled.  If set to a non-zero value, witness
208 * performs full lock order checking for all locks.  At runtime, this
209 * value may be set to 0 to turn off witness.  witness is not allowed be
210 * turned on once it is turned off, however.
211 */
212static int witness_watch = 1;
213TUNABLE_INT("debug.witness.watch", &witness_watch);
214SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
215    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
216
217#ifdef KDB
218/*
219 * When KDB is enabled and witness_kdb is set to 1, it will cause the system
220 * to drop into kdebug() when:
221 *	- a lock hierarchy violation occurs
222 *	- locks are held when going to sleep.
223 */
224#ifdef WITNESS_KDB
225int	witness_kdb = 1;
226#else
227int	witness_kdb = 0;
228#endif
229TUNABLE_INT("debug.witness.kdb", &witness_kdb);
230SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
231
232/*
233 * When KDB is enabled and witness_trace is set to 1, it will cause the system
234 * to print a stack trace:
235 *	- a lock hierarchy violation occurs
236 *	- locks are held when going to sleep.
237 */
238int	witness_trace = 1;
239TUNABLE_INT("debug.witness.trace", &witness_trace);
240SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
241#endif /* KDB */
242
243#ifdef WITNESS_SKIPSPIN
244int	witness_skipspin = 1;
245#else
246int	witness_skipspin = 0;
247#endif
248TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
249SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
250    &witness_skipspin, 0, "");
251
252static struct mtx w_mtx;
253static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
254static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
255static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
256static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
257static struct witness_child_list_entry *w_child_free = NULL;
258static struct lock_list_entry *w_lock_list_free = NULL;
259
260static int w_free_cnt, w_spin_cnt, w_sleep_cnt, w_child_free_cnt, w_child_cnt;
261SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
262SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
263SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
264    "");
265SYSCTL_INT(_debug_witness, OID_AUTO, child_free_cnt, CTLFLAG_RD,
266    &w_child_free_cnt, 0, "");
267SYSCTL_INT(_debug_witness, OID_AUTO, child_cnt, CTLFLAG_RD, &w_child_cnt, 0,
268    "");
269
270static struct witness w_data[WITNESS_COUNT];
271static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
272static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
273
274static struct witness_order_list_entry order_lists[] = {
275	/*
276	 * sx locks
277	 */
278	{ "proctree", &lock_class_sx },
279	{ "allproc", &lock_class_sx },
280	{ "allprison", &lock_class_sx },
281	{ NULL, NULL },
282	/*
283	 * Various mutexes
284	 */
285	{ "Giant", &lock_class_mtx_sleep },
286	{ "pipe mutex", &lock_class_mtx_sleep },
287	{ "sigio lock", &lock_class_mtx_sleep },
288	{ "process group", &lock_class_mtx_sleep },
289	{ "process lock", &lock_class_mtx_sleep },
290	{ "session", &lock_class_mtx_sleep },
291	{ "uidinfo hash", &lock_class_mtx_sleep },
292	{ "uidinfo struct", &lock_class_mtx_sleep },
293#ifdef	HWPMC_HOOKS
294	{ "pmc-sleep", &lock_class_mtx_sleep },
295#endif
296	{ NULL, NULL },
297	/*
298	 * Sockets
299	 */
300	{ "accept", &lock_class_mtx_sleep },
301	{ "so_snd", &lock_class_mtx_sleep },
302	{ "so_rcv", &lock_class_mtx_sleep },
303	{ "sellck", &lock_class_mtx_sleep },
304	{ NULL, NULL },
305	/*
306	 * Routing
307	 */
308	{ "so_rcv", &lock_class_mtx_sleep },
309	{ "radix node head", &lock_class_mtx_sleep },
310	{ "rtentry", &lock_class_mtx_sleep },
311	{ "ifaddr", &lock_class_mtx_sleep },
312	{ NULL, NULL },
313	/*
314	 * Multicast - protocol locks before interface locks, after UDP locks.
315	 */
316	{ "udpinp", &lock_class_mtx_sleep },
317	{ "in_multi_mtx", &lock_class_mtx_sleep },
318	{ "igmp_mtx", &lock_class_mtx_sleep },
319	{ "if_addr_mtx", &lock_class_mtx_sleep },
320	{ NULL, NULL },
321	/*
322	 * UNIX Domain Sockets
323	 */
324	{ "unp", &lock_class_mtx_sleep },
325	{ "so_snd", &lock_class_mtx_sleep },
326	{ NULL, NULL },
327	/*
328	 * UDP/IP
329	 */
330	{ "udp", &lock_class_mtx_sleep },
331	{ "udpinp", &lock_class_mtx_sleep },
332	{ "so_snd", &lock_class_mtx_sleep },
333	{ NULL, NULL },
334	/*
335	 * TCP/IP
336	 */
337	{ "tcp", &lock_class_mtx_sleep },
338	{ "tcpinp", &lock_class_mtx_sleep },
339	{ "so_snd", &lock_class_mtx_sleep },
340	{ NULL, NULL },
341	/*
342	 * SLIP
343	 */
344	{ "slip_mtx", &lock_class_mtx_sleep },
345	{ "slip sc_mtx", &lock_class_mtx_sleep },
346	{ NULL, NULL },
347	/*
348	 * netatalk
349	 */
350	{ "ddp_list_mtx", &lock_class_mtx_sleep },
351	{ "ddp_mtx", &lock_class_mtx_sleep },
352	{ NULL, NULL },
353	/*
354	 * BPF
355	 */
356	{ "bpf global lock", &lock_class_mtx_sleep },
357	{ "bpf interface lock", &lock_class_mtx_sleep },
358	{ "bpf cdev lock", &lock_class_mtx_sleep },
359	{ NULL, NULL },
360	/*
361	 * NFS server
362	 */
363	{ "nfsd_mtx", &lock_class_mtx_sleep },
364	{ "so_snd", &lock_class_mtx_sleep },
365	{ NULL, NULL },
366
367	/*
368	 * IEEE 802.11
369	 */
370	{ "802.11 com lock", &lock_class_mtx_sleep},
371	{ NULL, NULL },
372	/*
373	 * Network drivers
374	 */
375	{ "network driver", &lock_class_mtx_sleep},
376	{ NULL, NULL },
377
378	/*
379	 * Netgraph
380	 */
381	{ "ng_node", &lock_class_mtx_sleep },
382	{ "ng_worklist", &lock_class_mtx_sleep },
383	{ NULL, NULL },
384	/*
385	 * CDEV
386	 */
387	{ "system map", &lock_class_mtx_sleep },
388	{ "vm page queue mutex", &lock_class_mtx_sleep },
389	{ "vnode interlock", &lock_class_mtx_sleep },
390	{ "cdev", &lock_class_mtx_sleep },
391	{ NULL, NULL },
392	/*
393	 * kqueue/VFS interaction
394	 */
395	{ "kqueue", &lock_class_mtx_sleep },
396	{ "struct mount mtx", &lock_class_mtx_sleep },
397	{ "vnode interlock", &lock_class_mtx_sleep },
398	{ NULL, NULL },
399	/*
400	 * spin locks
401	 */
402#ifdef SMP
403	{ "ap boot", &lock_class_mtx_spin },
404#endif
405	{ "rm.mutex_mtx", &lock_class_mtx_spin },
406	{ "sio", &lock_class_mtx_spin },
407	{ "scrlock", &lock_class_mtx_spin },
408#ifdef __i386__
409	{ "cy", &lock_class_mtx_spin },
410#endif
411#ifdef __sparc64__
412	{ "pcib_mtx", &lock_class_mtx_spin },
413	{ "rtc_mtx", &lock_class_mtx_spin },
414#endif
415	{ "scc_hwmtx", &lock_class_mtx_spin },
416	{ "uart_hwmtx", &lock_class_mtx_spin },
417	{ "fast_taskqueue", &lock_class_mtx_spin },
418	{ "intr table", &lock_class_mtx_spin },
419#ifdef	HWPMC_HOOKS
420	{ "pmc-per-proc", &lock_class_mtx_spin },
421#endif
422	{ "process slock", &lock_class_mtx_spin },
423	{ "sleepq chain", &lock_class_mtx_spin },
424	{ "umtx lock", &lock_class_mtx_spin },
425	{ "rm_spinlock", &lock_class_mtx_spin },
426	{ "turnstile chain", &lock_class_mtx_spin },
427	{ "turnstile lock", &lock_class_mtx_spin },
428	{ "sched lock", &lock_class_mtx_spin },
429	{ "td_contested", &lock_class_mtx_spin },
430	{ "callout", &lock_class_mtx_spin },
431	{ "entropy harvest mutex", &lock_class_mtx_spin },
432	{ "syscons video lock", &lock_class_mtx_spin },
433	{ "time lock", &lock_class_mtx_spin },
434#ifdef SMP
435	{ "smp rendezvous", &lock_class_mtx_spin },
436#endif
437#ifdef __powerpc__
438	{ "tlb0", &lock_class_mtx_spin },
439#endif
440	/*
441	 * leaf locks
442	 */
443	{ "icu", &lock_class_mtx_spin },
444#if defined(SMP) && defined(__sparc64__)
445	{ "ipi", &lock_class_mtx_spin },
446#endif
447#ifdef __i386__
448	{ "allpmaps", &lock_class_mtx_spin },
449	{ "descriptor tables", &lock_class_mtx_spin },
450#endif
451	{ "clk", &lock_class_mtx_spin },
452	{ "mprof lock", &lock_class_mtx_spin },
453	{ "zombie lock", &lock_class_mtx_spin },
454	{ "ALD Queue", &lock_class_mtx_spin },
455#ifdef __ia64__
456	{ "MCA spin lock", &lock_class_mtx_spin },
457#endif
458#if defined(__i386__) || defined(__amd64__)
459	{ "pcicfg", &lock_class_mtx_spin },
460	{ "NDIS thread lock", &lock_class_mtx_spin },
461#endif
462	{ "tw_osl_io_lock", &lock_class_mtx_spin },
463	{ "tw_osl_q_lock", &lock_class_mtx_spin },
464	{ "tw_cl_io_lock", &lock_class_mtx_spin },
465	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
466	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
467#ifdef	HWPMC_HOOKS
468	{ "pmc-leaf", &lock_class_mtx_spin },
469#endif
470	{ "blocked lock", &lock_class_mtx_spin },
471	{ NULL, NULL },
472	{ NULL, NULL }
473};
474
475#ifdef BLESSING
476/*
477 * Pairs of locks which have been blessed
478 * Don't complain about order problems with blessed locks
479 */
480static struct witness_blessed blessed_list[] = {
481};
482static int blessed_count =
483	sizeof(blessed_list) / sizeof(struct witness_blessed);
484#endif
485
486/*
487 * List of locks initialized prior to witness being initialized whose
488 * enrollment is currently deferred.
489 */
490STAILQ_HEAD(, lock_object) pending_locks =
491    STAILQ_HEAD_INITIALIZER(pending_locks);
492
493/*
494 * This global is set to 0 once it becomes safe to use the witness code.
495 */
496static int witness_cold = 1;
497
498/*
499 * This global is set to 1 once the static lock orders have been enrolled
500 * so that a warning can be issued for any spin locks enrolled later.
501 */
502static int witness_spin_warn = 0;
503
504/*
505 * The WITNESS-enabled diagnostic code.  Note that the witness code does
506 * assume that the early boot is single-threaded at least until after this
507 * routine is completed.
508 */
509static void
510witness_initialize(void *dummy __unused)
511{
512	struct lock_object *lock;
513	struct witness_order_list_entry *order;
514	struct witness *w, *w1;
515	int i;
516
517	/*
518	 * We have to release Giant before initializing its witness
519	 * structure so that WITNESS doesn't get confused.
520	 */
521	mtx_unlock(&Giant);
522	mtx_assert(&Giant, MA_NOTOWNED);
523
524	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
525	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
526	    MTX_NOWITNESS | MTX_NOPROFILE);
527	for (i = 0; i < WITNESS_COUNT; i++)
528		witness_free(&w_data[i]);
529	for (i = 0; i < WITNESS_CHILDCOUNT; i++)
530		witness_child_free(&w_childdata[i]);
531	for (i = 0; i < LOCK_CHILDCOUNT; i++)
532		witness_lock_list_free(&w_locklistdata[i]);
533
534	/* First add in all the specified order lists. */
535	for (order = order_lists; order->w_name != NULL; order++) {
536		w = enroll(order->w_name, order->w_class);
537		if (w == NULL)
538			continue;
539		w->w_file = "order list";
540		for (order++; order->w_name != NULL; order++) {
541			w1 = enroll(order->w_name, order->w_class);
542			if (w1 == NULL)
543				continue;
544			w1->w_file = "order list";
545			if (!itismychild(w, w1))
546				panic("Not enough memory for static orders!");
547			w = w1;
548		}
549	}
550	witness_spin_warn = 1;
551
552	/* Iterate through all locks and add them to witness. */
553	while (!STAILQ_EMPTY(&pending_locks)) {
554		lock = STAILQ_FIRST(&pending_locks);
555		STAILQ_REMOVE_HEAD(&pending_locks, lo_list);
556		KASSERT(lock->lo_flags & LO_WITNESS,
557		    ("%s: lock %s is on pending list but not LO_WITNESS",
558		    __func__, lock->lo_name));
559		lock->lo_witness = enroll(lock->lo_type, LOCK_CLASS(lock));
560	}
561
562	/* Mark the witness code as being ready for use. */
563	witness_cold = 0;
564
565	mtx_lock(&Giant);
566}
567SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
568    NULL);
569
570static int
571sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
572{
573	int error, value;
574
575	value = witness_watch;
576	error = sysctl_handle_int(oidp, &value, 0, req);
577	if (error != 0 || req->newptr == NULL)
578		return (error);
579	if (value == witness_watch)
580		return (0);
581	if (value != 0)
582		return (EINVAL);
583	witness_watch = 0;
584	return (0);
585}
586
587void
588witness_init(struct lock_object *lock)
589{
590	struct lock_class *class;
591
592	/* Various sanity checks. */
593	class = LOCK_CLASS(lock);
594	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
595	    (class->lc_flags & LC_RECURSABLE) == 0)
596		panic("%s: lock (%s) %s can not be recursable", __func__,
597		    class->lc_name, lock->lo_name);
598	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
599	    (class->lc_flags & LC_SLEEPABLE) == 0)
600		panic("%s: lock (%s) %s can not be sleepable", __func__,
601		    class->lc_name, lock->lo_name);
602	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
603	    (class->lc_flags & LC_UPGRADABLE) == 0)
604		panic("%s: lock (%s) %s can not be upgradable", __func__,
605		    class->lc_name, lock->lo_name);
606
607	/*
608	 * If we shouldn't watch this lock, then just clear lo_witness.
609	 * Otherwise, if witness_cold is set, then it is too early to
610	 * enroll this lock, so defer it to witness_initialize() by adding
611	 * it to the pending_locks list.  If it is not too early, then enroll
612	 * the lock now.
613	 */
614	if (witness_watch == 0 || panicstr != NULL ||
615	    (lock->lo_flags & LO_WITNESS) == 0)
616		lock->lo_witness = NULL;
617	else if (witness_cold) {
618		STAILQ_INSERT_TAIL(&pending_locks, lock, lo_list);
619		lock->lo_flags |= LO_ENROLLPEND;
620	} else
621		lock->lo_witness = enroll(lock->lo_type, class);
622}
623
624void
625witness_destroy(struct lock_object *lock)
626{
627	struct lock_class *class;
628	struct witness *w;
629
630	class = LOCK_CLASS(lock);
631	if (witness_cold)
632		panic("lock (%s) %s destroyed while witness_cold",
633		    class->lc_name, lock->lo_name);
634
635	/* XXX: need to verify that no one holds the lock */
636	if ((lock->lo_flags & (LO_WITNESS | LO_ENROLLPEND)) == LO_WITNESS &&
637	    lock->lo_witness != NULL) {
638		w = lock->lo_witness;
639		mtx_lock_spin(&w_mtx);
640		MPASS(w->w_refcount > 0);
641		w->w_refcount--;
642
643		/*
644		 * Lock is already released if we have an allocation failure
645		 * and depart() fails.
646		 */
647		if (w->w_refcount != 0 || depart(w))
648			mtx_unlock_spin(&w_mtx);
649	}
650
651	/*
652	 * If this lock is destroyed before witness is up and running,
653	 * remove it from the pending list.
654	 */
655	if (lock->lo_flags & LO_ENROLLPEND) {
656		STAILQ_REMOVE(&pending_locks, lock, lock_object, lo_list);
657		lock->lo_flags &= ~LO_ENROLLPEND;
658	}
659}
660
661#ifdef DDB
662static void
663witness_levelall (void)
664{
665	struct witness_list *list;
666	struct witness *w, *w1;
667
668	/*
669	 * First clear all levels.
670	 */
671	STAILQ_FOREACH(w, &w_all, w_list) {
672		w->w_level = 0;
673	}
674
675	/*
676	 * Look for locks with no parent and level all their descendants.
677	 */
678	STAILQ_FOREACH(w, &w_all, w_list) {
679		/*
680		 * This is just an optimization, technically we could get
681		 * away just walking the all list each time.
682		 */
683		if (w->w_class->lc_flags & LC_SLEEPLOCK)
684			list = &w_sleep;
685		else
686			list = &w_spin;
687		STAILQ_FOREACH(w1, list, w_typelist) {
688			if (isitmychild(w1, w))
689				goto skip;
690		}
691		witness_leveldescendents(w, 0);
692	skip:
693		;	/* silence GCC 3.x */
694	}
695}
696
697static void
698witness_leveldescendents(struct witness *parent, int level)
699{
700	struct witness_child_list_entry *wcl;
701	int i;
702
703	if (parent->w_level < level)
704		parent->w_level = level;
705	level++;
706	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
707		for (i = 0; i < wcl->wcl_count; i++)
708			witness_leveldescendents(wcl->wcl_children[i], level);
709}
710
711static void
712witness_displaydescendants(void(*prnt)(const char *fmt, ...),
713			   struct witness *parent, int indent)
714{
715	struct witness_child_list_entry *wcl;
716	int i, level;
717
718	level = parent->w_level;
719	prnt("%-2d", level);
720	for (i = 0; i < indent; i++)
721		prnt(" ");
722	if (parent->w_refcount > 0)
723		prnt("%s", parent->w_name);
724	else
725		prnt("(dead)");
726	if (parent->w_displayed) {
727		prnt(" -- (already displayed)\n");
728		return;
729	}
730	parent->w_displayed = 1;
731	if (parent->w_refcount > 0) {
732		if (parent->w_file != NULL)
733			prnt(" -- last acquired @ %s:%d", parent->w_file,
734			    parent->w_line);
735	}
736	prnt("\n");
737	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
738		for (i = 0; i < wcl->wcl_count; i++)
739			    witness_displaydescendants(prnt,
740				wcl->wcl_children[i], indent + 1);
741}
742
743static void
744witness_display_list(void(*prnt)(const char *fmt, ...),
745		     struct witness_list *list)
746{
747	struct witness *w;
748
749	STAILQ_FOREACH(w, list, w_typelist) {
750		if (w->w_file == NULL || w->w_level > 0)
751			continue;
752		/*
753		 * This lock has no anscestors, display its descendants.
754		 */
755		witness_displaydescendants(prnt, w, 0);
756	}
757}
758
759static void
760witness_display(void(*prnt)(const char *fmt, ...))
761{
762	struct witness *w;
763
764	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
765	witness_levelall();
766
767	/* Clear all the displayed flags. */
768	STAILQ_FOREACH(w, &w_all, w_list) {
769		w->w_displayed = 0;
770	}
771
772	/*
773	 * First, handle sleep locks which have been acquired at least
774	 * once.
775	 */
776	prnt("Sleep locks:\n");
777	witness_display_list(prnt, &w_sleep);
778
779	/*
780	 * Now do spin locks which have been acquired at least once.
781	 */
782	prnt("\nSpin locks:\n");
783	witness_display_list(prnt, &w_spin);
784
785	/*
786	 * Finally, any locks which have not been acquired yet.
787	 */
788	prnt("\nLocks which were never acquired:\n");
789	STAILQ_FOREACH(w, &w_all, w_list) {
790		if (w->w_file != NULL || w->w_refcount == 0)
791			continue;
792		prnt("%s\n", w->w_name);
793	}
794}
795#endif /* DDB */
796
797/* Trim useless garbage from filenames. */
798static const char *
799fixup_filename(const char *file)
800{
801
802	if (file == NULL)
803		return (NULL);
804	while (strncmp(file, "../", 3) == 0)
805		file += 3;
806	return (file);
807}
808
809int
810witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
811{
812
813	if (witness_watch == 0 || panicstr != NULL)
814		return (0);
815
816	/* Require locks that witness knows about. */
817	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
818	    lock2->lo_witness == NULL)
819		return (EINVAL);
820
821	MPASS(!mtx_owned(&w_mtx));
822	mtx_lock_spin(&w_mtx);
823
824	/*
825	 * If we already have either an explicit or implied lock order that
826	 * is the other way around, then return an error.
827	 */
828	if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
829		mtx_unlock_spin(&w_mtx);
830		return (EDOOFUS);
831	}
832
833	/* Try to add the new order. */
834	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
835	    lock2->lo_type, lock1->lo_type);
836	if (!itismychild(lock1->lo_witness, lock2->lo_witness))
837		return (ENOMEM);
838	mtx_unlock_spin(&w_mtx);
839	return (0);
840}
841
842void
843witness_checkorder(struct lock_object *lock, int flags, const char *file,
844    int line)
845{
846	struct lock_list_entry **lock_list, *lle;
847	struct lock_instance *lock1, *lock2;
848	struct lock_class *class;
849	struct witness *w, *w1;
850	struct thread *td;
851	int i, j;
852
853	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
854	    panicstr != NULL)
855		return;
856
857	/*
858	 * Try locks do not block if they fail to acquire the lock, thus
859	 * there is no danger of deadlocks or of switching while holding a
860	 * spin lock if we acquire a lock via a try operation.  This
861	 * function shouldn't even be called for try locks, so panic if
862	 * that happens.
863	 */
864	if (flags & LOP_TRYLOCK)
865		panic("%s should not be called for try lock operations",
866		    __func__);
867
868	w = lock->lo_witness;
869	class = LOCK_CLASS(lock);
870	td = curthread;
871	file = fixup_filename(file);
872
873	if (class->lc_flags & LC_SLEEPLOCK) {
874		/*
875		 * Since spin locks include a critical section, this check
876		 * implicitly enforces a lock order of all sleep locks before
877		 * all spin locks.
878		 */
879		if (td->td_critnest != 0 && !kdb_active)
880			panic("blockable sleep lock (%s) %s @ %s:%d",
881			    class->lc_name, lock->lo_name, file, line);
882
883		/*
884		 * If this is the first lock acquired then just return as
885		 * no order checking is needed.
886		 */
887		if (td->td_sleeplocks == NULL)
888			return;
889		lock_list = &td->td_sleeplocks;
890	} else {
891		/*
892		 * If this is the first lock, just return as no order
893		 * checking is needed.  We check this in both if clauses
894		 * here as unifying the check would require us to use a
895		 * critical section to ensure we don't migrate while doing
896		 * the check.  Note that if this is not the first lock, we
897		 * are already in a critical section and are safe for the
898		 * rest of the check.
899		 */
900		if (PCPU_GET(spinlocks) == NULL)
901			return;
902		lock_list = PCPU_PTR(spinlocks);
903	}
904
905	/*
906	 * Check to see if we are recursing on a lock we already own.  If
907	 * so, make sure that we don't mismatch exclusive and shared lock
908	 * acquires.
909	 */
910	lock1 = find_instance(*lock_list, lock);
911	if (lock1 != NULL) {
912		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
913		    (flags & LOP_EXCLUSIVE) == 0) {
914			printf("shared lock of (%s) %s @ %s:%d\n",
915			    class->lc_name, lock->lo_name, file, line);
916			printf("while exclusively locked from %s:%d\n",
917			    lock1->li_file, lock1->li_line);
918			panic("share->excl");
919		}
920		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
921		    (flags & LOP_EXCLUSIVE) != 0) {
922			printf("exclusive lock of (%s) %s @ %s:%d\n",
923			    class->lc_name, lock->lo_name, file, line);
924			printf("while share locked from %s:%d\n",
925			    lock1->li_file, lock1->li_line);
926			panic("excl->share");
927		}
928		return;
929	}
930
931	/*
932	 * Try locks do not block if they fail to acquire the lock, thus
933	 * there is no danger of deadlocks or of switching while holding a
934	 * spin lock if we acquire a lock via a try operation.
935	 */
936	if (flags & LOP_TRYLOCK)
937		return;
938
939	/*
940	 * Check for duplicate locks of the same type.  Note that we only
941	 * have to check for this on the last lock we just acquired.  Any
942	 * other cases will be caught as lock order violations.
943	 */
944	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
945	w1 = lock1->li_lock->lo_witness;
946	if (w1 == w) {
947		if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) ||
948		    (flags & LOP_DUPOK))
949			return;
950		w->w_same_squawked = 1;
951		printf("acquiring duplicate lock of same type: \"%s\"\n",
952			lock->lo_type);
953		printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
954		    lock1->li_file, lock1->li_line);
955		printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
956#ifdef KDB
957		goto debugger;
958#else
959		return;
960#endif
961	}
962	MPASS(!mtx_owned(&w_mtx));
963	mtx_lock_spin(&w_mtx);
964	/*
965	 * If we know that the the lock we are acquiring comes after
966	 * the lock we most recently acquired in the lock order tree,
967	 * then there is no need for any further checks.
968	 */
969	if (isitmychild(w1, w)) {
970		mtx_unlock_spin(&w_mtx);
971		return;
972	}
973	for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
974		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
975
976			MPASS(j < WITNESS_COUNT);
977			lock1 = &lle->ll_children[i];
978			w1 = lock1->li_lock->lo_witness;
979
980			/*
981			 * If this lock doesn't undergo witness checking,
982			 * then skip it.
983			 */
984			if (w1 == NULL) {
985				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
986				    ("lock missing witness structure"));
987				continue;
988			}
989			/*
990			 * If we are locking Giant and this is a sleepable
991			 * lock, then skip it.
992			 */
993			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
994			    lock == &Giant.lock_object)
995				continue;
996			/*
997			 * If we are locking a sleepable lock and this lock
998			 * is Giant, then skip it.
999			 */
1000			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1001			    lock1->li_lock == &Giant.lock_object)
1002				continue;
1003			/*
1004			 * If we are locking a sleepable lock and this lock
1005			 * isn't sleepable, we want to treat it as a lock
1006			 * order violation to enfore a general lock order of
1007			 * sleepable locks before non-sleepable locks.
1008			 */
1009			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1010			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1011				goto reversal;
1012			/*
1013			 * If we are locking Giant and this is a non-sleepable
1014			 * lock, then treat it as a reversal.
1015			 */
1016			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1017			    lock == &Giant.lock_object)
1018				goto reversal;
1019			/*
1020			 * Check the lock order hierarchy for a reveresal.
1021			 */
1022			if (!isitmydescendant(w, w1))
1023				continue;
1024		reversal:
1025			/*
1026			 * We have a lock order violation, check to see if it
1027			 * is allowed or has already been yelled about.
1028			 */
1029			mtx_unlock_spin(&w_mtx);
1030#ifdef BLESSING
1031			/*
1032			 * If the lock order is blessed, just bail.  We don't
1033			 * look for other lock order violations though, which
1034			 * may be a bug.
1035			 */
1036			if (blessed(w, w1))
1037				return;
1038#endif
1039			if (lock1->li_lock == &Giant.lock_object) {
1040				if (w1->w_Giant_squawked)
1041					return;
1042				else
1043					w1->w_Giant_squawked = 1;
1044			} else {
1045				if (w1->w_other_squawked)
1046					return;
1047				else
1048					w1->w_other_squawked = 1;
1049			}
1050			/*
1051			 * Ok, yell about it.
1052			 */
1053			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1054			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1055				printf(
1056		"lock order reversal: (sleepable after non-sleepable)\n");
1057			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1058			    && lock == &Giant.lock_object)
1059				printf(
1060		"lock order reversal: (Giant after non-sleepable)\n");
1061			else
1062				printf("lock order reversal:\n");
1063			/*
1064			 * Try to locate an earlier lock with
1065			 * witness w in our list.
1066			 */
1067			do {
1068				lock2 = &lle->ll_children[i];
1069				MPASS(lock2->li_lock != NULL);
1070				if (lock2->li_lock->lo_witness == w)
1071					break;
1072				if (i == 0 && lle->ll_next != NULL) {
1073					lle = lle->ll_next;
1074					i = lle->ll_count - 1;
1075					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1076				} else
1077					i--;
1078			} while (i >= 0);
1079			if (i < 0) {
1080				printf(" 1st %p %s (%s) @ %s:%d\n",
1081				    lock1->li_lock, lock1->li_lock->lo_name,
1082				    lock1->li_lock->lo_type, lock1->li_file,
1083				    lock1->li_line);
1084				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1085				    lock->lo_name, lock->lo_type, file, line);
1086			} else {
1087				printf(" 1st %p %s (%s) @ %s:%d\n",
1088				    lock2->li_lock, lock2->li_lock->lo_name,
1089				    lock2->li_lock->lo_type, lock2->li_file,
1090				    lock2->li_line);
1091				printf(" 2nd %p %s (%s) @ %s:%d\n",
1092				    lock1->li_lock, lock1->li_lock->lo_name,
1093				    lock1->li_lock->lo_type, lock1->li_file,
1094				    lock1->li_line);
1095				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1096				    lock->lo_name, lock->lo_type, file, line);
1097			}
1098#ifdef KDB
1099			goto debugger;
1100#else
1101			return;
1102#endif
1103		}
1104	}
1105	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
1106	/*
1107	 * If requested, build a new lock order.  However, don't build a new
1108	 * relationship between a sleepable lock and Giant if it is in the
1109	 * wrong direction.  The correct lock order is that sleepable locks
1110	 * always come before Giant.
1111	 */
1112	if (flags & LOP_NEWORDER &&
1113	    !(lock1->li_lock == &Giant.lock_object &&
1114	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1115		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1116		    lock->lo_type, lock1->li_lock->lo_type);
1117		if (!itismychild(lock1->li_lock->lo_witness, w))
1118			/* Witness is dead. */
1119			return;
1120	}
1121	mtx_unlock_spin(&w_mtx);
1122	return;
1123
1124#ifdef KDB
1125debugger:
1126	if (witness_trace)
1127		kdb_backtrace();
1128	if (witness_kdb)
1129		kdb_enter(KDB_WHY_WITNESS, __func__);
1130#endif
1131}
1132
1133void
1134witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1135{
1136	struct lock_list_entry **lock_list, *lle;
1137	struct lock_instance *instance;
1138	struct witness *w;
1139	struct thread *td;
1140
1141	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1142	    panicstr != NULL)
1143		return;
1144	w = lock->lo_witness;
1145	td = curthread;
1146	file = fixup_filename(file);
1147
1148	/* Determine lock list for this lock. */
1149	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1150		lock_list = &td->td_sleeplocks;
1151	else
1152		lock_list = PCPU_PTR(spinlocks);
1153
1154	/* Check to see if we are recursing on a lock we already own. */
1155	instance = find_instance(*lock_list, lock);
1156	if (instance != NULL) {
1157		instance->li_flags++;
1158		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1159		    td->td_proc->p_pid, lock->lo_name,
1160		    instance->li_flags & LI_RECURSEMASK);
1161		instance->li_file = file;
1162		instance->li_line = line;
1163		return;
1164	}
1165
1166	/* Update per-witness last file and line acquire. */
1167	w->w_file = file;
1168	w->w_line = line;
1169
1170	/* Find the next open lock instance in the list and fill it. */
1171	lle = *lock_list;
1172	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1173		lle = witness_lock_list_get();
1174		if (lle == NULL)
1175			return;
1176		lle->ll_next = *lock_list;
1177		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1178		    td->td_proc->p_pid, lle);
1179		*lock_list = lle;
1180	}
1181	instance = &lle->ll_children[lle->ll_count++];
1182	instance->li_lock = lock;
1183	instance->li_line = line;
1184	instance->li_file = file;
1185	if ((flags & LOP_EXCLUSIVE) != 0)
1186		instance->li_flags = LI_EXCLUSIVE;
1187	else
1188		instance->li_flags = 0;
1189	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1190	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1191}
1192
1193void
1194witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1195{
1196	struct lock_instance *instance;
1197	struct lock_class *class;
1198
1199	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1200	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1201		return;
1202	class = LOCK_CLASS(lock);
1203	file = fixup_filename(file);
1204	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1205		panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1206		    class->lc_name, lock->lo_name, file, line);
1207	if ((flags & LOP_TRYLOCK) == 0)
1208		panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1209		    lock->lo_name, file, line);
1210	if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1211		panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1212		    class->lc_name, lock->lo_name, file, line);
1213	instance = find_instance(curthread->td_sleeplocks, lock);
1214	if (instance == NULL)
1215		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1216		    class->lc_name, lock->lo_name, file, line);
1217	if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1218		panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1219		    class->lc_name, lock->lo_name, file, line);
1220	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1221		panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1222		    class->lc_name, lock->lo_name,
1223		    instance->li_flags & LI_RECURSEMASK, file, line);
1224	instance->li_flags |= LI_EXCLUSIVE;
1225}
1226
1227void
1228witness_downgrade(struct lock_object *lock, int flags, const char *file,
1229    int line)
1230{
1231	struct lock_instance *instance;
1232	struct lock_class *class;
1233
1234	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1235	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1236		return;
1237	class = LOCK_CLASS(lock);
1238	file = fixup_filename(file);
1239	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1240		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1241		    class->lc_name, lock->lo_name, file, line);
1242	if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1243		panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1244		    class->lc_name, lock->lo_name, file, line);
1245	instance = find_instance(curthread->td_sleeplocks, lock);
1246	if (instance == NULL)
1247		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1248		    class->lc_name, lock->lo_name, file, line);
1249	if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1250		panic("downgrade of shared lock (%s) %s @ %s:%d",
1251		    class->lc_name, lock->lo_name, file, line);
1252	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1253		panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1254		    class->lc_name, lock->lo_name,
1255		    instance->li_flags & LI_RECURSEMASK, file, line);
1256	instance->li_flags &= ~LI_EXCLUSIVE;
1257}
1258
1259void
1260witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1261{
1262	struct lock_list_entry **lock_list, *lle;
1263	struct lock_instance *instance;
1264	struct lock_class *class;
1265	struct thread *td;
1266	register_t s;
1267	int i, j;
1268
1269	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1270	    panicstr != NULL)
1271		return;
1272	td = curthread;
1273	class = LOCK_CLASS(lock);
1274	file = fixup_filename(file);
1275
1276	/* Find lock instance associated with this lock. */
1277	if (class->lc_flags & LC_SLEEPLOCK)
1278		lock_list = &td->td_sleeplocks;
1279	else
1280		lock_list = PCPU_PTR(spinlocks);
1281	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1282		for (i = 0; i < (*lock_list)->ll_count; i++) {
1283			instance = &(*lock_list)->ll_children[i];
1284			if (instance->li_lock == lock)
1285				goto found;
1286		}
1287	panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1288	    file, line);
1289found:
1290
1291	/* First, check for shared/exclusive mismatches. */
1292	if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1293	    (flags & LOP_EXCLUSIVE) == 0) {
1294		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1295		    lock->lo_name, file, line);
1296		printf("while exclusively locked from %s:%d\n",
1297		    instance->li_file, instance->li_line);
1298		panic("excl->ushare");
1299	}
1300	if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1301	    (flags & LOP_EXCLUSIVE) != 0) {
1302		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1303		    lock->lo_name, file, line);
1304		printf("while share locked from %s:%d\n", instance->li_file,
1305		    instance->li_line);
1306		panic("share->uexcl");
1307	}
1308
1309	/* If we are recursed, unrecurse. */
1310	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1311		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1312		    td->td_proc->p_pid, instance->li_lock->lo_name,
1313		    instance->li_flags);
1314		instance->li_flags--;
1315		return;
1316	}
1317
1318	/* Otherwise, remove this item from the list. */
1319	s = intr_disable();
1320	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1321	    td->td_proc->p_pid, instance->li_lock->lo_name,
1322	    (*lock_list)->ll_count - 1);
1323	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1324		(*lock_list)->ll_children[j] =
1325		    (*lock_list)->ll_children[j + 1];
1326	(*lock_list)->ll_count--;
1327	intr_restore(s);
1328
1329	/* If this lock list entry is now empty, free it. */
1330	if ((*lock_list)->ll_count == 0) {
1331		lle = *lock_list;
1332		*lock_list = lle->ll_next;
1333		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1334		    td->td_proc->p_pid, lle);
1335		witness_lock_list_free(lle);
1336	}
1337}
1338
1339/*
1340 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1341 * exempt Giant and sleepable locks from the checks as well.  If any
1342 * non-exempt locks are held, then a supplied message is printed to the
1343 * console along with a list of the offending locks.  If indicated in the
1344 * flags then a failure results in a panic as well.
1345 */
1346int
1347witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1348{
1349	struct lock_list_entry *lle;
1350	struct lock_instance *lock1;
1351	struct thread *td;
1352	va_list ap;
1353	int i, n;
1354
1355	if (witness_cold || witness_watch == 0 || panicstr != NULL)
1356		return (0);
1357	n = 0;
1358	td = curthread;
1359	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1360		for (i = lle->ll_count - 1; i >= 0; i--) {
1361			lock1 = &lle->ll_children[i];
1362			if (lock1->li_lock == lock)
1363				continue;
1364			if (flags & WARN_GIANTOK &&
1365			    lock1->li_lock == &Giant.lock_object)
1366				continue;
1367			if (flags & WARN_SLEEPOK &&
1368			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1369				continue;
1370			if (n == 0) {
1371				va_start(ap, fmt);
1372				vprintf(fmt, ap);
1373				va_end(ap);
1374				printf(" with the following");
1375				if (flags & WARN_SLEEPOK)
1376					printf(" non-sleepable");
1377				printf(" locks held:\n");
1378			}
1379			n++;
1380			witness_list_lock(lock1);
1381		}
1382	if (PCPU_GET(spinlocks) != NULL) {
1383		/*
1384		 * Since we already hold a spinlock preemption is
1385		 * already blocked.
1386		 */
1387		if (n == 0) {
1388			va_start(ap, fmt);
1389			vprintf(fmt, ap);
1390			va_end(ap);
1391			printf(" with the following");
1392			if (flags & WARN_SLEEPOK)
1393				printf(" non-sleepable");
1394			printf(" locks held:\n");
1395		}
1396		n += witness_list_locks(PCPU_PTR(spinlocks));
1397	}
1398	if (flags & WARN_PANIC && n)
1399		panic("witness_warn");
1400#ifdef KDB
1401	else if (witness_kdb && n)
1402		kdb_enter(KDB_WHY_WITNESS, __func__);
1403	else if (witness_trace && n)
1404		kdb_backtrace();
1405#endif
1406	return (n);
1407}
1408
1409const char *
1410witness_file(struct lock_object *lock)
1411{
1412	struct witness *w;
1413
1414	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1415		return ("?");
1416	w = lock->lo_witness;
1417	return (w->w_file);
1418}
1419
1420int
1421witness_line(struct lock_object *lock)
1422{
1423	struct witness *w;
1424
1425	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1426		return (0);
1427	w = lock->lo_witness;
1428	return (w->w_line);
1429}
1430
1431static struct witness *
1432enroll(const char *description, struct lock_class *lock_class)
1433{
1434	struct witness *w;
1435
1436	if (witness_watch == 0 || panicstr != NULL)
1437		return (NULL);
1438	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1439		return (NULL);
1440	mtx_lock_spin(&w_mtx);
1441	STAILQ_FOREACH(w, &w_all, w_list) {
1442		if (w->w_name == description || (w->w_refcount > 0 &&
1443		    strcmp(description, w->w_name) == 0)) {
1444			w->w_refcount++;
1445			mtx_unlock_spin(&w_mtx);
1446			if (lock_class != w->w_class)
1447				panic(
1448				"lock (%s) %s does not match earlier (%s) lock",
1449				    description, lock_class->lc_name,
1450				    w->w_class->lc_name);
1451			return (w);
1452		}
1453	}
1454	if ((w = witness_get()) == NULL)
1455		goto out;
1456	w->w_name = description;
1457	w->w_class = lock_class;
1458	w->w_refcount = 1;
1459	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1460	if (lock_class->lc_flags & LC_SPINLOCK) {
1461		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1462		w_spin_cnt++;
1463	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1464		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1465		w_sleep_cnt++;
1466	} else {
1467		mtx_unlock_spin(&w_mtx);
1468		panic("lock class %s is not sleep or spin",
1469		    lock_class->lc_name);
1470	}
1471	mtx_unlock_spin(&w_mtx);
1472out:
1473	/*
1474	 * We issue a warning for any spin locks not defined in the static
1475	 * order list as a way to discourage their use (folks should really
1476	 * be using non-spin mutexes most of the time).  However, several
1477	 * 3rd part device drivers use spin locks because that is all they
1478	 * have available on Windows and Linux and they think that normal
1479	 * mutexes are insufficient.
1480	 */
1481	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_spin_warn)
1482		printf("WITNESS: spin lock %s not in order list\n",
1483		    description);
1484	return (w);
1485}
1486
1487/* Don't let the door bang you on the way out... */
1488static int
1489depart(struct witness *w)
1490{
1491	struct witness_child_list_entry *wcl, *nwcl;
1492	struct witness_list *list;
1493	struct witness *parent;
1494
1495	MPASS(w->w_refcount == 0);
1496	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1497		list = &w_sleep;
1498		w_sleep_cnt--;
1499	} else {
1500		list = &w_spin;
1501		w_spin_cnt--;
1502	}
1503	/*
1504	 * First, we run through the entire tree looking for any
1505	 * witnesses that the outgoing witness is a child of.  For
1506	 * each parent that we find, we reparent all the direct
1507	 * children of the outgoing witness to its parent.
1508	 */
1509	STAILQ_FOREACH(parent, list, w_typelist) {
1510		if (!isitmychild(parent, w))
1511			continue;
1512		removechild(parent, w);
1513	}
1514
1515	/*
1516	 * Now we go through and free up the child list of the
1517	 * outgoing witness.
1518	 */
1519	for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1520		nwcl = wcl->wcl_next;
1521        	w_child_cnt--;
1522		witness_child_free(wcl);
1523	}
1524
1525	/*
1526	 * Detach from various lists and free.
1527	 */
1528	STAILQ_REMOVE(list, w, witness, w_typelist);
1529	STAILQ_REMOVE(&w_all, w, witness, w_list);
1530	witness_free(w);
1531
1532	return (1);
1533}
1534
1535/*
1536 * Add "child" as a direct child of "parent".  Returns false if
1537 * we fail due to out of memory.
1538 */
1539static int
1540insertchild(struct witness *parent, struct witness *child)
1541{
1542	struct witness_child_list_entry **wcl;
1543
1544	MPASS(child != NULL && parent != NULL);
1545
1546	/*
1547	 * Insert "child" after "parent"
1548	 */
1549	wcl = &parent->w_children;
1550	while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1551		wcl = &(*wcl)->wcl_next;
1552	if (*wcl == NULL) {
1553		*wcl = witness_child_get();
1554		if (*wcl == NULL)
1555			return (0);
1556        	w_child_cnt++;
1557	}
1558	(*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1559
1560	return (1);
1561}
1562
1563
1564static int
1565itismychild(struct witness *parent, struct witness *child)
1566{
1567	struct witness_list *list;
1568
1569	MPASS(child != NULL && parent != NULL);
1570	if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1571	    (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1572		panic(
1573		"%s: parent (%s) and child (%s) are not the same lock type",
1574		    __func__, parent->w_class->lc_name,
1575		    child->w_class->lc_name);
1576
1577	if (!insertchild(parent, child))
1578		return (0);
1579
1580	if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1581		list = &w_sleep;
1582	else
1583		list = &w_spin;
1584	return (1);
1585}
1586
1587static void
1588removechild(struct witness *parent, struct witness *child)
1589{
1590	struct witness_child_list_entry **wcl, *wcl1;
1591	int i;
1592
1593	for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1594		for (i = 0; i < (*wcl)->wcl_count; i++)
1595			if ((*wcl)->wcl_children[i] == child)
1596				goto found;
1597	return;
1598found:
1599	(*wcl)->wcl_count--;
1600	if ((*wcl)->wcl_count > i)
1601		(*wcl)->wcl_children[i] =
1602		    (*wcl)->wcl_children[(*wcl)->wcl_count];
1603	MPASS((*wcl)->wcl_children[i] != NULL);
1604	if ((*wcl)->wcl_count != 0)
1605		return;
1606	wcl1 = *wcl;
1607	*wcl = wcl1->wcl_next;
1608	w_child_cnt--;
1609	witness_child_free(wcl1);
1610}
1611
1612static int
1613isitmychild(struct witness *parent, struct witness *child)
1614{
1615	struct witness_child_list_entry *wcl;
1616	int i;
1617
1618	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1619		for (i = 0; i < wcl->wcl_count; i++) {
1620			if (wcl->wcl_children[i] == child)
1621				return (1);
1622		}
1623	}
1624	return (0);
1625}
1626
1627static int
1628isitmydescendant(struct witness *parent, struct witness *child)
1629{
1630	struct witness_child_list_entry *wcl;
1631	int i, j;
1632
1633	if (isitmychild(parent, child))
1634		return (1);
1635	j = 0;
1636	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1637		MPASS(j < 1000);
1638		for (i = 0; i < wcl->wcl_count; i++) {
1639			if (isitmydescendant(wcl->wcl_children[i], child))
1640				return (1);
1641		}
1642		j++;
1643	}
1644	return (0);
1645}
1646
1647#ifdef BLESSING
1648static int
1649blessed(struct witness *w1, struct witness *w2)
1650{
1651	int i;
1652	struct witness_blessed *b;
1653
1654	for (i = 0; i < blessed_count; i++) {
1655		b = &blessed_list[i];
1656		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1657			if (strcmp(w2->w_name, b->b_lock2) == 0)
1658				return (1);
1659			continue;
1660		}
1661		if (strcmp(w1->w_name, b->b_lock2) == 0)
1662			if (strcmp(w2->w_name, b->b_lock1) == 0)
1663				return (1);
1664	}
1665	return (0);
1666}
1667#endif
1668
1669static struct witness *
1670witness_get(void)
1671{
1672	struct witness *w;
1673
1674	if (witness_watch == 0) {
1675		mtx_unlock_spin(&w_mtx);
1676		return (NULL);
1677	}
1678	if (STAILQ_EMPTY(&w_free)) {
1679		witness_watch = 0;
1680		mtx_unlock_spin(&w_mtx);
1681		printf("%s: witness exhausted\n", __func__);
1682		return (NULL);
1683	}
1684	w = STAILQ_FIRST(&w_free);
1685	STAILQ_REMOVE_HEAD(&w_free, w_list);
1686	w_free_cnt--;
1687	bzero(w, sizeof(*w));
1688	return (w);
1689}
1690
1691static void
1692witness_free(struct witness *w)
1693{
1694
1695	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1696	w_free_cnt++;
1697}
1698
1699static struct witness_child_list_entry *
1700witness_child_get(void)
1701{
1702	struct witness_child_list_entry *wcl;
1703
1704	if (witness_watch == 0) {
1705		mtx_unlock_spin(&w_mtx);
1706		return (NULL);
1707	}
1708	wcl = w_child_free;
1709	if (wcl == NULL) {
1710		witness_watch = 0;
1711		mtx_unlock_spin(&w_mtx);
1712		printf("%s: witness exhausted\n", __func__);
1713		return (NULL);
1714	}
1715	w_child_free = wcl->wcl_next;
1716	w_child_free_cnt--;
1717	bzero(wcl, sizeof(*wcl));
1718	return (wcl);
1719}
1720
1721static void
1722witness_child_free(struct witness_child_list_entry *wcl)
1723{
1724
1725	wcl->wcl_next = w_child_free;
1726	w_child_free = wcl;
1727	w_child_free_cnt++;
1728}
1729
1730static struct lock_list_entry *
1731witness_lock_list_get(void)
1732{
1733	struct lock_list_entry *lle;
1734
1735	if (witness_watch == 0)
1736		return (NULL);
1737	mtx_lock_spin(&w_mtx);
1738	lle = w_lock_list_free;
1739	if (lle == NULL) {
1740		witness_watch = 0;
1741		mtx_unlock_spin(&w_mtx);
1742		printf("%s: witness exhausted\n", __func__);
1743		return (NULL);
1744	}
1745	w_lock_list_free = lle->ll_next;
1746	mtx_unlock_spin(&w_mtx);
1747	bzero(lle, sizeof(*lle));
1748	return (lle);
1749}
1750
1751static void
1752witness_lock_list_free(struct lock_list_entry *lle)
1753{
1754
1755	mtx_lock_spin(&w_mtx);
1756	lle->ll_next = w_lock_list_free;
1757	w_lock_list_free = lle;
1758	mtx_unlock_spin(&w_mtx);
1759}
1760
1761static struct lock_instance *
1762find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1763{
1764	struct lock_list_entry *lle;
1765	struct lock_instance *instance;
1766	int i;
1767
1768	for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1769		for (i = lle->ll_count - 1; i >= 0; i--) {
1770			instance = &lle->ll_children[i];
1771			if (instance->li_lock == lock)
1772				return (instance);
1773		}
1774	return (NULL);
1775}
1776
1777static void
1778witness_list_lock(struct lock_instance *instance)
1779{
1780	struct lock_object *lock;
1781
1782	lock = instance->li_lock;
1783	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1784	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
1785	if (lock->lo_type != lock->lo_name)
1786		printf(" (%s)", lock->lo_type);
1787	printf(" r = %d (%p) locked @ %s:%d\n",
1788	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1789	    instance->li_line);
1790}
1791
1792#ifdef DDB
1793static int
1794witness_thread_has_locks(struct thread *td)
1795{
1796
1797	return (td->td_sleeplocks != NULL);
1798}
1799
1800static int
1801witness_proc_has_locks(struct proc *p)
1802{
1803	struct thread *td;
1804
1805	FOREACH_THREAD_IN_PROC(p, td) {
1806		if (witness_thread_has_locks(td))
1807			return (1);
1808	}
1809	return (0);
1810}
1811#endif
1812
1813int
1814witness_list_locks(struct lock_list_entry **lock_list)
1815{
1816	struct lock_list_entry *lle;
1817	int i, nheld;
1818
1819	nheld = 0;
1820	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1821		for (i = lle->ll_count - 1; i >= 0; i--) {
1822			witness_list_lock(&lle->ll_children[i]);
1823			nheld++;
1824		}
1825	return (nheld);
1826}
1827
1828/*
1829 * This is a bit risky at best.  We call this function when we have timed
1830 * out acquiring a spin lock, and we assume that the other CPU is stuck
1831 * with this lock held.  So, we go groveling around in the other CPU's
1832 * per-cpu data to try to find the lock instance for this spin lock to
1833 * see when it was last acquired.
1834 */
1835void
1836witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1837{
1838	struct lock_instance *instance;
1839	struct pcpu *pc;
1840
1841	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1842		return;
1843	pc = pcpu_find(owner->td_oncpu);
1844	instance = find_instance(pc->pc_spinlocks, lock);
1845	if (instance != NULL)
1846		witness_list_lock(instance);
1847}
1848
1849void
1850witness_save(struct lock_object *lock, const char **filep, int *linep)
1851{
1852	struct lock_list_entry *lock_list;
1853	struct lock_instance *instance;
1854	struct lock_class *class;
1855
1856	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1857	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1858		return;
1859	class = LOCK_CLASS(lock);
1860	if (class->lc_flags & LC_SLEEPLOCK)
1861		lock_list = curthread->td_sleeplocks;
1862	else {
1863		if (witness_skipspin)
1864			return;
1865		lock_list = PCPU_GET(spinlocks);
1866	}
1867	instance = find_instance(lock_list, lock);
1868	if (instance == NULL)
1869		panic("%s: lock (%s) %s not locked", __func__,
1870		    class->lc_name, lock->lo_name);
1871	*filep = instance->li_file;
1872	*linep = instance->li_line;
1873}
1874
1875void
1876witness_restore(struct lock_object *lock, const char *file, int line)
1877{
1878	struct lock_list_entry *lock_list;
1879	struct lock_instance *instance;
1880	struct lock_class *class;
1881
1882	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1883	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1884		return;
1885	class = LOCK_CLASS(lock);
1886	if (class->lc_flags & LC_SLEEPLOCK)
1887		lock_list = curthread->td_sleeplocks;
1888	else {
1889		if (witness_skipspin)
1890			return;
1891		lock_list = PCPU_GET(spinlocks);
1892	}
1893	instance = find_instance(lock_list, lock);
1894	if (instance == NULL)
1895		panic("%s: lock (%s) %s not locked", __func__,
1896		    class->lc_name, lock->lo_name);
1897	lock->lo_witness->w_file = file;
1898	lock->lo_witness->w_line = line;
1899	instance->li_file = file;
1900	instance->li_line = line;
1901}
1902
1903void
1904witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1905{
1906#ifdef INVARIANT_SUPPORT
1907	struct lock_instance *instance;
1908	struct lock_class *class;
1909
1910	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1911		return;
1912	class = LOCK_CLASS(lock);
1913	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
1914		instance = find_instance(curthread->td_sleeplocks, lock);
1915	else if ((class->lc_flags & LC_SPINLOCK) != 0)
1916		instance = find_instance(PCPU_GET(spinlocks), lock);
1917	else {
1918		panic("Lock (%s) %s is not sleep or spin!",
1919		    class->lc_name, lock->lo_name);
1920	}
1921	file = fixup_filename(file);
1922	switch (flags) {
1923	case LA_UNLOCKED:
1924		if (instance != NULL)
1925			panic("Lock (%s) %s locked @ %s:%d.",
1926			    class->lc_name, lock->lo_name, file, line);
1927		break;
1928	case LA_LOCKED:
1929	case LA_LOCKED | LA_RECURSED:
1930	case LA_LOCKED | LA_NOTRECURSED:
1931	case LA_SLOCKED:
1932	case LA_SLOCKED | LA_RECURSED:
1933	case LA_SLOCKED | LA_NOTRECURSED:
1934	case LA_XLOCKED:
1935	case LA_XLOCKED | LA_RECURSED:
1936	case LA_XLOCKED | LA_NOTRECURSED:
1937		if (instance == NULL) {
1938			panic("Lock (%s) %s not locked @ %s:%d.",
1939			    class->lc_name, lock->lo_name, file, line);
1940			break;
1941		}
1942		if ((flags & LA_XLOCKED) != 0 &&
1943		    (instance->li_flags & LI_EXCLUSIVE) == 0)
1944			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1945			    class->lc_name, lock->lo_name, file, line);
1946		if ((flags & LA_SLOCKED) != 0 &&
1947		    (instance->li_flags & LI_EXCLUSIVE) != 0)
1948			panic("Lock (%s) %s exclusively locked @ %s:%d.",
1949			    class->lc_name, lock->lo_name, file, line);
1950		if ((flags & LA_RECURSED) != 0 &&
1951		    (instance->li_flags & LI_RECURSEMASK) == 0)
1952			panic("Lock (%s) %s not recursed @ %s:%d.",
1953			    class->lc_name, lock->lo_name, file, line);
1954		if ((flags & LA_NOTRECURSED) != 0 &&
1955		    (instance->li_flags & LI_RECURSEMASK) != 0)
1956			panic("Lock (%s) %s recursed @ %s:%d.",
1957			    class->lc_name, lock->lo_name, file, line);
1958		break;
1959	default:
1960		panic("Invalid lock assertion at %s:%d.", file, line);
1961
1962	}
1963#endif	/* INVARIANT_SUPPORT */
1964}
1965
1966#ifdef DDB
1967static void
1968witness_list(struct thread *td)
1969{
1970
1971	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1972	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1973
1974	if (witness_watch == 0)
1975		return;
1976
1977	witness_list_locks(&td->td_sleeplocks);
1978
1979	/*
1980	 * We only handle spinlocks if td == curthread.  This is somewhat broken
1981	 * if td is currently executing on some other CPU and holds spin locks
1982	 * as we won't display those locks.  If we had a MI way of getting
1983	 * the per-cpu data for a given cpu then we could use
1984	 * td->td_oncpu to get the list of spinlocks for this thread
1985	 * and "fix" this.
1986	 *
1987	 * That still wouldn't really fix this unless we locked the scheduler
1988	 * lock or stopped the other CPU to make sure it wasn't changing the
1989	 * list out from under us.  It is probably best to just not try to
1990	 * handle threads on other CPU's for now.
1991	 */
1992	if (td == curthread && PCPU_GET(spinlocks) != NULL)
1993		witness_list_locks(PCPU_PTR(spinlocks));
1994}
1995
1996DB_SHOW_COMMAND(locks, db_witness_list)
1997{
1998	struct thread *td;
1999
2000	if (have_addr)
2001		td = db_lookup_thread(addr, TRUE);
2002	else
2003		td = kdb_thread;
2004	witness_list(td);
2005}
2006
2007DB_SHOW_COMMAND(alllocks, db_witness_list_all)
2008{
2009	struct thread *td;
2010	struct proc *p;
2011
2012	/*
2013	 * It would be nice to list only threads and processes that actually
2014	 * held sleep locks, but that information is currently not exported
2015	 * by WITNESS.
2016	 */
2017	FOREACH_PROC_IN_SYSTEM(p) {
2018		if (!witness_proc_has_locks(p))
2019			continue;
2020		FOREACH_THREAD_IN_PROC(p, td) {
2021			if (!witness_thread_has_locks(td))
2022				continue;
2023			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2024			    td->td_name, td, td->td_tid);
2025			witness_list(td);
2026		}
2027	}
2028}
2029
2030DB_SHOW_COMMAND(witness, db_witness_display)
2031{
2032
2033	witness_display(db_printf);
2034}
2035#endif
2036