subr_syscall.c revision 70861
1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38 * $FreeBSD: head/sys/kern/subr_trap.c 70861 2001-01-10 04:43:51Z jake $
39 */
40
41/*
42 * 386 Trap and System call handling
43 */
44
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_ktrace.h"
48#include "opt_clock.h"
49#include "opt_trap.h"
50
51#include <sys/param.h>
52#include <sys/bus.h>
53#include <sys/systm.h>
54#include <sys/proc.h>
55#include <sys/pioctl.h>
56#include <sys/ipl.h>
57#include <sys/kernel.h>
58#include <sys/ktr.h>
59#include <sys/mutex.h>
60#include <sys/resourcevar.h>
61#include <sys/signalvar.h>
62#include <sys/syscall.h>
63#include <sys/sysctl.h>
64#include <sys/sysent.h>
65#include <sys/uio.h>
66#include <sys/vmmeter.h>
67#ifdef KTRACE
68#include <sys/ktrace.h>
69#endif
70
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <sys/lock.h>
74#include <vm/pmap.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_map.h>
77#include <vm/vm_page.h>
78#include <vm/vm_extern.h>
79
80#include <machine/cpu.h>
81#include <machine/md_var.h>
82#include <machine/pcb.h>
83#ifdef SMP
84#include <machine/smp.h>
85#endif
86#include <machine/tss.h>
87
88#include <i386/isa/icu.h>
89#include <i386/isa/intr_machdep.h>
90
91#ifdef POWERFAIL_NMI
92#include <sys/syslog.h>
93#include <machine/clock.h>
94#endif
95
96#include <machine/vm86.h>
97
98#include <ddb/ddb.h>
99
100#include "isa.h"
101#include "npx.h"
102
103#include <sys/sysctl.h>
104
105int (*pmath_emulate) __P((struct trapframe *));
106
107extern void trap __P((struct trapframe frame));
108extern int trapwrite __P((unsigned addr));
109extern void syscall2 __P((struct trapframe frame));
110extern void ast __P((struct trapframe frame));
111
112static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
113static void trap_fatal __P((struct trapframe *, vm_offset_t));
114void dblfault_handler __P((void));
115
116extern inthand_t IDTVEC(syscall);
117
118#define MAX_TRAP_MSG		28
119static char *trap_msg[] = {
120	"",					/*  0 unused */
121	"privileged instruction fault",		/*  1 T_PRIVINFLT */
122	"",					/*  2 unused */
123	"breakpoint instruction fault",		/*  3 T_BPTFLT */
124	"",					/*  4 unused */
125	"",					/*  5 unused */
126	"arithmetic trap",			/*  6 T_ARITHTRAP */
127	"system forced exception",		/*  7 T_ASTFLT */
128	"",					/*  8 unused */
129	"general protection fault",		/*  9 T_PROTFLT */
130	"trace trap",				/* 10 T_TRCTRAP */
131	"",					/* 11 unused */
132	"page fault",				/* 12 T_PAGEFLT */
133	"",					/* 13 unused */
134	"alignment fault",			/* 14 T_ALIGNFLT */
135	"",					/* 15 unused */
136	"",					/* 16 unused */
137	"",					/* 17 unused */
138	"integer divide fault",			/* 18 T_DIVIDE */
139	"non-maskable interrupt trap",		/* 19 T_NMI */
140	"overflow trap",			/* 20 T_OFLOW */
141	"FPU bounds check fault",		/* 21 T_BOUND */
142	"FPU device not available",		/* 22 T_DNA */
143	"double fault",				/* 23 T_DOUBLEFLT */
144	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
145	"invalid TSS fault",			/* 25 T_TSSFLT */
146	"segment not present fault",		/* 26 T_SEGNPFLT */
147	"stack fault",				/* 27 T_STKFLT */
148	"machine check trap",			/* 28 T_MCHK */
149};
150
151static __inline int userret __P((struct proc *p, struct trapframe *frame,
152				  u_quad_t oticks, int have_giant));
153
154#if defined(I586_CPU) && !defined(NO_F00F_HACK)
155extern int has_f00f_bug;
156#endif
157
158#ifdef DDB
159static int ddb_on_nmi = 1;
160SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
161	&ddb_on_nmi, 0, "Go to DDB on NMI");
162#endif
163static int panic_on_nmi = 1;
164SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
165	&panic_on_nmi, 0, "Panic on NMI");
166
167#ifdef WITNESS
168extern char *syscallnames[];
169#endif
170
171static __inline int
172userret(p, frame, oticks, have_giant)
173	struct proc *p;
174	struct trapframe *frame;
175	u_quad_t oticks;
176	int have_giant;
177{
178	int sig, s;
179
180	while ((sig = CURSIG(p)) != 0) {
181		if (have_giant == 0) {
182			mtx_enter(&Giant, MTX_DEF);
183			have_giant = 1;
184		}
185		postsig(sig);
186	}
187
188	p->p_priority = p->p_usrpri;
189	if (resched_wanted()) {
190		/*
191		 * Since we are curproc, clock will normally just change
192		 * our priority without moving us from one queue to another
193		 * (since the running process is not on a queue.)
194		 * If that happened after we setrunqueue ourselves but before we
195		 * mi_switch()'ed, we might not be on the queue indicated by
196		 * our priority.
197		 */
198		s = splhigh();
199		mtx_enter(&sched_lock, MTX_SPIN);
200		DROP_GIANT_NOSWITCH();
201		setrunqueue(p);
202		p->p_stats->p_ru.ru_nivcsw++;
203		mi_switch();
204		mtx_exit(&sched_lock, MTX_SPIN);
205		PICKUP_GIANT();
206		splx(s);
207		while ((sig = CURSIG(p)) != 0) {
208			if (have_giant == 0) {
209				mtx_enter(&Giant, MTX_DEF);
210				have_giant = 1;
211			}
212			postsig(sig);
213		}
214	}
215	/*
216	 * Charge system time if profiling.
217	 */
218	if (p->p_flag & P_PROFIL) {
219		if (have_giant == 0) {
220			mtx_enter(&Giant, MTX_DEF);
221			have_giant = 1;
222		}
223		addupc_task(p, frame->tf_eip,
224			    (u_int)(p->p_sticks - oticks) * psratio);
225	}
226	curpriority = p->p_priority;
227	return(have_giant);
228}
229
230/*
231 * Exception, fault, and trap interface to the FreeBSD kernel.
232 * This common code is called from assembly language IDT gate entry
233 * routines that prepare a suitable stack frame, and restore this
234 * frame after the exception has been processed.
235 */
236
237void
238trap(frame)
239	struct trapframe frame;
240{
241	struct proc *p = curproc;
242	u_quad_t sticks = 0;
243	int i = 0, ucode = 0, type, code;
244	vm_offset_t eva;
245#ifdef POWERFAIL_NMI
246	static int lastalert = 0;
247#endif
248
249	atomic_add_int(&cnt.v_trap, 1);
250
251	if ((frame.tf_eflags & PSL_I) == 0) {
252		/*
253		 * Buggy application or kernel code has disabled
254		 * interrupts and then trapped.  Enabling interrupts
255		 * now is wrong, but it is better than running with
256		 * interrupts disabled until they are accidentally
257		 * enabled later.  XXX Consider whether is this still
258		 * correct.
259		 */
260		type = frame.tf_trapno;
261		if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
262			printf(
263			    "pid %ld (%s): trap %d with interrupts disabled\n",
264			    (long)curproc->p_pid, curproc->p_comm, type);
265		else if (type != T_BPTFLT && type != T_TRCTRAP)
266			/*
267			 * XXX not quite right, since this may be for a
268			 * multiple fault in user mode.
269			 */
270			printf("kernel trap %d with interrupts disabled\n",
271			    type);
272		enable_intr();
273	}
274
275	eva = 0;
276	if (frame.tf_trapno == T_PAGEFLT) {
277		/*
278		 * For some Cyrix CPUs, %cr2 is clobbered by
279		 * interrupts.  This problem is worked around by using
280		 * an interrupt gate for the pagefault handler.  We
281		 * are finally ready to read %cr2 and then must
282		 * reenable interrupts.
283		 */
284		eva = rcr2();
285		enable_intr();
286	}
287
288	mtx_enter(&Giant, MTX_DEF);
289
290#if defined(I586_CPU) && !defined(NO_F00F_HACK)
291restart:
292#endif
293
294	type = frame.tf_trapno;
295	code = frame.tf_err;
296
297        if ((ISPL(frame.tf_cs) == SEL_UPL) ||
298	    ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
299		/* user trap */
300
301		sticks = p->p_sticks;
302		p->p_md.md_regs = &frame;
303
304		switch (type) {
305		case T_PRIVINFLT:	/* privileged instruction fault */
306			ucode = type;
307			i = SIGILL;
308			break;
309
310		case T_BPTFLT:		/* bpt instruction fault */
311		case T_TRCTRAP:		/* trace trap */
312			frame.tf_eflags &= ~PSL_T;
313			i = SIGTRAP;
314			break;
315
316		case T_ARITHTRAP:	/* arithmetic trap */
317			ucode = code;
318			i = SIGFPE;
319			break;
320
321			/*
322			 * The following two traps can happen in
323			 * vm86 mode, and, if so, we want to handle
324			 * them specially.
325			 */
326		case T_PROTFLT:		/* general protection fault */
327		case T_STKFLT:		/* stack fault */
328			if (frame.tf_eflags & PSL_VM) {
329				i = vm86_emulate((struct vm86frame *)&frame);
330				if (i == 0)
331					goto user;
332				break;
333			}
334			/* FALL THROUGH */
335
336		case T_SEGNPFLT:	/* segment not present fault */
337		case T_TSSFLT:		/* invalid TSS fault */
338		case T_DOUBLEFLT:	/* double fault */
339		default:
340			ucode = code + BUS_SEGM_FAULT ;
341			i = SIGBUS;
342			break;
343
344		case T_PAGEFLT:		/* page fault */
345			i = trap_pfault(&frame, TRUE, eva);
346#if defined(I586_CPU) && !defined(NO_F00F_HACK)
347			if (i == -2) {
348				/*
349				 * f00f hack workaround has triggered, treat
350				 * as illegal instruction not page fault.
351				 */
352				frame.tf_trapno = T_PRIVINFLT;
353				goto restart;
354			}
355#endif
356			if (i == -1)
357				goto out;
358			if (i == 0)
359				goto user;
360
361			ucode = T_PAGEFLT;
362			break;
363
364		case T_DIVIDE:		/* integer divide fault */
365			ucode = FPE_INTDIV;
366			i = SIGFPE;
367			break;
368
369#if NISA > 0
370		case T_NMI:
371#ifdef POWERFAIL_NMI
372#ifndef TIMER_FREQ
373#  define TIMER_FREQ 1193182
374#endif
375			if (time_second - lastalert > 10) {
376				log(LOG_WARNING, "NMI: power fail\n");
377				sysbeep(TIMER_FREQ/880, hz);
378				lastalert = time_second;
379			}
380			goto out;
381#else /* !POWERFAIL_NMI */
382			/* machine/parity/power fail/"kitchen sink" faults */
383			if (isa_nmi(code) == 0) {
384#ifdef DDB
385				/*
386				 * NMI can be hooked up to a pushbutton
387				 * for debugging.
388				 */
389				if (ddb_on_nmi) {
390					printf ("NMI ... going to debugger\n");
391					kdb_trap (type, 0, &frame);
392				}
393#endif /* DDB */
394				goto out;
395			} else if (panic_on_nmi)
396				panic("NMI indicates hardware failure");
397			break;
398#endif /* POWERFAIL_NMI */
399#endif /* NISA > 0 */
400
401		case T_OFLOW:		/* integer overflow fault */
402			ucode = FPE_INTOVF;
403			i = SIGFPE;
404			break;
405
406		case T_BOUND:		/* bounds check fault */
407			ucode = FPE_FLTSUB;
408			i = SIGFPE;
409			break;
410
411		case T_DNA:
412#if NNPX > 0
413			/* transparent fault (due to context switch "late") */
414			if (npxdna())
415				goto out;
416#endif
417			if (!pmath_emulate) {
418				i = SIGFPE;
419				ucode = FPE_FPU_NP_TRAP;
420				break;
421			}
422			i = (*pmath_emulate)(&frame);
423			if (i == 0) {
424				if (!(frame.tf_eflags & PSL_T))
425					goto out;
426				frame.tf_eflags &= ~PSL_T;
427				i = SIGTRAP;
428			}
429			/* else ucode = emulator_only_knows() XXX */
430			break;
431
432		case T_FPOPFLT:		/* FPU operand fetch fault */
433			ucode = T_FPOPFLT;
434			i = SIGILL;
435			break;
436		}
437	} else {
438		/* kernel trap */
439
440		switch (type) {
441		case T_PAGEFLT:			/* page fault */
442			(void) trap_pfault(&frame, FALSE, eva);
443			goto out;
444
445		case T_DNA:
446#if NNPX > 0
447			/*
448			 * The kernel is apparently using npx for copying.
449			 * XXX this should be fatal unless the kernel has
450			 * registered such use.
451			 */
452			if (npxdna())
453				goto out;
454#endif
455			break;
456
457			/*
458			 * The following two traps can happen in
459			 * vm86 mode, and, if so, we want to handle
460			 * them specially.
461			 */
462		case T_PROTFLT:		/* general protection fault */
463		case T_STKFLT:		/* stack fault */
464			if (frame.tf_eflags & PSL_VM) {
465				i = vm86_emulate((struct vm86frame *)&frame);
466				if (i != 0)
467					/*
468					 * returns to original process
469					 */
470					mtx_exit(&Giant, MTX_DEF);
471					vm86_trap((struct vm86frame *)&frame);
472				goto out;
473			}
474			if (type == T_STKFLT)
475				break;
476
477			/* FALL THROUGH */
478
479		case T_SEGNPFLT:	/* segment not present fault */
480			if (in_vm86call)
481				break;
482
483			if (PCPU_GET(intr_nesting_level) != 0)
484				break;
485
486			/*
487			 * Invalid %fs's and %gs's can be created using
488			 * procfs or PT_SETREGS or by invalidating the
489			 * underlying LDT entry.  This causes a fault
490			 * in kernel mode when the kernel attempts to
491			 * switch contexts.  Lose the bad context
492			 * (XXX) so that we can continue, and generate
493			 * a signal.
494			 */
495			if (frame.tf_eip == (int)cpu_switch_load_gs) {
496				PCPU_GET(curpcb)->pcb_gs = 0;
497				psignal(p, SIGBUS);
498				goto out;
499			}
500
501			/*
502			 * Invalid segment selectors and out of bounds
503			 * %eip's and %esp's can be set up in user mode.
504			 * This causes a fault in kernel mode when the
505			 * kernel tries to return to user mode.  We want
506			 * to get this fault so that we can fix the
507			 * problem here and not have to check all the
508			 * selectors and pointers when the user changes
509			 * them.
510			 */
511			if (frame.tf_eip == (int)doreti_iret) {
512				frame.tf_eip = (int)doreti_iret_fault;
513				goto out;
514			}
515			if (frame.tf_eip == (int)doreti_popl_ds) {
516				frame.tf_eip = (int)doreti_popl_ds_fault;
517				goto out;
518			}
519			if (frame.tf_eip == (int)doreti_popl_es) {
520				frame.tf_eip = (int)doreti_popl_es_fault;
521				goto out;
522			}
523			if (frame.tf_eip == (int)doreti_popl_fs) {
524				frame.tf_eip = (int)doreti_popl_fs_fault;
525				goto out;
526			}
527			if (PCPU_GET(curpcb) != NULL &&
528			    PCPU_GET(curpcb)->pcb_onfault != NULL) {
529				frame.tf_eip =
530				    (int)PCPU_GET(curpcb)->pcb_onfault;
531				goto out;
532			}
533			break;
534
535		case T_TSSFLT:
536			/*
537			 * PSL_NT can be set in user mode and isn't cleared
538			 * automatically when the kernel is entered.  This
539			 * causes a TSS fault when the kernel attempts to
540			 * `iret' because the TSS link is uninitialized.  We
541			 * want to get this fault so that we can fix the
542			 * problem here and not every time the kernel is
543			 * entered.
544			 */
545			if (frame.tf_eflags & PSL_NT) {
546				frame.tf_eflags &= ~PSL_NT;
547				goto out;
548			}
549			break;
550
551		case T_TRCTRAP:	 /* trace trap */
552			if (frame.tf_eip == (int)IDTVEC(syscall)) {
553				/*
554				 * We've just entered system mode via the
555				 * syscall lcall.  Continue single stepping
556				 * silently until the syscall handler has
557				 * saved the flags.
558				 */
559				goto out;
560			}
561			if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
562				/*
563				 * The syscall handler has now saved the
564				 * flags.  Stop single stepping it.
565				 */
566				frame.tf_eflags &= ~PSL_T;
567				goto out;
568			}
569			/*
570			 * Ignore debug register trace traps due to
571			 * accesses in the user's address space, which
572			 * can happen under several conditions such as
573			 * if a user sets a watchpoint on a buffer and
574			 * then passes that buffer to a system call.
575			 * We still want to get TRCTRAPS for addresses
576			 * in kernel space because that is useful when
577			 * debugging the kernel.
578			 */
579			if (user_dbreg_trap() && !in_vm86call) {
580				/*
581				 * Reset breakpoint bits because the
582				 * processor doesn't
583				 */
584				load_dr6(rdr6() & 0xfffffff0);
585				goto out;
586			}
587			/*
588			 * Fall through (TRCTRAP kernel mode, kernel address)
589			 */
590		case T_BPTFLT:
591			/*
592			 * If DDB is enabled, let it handle the debugger trap.
593			 * Otherwise, debugger traps "can't happen".
594			 */
595#ifdef DDB
596			if (kdb_trap (type, 0, &frame))
597				goto out;
598#endif
599			break;
600
601#if NISA > 0
602		case T_NMI:
603#ifdef POWERFAIL_NMI
604			if (time_second - lastalert > 10) {
605				log(LOG_WARNING, "NMI: power fail\n");
606				sysbeep(TIMER_FREQ/880, hz);
607				lastalert = time_second;
608			}
609			goto out;
610#else /* !POWERFAIL_NMI */
611			/* machine/parity/power fail/"kitchen sink" faults */
612			if (isa_nmi(code) == 0) {
613#ifdef DDB
614				/*
615				 * NMI can be hooked up to a pushbutton
616				 * for debugging.
617				 */
618				if (ddb_on_nmi) {
619					printf ("NMI ... going to debugger\n");
620					kdb_trap (type, 0, &frame);
621				}
622#endif /* DDB */
623				goto out;
624			} else if (panic_on_nmi == 0)
625				goto out;
626			/* FALL THROUGH */
627#endif /* POWERFAIL_NMI */
628#endif /* NISA > 0 */
629		}
630
631		trap_fatal(&frame, eva);
632		goto out;
633	}
634
635	/* Translate fault for emulators (e.g. Linux) */
636	if (*p->p_sysent->sv_transtrap)
637		i = (*p->p_sysent->sv_transtrap)(i, type);
638
639	trapsignal(p, i, ucode);
640
641#ifdef DEBUG
642	if (type <= MAX_TRAP_MSG) {
643		uprintf("fatal process exception: %s",
644			trap_msg[type]);
645		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
646			uprintf(", fault VA = 0x%lx", (u_long)eva);
647		uprintf("\n");
648	}
649#endif
650
651user:
652	userret(p, &frame, sticks, 1);
653out:
654	mtx_exit(&Giant, MTX_DEF);
655}
656
657#ifdef notyet
658/*
659 * This version doesn't allow a page fault to user space while
660 * in the kernel. The rest of the kernel needs to be made "safe"
661 * before this can be used. I think the only things remaining
662 * to be made safe are the iBCS2 code and the process tracing/
663 * debugging code.
664 */
665static int
666trap_pfault(frame, usermode, eva)
667	struct trapframe *frame;
668	int usermode;
669	vm_offset_t eva;
670{
671	vm_offset_t va;
672	struct vmspace *vm = NULL;
673	vm_map_t map = 0;
674	int rv = 0;
675	vm_prot_t ftype;
676	struct proc *p = curproc;
677
678	if (frame->tf_err & PGEX_W)
679		ftype = VM_PROT_WRITE;
680	else
681		ftype = VM_PROT_READ;
682
683	va = trunc_page(eva);
684	if (va < VM_MIN_KERNEL_ADDRESS) {
685		vm_offset_t v;
686		vm_page_t mpte;
687
688		if (p == NULL ||
689		    (!usermode && va < VM_MAXUSER_ADDRESS &&
690		     (PCPU_GET(intr_nesting_level) != 0 ||
691		      PCPU_GET(curpcb) == NULL ||
692		      PCPU_GET(curpcb)->pcb_onfault == NULL))) {
693			trap_fatal(frame, eva);
694			return (-1);
695		}
696
697		/*
698		 * This is a fault on non-kernel virtual memory.
699		 * vm is initialized above to NULL. If curproc is NULL
700		 * or curproc->p_vmspace is NULL the fault is fatal.
701		 */
702		vm = p->p_vmspace;
703		if (vm == NULL)
704			goto nogo;
705
706		map = &vm->vm_map;
707
708		/*
709		 * Keep swapout from messing with us during this
710		 *	critical time.
711		 */
712		++p->p_lock;
713
714		/*
715		 * Grow the stack if necessary
716		 */
717		/* grow_stack returns false only if va falls into
718		 * a growable stack region and the stack growth
719		 * fails.  It returns true if va was not within
720		 * a growable stack region, or if the stack
721		 * growth succeeded.
722		 */
723		if (!grow_stack (p, va)) {
724			rv = KERN_FAILURE;
725			--p->p_lock;
726			goto nogo;
727		}
728
729		/* Fault in the user page: */
730		rv = vm_fault(map, va, ftype,
731			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
732						      : VM_FAULT_NORMAL);
733
734		--p->p_lock;
735	} else {
736		/*
737		 * Don't allow user-mode faults in kernel address space.
738		 */
739		if (usermode)
740			goto nogo;
741
742		/*
743		 * Since we know that kernel virtual address addresses
744		 * always have pte pages mapped, we just have to fault
745		 * the page.
746		 */
747		rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
748	}
749
750	if (rv == KERN_SUCCESS)
751		return (0);
752nogo:
753	if (!usermode) {
754		if (PCPU_GET(intr_nesting_level) == 0 &&
755		    PCPU_GET(curpcb) != NULL &&
756		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
757			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
758			return (0);
759		}
760		trap_fatal(frame, eva);
761		return (-1);
762	}
763
764	/* kludge to pass faulting virtual address to sendsig */
765	frame->tf_err = eva;
766
767	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
768}
769#endif
770
771int
772trap_pfault(frame, usermode, eva)
773	struct trapframe *frame;
774	int usermode;
775	vm_offset_t eva;
776{
777	vm_offset_t va;
778	struct vmspace *vm = NULL;
779	vm_map_t map = 0;
780	int rv = 0;
781	vm_prot_t ftype;
782	struct proc *p = curproc;
783
784	va = trunc_page(eva);
785	if (va >= KERNBASE) {
786		/*
787		 * Don't allow user-mode faults in kernel address space.
788		 * An exception:  if the faulting address is the invalid
789		 * instruction entry in the IDT, then the Intel Pentium
790		 * F00F bug workaround was triggered, and we need to
791		 * treat it is as an illegal instruction, and not a page
792		 * fault.
793		 */
794#if defined(I586_CPU) && !defined(NO_F00F_HACK)
795		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
796			return -2;
797#endif
798		if (usermode)
799			goto nogo;
800
801		map = kernel_map;
802	} else {
803		/*
804		 * This is a fault on non-kernel virtual memory.
805		 * vm is initialized above to NULL. If curproc is NULL
806		 * or curproc->p_vmspace is NULL the fault is fatal.
807		 */
808		if (p != NULL)
809			vm = p->p_vmspace;
810
811		if (vm == NULL)
812			goto nogo;
813
814		map = &vm->vm_map;
815	}
816
817	if (frame->tf_err & PGEX_W)
818		ftype = VM_PROT_WRITE;
819	else
820		ftype = VM_PROT_READ;
821
822	if (map != kernel_map) {
823		/*
824		 * Keep swapout from messing with us during this
825		 *	critical time.
826		 */
827		++p->p_lock;
828
829		/*
830		 * Grow the stack if necessary
831		 */
832		/* grow_stack returns false only if va falls into
833		 * a growable stack region and the stack growth
834		 * fails.  It returns true if va was not within
835		 * a growable stack region, or if the stack
836		 * growth succeeded.
837		 */
838		if (!grow_stack (p, va)) {
839			rv = KERN_FAILURE;
840			--p->p_lock;
841			goto nogo;
842		}
843
844		/* Fault in the user page: */
845		rv = vm_fault(map, va, ftype,
846			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
847						      : VM_FAULT_NORMAL);
848
849		--p->p_lock;
850	} else {
851		/*
852		 * Don't have to worry about process locking or stacks in the kernel.
853		 */
854		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
855	}
856
857	if (rv == KERN_SUCCESS)
858		return (0);
859nogo:
860	if (!usermode) {
861		if (PCPU_GET(intr_nesting_level) == 0 &&
862		    PCPU_GET(curpcb) != NULL &&
863		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
864			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
865			return (0);
866		}
867		trap_fatal(frame, eva);
868		return (-1);
869	}
870
871	/* kludge to pass faulting virtual address to sendsig */
872	frame->tf_err = eva;
873
874	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
875}
876
877static void
878trap_fatal(frame, eva)
879	struct trapframe *frame;
880	vm_offset_t eva;
881{
882	int code, type, ss, esp;
883	struct soft_segment_descriptor softseg;
884
885	code = frame->tf_err;
886	type = frame->tf_trapno;
887	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
888
889	if (type <= MAX_TRAP_MSG)
890		printf("\n\nFatal trap %d: %s while in %s mode\n",
891			type, trap_msg[type],
892        		frame->tf_eflags & PSL_VM ? "vm86" :
893			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
894#ifdef SMP
895	/* two seperate prints in case of a trap on an unmapped page */
896	printf("cpuid = %d; ", PCPU_GET(cpuid));
897	printf("lapic.id = %08x\n", lapic.id);
898#endif
899	if (type == T_PAGEFLT) {
900		printf("fault virtual address	= 0x%x\n", eva);
901		printf("fault code		= %s %s, %s\n",
902			code & PGEX_U ? "user" : "supervisor",
903			code & PGEX_W ? "write" : "read",
904			code & PGEX_P ? "protection violation" : "page not present");
905	}
906	printf("instruction pointer	= 0x%x:0x%x\n",
907	       frame->tf_cs & 0xffff, frame->tf_eip);
908        if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
909		ss = frame->tf_ss & 0xffff;
910		esp = frame->tf_esp;
911	} else {
912		ss = GSEL(GDATA_SEL, SEL_KPL);
913		esp = (int)&frame->tf_esp;
914	}
915	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
916	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
917	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
918	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
919	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
920	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
921	       softseg.ssd_gran);
922	printf("processor eflags	= ");
923	if (frame->tf_eflags & PSL_T)
924		printf("trace trap, ");
925	if (frame->tf_eflags & PSL_I)
926		printf("interrupt enabled, ");
927	if (frame->tf_eflags & PSL_NT)
928		printf("nested task, ");
929	if (frame->tf_eflags & PSL_RF)
930		printf("resume, ");
931	if (frame->tf_eflags & PSL_VM)
932		printf("vm86, ");
933	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
934	printf("current process		= ");
935	if (curproc) {
936		printf("%lu (%s)\n",
937		    (u_long)curproc->p_pid, curproc->p_comm ?
938		    curproc->p_comm : "");
939	} else {
940		printf("Idle\n");
941	}
942
943#ifdef KDB
944	if (kdb_trap(&psl))
945		return;
946#endif
947#ifdef DDB
948	if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
949		return;
950#endif
951	printf("trap number		= %d\n", type);
952	if (type <= MAX_TRAP_MSG)
953		panic(trap_msg[type]);
954	else
955		panic("unknown/reserved trap");
956}
957
958/*
959 * Double fault handler. Called when a fault occurs while writing
960 * a frame for a trap/exception onto the stack. This usually occurs
961 * when the stack overflows (such is the case with infinite recursion,
962 * for example).
963 *
964 * XXX Note that the current PTD gets replaced by IdlePTD when the
965 * task switch occurs. This means that the stack that was active at
966 * the time of the double fault is not available at <kstack> unless
967 * the machine was idle when the double fault occurred. The downside
968 * of this is that "trace <ebp>" in ddb won't work.
969 */
970void
971dblfault_handler()
972{
973	printf("\nFatal double fault:\n");
974	printf("eip = 0x%x\n", PCPU_GET(common_tss.tss_eip));
975	printf("esp = 0x%x\n", PCPU_GET(common_tss.tss_esp));
976	printf("ebp = 0x%x\n", PCPU_GET(common_tss.tss_ebp));
977#ifdef SMP
978	/* two seperate prints in case of a trap on an unmapped page */
979	printf("cpuid = %d; ", PCPU_GET(cpuid));
980	printf("lapic.id = %08x\n", lapic.id);
981#endif
982	panic("double fault");
983}
984
985/*
986 * Compensate for 386 brain damage (missing URKR).
987 * This is a little simpler than the pagefault handler in trap() because
988 * it the page tables have already been faulted in and high addresses
989 * are thrown out early for other reasons.
990 */
991int trapwrite(addr)
992	unsigned addr;
993{
994	struct proc *p;
995	vm_offset_t va;
996	struct vmspace *vm;
997	int rv;
998
999	va = trunc_page((vm_offset_t)addr);
1000	/*
1001	 * XXX - MAX is END.  Changed > to >= for temp. fix.
1002	 */
1003	if (va >= VM_MAXUSER_ADDRESS)
1004		return (1);
1005
1006	p = curproc;
1007	vm = p->p_vmspace;
1008
1009	++p->p_lock;
1010
1011	if (!grow_stack (p, va)) {
1012		--p->p_lock;
1013		return (1);
1014	}
1015
1016	/*
1017	 * fault the data page
1018	 */
1019	rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1020
1021	--p->p_lock;
1022
1023	if (rv != KERN_SUCCESS)
1024		return 1;
1025
1026	return (0);
1027}
1028
1029/*
1030 *	syscall2 -	MP aware system call request C handler
1031 *
1032 *	A system call is essentially treated as a trap except that the
1033 *	MP lock is not held on entry or return.  We are responsible for
1034 *	obtaining the MP lock if necessary and for handling ASTs
1035 *	(e.g. a task switch) prior to return.
1036 *
1037 *	In general, only simple access and manipulation of curproc and
1038 *	the current stack is allowed without having to hold MP lock.
1039 */
1040void
1041syscall2(frame)
1042	struct trapframe frame;
1043{
1044	caddr_t params;
1045	int i;
1046	struct sysent *callp;
1047	struct proc *p = curproc;
1048	u_quad_t sticks;
1049	int error;
1050	int narg;
1051	int args[8];
1052	int have_giant = 0;
1053	u_int code;
1054
1055	atomic_add_int(&cnt.v_syscall, 1);
1056
1057#ifdef DIAGNOSTIC
1058	if (ISPL(frame.tf_cs) != SEL_UPL) {
1059		mtx_enter(&Giant, MTX_DEF);
1060		panic("syscall");
1061		/* NOT REACHED */
1062	}
1063#endif
1064
1065	/*
1066	 * handle atomicy by looping since interrupts are enabled and the
1067	 * MP lock is not held.
1068	 */
1069	sticks = ((volatile struct proc *)p)->p_sticks;
1070	while (sticks != ((volatile struct proc *)p)->p_sticks)
1071		sticks = ((volatile struct proc *)p)->p_sticks;
1072
1073	p->p_md.md_regs = &frame;
1074	params = (caddr_t)frame.tf_esp + sizeof(int);
1075	code = frame.tf_eax;
1076
1077	if (p->p_sysent->sv_prepsyscall) {
1078		/*
1079		 * The prep code is not MP aware.
1080		 */
1081		mtx_enter(&Giant, MTX_DEF);
1082		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1083		mtx_exit(&Giant, MTX_DEF);
1084	} else {
1085		/*
1086		 * Need to check if this is a 32 bit or 64 bit syscall.
1087		 * fuword is MP aware.
1088		 */
1089		if (code == SYS_syscall) {
1090			/*
1091			 * Code is first argument, followed by actual args.
1092			 */
1093			code = fuword(params);
1094			params += sizeof(int);
1095		} else if (code == SYS___syscall) {
1096			/*
1097			 * Like syscall, but code is a quad, so as to maintain
1098			 * quad alignment for the rest of the arguments.
1099			 */
1100			code = fuword(params);
1101			params += sizeof(quad_t);
1102		}
1103	}
1104
1105 	if (p->p_sysent->sv_mask)
1106 		code &= p->p_sysent->sv_mask;
1107
1108 	if (code >= p->p_sysent->sv_size)
1109 		callp = &p->p_sysent->sv_table[0];
1110  	else
1111 		callp = &p->p_sysent->sv_table[code];
1112
1113	narg = callp->sy_narg & SYF_ARGMASK;
1114
1115	/*
1116	 * copyin is MP aware, but the tracing code is not
1117	 */
1118	if (params && (i = narg * sizeof(int)) &&
1119	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
1120		mtx_enter(&Giant, MTX_DEF);
1121		have_giant = 1;
1122#ifdef KTRACE
1123		if (KTRPOINT(p, KTR_SYSCALL))
1124			ktrsyscall(p->p_tracep, code, narg, args);
1125#endif
1126		goto bad;
1127	}
1128
1129	/*
1130	 * Try to run the syscall without the MP lock if the syscall
1131	 * is MP safe.  We have to obtain the MP lock no matter what if
1132	 * we are ktracing
1133	 */
1134	if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1135		mtx_enter(&Giant, MTX_DEF);
1136		have_giant = 1;
1137	}
1138
1139#ifdef KTRACE
1140	if (KTRPOINT(p, KTR_SYSCALL)) {
1141		if (have_giant == 0) {
1142			mtx_enter(&Giant, MTX_DEF);
1143			have_giant = 1;
1144		}
1145		ktrsyscall(p->p_tracep, code, narg, args);
1146	}
1147#endif
1148	p->p_retval[0] = 0;
1149	p->p_retval[1] = frame.tf_edx;
1150
1151	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1152
1153	error = (*callp->sy_call)(p, args);
1154
1155	/*
1156	 * MP SAFE (we may or may not have the MP lock at this point)
1157	 */
1158	switch (error) {
1159	case 0:
1160		/*
1161		 * Reinitialize proc pointer `p' as it may be different
1162		 * if this is a child returning from fork syscall.
1163		 */
1164		p = curproc;
1165		frame.tf_eax = p->p_retval[0];
1166		frame.tf_edx = p->p_retval[1];
1167		frame.tf_eflags &= ~PSL_C;
1168		break;
1169
1170	case ERESTART:
1171		/*
1172		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1173		 * int 0x80 is 2 bytes. We saved this in tf_err.
1174		 */
1175		frame.tf_eip -= frame.tf_err;
1176		break;
1177
1178	case EJUSTRETURN:
1179		break;
1180
1181	default:
1182bad:
1183 		if (p->p_sysent->sv_errsize) {
1184 			if (error >= p->p_sysent->sv_errsize)
1185  				error = -1;	/* XXX */
1186   			else
1187  				error = p->p_sysent->sv_errtbl[error];
1188		}
1189		frame.tf_eax = error;
1190		frame.tf_eflags |= PSL_C;
1191		break;
1192	}
1193
1194	/*
1195	 * Traced syscall.  trapsignal() is not MP aware.
1196	 */
1197	if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1198		if (have_giant == 0) {
1199			mtx_enter(&Giant, MTX_DEF);
1200			have_giant = 1;
1201		}
1202		frame.tf_eflags &= ~PSL_T;
1203		trapsignal(p, SIGTRAP, 0);
1204	}
1205
1206	/*
1207	 * Handle reschedule and other end-of-syscall issues
1208	 */
1209	have_giant = userret(p, &frame, sticks, have_giant);
1210
1211#ifdef KTRACE
1212	if (KTRPOINT(p, KTR_SYSRET)) {
1213		if (have_giant == 0) {
1214			mtx_enter(&Giant, MTX_DEF);
1215			have_giant = 1;
1216		}
1217		ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1218	}
1219#endif
1220
1221	/*
1222	 * This works because errno is findable through the
1223	 * register set.  If we ever support an emulation where this
1224	 * is not the case, this code will need to be revisited.
1225	 */
1226	STOPEVENT(p, S_SCX, code);
1227
1228	/*
1229	 * Release the MP lock if we had to get it
1230	 */
1231	if (have_giant)
1232		mtx_exit(&Giant, MTX_DEF);
1233
1234	mtx_assert(&sched_lock, MA_NOTOWNED);
1235	mtx_assert(&Giant, MA_NOTOWNED);
1236#ifdef WITNESS
1237	if (witness_list(p)) {
1238		panic("system call %s returning with mutex(s) held\n",
1239		    syscallnames[code]);
1240	}
1241#endif
1242}
1243
1244void
1245ast(frame)
1246	struct trapframe frame;
1247{
1248	struct proc *p = CURPROC;
1249	u_quad_t sticks;
1250
1251	/*
1252	 * handle atomicy by looping since interrupts are enabled and the
1253	 * MP lock is not held.
1254	 */
1255	sticks = ((volatile struct proc *)p)->p_sticks;
1256	while (sticks != ((volatile struct proc *)p)->p_sticks)
1257		sticks = ((volatile struct proc *)p)->p_sticks;
1258
1259	astoff();
1260	atomic_add_int(&cnt.v_soft, 1);
1261	if (p->p_flag & P_OWEUPC) {
1262		mtx_enter(&Giant, MTX_DEF);
1263		p->p_flag &= ~P_OWEUPC;
1264		addupc_task(p, p->p_stats->p_prof.pr_addr,
1265			    p->p_stats->p_prof.pr_ticks);
1266	}
1267	if (p->p_flag & P_ALRMPEND) {
1268		if (!mtx_owned(&Giant))
1269			mtx_enter(&Giant, MTX_DEF);
1270		p->p_flag &= ~P_ALRMPEND;
1271		psignal(p, SIGVTALRM);
1272	}
1273	if (p->p_flag & P_PROFPEND) {
1274		if (!mtx_owned(&Giant))
1275			mtx_enter(&Giant, MTX_DEF);
1276		p->p_flag &= ~P_PROFPEND;
1277		psignal(p, SIGPROF);
1278	}
1279	if (userret(p, &frame, sticks, mtx_owned(&Giant)) != 0)
1280		mtx_exit(&Giant, MTX_DEF);
1281}
1282
1283/*
1284 * Simplified back end of syscall(), used when returning from fork()
1285 * directly into user mode.  Giant is not held on entry, and must not
1286 * be held on return.
1287 */
1288void
1289fork_return(p, frame)
1290	struct proc *p;
1291	struct trapframe frame;
1292{
1293	int	have_giant;
1294
1295	frame.tf_eax = 0;		/* Child returns zero */
1296	frame.tf_eflags &= ~PSL_C;	/* success */
1297	frame.tf_edx = 1;
1298
1299	have_giant = userret(p, &frame, 0, mtx_owned(&Giant));
1300#ifdef KTRACE
1301	if (KTRPOINT(p, KTR_SYSRET)) {
1302		if (have_giant == 0) {
1303			mtx_enter(&Giant, MTX_DEF);
1304			have_giant = 1;
1305		}
1306		ktrsysret(p->p_tracep, SYS_fork, 0, 0);
1307	}
1308#endif
1309	if (have_giant)
1310		mtx_exit(&Giant, MTX_DEF);
1311}
1312