subr_witness.c revision 174898
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Implementation of the `witness' lock verifier.  Originally implemented for
34 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35 * classes in FreeBSD.
36 */
37
38/*
39 *	Main Entry: witness
40 *	Pronunciation: 'wit-n&s
41 *	Function: noun
42 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43 *	    testimony, witness, from 2wit
44 *	Date: before 12th century
45 *	1 : attestation of a fact or event : TESTIMONY
46 *	2 : one that gives evidence; specifically : one who testifies in
47 *	    a cause or before a judicial tribunal
48 *	3 : one asked to be present at a transaction so as to be able to
49 *	    testify to its having taken place
50 *	4 : one who has personal knowledge of something
51 *	5 a : something serving as evidence or proof : SIGN
52 *	  b : public affirmation by word or example of usually
53 *	      religious faith or conviction <the heroic witness to divine
54 *	      life -- Pilot>
55 *	6 capitalized : a member of the Jehovah's Witnesses
56 */
57
58/*
59 * Special rules concerning Giant and lock orders:
60 *
61 * 1) Giant must be acquired before any other mutexes.  Stated another way,
62 *    no other mutex may be held when Giant is acquired.
63 *
64 * 2) Giant must be released when blocking on a sleepable lock.
65 *
66 * This rule is less obvious, but is a result of Giant providing the same
67 * semantics as spl().  Basically, when a thread sleeps, it must release
68 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69 * 2).
70 *
71 * 3) Giant may be acquired before or after sleepable locks.
72 *
73 * This rule is also not quite as obvious.  Giant may be acquired after
74 * a sleepable lock because it is a non-sleepable lock and non-sleepable
75 * locks may always be acquired while holding a sleepable lock.  The second
76 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80 * execute.  Thus, acquiring Giant both before and after a sleepable lock
81 * will not result in a lock order reversal.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/kern/subr_witness.c 174898 2007-12-25 17:52:02Z rwatson $");
86
87#include "opt_ddb.h"
88#include "opt_hwpmc_hooks.h"
89#include "opt_witness.h"
90
91#include <sys/param.h>
92#include <sys/bus.h>
93#include <sys/kdb.h>
94#include <sys/kernel.h>
95#include <sys/ktr.h>
96#include <sys/lock.h>
97#include <sys/malloc.h>
98#include <sys/mutex.h>
99#include <sys/priv.h>
100#include <sys/proc.h>
101#include <sys/sysctl.h>
102#include <sys/systm.h>
103
104#include <ddb/ddb.h>
105
106#include <machine/stdarg.h>
107
108/* Note that these traces do not work with KTR_ALQ. */
109#if 0
110#define	KTR_WITNESS	KTR_SUBSYS
111#else
112#define	KTR_WITNESS	0
113#endif
114
115/* Easier to stay with the old names. */
116#define	lo_list		lo_witness_data.lod_list
117#define	lo_witness	lo_witness_data.lod_witness
118
119/* Define this to check for blessed mutexes */
120#undef BLESSING
121
122#define WITNESS_COUNT 1024
123#define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
124/*
125 * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
126 * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
127 * probably be safe for the most part, but it's still a SWAG.
128 */
129#define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
130
131#define	WITNESS_NCHILDREN 6
132
133struct witness_child_list_entry;
134
135struct witness {
136	const	char *w_name;
137	struct	lock_class *w_class;
138	STAILQ_ENTRY(witness) w_list;		/* List of all witnesses. */
139	STAILQ_ENTRY(witness) w_typelist;	/* Witnesses of a type. */
140	struct	witness_child_list_entry *w_children;	/* Great evilness... */
141	const	char *w_file;
142	int	w_line;
143	u_int	w_level;
144	u_int	w_refcount;
145	u_char	w_Giant_squawked:1;
146	u_char	w_other_squawked:1;
147	u_char	w_same_squawked:1;
148	u_char	w_displayed:1;
149};
150
151struct witness_child_list_entry {
152	struct	witness_child_list_entry *wcl_next;
153	struct	witness *wcl_children[WITNESS_NCHILDREN];
154	u_int	wcl_count;
155};
156
157STAILQ_HEAD(witness_list, witness);
158
159#ifdef BLESSING
160struct witness_blessed {
161	const	char *b_lock1;
162	const	char *b_lock2;
163};
164#endif
165
166struct witness_order_list_entry {
167	const	char *w_name;
168	struct	lock_class *w_class;
169};
170
171#ifdef BLESSING
172static int	blessed(struct witness *, struct witness *);
173#endif
174static int	depart(struct witness *w);
175static struct	witness *enroll(const char *description,
176				struct lock_class *lock_class);
177static int	insertchild(struct witness *parent, struct witness *child);
178static int	isitmychild(struct witness *parent, struct witness *child);
179static int	isitmydescendant(struct witness *parent, struct witness *child);
180static int	itismychild(struct witness *parent, struct witness *child);
181static void	removechild(struct witness *parent, struct witness *child);
182static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
183static const char *fixup_filename(const char *file);
184static struct	witness *witness_get(void);
185static void	witness_free(struct witness *m);
186static struct	witness_child_list_entry *witness_child_get(void);
187static void	witness_child_free(struct witness_child_list_entry *wcl);
188static struct	lock_list_entry *witness_lock_list_get(void);
189static void	witness_lock_list_free(struct lock_list_entry *lle);
190static struct	lock_instance *find_instance(struct lock_list_entry *lock_list,
191					     struct lock_object *lock);
192static void	witness_list_lock(struct lock_instance *instance);
193#ifdef DDB
194static void	witness_leveldescendents(struct witness *parent, int level);
195static void	witness_levelall(void);
196static void	witness_displaydescendants(void(*)(const char *fmt, ...),
197					   struct witness *, int indent);
198static void	witness_display_list(void(*prnt)(const char *fmt, ...),
199				     struct witness_list *list);
200static void	witness_display(void(*)(const char *fmt, ...));
201static void	witness_list(struct thread *td);
202#endif
203
204SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
205
206/*
207 * If set to 0, witness is disabled.  If set to a non-zero value, witness
208 * performs full lock order checking for all locks.  At runtime, this
209 * value may be set to 0 to turn off witness.  witness is not allowed be
210 * turned on once it is turned off, however.
211 */
212static int witness_watch = 1;
213TUNABLE_INT("debug.witness.watch", &witness_watch);
214SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
215    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
216
217#ifdef KDB
218/*
219 * When KDB is enabled and witness_kdb is set to 1, it will cause the system
220 * to drop into kdebug() when:
221 *	- a lock hierarchy violation occurs
222 *	- locks are held when going to sleep.
223 */
224#ifdef WITNESS_KDB
225int	witness_kdb = 1;
226#else
227int	witness_kdb = 0;
228#endif
229TUNABLE_INT("debug.witness.kdb", &witness_kdb);
230SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
231
232/*
233 * When KDB is enabled and witness_trace is set to 1, it will cause the system
234 * to print a stack trace:
235 *	- a lock hierarchy violation occurs
236 *	- locks are held when going to sleep.
237 */
238int	witness_trace = 1;
239TUNABLE_INT("debug.witness.trace", &witness_trace);
240SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
241#endif /* KDB */
242
243#ifdef WITNESS_SKIPSPIN
244int	witness_skipspin = 1;
245#else
246int	witness_skipspin = 0;
247#endif
248TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
249SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
250    &witness_skipspin, 0, "");
251
252static struct mtx w_mtx;
253static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
254static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
255static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
256static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
257static struct witness_child_list_entry *w_child_free = NULL;
258static struct lock_list_entry *w_lock_list_free = NULL;
259
260static int w_free_cnt, w_spin_cnt, w_sleep_cnt, w_child_free_cnt, w_child_cnt;
261SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
262SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
263SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
264    "");
265SYSCTL_INT(_debug_witness, OID_AUTO, child_free_cnt, CTLFLAG_RD,
266    &w_child_free_cnt, 0, "");
267SYSCTL_INT(_debug_witness, OID_AUTO, child_cnt, CTLFLAG_RD, &w_child_cnt, 0,
268    "");
269
270static struct witness w_data[WITNESS_COUNT];
271static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
272static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
273
274static struct witness_order_list_entry order_lists[] = {
275	/*
276	 * sx locks
277	 */
278	{ "proctree", &lock_class_sx },
279	{ "allproc", &lock_class_sx },
280	{ "allprison", &lock_class_sx },
281	{ NULL, NULL },
282	/*
283	 * Various mutexes
284	 */
285	{ "Giant", &lock_class_mtx_sleep },
286	{ "pipe mutex", &lock_class_mtx_sleep },
287	{ "sigio lock", &lock_class_mtx_sleep },
288	{ "process group", &lock_class_mtx_sleep },
289	{ "process lock", &lock_class_mtx_sleep },
290	{ "session", &lock_class_mtx_sleep },
291	{ "uidinfo hash", &lock_class_mtx_sleep },
292	{ "uidinfo struct", &lock_class_mtx_sleep },
293#ifdef	HWPMC_HOOKS
294	{ "pmc-sleep", &lock_class_mtx_sleep },
295#endif
296	{ NULL, NULL },
297	/*
298	 * Sockets
299	 */
300	{ "accept", &lock_class_mtx_sleep },
301	{ "so_snd", &lock_class_mtx_sleep },
302	{ "so_rcv", &lock_class_mtx_sleep },
303	{ "sellck", &lock_class_mtx_sleep },
304	{ NULL, NULL },
305	/*
306	 * Routing
307	 */
308	{ "so_rcv", &lock_class_mtx_sleep },
309	{ "radix node head", &lock_class_mtx_sleep },
310	{ "rtentry", &lock_class_mtx_sleep },
311	{ "ifaddr", &lock_class_mtx_sleep },
312	{ NULL, NULL },
313	/*
314	 * Multicast - protocol locks before interface locks, after UDP locks.
315	 */
316	{ "udpinp", &lock_class_mtx_sleep },
317	{ "in_multi_mtx", &lock_class_mtx_sleep },
318	{ "igmp_mtx", &lock_class_mtx_sleep },
319	{ "if_addr_mtx", &lock_class_mtx_sleep },
320	{ NULL, NULL },
321	/*
322	 * UNIX Domain Sockets
323	 */
324	{ "unp", &lock_class_mtx_sleep },
325	{ "so_snd", &lock_class_mtx_sleep },
326	{ NULL, NULL },
327	/*
328	 * UDP/IP
329	 */
330	{ "udp", &lock_class_mtx_sleep },
331	{ "udpinp", &lock_class_mtx_sleep },
332	{ "so_snd", &lock_class_mtx_sleep },
333	{ NULL, NULL },
334	/*
335	 * TCP/IP
336	 */
337	{ "tcp", &lock_class_mtx_sleep },
338	{ "tcpinp", &lock_class_mtx_sleep },
339	{ "so_snd", &lock_class_mtx_sleep },
340	{ NULL, NULL },
341	/*
342	 * SLIP
343	 */
344	{ "slip_mtx", &lock_class_mtx_sleep },
345	{ "slip sc_mtx", &lock_class_mtx_sleep },
346	{ NULL, NULL },
347	/*
348	 * netatalk
349	 */
350	{ "ddp_list_mtx", &lock_class_mtx_sleep },
351	{ "ddp_mtx", &lock_class_mtx_sleep },
352	{ NULL, NULL },
353	/*
354	 * BPF
355	 */
356	{ "bpf global lock", &lock_class_mtx_sleep },
357	{ "bpf interface lock", &lock_class_mtx_sleep },
358	{ "bpf cdev lock", &lock_class_mtx_sleep },
359	{ NULL, NULL },
360	/*
361	 * NFS server
362	 */
363	{ "nfsd_mtx", &lock_class_mtx_sleep },
364	{ "so_snd", &lock_class_mtx_sleep },
365	{ NULL, NULL },
366
367	/*
368	 * IEEE 802.11
369	 */
370	{ "802.11 com lock", &lock_class_mtx_sleep},
371	{ NULL, NULL },
372	/*
373	 * Network drivers
374	 */
375	{ "network driver", &lock_class_mtx_sleep},
376	{ NULL, NULL },
377
378	/*
379	 * Netgraph
380	 */
381	{ "ng_node", &lock_class_mtx_sleep },
382	{ "ng_worklist", &lock_class_mtx_sleep },
383	{ NULL, NULL },
384	/*
385	 * CDEV
386	 */
387	{ "system map", &lock_class_mtx_sleep },
388	{ "vm page queue mutex", &lock_class_mtx_sleep },
389	{ "vnode interlock", &lock_class_mtx_sleep },
390	{ "cdev", &lock_class_mtx_sleep },
391	{ NULL, NULL },
392	/*
393	 * kqueue/VFS interaction
394	 */
395	{ "kqueue", &lock_class_mtx_sleep },
396	{ "struct mount mtx", &lock_class_mtx_sleep },
397	{ "vnode interlock", &lock_class_mtx_sleep },
398	{ NULL, NULL },
399	/*
400	 * spin locks
401	 */
402#ifdef SMP
403	{ "ap boot", &lock_class_mtx_spin },
404#endif
405	{ "rm.mutex_mtx", &lock_class_mtx_spin },
406	{ "sio", &lock_class_mtx_spin },
407	{ "scrlock", &lock_class_mtx_spin },
408#ifdef __i386__
409	{ "cy", &lock_class_mtx_spin },
410#endif
411#ifdef __sparc64__
412	{ "pcib_mtx", &lock_class_mtx_spin },
413	{ "rtc_mtx", &lock_class_mtx_spin },
414#endif
415	{ "scc_hwmtx", &lock_class_mtx_spin },
416	{ "uart_hwmtx", &lock_class_mtx_spin },
417	{ "fast_taskqueue", &lock_class_mtx_spin },
418	{ "intr table", &lock_class_mtx_spin },
419#ifdef	HWPMC_HOOKS
420	{ "pmc-per-proc", &lock_class_mtx_spin },
421#endif
422	{ "process slock", &lock_class_mtx_spin },
423	{ "sleepq chain", &lock_class_mtx_spin },
424	{ "umtx lock", &lock_class_mtx_spin },
425	{ "rm_spinlock", &lock_class_mtx_spin },
426	{ "turnstile chain", &lock_class_mtx_spin },
427	{ "turnstile lock", &lock_class_mtx_spin },
428	{ "sched lock", &lock_class_mtx_spin },
429	{ "td_contested", &lock_class_mtx_spin },
430	{ "callout", &lock_class_mtx_spin },
431	{ "entropy harvest mutex", &lock_class_mtx_spin },
432	{ "syscons video lock", &lock_class_mtx_spin },
433	{ "time lock", &lock_class_mtx_spin },
434#ifdef SMP
435	{ "smp rendezvous", &lock_class_mtx_spin },
436#endif
437	/*
438	 * leaf locks
439	 */
440	{ "icu", &lock_class_mtx_spin },
441#if defined(SMP) && defined(__sparc64__)
442	{ "ipi", &lock_class_mtx_spin },
443#endif
444#ifdef __i386__
445	{ "allpmaps", &lock_class_mtx_spin },
446	{ "descriptor tables", &lock_class_mtx_spin },
447#endif
448	{ "clk", &lock_class_mtx_spin },
449	{ "mprof lock", &lock_class_mtx_spin },
450	{ "kse lock", &lock_class_mtx_spin },
451	{ "zombie lock", &lock_class_mtx_spin },
452	{ "ALD Queue", &lock_class_mtx_spin },
453#ifdef __ia64__
454	{ "MCA spin lock", &lock_class_mtx_spin },
455#endif
456#if defined(__i386__) || defined(__amd64__)
457	{ "pcicfg", &lock_class_mtx_spin },
458	{ "NDIS thread lock", &lock_class_mtx_spin },
459#endif
460	{ "tw_osl_io_lock", &lock_class_mtx_spin },
461	{ "tw_osl_q_lock", &lock_class_mtx_spin },
462	{ "tw_cl_io_lock", &lock_class_mtx_spin },
463	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
464	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
465#ifdef	HWPMC_HOOKS
466	{ "pmc-leaf", &lock_class_mtx_spin },
467#endif
468	{ "blocked lock", &lock_class_mtx_spin },
469	{ NULL, NULL },
470	{ NULL, NULL }
471};
472
473#ifdef BLESSING
474/*
475 * Pairs of locks which have been blessed
476 * Don't complain about order problems with blessed locks
477 */
478static struct witness_blessed blessed_list[] = {
479};
480static int blessed_count =
481	sizeof(blessed_list) / sizeof(struct witness_blessed);
482#endif
483
484/*
485 * List of locks initialized prior to witness being initialized whose
486 * enrollment is currently deferred.
487 */
488STAILQ_HEAD(, lock_object) pending_locks =
489    STAILQ_HEAD_INITIALIZER(pending_locks);
490
491/*
492 * This global is set to 0 once it becomes safe to use the witness code.
493 */
494static int witness_cold = 1;
495
496/*
497 * This global is set to 1 once the static lock orders have been enrolled
498 * so that a warning can be issued for any spin locks enrolled later.
499 */
500static int witness_spin_warn = 0;
501
502/*
503 * The WITNESS-enabled diagnostic code.  Note that the witness code does
504 * assume that the early boot is single-threaded at least until after this
505 * routine is completed.
506 */
507static void
508witness_initialize(void *dummy __unused)
509{
510	struct lock_object *lock;
511	struct witness_order_list_entry *order;
512	struct witness *w, *w1;
513	int i;
514
515	/*
516	 * We have to release Giant before initializing its witness
517	 * structure so that WITNESS doesn't get confused.
518	 */
519	mtx_unlock(&Giant);
520	mtx_assert(&Giant, MA_NOTOWNED);
521
522	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
523	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
524	    MTX_NOWITNESS | MTX_NOPROFILE);
525	for (i = 0; i < WITNESS_COUNT; i++)
526		witness_free(&w_data[i]);
527	for (i = 0; i < WITNESS_CHILDCOUNT; i++)
528		witness_child_free(&w_childdata[i]);
529	for (i = 0; i < LOCK_CHILDCOUNT; i++)
530		witness_lock_list_free(&w_locklistdata[i]);
531
532	/* First add in all the specified order lists. */
533	for (order = order_lists; order->w_name != NULL; order++) {
534		w = enroll(order->w_name, order->w_class);
535		if (w == NULL)
536			continue;
537		w->w_file = "order list";
538		for (order++; order->w_name != NULL; order++) {
539			w1 = enroll(order->w_name, order->w_class);
540			if (w1 == NULL)
541				continue;
542			w1->w_file = "order list";
543			if (!itismychild(w, w1))
544				panic("Not enough memory for static orders!");
545			w = w1;
546		}
547	}
548	witness_spin_warn = 1;
549
550	/* Iterate through all locks and add them to witness. */
551	while (!STAILQ_EMPTY(&pending_locks)) {
552		lock = STAILQ_FIRST(&pending_locks);
553		STAILQ_REMOVE_HEAD(&pending_locks, lo_list);
554		KASSERT(lock->lo_flags & LO_WITNESS,
555		    ("%s: lock %s is on pending list but not LO_WITNESS",
556		    __func__, lock->lo_name));
557		lock->lo_witness = enroll(lock->lo_type, LOCK_CLASS(lock));
558	}
559
560	/* Mark the witness code as being ready for use. */
561	witness_cold = 0;
562
563	mtx_lock(&Giant);
564}
565SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, NULL)
566
567static int
568sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
569{
570	int error, value;
571
572	value = witness_watch;
573	error = sysctl_handle_int(oidp, &value, 0, req);
574	if (error != 0 || req->newptr == NULL)
575		return (error);
576	if (value == witness_watch)
577		return (0);
578	if (value != 0)
579		return (EINVAL);
580	witness_watch = 0;
581	return (0);
582}
583
584void
585witness_init(struct lock_object *lock)
586{
587	struct lock_class *class;
588
589	/* Various sanity checks. */
590	class = LOCK_CLASS(lock);
591	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
592	    (class->lc_flags & LC_RECURSABLE) == 0)
593		panic("%s: lock (%s) %s can not be recursable", __func__,
594		    class->lc_name, lock->lo_name);
595	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
596	    (class->lc_flags & LC_SLEEPABLE) == 0)
597		panic("%s: lock (%s) %s can not be sleepable", __func__,
598		    class->lc_name, lock->lo_name);
599	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
600	    (class->lc_flags & LC_UPGRADABLE) == 0)
601		panic("%s: lock (%s) %s can not be upgradable", __func__,
602		    class->lc_name, lock->lo_name);
603
604	/*
605	 * If we shouldn't watch this lock, then just clear lo_witness.
606	 * Otherwise, if witness_cold is set, then it is too early to
607	 * enroll this lock, so defer it to witness_initialize() by adding
608	 * it to the pending_locks list.  If it is not too early, then enroll
609	 * the lock now.
610	 */
611	if (witness_watch == 0 || panicstr != NULL ||
612	    (lock->lo_flags & LO_WITNESS) == 0)
613		lock->lo_witness = NULL;
614	else if (witness_cold) {
615		STAILQ_INSERT_TAIL(&pending_locks, lock, lo_list);
616		lock->lo_flags |= LO_ENROLLPEND;
617	} else
618		lock->lo_witness = enroll(lock->lo_type, class);
619}
620
621void
622witness_destroy(struct lock_object *lock)
623{
624	struct lock_class *class;
625	struct witness *w;
626
627	class = LOCK_CLASS(lock);
628	if (witness_cold)
629		panic("lock (%s) %s destroyed while witness_cold",
630		    class->lc_name, lock->lo_name);
631
632	/* XXX: need to verify that no one holds the lock */
633	if ((lock->lo_flags & (LO_WITNESS | LO_ENROLLPEND)) == LO_WITNESS &&
634	    lock->lo_witness != NULL) {
635		w = lock->lo_witness;
636		mtx_lock_spin(&w_mtx);
637		MPASS(w->w_refcount > 0);
638		w->w_refcount--;
639
640		/*
641		 * Lock is already released if we have an allocation failure
642		 * and depart() fails.
643		 */
644		if (w->w_refcount != 0 || depart(w))
645			mtx_unlock_spin(&w_mtx);
646	}
647
648	/*
649	 * If this lock is destroyed before witness is up and running,
650	 * remove it from the pending list.
651	 */
652	if (lock->lo_flags & LO_ENROLLPEND) {
653		STAILQ_REMOVE(&pending_locks, lock, lock_object, lo_list);
654		lock->lo_flags &= ~LO_ENROLLPEND;
655	}
656}
657
658#ifdef DDB
659static void
660witness_levelall (void)
661{
662	struct witness_list *list;
663	struct witness *w, *w1;
664
665	/*
666	 * First clear all levels.
667	 */
668	STAILQ_FOREACH(w, &w_all, w_list) {
669		w->w_level = 0;
670	}
671
672	/*
673	 * Look for locks with no parent and level all their descendants.
674	 */
675	STAILQ_FOREACH(w, &w_all, w_list) {
676		/*
677		 * This is just an optimization, technically we could get
678		 * away just walking the all list each time.
679		 */
680		if (w->w_class->lc_flags & LC_SLEEPLOCK)
681			list = &w_sleep;
682		else
683			list = &w_spin;
684		STAILQ_FOREACH(w1, list, w_typelist) {
685			if (isitmychild(w1, w))
686				goto skip;
687		}
688		witness_leveldescendents(w, 0);
689	skip:
690		;	/* silence GCC 3.x */
691	}
692}
693
694static void
695witness_leveldescendents(struct witness *parent, int level)
696{
697	struct witness_child_list_entry *wcl;
698	int i;
699
700	if (parent->w_level < level)
701		parent->w_level = level;
702	level++;
703	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
704		for (i = 0; i < wcl->wcl_count; i++)
705			witness_leveldescendents(wcl->wcl_children[i], level);
706}
707
708static void
709witness_displaydescendants(void(*prnt)(const char *fmt, ...),
710			   struct witness *parent, int indent)
711{
712	struct witness_child_list_entry *wcl;
713	int i, level;
714
715	level = parent->w_level;
716	prnt("%-2d", level);
717	for (i = 0; i < indent; i++)
718		prnt(" ");
719	if (parent->w_refcount > 0)
720		prnt("%s", parent->w_name);
721	else
722		prnt("(dead)");
723	if (parent->w_displayed) {
724		prnt(" -- (already displayed)\n");
725		return;
726	}
727	parent->w_displayed = 1;
728	if (parent->w_refcount > 0) {
729		if (parent->w_file != NULL)
730			prnt(" -- last acquired @ %s:%d", parent->w_file,
731			    parent->w_line);
732	}
733	prnt("\n");
734	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
735		for (i = 0; i < wcl->wcl_count; i++)
736			    witness_displaydescendants(prnt,
737				wcl->wcl_children[i], indent + 1);
738}
739
740static void
741witness_display_list(void(*prnt)(const char *fmt, ...),
742		     struct witness_list *list)
743{
744	struct witness *w;
745
746	STAILQ_FOREACH(w, list, w_typelist) {
747		if (w->w_file == NULL || w->w_level > 0)
748			continue;
749		/*
750		 * This lock has no anscestors, display its descendants.
751		 */
752		witness_displaydescendants(prnt, w, 0);
753	}
754}
755
756static void
757witness_display(void(*prnt)(const char *fmt, ...))
758{
759	struct witness *w;
760
761	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
762	witness_levelall();
763
764	/* Clear all the displayed flags. */
765	STAILQ_FOREACH(w, &w_all, w_list) {
766		w->w_displayed = 0;
767	}
768
769	/*
770	 * First, handle sleep locks which have been acquired at least
771	 * once.
772	 */
773	prnt("Sleep locks:\n");
774	witness_display_list(prnt, &w_sleep);
775
776	/*
777	 * Now do spin locks which have been acquired at least once.
778	 */
779	prnt("\nSpin locks:\n");
780	witness_display_list(prnt, &w_spin);
781
782	/*
783	 * Finally, any locks which have not been acquired yet.
784	 */
785	prnt("\nLocks which were never acquired:\n");
786	STAILQ_FOREACH(w, &w_all, w_list) {
787		if (w->w_file != NULL || w->w_refcount == 0)
788			continue;
789		prnt("%s\n", w->w_name);
790	}
791}
792#endif /* DDB */
793
794/* Trim useless garbage from filenames. */
795static const char *
796fixup_filename(const char *file)
797{
798
799	if (file == NULL)
800		return (NULL);
801	while (strncmp(file, "../", 3) == 0)
802		file += 3;
803	return (file);
804}
805
806int
807witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
808{
809
810	if (witness_watch == 0 || panicstr != NULL)
811		return (0);
812
813	/* Require locks that witness knows about. */
814	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
815	    lock2->lo_witness == NULL)
816		return (EINVAL);
817
818	MPASS(!mtx_owned(&w_mtx));
819	mtx_lock_spin(&w_mtx);
820
821	/*
822	 * If we already have either an explicit or implied lock order that
823	 * is the other way around, then return an error.
824	 */
825	if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
826		mtx_unlock_spin(&w_mtx);
827		return (EDOOFUS);
828	}
829
830	/* Try to add the new order. */
831	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
832	    lock2->lo_type, lock1->lo_type);
833	if (!itismychild(lock1->lo_witness, lock2->lo_witness))
834		return (ENOMEM);
835	mtx_unlock_spin(&w_mtx);
836	return (0);
837}
838
839void
840witness_checkorder(struct lock_object *lock, int flags, const char *file,
841    int line)
842{
843	struct lock_list_entry **lock_list, *lle;
844	struct lock_instance *lock1, *lock2;
845	struct lock_class *class;
846	struct witness *w, *w1;
847	struct thread *td;
848	int i, j;
849
850	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
851	    panicstr != NULL)
852		return;
853
854	/*
855	 * Try locks do not block if they fail to acquire the lock, thus
856	 * there is no danger of deadlocks or of switching while holding a
857	 * spin lock if we acquire a lock via a try operation.  This
858	 * function shouldn't even be called for try locks, so panic if
859	 * that happens.
860	 */
861	if (flags & LOP_TRYLOCK)
862		panic("%s should not be called for try lock operations",
863		    __func__);
864
865	w = lock->lo_witness;
866	class = LOCK_CLASS(lock);
867	td = curthread;
868	file = fixup_filename(file);
869
870	if (class->lc_flags & LC_SLEEPLOCK) {
871		/*
872		 * Since spin locks include a critical section, this check
873		 * implicitly enforces a lock order of all sleep locks before
874		 * all spin locks.
875		 */
876		if (td->td_critnest != 0 && !kdb_active)
877			panic("blockable sleep lock (%s) %s @ %s:%d",
878			    class->lc_name, lock->lo_name, file, line);
879
880		/*
881		 * If this is the first lock acquired then just return as
882		 * no order checking is needed.
883		 */
884		if (td->td_sleeplocks == NULL)
885			return;
886		lock_list = &td->td_sleeplocks;
887	} else {
888		/*
889		 * If this is the first lock, just return as no order
890		 * checking is needed.  We check this in both if clauses
891		 * here as unifying the check would require us to use a
892		 * critical section to ensure we don't migrate while doing
893		 * the check.  Note that if this is not the first lock, we
894		 * are already in a critical section and are safe for the
895		 * rest of the check.
896		 */
897		if (PCPU_GET(spinlocks) == NULL)
898			return;
899		lock_list = PCPU_PTR(spinlocks);
900	}
901
902	/*
903	 * Check to see if we are recursing on a lock we already own.  If
904	 * so, make sure that we don't mismatch exclusive and shared lock
905	 * acquires.
906	 */
907	lock1 = find_instance(*lock_list, lock);
908	if (lock1 != NULL) {
909		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
910		    (flags & LOP_EXCLUSIVE) == 0) {
911			printf("shared lock of (%s) %s @ %s:%d\n",
912			    class->lc_name, lock->lo_name, file, line);
913			printf("while exclusively locked from %s:%d\n",
914			    lock1->li_file, lock1->li_line);
915			panic("share->excl");
916		}
917		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
918		    (flags & LOP_EXCLUSIVE) != 0) {
919			printf("exclusive lock of (%s) %s @ %s:%d\n",
920			    class->lc_name, lock->lo_name, file, line);
921			printf("while share locked from %s:%d\n",
922			    lock1->li_file, lock1->li_line);
923			panic("excl->share");
924		}
925		return;
926	}
927
928	/*
929	 * Try locks do not block if they fail to acquire the lock, thus
930	 * there is no danger of deadlocks or of switching while holding a
931	 * spin lock if we acquire a lock via a try operation.
932	 */
933	if (flags & LOP_TRYLOCK)
934		return;
935
936	/*
937	 * Check for duplicate locks of the same type.  Note that we only
938	 * have to check for this on the last lock we just acquired.  Any
939	 * other cases will be caught as lock order violations.
940	 */
941	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
942	w1 = lock1->li_lock->lo_witness;
943	if (w1 == w) {
944		if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) ||
945		    (flags & LOP_DUPOK))
946			return;
947		w->w_same_squawked = 1;
948		printf("acquiring duplicate lock of same type: \"%s\"\n",
949			lock->lo_type);
950		printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
951		    lock1->li_file, lock1->li_line);
952		printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
953#ifdef KDB
954		goto debugger;
955#else
956		return;
957#endif
958	}
959	MPASS(!mtx_owned(&w_mtx));
960	mtx_lock_spin(&w_mtx);
961	/*
962	 * If we know that the the lock we are acquiring comes after
963	 * the lock we most recently acquired in the lock order tree,
964	 * then there is no need for any further checks.
965	 */
966	if (isitmychild(w1, w)) {
967		mtx_unlock_spin(&w_mtx);
968		return;
969	}
970	for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
971		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
972
973			MPASS(j < WITNESS_COUNT);
974			lock1 = &lle->ll_children[i];
975			w1 = lock1->li_lock->lo_witness;
976
977			/*
978			 * If this lock doesn't undergo witness checking,
979			 * then skip it.
980			 */
981			if (w1 == NULL) {
982				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
983				    ("lock missing witness structure"));
984				continue;
985			}
986			/*
987			 * If we are locking Giant and this is a sleepable
988			 * lock, then skip it.
989			 */
990			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
991			    lock == &Giant.lock_object)
992				continue;
993			/*
994			 * If we are locking a sleepable lock and this lock
995			 * is Giant, then skip it.
996			 */
997			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
998			    lock1->li_lock == &Giant.lock_object)
999				continue;
1000			/*
1001			 * If we are locking a sleepable lock and this lock
1002			 * isn't sleepable, we want to treat it as a lock
1003			 * order violation to enfore a general lock order of
1004			 * sleepable locks before non-sleepable locks.
1005			 */
1006			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1007			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1008				goto reversal;
1009			/*
1010			 * If we are locking Giant and this is a non-sleepable
1011			 * lock, then treat it as a reversal.
1012			 */
1013			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1014			    lock == &Giant.lock_object)
1015				goto reversal;
1016			/*
1017			 * Check the lock order hierarchy for a reveresal.
1018			 */
1019			if (!isitmydescendant(w, w1))
1020				continue;
1021		reversal:
1022			/*
1023			 * We have a lock order violation, check to see if it
1024			 * is allowed or has already been yelled about.
1025			 */
1026			mtx_unlock_spin(&w_mtx);
1027#ifdef BLESSING
1028			/*
1029			 * If the lock order is blessed, just bail.  We don't
1030			 * look for other lock order violations though, which
1031			 * may be a bug.
1032			 */
1033			if (blessed(w, w1))
1034				return;
1035#endif
1036			if (lock1->li_lock == &Giant.lock_object) {
1037				if (w1->w_Giant_squawked)
1038					return;
1039				else
1040					w1->w_Giant_squawked = 1;
1041			} else {
1042				if (w1->w_other_squawked)
1043					return;
1044				else
1045					w1->w_other_squawked = 1;
1046			}
1047			/*
1048			 * Ok, yell about it.
1049			 */
1050			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1051			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1052				printf(
1053		"lock order reversal: (sleepable after non-sleepable)\n");
1054			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1055			    && lock == &Giant.lock_object)
1056				printf(
1057		"lock order reversal: (Giant after non-sleepable)\n");
1058			else
1059				printf("lock order reversal:\n");
1060			/*
1061			 * Try to locate an earlier lock with
1062			 * witness w in our list.
1063			 */
1064			do {
1065				lock2 = &lle->ll_children[i];
1066				MPASS(lock2->li_lock != NULL);
1067				if (lock2->li_lock->lo_witness == w)
1068					break;
1069				if (i == 0 && lle->ll_next != NULL) {
1070					lle = lle->ll_next;
1071					i = lle->ll_count - 1;
1072					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1073				} else
1074					i--;
1075			} while (i >= 0);
1076			if (i < 0) {
1077				printf(" 1st %p %s (%s) @ %s:%d\n",
1078				    lock1->li_lock, lock1->li_lock->lo_name,
1079				    lock1->li_lock->lo_type, lock1->li_file,
1080				    lock1->li_line);
1081				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1082				    lock->lo_name, lock->lo_type, file, line);
1083			} else {
1084				printf(" 1st %p %s (%s) @ %s:%d\n",
1085				    lock2->li_lock, lock2->li_lock->lo_name,
1086				    lock2->li_lock->lo_type, lock2->li_file,
1087				    lock2->li_line);
1088				printf(" 2nd %p %s (%s) @ %s:%d\n",
1089				    lock1->li_lock, lock1->li_lock->lo_name,
1090				    lock1->li_lock->lo_type, lock1->li_file,
1091				    lock1->li_line);
1092				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1093				    lock->lo_name, lock->lo_type, file, line);
1094			}
1095#ifdef KDB
1096			goto debugger;
1097#else
1098			return;
1099#endif
1100		}
1101	}
1102	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
1103	/*
1104	 * If requested, build a new lock order.  However, don't build a new
1105	 * relationship between a sleepable lock and Giant if it is in the
1106	 * wrong direction.  The correct lock order is that sleepable locks
1107	 * always come before Giant.
1108	 */
1109	if (flags & LOP_NEWORDER &&
1110	    !(lock1->li_lock == &Giant.lock_object &&
1111	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1112		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1113		    lock->lo_type, lock1->li_lock->lo_type);
1114		if (!itismychild(lock1->li_lock->lo_witness, w))
1115			/* Witness is dead. */
1116			return;
1117	}
1118	mtx_unlock_spin(&w_mtx);
1119	return;
1120
1121#ifdef KDB
1122debugger:
1123	if (witness_trace)
1124		kdb_backtrace();
1125	if (witness_kdb)
1126		kdb_enter(KDB_WHY_WITNESS, __func__);
1127#endif
1128}
1129
1130void
1131witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1132{
1133	struct lock_list_entry **lock_list, *lle;
1134	struct lock_instance *instance;
1135	struct witness *w;
1136	struct thread *td;
1137
1138	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1139	    panicstr != NULL)
1140		return;
1141	w = lock->lo_witness;
1142	td = curthread;
1143	file = fixup_filename(file);
1144
1145	/* Determine lock list for this lock. */
1146	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1147		lock_list = &td->td_sleeplocks;
1148	else
1149		lock_list = PCPU_PTR(spinlocks);
1150
1151	/* Check to see if we are recursing on a lock we already own. */
1152	instance = find_instance(*lock_list, lock);
1153	if (instance != NULL) {
1154		instance->li_flags++;
1155		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1156		    td->td_proc->p_pid, lock->lo_name,
1157		    instance->li_flags & LI_RECURSEMASK);
1158		instance->li_file = file;
1159		instance->li_line = line;
1160		return;
1161	}
1162
1163	/* Update per-witness last file and line acquire. */
1164	w->w_file = file;
1165	w->w_line = line;
1166
1167	/* Find the next open lock instance in the list and fill it. */
1168	lle = *lock_list;
1169	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1170		lle = witness_lock_list_get();
1171		if (lle == NULL)
1172			return;
1173		lle->ll_next = *lock_list;
1174		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1175		    td->td_proc->p_pid, lle);
1176		*lock_list = lle;
1177	}
1178	instance = &lle->ll_children[lle->ll_count++];
1179	instance->li_lock = lock;
1180	instance->li_line = line;
1181	instance->li_file = file;
1182	if ((flags & LOP_EXCLUSIVE) != 0)
1183		instance->li_flags = LI_EXCLUSIVE;
1184	else
1185		instance->li_flags = 0;
1186	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1187	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1188}
1189
1190void
1191witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1192{
1193	struct lock_instance *instance;
1194	struct lock_class *class;
1195
1196	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1197	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1198		return;
1199	class = LOCK_CLASS(lock);
1200	file = fixup_filename(file);
1201	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1202		panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1203		    class->lc_name, lock->lo_name, file, line);
1204	if ((flags & LOP_TRYLOCK) == 0)
1205		panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1206		    lock->lo_name, file, line);
1207	if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1208		panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1209		    class->lc_name, lock->lo_name, file, line);
1210	instance = find_instance(curthread->td_sleeplocks, lock);
1211	if (instance == NULL)
1212		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1213		    class->lc_name, lock->lo_name, file, line);
1214	if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1215		panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1216		    class->lc_name, lock->lo_name, file, line);
1217	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1218		panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1219		    class->lc_name, lock->lo_name,
1220		    instance->li_flags & LI_RECURSEMASK, file, line);
1221	instance->li_flags |= LI_EXCLUSIVE;
1222}
1223
1224void
1225witness_downgrade(struct lock_object *lock, int flags, const char *file,
1226    int line)
1227{
1228	struct lock_instance *instance;
1229	struct lock_class *class;
1230
1231	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1232	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1233		return;
1234	class = LOCK_CLASS(lock);
1235	file = fixup_filename(file);
1236	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1237		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1238		    class->lc_name, lock->lo_name, file, line);
1239	if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1240		panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1241		    class->lc_name, lock->lo_name, file, line);
1242	instance = find_instance(curthread->td_sleeplocks, lock);
1243	if (instance == NULL)
1244		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1245		    class->lc_name, lock->lo_name, file, line);
1246	if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1247		panic("downgrade of shared lock (%s) %s @ %s:%d",
1248		    class->lc_name, lock->lo_name, file, line);
1249	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1250		panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1251		    class->lc_name, lock->lo_name,
1252		    instance->li_flags & LI_RECURSEMASK, file, line);
1253	instance->li_flags &= ~LI_EXCLUSIVE;
1254}
1255
1256void
1257witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1258{
1259	struct lock_list_entry **lock_list, *lle;
1260	struct lock_instance *instance;
1261	struct lock_class *class;
1262	struct thread *td;
1263	register_t s;
1264	int i, j;
1265
1266	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1267	    panicstr != NULL)
1268		return;
1269	td = curthread;
1270	class = LOCK_CLASS(lock);
1271	file = fixup_filename(file);
1272
1273	/* Find lock instance associated with this lock. */
1274	if (class->lc_flags & LC_SLEEPLOCK)
1275		lock_list = &td->td_sleeplocks;
1276	else
1277		lock_list = PCPU_PTR(spinlocks);
1278	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1279		for (i = 0; i < (*lock_list)->ll_count; i++) {
1280			instance = &(*lock_list)->ll_children[i];
1281			if (instance->li_lock == lock)
1282				goto found;
1283		}
1284	panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1285	    file, line);
1286found:
1287
1288	/* First, check for shared/exclusive mismatches. */
1289	if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1290	    (flags & LOP_EXCLUSIVE) == 0) {
1291		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1292		    lock->lo_name, file, line);
1293		printf("while exclusively locked from %s:%d\n",
1294		    instance->li_file, instance->li_line);
1295		panic("excl->ushare");
1296	}
1297	if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1298	    (flags & LOP_EXCLUSIVE) != 0) {
1299		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1300		    lock->lo_name, file, line);
1301		printf("while share locked from %s:%d\n", instance->li_file,
1302		    instance->li_line);
1303		panic("share->uexcl");
1304	}
1305
1306	/* If we are recursed, unrecurse. */
1307	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1308		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1309		    td->td_proc->p_pid, instance->li_lock->lo_name,
1310		    instance->li_flags);
1311		instance->li_flags--;
1312		return;
1313	}
1314
1315	/* Otherwise, remove this item from the list. */
1316	s = intr_disable();
1317	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1318	    td->td_proc->p_pid, instance->li_lock->lo_name,
1319	    (*lock_list)->ll_count - 1);
1320	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1321		(*lock_list)->ll_children[j] =
1322		    (*lock_list)->ll_children[j + 1];
1323	(*lock_list)->ll_count--;
1324	intr_restore(s);
1325
1326	/* If this lock list entry is now empty, free it. */
1327	if ((*lock_list)->ll_count == 0) {
1328		lle = *lock_list;
1329		*lock_list = lle->ll_next;
1330		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1331		    td->td_proc->p_pid, lle);
1332		witness_lock_list_free(lle);
1333	}
1334}
1335
1336/*
1337 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1338 * exempt Giant and sleepable locks from the checks as well.  If any
1339 * non-exempt locks are held, then a supplied message is printed to the
1340 * console along with a list of the offending locks.  If indicated in the
1341 * flags then a failure results in a panic as well.
1342 */
1343int
1344witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1345{
1346	struct lock_list_entry *lle;
1347	struct lock_instance *lock1;
1348	struct thread *td;
1349	va_list ap;
1350	int i, n;
1351
1352	if (witness_cold || witness_watch == 0 || panicstr != NULL)
1353		return (0);
1354	n = 0;
1355	td = curthread;
1356	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1357		for (i = lle->ll_count - 1; i >= 0; i--) {
1358			lock1 = &lle->ll_children[i];
1359			if (lock1->li_lock == lock)
1360				continue;
1361			if (flags & WARN_GIANTOK &&
1362			    lock1->li_lock == &Giant.lock_object)
1363				continue;
1364			if (flags & WARN_SLEEPOK &&
1365			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1366				continue;
1367			if (n == 0) {
1368				va_start(ap, fmt);
1369				vprintf(fmt, ap);
1370				va_end(ap);
1371				printf(" with the following");
1372				if (flags & WARN_SLEEPOK)
1373					printf(" non-sleepable");
1374				printf(" locks held:\n");
1375			}
1376			n++;
1377			witness_list_lock(lock1);
1378		}
1379	if (PCPU_GET(spinlocks) != NULL) {
1380		/*
1381		 * Since we already hold a spinlock preemption is
1382		 * already blocked.
1383		 */
1384		if (n == 0) {
1385			va_start(ap, fmt);
1386			vprintf(fmt, ap);
1387			va_end(ap);
1388			printf(" with the following");
1389			if (flags & WARN_SLEEPOK)
1390				printf(" non-sleepable");
1391			printf(" locks held:\n");
1392		}
1393		n += witness_list_locks(PCPU_PTR(spinlocks));
1394	}
1395	if (flags & WARN_PANIC && n)
1396		panic("witness_warn");
1397#ifdef KDB
1398	else if (witness_kdb && n)
1399		kdb_enter(KDB_WHY_WITNESS, __func__);
1400	else if (witness_trace && n)
1401		kdb_backtrace();
1402#endif
1403	return (n);
1404}
1405
1406const char *
1407witness_file(struct lock_object *lock)
1408{
1409	struct witness *w;
1410
1411	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1412		return ("?");
1413	w = lock->lo_witness;
1414	return (w->w_file);
1415}
1416
1417int
1418witness_line(struct lock_object *lock)
1419{
1420	struct witness *w;
1421
1422	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1423		return (0);
1424	w = lock->lo_witness;
1425	return (w->w_line);
1426}
1427
1428static struct witness *
1429enroll(const char *description, struct lock_class *lock_class)
1430{
1431	struct witness *w;
1432
1433	if (witness_watch == 0 || panicstr != NULL)
1434		return (NULL);
1435	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1436		return (NULL);
1437	mtx_lock_spin(&w_mtx);
1438	STAILQ_FOREACH(w, &w_all, w_list) {
1439		if (w->w_name == description || (w->w_refcount > 0 &&
1440		    strcmp(description, w->w_name) == 0)) {
1441			w->w_refcount++;
1442			mtx_unlock_spin(&w_mtx);
1443			if (lock_class != w->w_class)
1444				panic(
1445				"lock (%s) %s does not match earlier (%s) lock",
1446				    description, lock_class->lc_name,
1447				    w->w_class->lc_name);
1448			return (w);
1449		}
1450	}
1451	if ((w = witness_get()) == NULL)
1452		goto out;
1453	w->w_name = description;
1454	w->w_class = lock_class;
1455	w->w_refcount = 1;
1456	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1457	if (lock_class->lc_flags & LC_SPINLOCK) {
1458		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1459		w_spin_cnt++;
1460	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1461		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1462		w_sleep_cnt++;
1463	} else {
1464		mtx_unlock_spin(&w_mtx);
1465		panic("lock class %s is not sleep or spin",
1466		    lock_class->lc_name);
1467	}
1468	mtx_unlock_spin(&w_mtx);
1469out:
1470	/*
1471	 * We issue a warning for any spin locks not defined in the static
1472	 * order list as a way to discourage their use (folks should really
1473	 * be using non-spin mutexes most of the time).  However, several
1474	 * 3rd part device drivers use spin locks because that is all they
1475	 * have available on Windows and Linux and they think that normal
1476	 * mutexes are insufficient.
1477	 */
1478	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_spin_warn)
1479		printf("WITNESS: spin lock %s not in order list\n",
1480		    description);
1481	return (w);
1482}
1483
1484/* Don't let the door bang you on the way out... */
1485static int
1486depart(struct witness *w)
1487{
1488	struct witness_child_list_entry *wcl, *nwcl;
1489	struct witness_list *list;
1490	struct witness *parent;
1491
1492	MPASS(w->w_refcount == 0);
1493	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1494		list = &w_sleep;
1495		w_sleep_cnt--;
1496	} else {
1497		list = &w_spin;
1498		w_spin_cnt--;
1499	}
1500	/*
1501	 * First, we run through the entire tree looking for any
1502	 * witnesses that the outgoing witness is a child of.  For
1503	 * each parent that we find, we reparent all the direct
1504	 * children of the outgoing witness to its parent.
1505	 */
1506	STAILQ_FOREACH(parent, list, w_typelist) {
1507		if (!isitmychild(parent, w))
1508			continue;
1509		removechild(parent, w);
1510	}
1511
1512	/*
1513	 * Now we go through and free up the child list of the
1514	 * outgoing witness.
1515	 */
1516	for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1517		nwcl = wcl->wcl_next;
1518        	w_child_cnt--;
1519		witness_child_free(wcl);
1520	}
1521
1522	/*
1523	 * Detach from various lists and free.
1524	 */
1525	STAILQ_REMOVE(list, w, witness, w_typelist);
1526	STAILQ_REMOVE(&w_all, w, witness, w_list);
1527	witness_free(w);
1528
1529	return (1);
1530}
1531
1532/*
1533 * Add "child" as a direct child of "parent".  Returns false if
1534 * we fail due to out of memory.
1535 */
1536static int
1537insertchild(struct witness *parent, struct witness *child)
1538{
1539	struct witness_child_list_entry **wcl;
1540
1541	MPASS(child != NULL && parent != NULL);
1542
1543	/*
1544	 * Insert "child" after "parent"
1545	 */
1546	wcl = &parent->w_children;
1547	while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1548		wcl = &(*wcl)->wcl_next;
1549	if (*wcl == NULL) {
1550		*wcl = witness_child_get();
1551		if (*wcl == NULL)
1552			return (0);
1553        	w_child_cnt++;
1554	}
1555	(*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1556
1557	return (1);
1558}
1559
1560
1561static int
1562itismychild(struct witness *parent, struct witness *child)
1563{
1564	struct witness_list *list;
1565
1566	MPASS(child != NULL && parent != NULL);
1567	if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1568	    (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1569		panic(
1570		"%s: parent (%s) and child (%s) are not the same lock type",
1571		    __func__, parent->w_class->lc_name,
1572		    child->w_class->lc_name);
1573
1574	if (!insertchild(parent, child))
1575		return (0);
1576
1577	if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1578		list = &w_sleep;
1579	else
1580		list = &w_spin;
1581	return (1);
1582}
1583
1584static void
1585removechild(struct witness *parent, struct witness *child)
1586{
1587	struct witness_child_list_entry **wcl, *wcl1;
1588	int i;
1589
1590	for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1591		for (i = 0; i < (*wcl)->wcl_count; i++)
1592			if ((*wcl)->wcl_children[i] == child)
1593				goto found;
1594	return;
1595found:
1596	(*wcl)->wcl_count--;
1597	if ((*wcl)->wcl_count > i)
1598		(*wcl)->wcl_children[i] =
1599		    (*wcl)->wcl_children[(*wcl)->wcl_count];
1600	MPASS((*wcl)->wcl_children[i] != NULL);
1601	if ((*wcl)->wcl_count != 0)
1602		return;
1603	wcl1 = *wcl;
1604	*wcl = wcl1->wcl_next;
1605	w_child_cnt--;
1606	witness_child_free(wcl1);
1607}
1608
1609static int
1610isitmychild(struct witness *parent, struct witness *child)
1611{
1612	struct witness_child_list_entry *wcl;
1613	int i;
1614
1615	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1616		for (i = 0; i < wcl->wcl_count; i++) {
1617			if (wcl->wcl_children[i] == child)
1618				return (1);
1619		}
1620	}
1621	return (0);
1622}
1623
1624static int
1625isitmydescendant(struct witness *parent, struct witness *child)
1626{
1627	struct witness_child_list_entry *wcl;
1628	int i, j;
1629
1630	if (isitmychild(parent, child))
1631		return (1);
1632	j = 0;
1633	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1634		MPASS(j < 1000);
1635		for (i = 0; i < wcl->wcl_count; i++) {
1636			if (isitmydescendant(wcl->wcl_children[i], child))
1637				return (1);
1638		}
1639		j++;
1640	}
1641	return (0);
1642}
1643
1644#ifdef BLESSING
1645static int
1646blessed(struct witness *w1, struct witness *w2)
1647{
1648	int i;
1649	struct witness_blessed *b;
1650
1651	for (i = 0; i < blessed_count; i++) {
1652		b = &blessed_list[i];
1653		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1654			if (strcmp(w2->w_name, b->b_lock2) == 0)
1655				return (1);
1656			continue;
1657		}
1658		if (strcmp(w1->w_name, b->b_lock2) == 0)
1659			if (strcmp(w2->w_name, b->b_lock1) == 0)
1660				return (1);
1661	}
1662	return (0);
1663}
1664#endif
1665
1666static struct witness *
1667witness_get(void)
1668{
1669	struct witness *w;
1670
1671	if (witness_watch == 0) {
1672		mtx_unlock_spin(&w_mtx);
1673		return (NULL);
1674	}
1675	if (STAILQ_EMPTY(&w_free)) {
1676		witness_watch = 0;
1677		mtx_unlock_spin(&w_mtx);
1678		printf("%s: witness exhausted\n", __func__);
1679		return (NULL);
1680	}
1681	w = STAILQ_FIRST(&w_free);
1682	STAILQ_REMOVE_HEAD(&w_free, w_list);
1683	w_free_cnt--;
1684	bzero(w, sizeof(*w));
1685	return (w);
1686}
1687
1688static void
1689witness_free(struct witness *w)
1690{
1691
1692	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1693	w_free_cnt++;
1694}
1695
1696static struct witness_child_list_entry *
1697witness_child_get(void)
1698{
1699	struct witness_child_list_entry *wcl;
1700
1701	if (witness_watch == 0) {
1702		mtx_unlock_spin(&w_mtx);
1703		return (NULL);
1704	}
1705	wcl = w_child_free;
1706	if (wcl == NULL) {
1707		witness_watch = 0;
1708		mtx_unlock_spin(&w_mtx);
1709		printf("%s: witness exhausted\n", __func__);
1710		return (NULL);
1711	}
1712	w_child_free = wcl->wcl_next;
1713	w_child_free_cnt--;
1714	bzero(wcl, sizeof(*wcl));
1715	return (wcl);
1716}
1717
1718static void
1719witness_child_free(struct witness_child_list_entry *wcl)
1720{
1721
1722	wcl->wcl_next = w_child_free;
1723	w_child_free = wcl;
1724	w_child_free_cnt++;
1725}
1726
1727static struct lock_list_entry *
1728witness_lock_list_get(void)
1729{
1730	struct lock_list_entry *lle;
1731
1732	if (witness_watch == 0)
1733		return (NULL);
1734	mtx_lock_spin(&w_mtx);
1735	lle = w_lock_list_free;
1736	if (lle == NULL) {
1737		witness_watch = 0;
1738		mtx_unlock_spin(&w_mtx);
1739		printf("%s: witness exhausted\n", __func__);
1740		return (NULL);
1741	}
1742	w_lock_list_free = lle->ll_next;
1743	mtx_unlock_spin(&w_mtx);
1744	bzero(lle, sizeof(*lle));
1745	return (lle);
1746}
1747
1748static void
1749witness_lock_list_free(struct lock_list_entry *lle)
1750{
1751
1752	mtx_lock_spin(&w_mtx);
1753	lle->ll_next = w_lock_list_free;
1754	w_lock_list_free = lle;
1755	mtx_unlock_spin(&w_mtx);
1756}
1757
1758static struct lock_instance *
1759find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1760{
1761	struct lock_list_entry *lle;
1762	struct lock_instance *instance;
1763	int i;
1764
1765	for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1766		for (i = lle->ll_count - 1; i >= 0; i--) {
1767			instance = &lle->ll_children[i];
1768			if (instance->li_lock == lock)
1769				return (instance);
1770		}
1771	return (NULL);
1772}
1773
1774static void
1775witness_list_lock(struct lock_instance *instance)
1776{
1777	struct lock_object *lock;
1778
1779	lock = instance->li_lock;
1780	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1781	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
1782	if (lock->lo_type != lock->lo_name)
1783		printf(" (%s)", lock->lo_type);
1784	printf(" r = %d (%p) locked @ %s:%d\n",
1785	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1786	    instance->li_line);
1787}
1788
1789#ifdef DDB
1790static int
1791witness_thread_has_locks(struct thread *td)
1792{
1793
1794	return (td->td_sleeplocks != NULL);
1795}
1796
1797static int
1798witness_proc_has_locks(struct proc *p)
1799{
1800	struct thread *td;
1801
1802	FOREACH_THREAD_IN_PROC(p, td) {
1803		if (witness_thread_has_locks(td))
1804			return (1);
1805	}
1806	return (0);
1807}
1808#endif
1809
1810int
1811witness_list_locks(struct lock_list_entry **lock_list)
1812{
1813	struct lock_list_entry *lle;
1814	int i, nheld;
1815
1816	nheld = 0;
1817	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1818		for (i = lle->ll_count - 1; i >= 0; i--) {
1819			witness_list_lock(&lle->ll_children[i]);
1820			nheld++;
1821		}
1822	return (nheld);
1823}
1824
1825/*
1826 * This is a bit risky at best.  We call this function when we have timed
1827 * out acquiring a spin lock, and we assume that the other CPU is stuck
1828 * with this lock held.  So, we go groveling around in the other CPU's
1829 * per-cpu data to try to find the lock instance for this spin lock to
1830 * see when it was last acquired.
1831 */
1832void
1833witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1834{
1835	struct lock_instance *instance;
1836	struct pcpu *pc;
1837
1838	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1839		return;
1840	pc = pcpu_find(owner->td_oncpu);
1841	instance = find_instance(pc->pc_spinlocks, lock);
1842	if (instance != NULL)
1843		witness_list_lock(instance);
1844}
1845
1846void
1847witness_save(struct lock_object *lock, const char **filep, int *linep)
1848{
1849	struct lock_list_entry *lock_list;
1850	struct lock_instance *instance;
1851	struct lock_class *class;
1852
1853	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1854	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1855		return;
1856	class = LOCK_CLASS(lock);
1857	if (class->lc_flags & LC_SLEEPLOCK)
1858		lock_list = curthread->td_sleeplocks;
1859	else {
1860		if (witness_skipspin)
1861			return;
1862		lock_list = PCPU_GET(spinlocks);
1863	}
1864	instance = find_instance(lock_list, lock);
1865	if (instance == NULL)
1866		panic("%s: lock (%s) %s not locked", __func__,
1867		    class->lc_name, lock->lo_name);
1868	*filep = instance->li_file;
1869	*linep = instance->li_line;
1870}
1871
1872void
1873witness_restore(struct lock_object *lock, const char *file, int line)
1874{
1875	struct lock_list_entry *lock_list;
1876	struct lock_instance *instance;
1877	struct lock_class *class;
1878
1879	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1880	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1881		return;
1882	class = LOCK_CLASS(lock);
1883	if (class->lc_flags & LC_SLEEPLOCK)
1884		lock_list = curthread->td_sleeplocks;
1885	else {
1886		if (witness_skipspin)
1887			return;
1888		lock_list = PCPU_GET(spinlocks);
1889	}
1890	instance = find_instance(lock_list, lock);
1891	if (instance == NULL)
1892		panic("%s: lock (%s) %s not locked", __func__,
1893		    class->lc_name, lock->lo_name);
1894	lock->lo_witness->w_file = file;
1895	lock->lo_witness->w_line = line;
1896	instance->li_file = file;
1897	instance->li_line = line;
1898}
1899
1900void
1901witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1902{
1903#ifdef INVARIANT_SUPPORT
1904	struct lock_instance *instance;
1905	struct lock_class *class;
1906
1907	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1908		return;
1909	class = LOCK_CLASS(lock);
1910	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
1911		instance = find_instance(curthread->td_sleeplocks, lock);
1912	else if ((class->lc_flags & LC_SPINLOCK) != 0)
1913		instance = find_instance(PCPU_GET(spinlocks), lock);
1914	else {
1915		panic("Lock (%s) %s is not sleep or spin!",
1916		    class->lc_name, lock->lo_name);
1917	}
1918	file = fixup_filename(file);
1919	switch (flags) {
1920	case LA_UNLOCKED:
1921		if (instance != NULL)
1922			panic("Lock (%s) %s locked @ %s:%d.",
1923			    class->lc_name, lock->lo_name, file, line);
1924		break;
1925	case LA_LOCKED:
1926	case LA_LOCKED | LA_RECURSED:
1927	case LA_LOCKED | LA_NOTRECURSED:
1928	case LA_SLOCKED:
1929	case LA_SLOCKED | LA_RECURSED:
1930	case LA_SLOCKED | LA_NOTRECURSED:
1931	case LA_XLOCKED:
1932	case LA_XLOCKED | LA_RECURSED:
1933	case LA_XLOCKED | LA_NOTRECURSED:
1934		if (instance == NULL) {
1935			panic("Lock (%s) %s not locked @ %s:%d.",
1936			    class->lc_name, lock->lo_name, file, line);
1937			break;
1938		}
1939		if ((flags & LA_XLOCKED) != 0 &&
1940		    (instance->li_flags & LI_EXCLUSIVE) == 0)
1941			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1942			    class->lc_name, lock->lo_name, file, line);
1943		if ((flags & LA_SLOCKED) != 0 &&
1944		    (instance->li_flags & LI_EXCLUSIVE) != 0)
1945			panic("Lock (%s) %s exclusively locked @ %s:%d.",
1946			    class->lc_name, lock->lo_name, file, line);
1947		if ((flags & LA_RECURSED) != 0 &&
1948		    (instance->li_flags & LI_RECURSEMASK) == 0)
1949			panic("Lock (%s) %s not recursed @ %s:%d.",
1950			    class->lc_name, lock->lo_name, file, line);
1951		if ((flags & LA_NOTRECURSED) != 0 &&
1952		    (instance->li_flags & LI_RECURSEMASK) != 0)
1953			panic("Lock (%s) %s recursed @ %s:%d.",
1954			    class->lc_name, lock->lo_name, file, line);
1955		break;
1956	default:
1957		panic("Invalid lock assertion at %s:%d.", file, line);
1958
1959	}
1960#endif	/* INVARIANT_SUPPORT */
1961}
1962
1963#ifdef DDB
1964static void
1965witness_list(struct thread *td)
1966{
1967
1968	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1969	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1970
1971	if (witness_watch == 0)
1972		return;
1973
1974	witness_list_locks(&td->td_sleeplocks);
1975
1976	/*
1977	 * We only handle spinlocks if td == curthread.  This is somewhat broken
1978	 * if td is currently executing on some other CPU and holds spin locks
1979	 * as we won't display those locks.  If we had a MI way of getting
1980	 * the per-cpu data for a given cpu then we could use
1981	 * td->td_oncpu to get the list of spinlocks for this thread
1982	 * and "fix" this.
1983	 *
1984	 * That still wouldn't really fix this unless we locked the scheduler
1985	 * lock or stopped the other CPU to make sure it wasn't changing the
1986	 * list out from under us.  It is probably best to just not try to
1987	 * handle threads on other CPU's for now.
1988	 */
1989	if (td == curthread && PCPU_GET(spinlocks) != NULL)
1990		witness_list_locks(PCPU_PTR(spinlocks));
1991}
1992
1993DB_SHOW_COMMAND(locks, db_witness_list)
1994{
1995	struct thread *td;
1996
1997	if (have_addr)
1998		td = db_lookup_thread(addr, TRUE);
1999	else
2000		td = kdb_thread;
2001	witness_list(td);
2002}
2003
2004DB_SHOW_COMMAND(alllocks, db_witness_list_all)
2005{
2006	struct thread *td;
2007	struct proc *p;
2008
2009	/*
2010	 * It would be nice to list only threads and processes that actually
2011	 * held sleep locks, but that information is currently not exported
2012	 * by WITNESS.
2013	 */
2014	FOREACH_PROC_IN_SYSTEM(p) {
2015		if (!witness_proc_has_locks(p))
2016			continue;
2017		FOREACH_THREAD_IN_PROC(p, td) {
2018			if (!witness_thread_has_locks(td))
2019				continue;
2020			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2021			    td->td_name, td, td->td_tid);
2022			witness_list(td);
2023		}
2024	}
2025}
2026
2027DB_SHOW_COMMAND(witness, db_witness_display)
2028{
2029
2030	witness_display(db_printf);
2031}
2032#endif
2033